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Preface 

By organizing the 1994 Winter Meeting on Coding Theory, Information Theory and Cryptology, the 
Euler Institute of Discrete Mathematics and its Applications continues a tradition that was started 
by Prof. Han Vinck who arranged winter meetings in 1991 and 1993 in Essen, Germany. 

Again the primary intention of the meeting is to give young researchers the opportunity to present 
their results in front of an audience of scientists from various countries. In addition to this, senior 
scientists are encouraged to present survey papers or to point at new directions in research. Last but 
not least, this meeting should provide an atmosphere that allows the participants to communicate 
with each other in an informal way. We hope that the third winter meeting will be just as successful 
as the previous meetings both from a scientific and personal perspective. 

At this point we would like to thank Mrs. Henny Houben who assisted in the organization and 
Phons Bloemen for his help in preparing these proceedings. The STIMULANS support for EIDMA 
from NWO made it possible to arrange this meeting. 

Henk van Tilborg and Frans Willems, 
Meeting organizers 
December, 1994. 
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List Decoding of Convolutional Codes - A Tutorial 

Rolf Johannesson 

Department ofInformation Theory, Lund University, P.O. Box 118, 8-221 00 Lund, Sweden. email: rolf@dit.lth.se 

A bstract In this tutorial, list (convolutional) de-
coding is considered. It is shown that the error per­
formance depends on the early part of the distance 
profile and on the number of survivors kept, and not 
on the free distance or on the details of the code gener­
ators. Particularly, the encoder may be feed-forward 
systematic without loss. Furthermore, it is shown 
that this kind of encoder solves the correct path loss 
problem. Other kinds do not. Therefore only system­
atic encoders should be used with list decoders 1 

• 

I. Introduction 
In Viterbi decoding we first choose a suitable code and then 

design the decoder in order to "squeeze all juice" out of the 
chosen code. In sequential decoding we choose a code whose 
encoder memory is long enough to warrant essentially error 
free decoding. 

In list decoding (the M-algorithm) we first limit the re­
sources of the decoder, then we choose an encoding matrix 
with a state space that is larger than the decoder state space. 
Thus, assuming the same decoder complexity, we use a more 
powerful code with list decoding than with Viterbi decoding. 

List decoding is a non-backtracking breadth-first search of 
the code tree. At each depth only the L most promising sub­
paths are extended, not all, as is the case with Viterbi decod­
ing. These subpaths form a list of size L. All subpaths on the 
list are of the same length and finding the L best extensions 
reduces to choose the L extensions with the largest values of 
the cumulative Viterbi metric. 

II. The Correct Path Loss Problem and the 
Systematic vs. Nonsystematic Convolutional 

Codes Question 
Since only the L best extensions are kept it can happen 

that the correct path is lost. This is a very severe event that 
causes many bit errors. If the decoder cannot recover a lost 
correct path it is of course a "catastrophe", i.e., a situation 
similar to the catastrophic error propagation that can occur 
when a catastrophic encoding matrix is used to encode the 
information sequence. The list decoder's ability to recover a 
lost correct path depends heavily on the type of encoder that 
is used. 

A systematic encoder supports a spontaneous recovery. We 
will illustrate this by comparing the bit error probability for 
list decoders with various list sizes when they are used to de­
code sequences received over a BSC and encoded with both 
systematic and nonsystematic encoders that are equivalent 
over the first memory length. Both encoders have the same 
distance profile. The free distance of the systematic encoder 
is by far the least, yet its bit error probability is more than 
ten times better! The only advantage of the nonsystematic 
encoder is its larger free distance. Yet this extra distance has 
almost no effect on neither the burst nor the bit error proba.­
bility. Nor does it change the list size L needed to correct e 

IThis work was supported in part by the Swedish Research 
Council for Engineering Sciences under Grants 92-661 and 94-83. 
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errors, as long as e falls within the powers of the systematic 
encoder. 

In conclusion, using feed-forward systematic convolutional 
encoders essentially solves the correct path loss problem with 
list decoders. Since both systematic and nonsystematic en­
coders have the same error rate in the absence of correct path 
loss, systematic encoders are clearly superiour to nonsystem­
atic ones. 

III. The List Minimum Weight 
Consider a list decoder with a fixed list size L. For every 

depth t ::;: 0, 1, ... and every received sequence L(O,tj E lF2 (l+t)c 

let pL(!:(O,tj) denote the largest radius of a sphere with center 
L[O,t] such that the number of codewords in the sphere is less 
than or equal to L. The smallest such radius is of particular 
significance: 

For a list decoder with a given list size L the list minimum 
weight Wmin is 

Wmin ::;: min min PL(L(O,tj)' 
t !.[o.tj 

where L[O,tj is the initial part of the received sequence L' 
Given a list decoder of list size L and a received sequence 

with at most Wmin errors. Then the correct path will not be 
forced outside the L survivors. 

Unfortunately, Wmin is hard to estimate. This leads us to 
restrict the minimization to those received sequences that are 
codewords: 

For a given list size L the list weight Wlist of the convolu­
tional code C is 

WEst = min min PL(1!.[O,tJ), 
t ~(o.tJ 

where 1!.(O,tJ is the initial part of the codeword 1!. E C. 
The list minimum weight Wmin is upper and lower bounded 

by Wlist according to 

Given a list decoder of list size L and a received sequence 
with at most L~Wlisd errors. Then the correct path will not 
be forced outside the L survivors. If the number of errors 
exceeds L ~WlistJ, then it depends on the code C and on the 
received sequence L whether the correct path is forced outside 
the list. 

By bounding the list minimum weight we can show that 
the required list size grows exponentially with the number of 
errors to be corrected! 

References 
[IJ Osthoff, H., Anderson, J.B., Johannesson, R., and Lin, C.­

F.: "Systematic Feed-Forward Convolutional Encoders Are as 
Good as Other Encoders with an M-algoritm Decoder". In 
preparation. 



Proof of the Completeness of Bi-infinite Convolutional Codes 
Emma Wittenmark, Zhe-xian Wan 

Department of Information Theory, Lund University, P.O. Box 118, S-221 00 Lund, Sweden. email: emma@dit.lth.se 

Abstract - A conventional convolutional code de­
fined with one-sided infinite input sequences is known 
to be incomplete by Willems' definition of complete­
ness [1]. However, a convolutional code C defined 
with bi-infinite input sequences is complete. This can 
be shown with the help of symbolic dynamics. This 
paper presents a self-contained proof of the complete­
ness of such convolutional codes. 

The paper also includes a definition of a state real­
ization of convolutional codes defined in this wayl. 

I. Notation 
Let C be a rate R = kin convolutional code and let G(D) be 
a polynomial encoding matrix of C. Then G(D) is k x n of 
rank k and C is the set 

C = {x(D)G(D)lx(D) E IF/«(D)))} (1) 

where lF2«(D))) is the set of bi-infinite sequences over the 
signal alphabet lF2 and lF2 k « (D))) is the k-dimensional row 
vector space over lF2«(D))). 

II. Completeness 
In [1], Willems defines a code C (or a system) to be complete 
if any sequence w E I1tE Z lF2 n such that wlI E CII for any 
finite interval f of 7l. implies that w E C. This means that a 
code (system) is complete if it is locally defined. Convolutional 
codes, defined conventionally with input sequences of Laurent­
type, are known to be incomplete. However, by extending the 
definition of convolutional codes to be the set of bi-infinite 
sequences we have, 

Theorem 1 The bi-infinite convolutional code C is complete. 

Proof: Assume c(D) = L:~:::'oo ciDi any word such that for 
any finite interval f, 3YI(D) E C such that Yi = Ci, 'Vi E f. 
In particular, we have for f = {O}, 3x(0)(D) = L:~:::'oo x~O) Di 
such that 

(0) (0) G (O)G Co = x_rnGrn + x_ rn+l rn-l + ... + Xo o· (2) 

For f = {-n, ... , n}, 3x(n)(D) such that 

C- n 
(n) G (n) G (n)G X_ rn _n rn + x-rn - n +l rn-l + ... + X_n 0 

Cn = (n) G (n) G (n)G x_ rn+n rn + x- rn+n+l rn-l + ... + Xn 0 

etc. 
There exists an infinite set So of nonnegative integers such 

that all (x~n2.,x~n2.+1, ... ,X~n») equal the same vector 'Vn E 
So. Also, there exists an infinite subset SI C So such that all 
(x~'%_I,x~n2., ... ,x~n),xin») equal the same vector 'Vn E SI. 
We then have a sequence of nested infinite sets So J SI J 

IThis research was supported in part by the Swedish Research 
Council for Engineering Sciences under Grants 92-661 and 94-77. 
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S2 J ... such that for each l = 0, 1, 2, ... all (x~n~_/l' .. , xfn l ) 
equal the same vector 'Vn E S/. 

Now, define x' = ... X~TnX~rn+l ... x~x~ ... by 

( 
I ') _ ( en) en») x-Tn-h"" Xl - X_ rn _l ,···, Xl 'VnE Sl. (3) 

X' is well-defined since we have a nested sequence of subsets 
Sl J SI+I. 

Given any l 2:: 0, 3n 2:: land n E Sk for some k such that 

x~'%_nGrn + x~n2._n+l GTn - l + ... + x~n2Go 

= en) G (n) G (n)G x_ rn _l rn + X- rn- l+l Tn-I + ... + X_I 0 

en (n) G en) G (n)G X_ rn+n rn + X- rn+n+l rn-l + ... + Xn o· 

We have, 

en) G en) G (n)G X_ Tn _l rn + X- Tn - l+l rn-l + ... + x_I 0 

X~Tn_lGrn + ... + X'-IGO 'Vn E Sl. (4) 

Thus, e(D) =(L:~:::'oo xiDi)(Go + G ID + ... + GrnDrn ) and 
is then a codeword in the code C, and the proof is complete. 

D 

III. State Realization 
For any input sequence xeD), define an abstract state of the 
code C relative to the encoding matrix at time t to be the 
output from the encoding matrix truncated to start at time 
t due to an input sequence truncated to end at time t - l. 
Denote the abstract state by st(D). Also, let Ct E lF2 n be 
the t-th coefficient of a codeword e(D) = x(D)G(D) E C and 
Ba(D) to be the set 

Ba{D) = {((et,st(D)),t E 7l.)lc E C}. (5) 

Then Ba{D) is a state realization of the code C. For the 
definition of state realization, see [2]. Moreover, when G(D) 
is minimal-basic, Ba{D) is the minimal state realization of C. 

References 
[1] Jan C. Willems, "Models for Dynamics", in Dynamics Re­

ported, vol. 2, John Wiley and Sons, 1989. 

[2] G. David Forney Jr, Mitchell D. Trott, "The Dynamics of 
Group Codes: State Spaces, Trellis Diagrams and Canonical 
Encoders", IEEE Trans. on Information Theory, 39, 1993. 



An Alternate Metric for Sequential Decoding 
Gerhard Kramer and Dirk J. Tempel 

Institute for Signal and Information Processing 
Swiss Federal Institute of Technology Zurich 

CH-8092 Zurich, Switzerland 

The Fano metric is almost universally applied for the 
sequential decoding of codes whose state transitions in 
time can be described by a tree. The justification for 
using this metric was given in [1] where it was shown 
that the Fano metric extends the most likely path for a 
model which specified that one knew nothing about the 
unexplored part of the tree. However, in [2] an alternate 
metric was presented, and in [3] it was found that this 
metric achieves the same error probability as the Fano 
metric with less searching for the sequential decoding of 
the Golay code. 

It is shown that the alternate metric in [2, 3] can be 
derived using the same model as in [1 J by maximizing 
the joint probability of the received signal, the consid­
ered path and the tail, in contrast to the Fano metric 
which maximizes the probability of the received signal 
and the considered path only. However, simulation re­
sults for punctured codes show that the alternate metric 
performs much worse than the Fano metric for codes of 
rate 1/2 to 7/8, and performs just as well for higher rate 
codes. Thus, it seems that this metric is of limited use­
fulness for the sequential decoding of convolutional codes 
unless they have a very high rate. 

References 
[1] J.L. Massey, "Variable-Length Codes and the Fano Metric," 

IEEE Trans. Inform. Theory, va!. IT-18, Jan. 1972, pp. 196-
198. 

[2] Z. Xie, C.K. Rushforth, and R.T. Short, "Multiuser signal de­
tection using sequential decoding," IEEE Trans. Commun., va!. 
COM-38, May 1990, pp. 578-583. 

[3J D.J. Tempel, "Sequential Decoding of Linear Block Codes," 
M.Sc. Thesis, Dept. of Elec. and Camp. Eng., University of 
Manitoba, March 1993. 
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A Comparision of Different Metrices for GMD Decoding 
Rainer Lucas 

Communication Engineering Department, University of Ulm, Germany 

It is well known that soft decisions on a AWGN chan­
nel gives better performance of channel coding. Maximum­
Likelihood-Decoding (MLD) is the best method of minimizing 
the bit error probability but its complexity grows exponen­
tially with the code length n. One decoding method which 
trade a slight degradation in performance for reducing the 
complexity is Generalized Minimum Distance (GMD) Decod­
ing proposed by G.D. Forney. 

This paper deals with the principle problems of GMD de­
coding. 

The idea of GMD decoding is as follows. An algebraic error 
and erasure decoding algorithm n works correctly if 2t + s < 
dmin holds (t: number of errors, s: number of erasures, dmin: 
minimum distance of the considered code). By means of this 
algorithm n, try to find a codeword using the following steps: 

• erase the s symbols of the received sequence (hard de­
cision) which are less reliable . 

• try to find a codeword by means of the algorithm Q 

which holds 

dH(Il,f.} < ~(dmin - s) 

where the Hamming distance of the n - s non erased 
symbols is considered. 

The result of this recursion is a set of codewords Fa that 
may be empty in the case of a decoding failure. 

For any kind of list decoding there are two questions of 
interest: 

1. Does the codeword f. found by the algorithm Q belong 
to the list Fa if a certain condition A between f. and the 
received sequence y. is fullfilled ? 

2. Is it possible to choose the condtion A in such a manner 
that there is not more than a single codeword in the list 
Fa? 

This paper gives and compares known results to these ques­
tions. In Detail the acceptance criteria of Forney, Dumer, 
Enns (Taipale/Purley) Kabatyanskii and the recent result by 
Kaneko, Nishijima et aL are explained. In order to compare 
their decoding domains theoretically they will be represented 
in a uniform manner. Furthermore some simulation results 
will be presented. 
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European Transmission Standards for Digital TV Broadcasting 

Paul G.M. de Bot 
Philips Research Laboratories, Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands 

(Fax: +31 40 742630; Email: debot@prl.philips.nl) 

I. Introduction 
Recently, practical systems for video source coding have been 
developed in the framework of the ISO/MPEG project. This 
effort has lead to a growing interest for introduction in Eu­
rope of digital broadcasting services in the near future. With 
this respect, we should distinguish between satellite direct-to­
home distribution, cable network distribution and terrestrial 
distribution. Since these distribution media each have differ­
ent channel characteristics and require different receiver equip­
ment, different transmission mechanisms have to be designed, 
each optimized for a specific medium. All of these mechanisms 
enable the transport 24-40 Mbit/s in a single channel. Such 
a transport stream is sufficiently large to contain a number 
(4-8) of normal standard definition TV programs. 

II. Satellite Distribution 
Early this year, a draft European standard has been fixed, 
describing a transmission mechanism for TV broadcasting via 
satellite [2]. Satellite transmission is characterized by low 
available transmitter power, relatively high channel band­
width (33-40 MHz), highly nonlinear transmitter amplifica­
tion and a transmission channel which approaches the Addi­
tive White Gaussian Noise (AWGN) channel. For these rea­
sons, QPSK modulation is chosen with powerful concatenated 
error correction coding consisting of a 1/ = 6 convolutional 
code, interleaving and a [204,188,17] Reed-Solomon code. The 
R = 1/2 convolutional mother-code can be punctured to ob­
tain ,rates of 2/3, 3/4, 5/6 and 7/8. The used interleaving is 
convolutional byte interleaving of depth I = 12. This depth is 
chosen such that at the receiver side a burst error at the output 
of the Viterbi decoder is sufficiently distributed over different 
Reed-Solomon codewords. To reduce the peak-to-average ra­
tio of the transmitted signal, and to ease the synchronization 
in a receiver, Nyquist filtering with a relatively large roll-off of 
35% is used. The Nyquist filter is equally split in a transmitter 
part an a receiver part. 

III. Cable Distribution 
For cable TV networks, another transmission standard is 
drafted this year [3]. The cable channel is characterized by 
a high signal-to-noise ratio, a strong bandwidth limitation (8 
MHz), and short reflections due to impedance mismatches in 
the network. These constraints have lead to the choice of 64-
QAM modulation, interleaving in combination with a single 
Reed-Solomon code. For compatibility reasons, the interleav­
ing and Reed-Solomon coding are chosen the same as for the 
satellite system. To maximize the channel efficiency, Nyquist 
filtering with a roll-off as low as 15% is used, divided over a 
transmitter and a receiver part. To compensate for the chan­
nel reflections, channel equalization is needed in the receiver. 

IV. Terrestrial Distribution 
The terrestrial channel is for sure the worst and most difficult 
of the three channels discussed. For this reason, no draft stan­
dard has yet been fixed in Europe. Discussions all focus on the 
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use of Orthogonal Frequency Division Multiplexing (OFDM), 
in contrast to the single carrier systems for satellite and cable 
[1]. OFDM uses up to 8192 narrowband carriers, which can 
be modulated each with for instance 64-QAM. This technique 
makes the reception less sensitive to the strong multipath na­
ture of the channel. The error correction should be as strong as 
possible, to maximally extend the coverage area of the trans­
mitter stations. Preferably, a concatenated coding scheme as 
for satellite should be used. 

References 
[1] P.G.M. de Bot, B. Le Floch, V. Mignone, and H.D. Schutte. 

An overview of the modulation and channel coding schemes de­
veloped for digital terrestrial television broadcasting within the 
dTTb project. In Proc. Int. Broadcasting Convention, pages 
569-576, Amsterdam, The Netherlands, September 1994. 

[2] ETSI. Channel coding and modulation for 11-12 GHz satellite 
receivers, April 1994. prETS 300xxx/6. 

[3] ETSI. Framing structure, channel coding and modulation 
for CATV cable and smatv distribution, May 1994. prETS 
300xxx/7. 



Decoding of Concatenation of Outer Convolutional Code with Inner 
Orthogonal Code 

Thomas Frey 
Communication Engineering Department, University of Ulm, Germany 

Channel estimation in the uplink of a CDMA system is a 
difficult problem. One possibility to avoid this problem is the 
use of incoherently detectable modulation schemes, ego M-ary 
orthogonal modulation. In order to reduce the bit error rate 
to an acceptable level, in addition channel coding has to be 
employed. This paper deals with possible demodulation and 
decoding schemes. 

An example for such an existing system may be the uplink 
of the Qualcomm system which uses the set of Walsh func­
tions with dimension 64 as the orthogonal signaling system 
and a convolutional code of rate 1/3 and constraint length 9 
as channel code. In terms of coding theory this system can be 
described as a concatenation of an inner orthogonal code with 
an outer convolutional code, whereby the inner orthogonal 
Walsh Hadamard code is a subset of a (biorthogonal) Reed­
Muller code of first order. First order Reed-Muller codes are 
low-rate, which provide an inherent spreading and make them 
suitable for spread spectrum applications. 

This paper investigates several possibilities of decoding this 
concatenated scheme. It is assumed that both inner and outer 
code are soft maximum-likelihood decoded, ego by a fast 
Hadamard Transform or by a Viterbi decoder respectively. A 
comparision is done by using two types of reliability informa­
tion between inner and outer code, a symbolwise (Walsh sym­
bol with 6 bits) and a bitwise, whereby the bitwise performs 
slidely better. A major improvement is achived by maximum­
likelihood decoding of the whole code, which can be performed 
by a Viterbi decoder using a new trellis with Walsh symbols 
as metric. 

10 
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Most approaches to efficient coding for the CDMA channel 
are simply too complex to implement. This complexity stems 
from the necessity to perform joint decoding of all users which 
requires a decoding algorithm that is able to track all possible 
states of all encoders. 
An alternative approach to coding that aims to achieve rea­
sonable efficiency while avoiding the impractical complexity 
of optimum decoding is based on a 'modulation engineering' 
point of view: 
First, we employ a partial demodulator scheme in order to 
segregate the users into small, roughly independent groups. 
Coding for one user group subsequently ignores the specific 
codes for all other groups and thus reduces to coding for the 
noisy (binary) adder channel. 
As the second step in our approach, we devise good, small 
signal sets or 'codes' for each group in such a way that the 
resulting 'virtual channels' for each user exhibit substantial 
independence that allows independent single-user decoding 
with little loss of optimality: The modulation system should 
be designed to create a 'good' channel for coding whereby 
the capacity of this discrete channel consisting of the modu­
lators, the noisy real adder channel and the demodulator is 
only slightly decreased and the users are separated to some 
extend. We investigate some information-theoretic aspects 
of this signal set design problem. Some examples are used 
to show that small, uniquely decodable or larger, 'almost' 
uniquely decodable multi-user block codes create a 'virtual 
channel' and should be considered not as codes but rather as 
multi-user signal sets for use with a coding alphabet of the 
same size. 

11 



Modified Delay-Locked-Loop Structures for PN-Code Tracking 
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Abstract In direct sequence (DS) spread spec-
trum systems the pseudo-noise (PN) code tracking 
with a delay-locked loop (DLL) is commonly used. 
Some modifications to the conventional DLL structure 
are described and their performance is evaluated. 

I. Introduction 

In spread spectrum systems PN-code tracking is a crucial per­
formance aspect. The DLL is an appropriate device to guaran­
tee fine synchronization. The code phase estimate is produced 
by comparing the received signal with both the early and late 
replicas of the locally generated PN reference sequence. The 
code phase timing error drives the clock of a PN-code gen­
erator to adjust the code phase timing. This is a closed-loop 
tracking control system. The conventional DLL has been stud­
ied in the literature in detail [IJ. Extended tracking range 
DLLs have been described in [2] and [3]. Please note, that in 
this paper we always refer to coherent DLLs using maximal­
length sequences as the spreading codes. However, the modi­
fications can also be applied to non coherent tracking loops. 

II. Conventional DLL 
The received signal is multiplied by the early and late repli­
cas of the local PN-code. The spacing between the early and 
late replicas is ..:l Te. The parameter ..:l is the total normal­
ized time difference between the early and late discriminator 
branches. The two branches are low pass filtered (LPF) to per­
form the autocorrelation over the PN-code and then they are 
subtracted. The result is the error signal e(t}. The loop filter 
generates the input signal for the voltage controlled oscillator 
(VeO) steering the local PN-code generator. The delay-lock 
discriminator dc output DA is plotted as a function of the 
timing error E in the so called S-curve. The S-curve describes 
the structural characteristic of the DLL. 

III. Modified Coherent DLL 

An improvement to the conventional loop can be achieved by 
reducing the noise power in the loop. This can be done by se­
lecting one of the two correlation branches in the DLL instead 
of taking both [4]. This will change the detector S-curve only 
slightly for a ..:l spacing of 2. The difference is due to the out­
of-lock correlation of the inactive branch which is very small 
for long sequences having good autocorrelation properties. An 
important aspect for the realization of the modified DLL is 
that the expectation over the correlation should be performed 
before the selection device. This means that the LPF must be 
before the subtraction and can not be integrated in the loop 
filter as for the conventional DLL. 

IV. Extended Tracking Range DLL 

Extended tracking range DLL's have been proposed in [2] and 
[3). The principle is to extend the overall tracking range by 
using more than two correlators to produce the loop error sig­
nal. However, each additional correlator increases the noise 
power in the loop. To reduce the noise power in the extended 
tracking range loop, it similar a.pproach to the one used in 
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section III. The input signal is despread with the time-shifted 
replicas of the code and low pass filtered to perform the auto­
correlation over the PN-code. The autocorrelation values of 
the different branches are then processed in a select/combine 
block. The algorithm selects the two strongest branches and 
combines them with the correct sign. The result is the loop 
error signal which is fed back to control the local PN-code 
generator. The S-curve for this modified extended tracking 
range DLL is almost identical to the one of the conventional 
extended tracking range DLL. The number of correlators can 
easily be increased without influencing the jitter performance 
of the loop. The number of correlators is only limited by the 
processing overhead. 

V. Comparison of Loop Performance 
The tracking jitter for the various loop structures has been 
calculated by linear analysis. The linear analysis holds for 
small tracking errors and white Gaussian input noise. This 
means that the detector output is always kept in the linear 
tracking range. The linear tracking range is defined to be 
that region where DA depends linearly on the tracking error 
E. The overall tracking'range is the region where the detec­
tor produces an usable control signal DA to drive the veo 
through the loop filter. Outside the overall tracking range 
the loop must be considered out-of-Iock and are-acquisition 
should be started. The modification of the coherent 2..:l-DLL 
gives a reduction in tracking jitter of 3 dB compared to the 
conventional 2..:l-DLL. The modified extended tracking ra.nge 
DLL enlarges the overall tracking range arbitrarily while con­
serving the jitter performance of the conventional DLL. 

VI. Conclusion 
Modifications to the conventional DLL structure can improve 
the performance of the DLL significantly. This is achieved 
by reducing the noise power in the tracking loop. Further 
investigations to apply the principle of limiting the noise power 
in the loop will be carried out. 
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Abstract - A rate 8/10 binary DC-free Parity­
Check (PC) code is presented. We determine its soft 
decision error rate performance and present examples 
of feasible code rates of other DC-free PC codes. 

I. Preliminaries 

Binary codes with a spectral null at the zero frequency, i.e., 
DC-free codes, have been widely applied [1-4]. We define the 
Running Digital Sum (RDS) of the encoded sequence {xi} = 
{ ••• ,X_l,XO, .•. ,Xi, ... }, Xi E {-I, I}, as 

Zi = L Xj Zi-l +Xi. 

j=-Ot.'J 

RDS-constrained codes are characterized by the property that 
their RDS remains within a bounded range, i.e., the RDS of 
the encoded sequence takes a finite number of values. This 
number is called the Digital Sum Variation (DSV) and is de­
noted by N. RDS-constrained codes are DC-free codes, i.e., 
the encoded sequences have high-pass characteristics with a 
spectral null at the zero frequency. A tutorial description 
of RDS-constrained codes including several examples can be 
found in [1]. We consider codes which map m source bits to n 
channel symbols. We define the code rate R = mIn and the 
rate efficiency 1] = R/C(N), where C(N) denotes the noise­
less capacity of a sequence occupying N sum states [lJ. We 
confine ourselves to encoders having 2 states. From [lJ, we 
know that such encoders lead to relatively high rate efficien­
cies. A rate 8/10 RDS-constrained code based on a 2-state 
encoder, for example, achieves the maximum rate efficiency 
possible for this rate (17::::: 94.2%). 

The construction of RDS-constrained codes implies a free 
Hamming distance of 2. In order to exploit this free distance, 
several authors [2-4] considered the application of rather 
complex sequence estimation algorithms. We propose RDS­
constrained codes with minimum Hamming distance 2 which 
hence allow the application of the Soft Decision Parity-Check 
(SDPC) (or 'Wagner') decoding algorithm [5]. The computa­
tional complexity of this algorithm is known to be very low 
and it is independent of the DSV of the code. Further, error 
propagation is limited to m decoded source bits. 

II. Rate 8/10 Code 
The minimum DSV of a rate 8/10 DC-free Parity-Check 

(PC) code equals N = 9, thus we call it 'N9 code'. The N9 
code is a subset of all paths through the RDS trellis [1] in 
Fig. 1. Since all codewords have odd weight, the minimum 
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Figure 1: RDS trellis of a rate 8/10 DC-free PC code 

13 

Hamming distance is 2. The maximum number of consecutive 
like symbols in the channel string can be limited to 5. 

The error rates for the N9 code in the presence of addi­
tive white Gaussian noise have been determined by means of 
computer simulations in the case of Maximum Likelihood Se­
quence Estimation (MLSE) or SDPC decoding. For symbol 
error rates in the order of 10-5 , MLSE leads to a gain of about 
2.8 dB, and SDPC decoding to a gain of about 2.5 dB versus 
threshold detection level. Since the N9 code is a subset of the 
complete set of 29 odd-weight patterns of length 10, the SDPC 
decoding algorithm results in a scheme which is not optimal 
in the maximum-likelihood sense. 

III. Generalization 
We consider DC-free PC codes having arbitrary (even) 

codeword length nand DSV N. OUf codes are based on 
2-state RDS trellises whose principal states (so and Sl) are 
associated with RDS values of -2 or 2 (see Fig. 1). We trun­
cate the number of RDS trellis paths to the nearest power of 
2 in order to determine the code rates feasible. Examples of 
feasible code rates are given in Table 1. 

N 

7 
8 
9 
10 
11 

Table 1: Examples of feasible code rates 

Finally, we mention several DC-free PC codes having 
relatively high rate efficiencies: for N = 7, we find a rate 
6/8 code with 17 ::::: 84.7%, and a rate 13/16 code with 
1} ::::: 91.7%. For codeword lengths in the range 10 ::; 
n ::; 14, the choice N = 9 leads to relatively high rate 
efficiencies: codes having rates 8/10, 10/12, and 12/14 
achieve 1} ::::: 86.2%, 89.8%, and 92.4%. 
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Abstract - New trellis codes over various lattice 
partitions having optimum distance profile (ODP) 
and encoders with large constraint lengths are con­
structed. They are attractive to use in combination 
with sequential decoding algorithms since their ODP 
property ensures good computational performance1

• 

I. Introduction 

Trellis coded modulation (TCM) can achieve significant cod­
ing gain over uncoded transmission without any bandwidth 
expansion. For error rates of the order of 10-6

, the gap 
between the Shannon limit and uncoded high-rate QAM­
signaling is approximately 9 dB, being the maximum possi­
ble coding gain for any coded modulation scheme operating 
in this region. A perhaps more realistic performance limit is 
the computational cut-off rate, Ro, beyond which the com­
putational distribution for sequential decoding becomes un­
bounded. The possible coding gain under the Ro-criterium is 
7.5 dB. It can be separated in two parts, fundamental coding 
gain and shaping gain [1]. The maximum values of these gains 
are approximately 6 dB and 1.5 dB, respectively. 

The signal constellation can be viewed as a finite set of 
points from an infinite 2N-dimensionallattice A. A sublattice 
A' of A induces a partition AI A' of A into IAI A' I cosets of A'. 
In each time interval the output of a rate R:::::: k~l convolu­

tional encoder is used to select one of the 2k+l cosets. The un­
coded bits then select one of the points in the specified coset. 
The fundamental coding gain is determined by the convolu­
tional encoder and the lattice partition, whereas the shaping 
gain depends on the bounding region of the constellation. 

Current implementations of TCM-systems all use the 
Viterbi algorithm (VA) for decoding the trellis code. The de­
coding effort of the VA is proportional to the number of states 
in the trellis, 2", where /I is the overall constraint length of the 
convolutional encoder. These systems are thus restricted to 
have a relatively small number of states and can therefore not 
achieve the previously mentioned 6 dB. An example is the new 
modem standard V.34 where three different codes are avail­
able. The most complex encoder has 64 states and a coding 
gain of 4.6 dB. 

The aim of this work is to increase the coding gain by in­
creasing the number of states in the encoder. The decoding 
is then performed by a sequential decoder since its decoding 
effort is essentially independent of the number of states. 

A major drawback of sequential decoders is that the num­
ber of computations is a random variable, thus complicating 
real-time implementations of systems using such algorithms. 
It is a well-known fact that the code should have an optimum 
distance profile (ODP) in order to minimize the average num­
ber of computations. As a first step we here report ODP trellis 
codes over various lattice partitions. Similar constructions for 
8-PSK and 16-QAM can be found in [2]. 

lThis research was supported in part by the Swedish Research 
Council for Engineering Sciences under grants 92-661 and 94-83. 
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II. Code search 
It is convenient to search for good R = k~l encoders on a sys­
tematic feedback form. The corresponding generator matrix 
is 

G(D) = ( h 
where 

G'(D) :::::: g~ + giD + ... + g~DV 
are polynomials in the delay operator D. The search was then 
performed as follows: 

Assume that the set of ODP-encoders of constraint length 
/I is known. Form the 2" possible extensions of every encoder 
on the list and calculate their distance profiles. Retain the 
encoders with the best distance profile, these form the set of 
ODP-encoders of constraint length /I + l. 

To be able to make an accurate estimate of the error per­
formance of a code, the number of paths at distances dJree up 
to dJree + i should be computed for some small i. Since the 
number of encoders to be investigated is large, it is important 
for the algorithm to be efficient. 

The FAST algorithm [3] is considered to be an efficient 
algorithm for computing the spectral components of a con­
volutional code. The extension to trellis codes includes a 
transformation of the systematic feedback encoders to equiva­
lent non-systematic feedforward encoders, an operation of low 
complexity. The above transformation is not allowed if the bit 
error probability is considered since it changes the mapping 
from information sequence to codeword. 

For each lattice partition the results are presented in a table 
containing the generator polynomials for one encoder for each 
constraint length. This encoder is the one having the best 
error performance of the encoders in the complete ODP-set. 
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Abstract - Simulation results for concatenated 
outer Reed-Solomon and inner Convolutional Codes 
used in multilevel schemes are presented. Differ­
ent high rate inner convolutional codes were consid­
ered, viz., punctured codes and partial unit memory 
(PUM) codes. Best results were obtained for PUM 
codes, since they have a better extended row distance 
profile. The effect of channel and block interleaving 
was also studied, and iterative decoding was tried 1. 

I. Introduction 
A multilevel code uses some signal set 50 which is a finite 
subset of a lattice or a set of points with some group struc­
ture. This set is partitioned in a k-Ievel partitioning chain, 
50 /5l/ ... /5k . Each partition at level i, 5i-1/5i, is deter­
mined by a component code Ci at this level. Using a mul­
tilevel approach when constructing codes makes it possible 
to achieve very large asymptotic coding gain in a systematic 
way. The codes also possess structural properties which are 
advantegous. Unfortunately, the decoding must by necessity 
be carried out in a way which is not maximum likelihood, oth­
erwise the computational effort becomes far to large even for 
small systems (i.e., systems with not very complex component 
codes). The computational complexity of the preferred mul­
tistaged decoding procedure ([1]) is proportional to the sum 
of the complexity of each component code, but it suffers from 
error propagation. In order to minimize the errors at each 
level, a concatenated scheme with outer Reed-Solomon and 
inner convolutional codes was considered. The errors of the 
inner convolutional decoders are gathered in bursts, and the 
idea is that the inherent burst error correcting capability of 
the outer RS code will correct these errors. 

II. The used system 
Our system transmits signals over the AWGN channel. The 
used signal constellation is 8-PSK. This implies three levels 
in the system. Since the partition chain is 8-PSK/4-PSK/2-
PSK/1-PSK, the minimum squared Euclidean distance among 
the signal points in the subsets at the different levels increases 
for each partition. Therefore the encoder of level 1 must be 
protected by a more powerful code than that of level 2, et 
cetera, Le., R1 < R2 < R3 (R; is the rate of level i). The 
simulations showed that there were no need for a concatenated 
component code at level 3, only a convolutional code was used. 
In order to retain as high overall rate as possible, the rate of 
the inner code of level two must be quite large. 

III. Results 
For the inner code of level 2, at first a high rate punctured 
convolutional code was chosen due to the simple implementa­
tion of the decoder. Simulations then showed that bit error 
rate (BER) performance of this level bounded the overall code 
BER. This is caused by the- bad extended row distance pro­
file of punctured codes, Le., error vectors e of small weight 

1This work was supported in part by the Swedish Research 
Council for Engineering Sciences under Grants 92-661 and 94-83. 
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is enough to result in quite long bursts. As an alternative, 
a PUM code was tested. There exist decoding procedures 
for these codes [2] that are not more complex than decod­
ing of punctured codes. The simulations showed a small im­
provement with this system. Introducing block interleaving 
between inner and outer codes resulted in approximately 0.9 
dB gain in SNR. One idea to decrease error propagation is to 
interleave the transmitted symbols from the different levels. 
This channel interleaving would split a burst from a high level 
into several shorter, such that subsequent decoders see a chan­
nel which is bursty for several short periods rather than one 
long period. Comparing simulations of this system with simu­
lations of a theoretical system without any error propagation 
at all (a genie between every level), showed a difference of less 
than 0.05 dB already at a BER of 10-4 . This implies that 
there is no need for channel interleaving as a way of decreas­
ing error propagation. Simulations with channel interleaving 
supported this assumption. Finally we studied the influence 
of iterative decoding at the different levels. The hard output 
of the RS decoders complicates such schemes. There is no im­
mediate way of extracting error probability of individual bits, 
needed for MAP-decoding, to be used with the hard estimates 
transmitted to subsequent decoding stages. It turned out that 
only level 1 benefitted from iterative decoding. Since the rate 
of this level is low, the total BER was not changed more than 
a few tenth of a dB. 
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Abstract A new decoding technique is applied 
to a class of PUM codes on a I-D PRC. Every bun­
dle of parallel branches occurs more than once in the 
trellises representing these codes. This property is 
exploited to decrease the decoding complexityl. 

I. Introduction 

The decoding of high rate convolutional codes on a 1-D Par­
tial Response Channel (PRC) using a new proposed decoding 
technique presented in [lJ, is considered. The complexity of 
the decoding is characterized by the number of operations 
needed per decoded information bit, and by the size of the 
path memory. The path memory size is reduced by using Par­
tial Unit Memory (PUM) codes. By exploiting the linearity of 
the parallel transitions in the trellises representing such codes, 
the number of decoding operations are reduced. 

II. New proposed decoding technique from [1] 

Consider the decoder trellis of an In, k, dJ PUM code. Because 
k > /.I, there are parallel branches between pairs of states in 
the trellis which correspond to cosets of a block code with 
length n and dimension k - /.I. The block code is defined by 
the labels on the branches starting and ending in the zero 
state. The ACS step of the Viterbi algorithm is split into two 
steps: 

1. Decode all parallel branches by a local Viterbi decoding. 
Identify in each step the surviving branch. 

2. Decode the reduced trellis consisting of the surviving 
branches from step 1. 

The block code and the cosets can be represented by a trellis, 
as shown for an [8,2,5J block code in Figure 2, and decoded 
by the Viterbi algorithm. Let {61 , •.• ,6k ,} denote the levels 
where this trellis merge. The number of operations in step 1 
. . ""k' 26'- i d # dd't' 2n- k '+1 IS #compartsons = 6i=1 • an a t tons = -
2 + 2· #comparisons where k' = k - /.I. It has been shown in 
[1 J that this bound is attained if the block code satisfies the 
chain condition. 

1 ...... . 
0--

Code+(OOOOOOOI) 

Code 

Code+(OOOOOOlO) 

Code+(OOOOOOll) 

Figure 2: Trellis of an [8,2,5] block code and three cosets. 

IThis work was supported by the Norwegian Research Council 
(NFR). 

16 

III. The new technique applied to PRes 
In [2J a system for a PRC is described. The binary informa­
tion is encoded by an error-correcting code; a coset is used to 
generate the input to a precoder whose output is passed over 
a 1-D channel. The channel has input from {0,1} and output 
from {a, ±1}. The information of the PRC states is included 
into the decoder trellis by duplicating the states and giving 
them polarity. This reduces the number of parallel branches 
between pairs of states in the trellis. 

The trellis in Figure 3 represents the block code and the 
cosets determined by the trellis of a [5,3,d}ree = 6J code, /.I = 1, 
on a PRC. Notice that the block code and all the cosets start 
in positive states. The trellis for the cosets starting in negative 
states, has identical structure but with reversed signs. 

The number of operations needed to decode this block 
code and the cosets, is 2·(4 comp + 26 add). The total 
number of operations per decoded bit for the PUM code is 
(30 + 28)/2 ~ 30 operations. A comparable punctured code 
uses 56 operations per decoded bit. The parity check ma­
trices of the codes determined in [2J has a structure that do 
not allow every coset of the block code to be present in the 
convolutional code trellis. Every coset therefore occurs more 
than once in the trellis, which is the reason why the new tech­
nique for these codes on PRCs is a:n attractive alternative to 
punctured solutions. 

0--
+ ...... . . .. ·0 Code+(OOOll) 

Code+(OOOlO) 

Code 

"0 Code+(OOOOI) .......... <:: .... ......... 0 Code+(OOOOI) 
, ." Code 

....... "..... ............. Code+(00010) 

""'" Code+(OOOll) 

Figure 3: Trellis of a [5,2,61 block code and cosets. 
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Abstract - Cosets of convolutional codes may be 
used to generate zero-run length limited trellis codes 
for a precoded I-D partial-response channel. Results 
on the zero-run length and free Euclidean distance of 
the trellis codes are reviewed. 

I. Cosets of Convolutional Codes 

A rate R = kin convolutional code, C, may be defined by an 
n - k by n polynomial parity-check matrix H(D). The i-th 
input constraint length, v(i), of H(D) is equal to the maxi­
mum degree of the polynomials in the i-th row. The (overall) 
constraint length is given by v = L v(i). As an example, a 
rate R = 3/5 convolutional code is defined by the parity-check 
matrix 

H(D) = ( ~ 1 
D+1 

1 0 
o 1 

Here v(l) = 0, v(2) = 1 and v = 1. We say that the parity­
check matrix is ordered since v(i):::; v(i+1),i = 1, ... ,n-k-l. 
There are infinitely many parity-check matrices for a given 
convolutional code. We assume that a parity-check matrix 
with minimal constraint length v is used. A coset, C+a, of a 
convolutional code C is obtained by adding a fixed sequence, 
a~ C, to each codeword in C. The maximum zero-run length, 
L, of a coset C+a is the maximum number of consecutive 
zeroes in any sequence contained in C+a. 

II. Convolutionally Coded I-D Channel 
A coset of a convolutional code C+a may be used for error 
control and symbol synchronization in a precoded partial­
response channel with transfer polynomial 1-D [1]. A binary 
sequence in C+a is sent through a channel precoder of charac­
teristic 1/(1 EEl D) and subsequently through the 1-D partial­
response channel. The precoder essentially inverts the channel 
transfer function. Thus "O"s in the precoder input correspond 
to "O"s in the channel output, while "l"s in the precoder input 
correspond to "± l"s in the channel output, where the signs 
alternate. 

The set of noiseless ternary ({ -1,0, I}) sequences gener­
ated by a coset of a convolutional code, the precoder, and 
the 1-D channel constitutes a non-linear trellis code. The 
maximum zero-run length of this trellis code is determined 
by the maximum zero-run length of the coset of the convolu­
tional code. A good trellis code must have: (i) high rate R 
(> 1/2), (ii) short maximum zero-run length L, and (iii) large 
free squared Euclidean distance, d}ree. 

III. Bounds on Zero-Run Length 
Theorem 1 {2} Let C be any rate R = kin convolutional code 
with ordered parity-check matrix H(D). Then the maximum 
zero-run length L ~ nv(l) for any coset C+a. 

Corollary 1 Let C be a rate R = (n - l)/n convolutional 
code whose parity-check matrix has constraint length v. Then 
L ~ nv for any coset C+a. 
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From Corollary 1, any R = (n - l)/n coset with large 
constraint length and/or rate has large maximum zero-run 
length. 

Theorem 2 {2} Let H(D) be an ordered parity-check matrix 
deJining a rate R = kin convolutional code C. There exists a 
coset C+a with L :::; nv(l) + 2n - 2 -l- t, where 0 :::; l, t < n 
are determined from H(D). 

Corollary 2 Let H(D) be an ordered parity-check matrix 
with v(l) = ° cfeJining a rate R = kin convolutional code C for 
k :::; n-2. Then there exists a coset C+a with L :::; 2n-2-l-t. 

Since the upper bound in Corollary 2 is independent of v, 
there exist R = kin, k :::; n - 2, cosets with short maximum 
zero-run length for any constraint length. 

IV. Good Trellis Codes for the I-D Channel 
Consider a convolutional code C with ordered parity-check ma­
trix H(D) and free Hamming distance dB. Theoretical results 
[1] and computer searches strongly indicate that if v(l) > 0 
then d}ree = 2 f dB /21 for any coset of C, else there may exist 
a coset with larger d}ree. 

Definition Let A* be the class of 2 by n parity-check matrices 
with v(l) = 0 and v(2) = v > o. 

Let C be a rate R = (n - 2)/n code with parity-check matrix 
in A *. Then there exists a coset of C that generates a trellis 
code with L:::; 2n - 2 -l- t and d}ree ~ 2fdB/21. A search 
technique for determining trellis codes with d}ree > 2 f dB /21 
is described in [1], [3]. The parameters of some good trellis 
codes defined by parity-check matrices in A * are listed in the 
Table. More codes may be found in [1], [3]. 

TABLE: Good trellis codes for the 1-D channel. 

R states d2 
iree L 

3/5 16 8 5 
3/5 64 10 5 
4/6 8 6 7 
4/6 32 8 6 
5/7 16 6 7 
7/9 8 4 8 
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Probabilistic Dependence and Information Theory 
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It is a.rgued that mutual information is essentially a mea­
sure of probabilistic dependence and that information theory 
provides a convenient calculus for reasoning about probabilis­
tic dependence. Because l(X; Y) ::::: 0 with equality if and 
only if the random variables X and Yare independent, it 
follows that the determination of whether X and Y are inde­
pendent reduces to computing the single real number I(X; Y). 
Moreover, the vanishing of I(X; Y) can alternatively be taken 
as the definition of probabilistic independence. Similarly, the 
vanishing of the conditional mutual information leX; YjZ) 
can be taken as the definition of the independence of X and 
Y when conditioned on (knowledge of) Z. Independence and 
conditional independence are in general unrelated properties 
of random variables; X and Y can be independent but not 
independent when conditioned on Z and, conversely, X and 
Y can be dependent but independent when conditioned on Z. 
Conditional independence is shown to play an important role 
in the calculus of probabilistic dependence. It is shown that 
a Markov chain can be defined as a sequence Xl, X 2 , ••• X.,. of 
random variables such that Xi and Xk are independent when 
conditioned on Xj for all 1 :::; i < j < k :::; n. An immediate 
consequence of the symmetry leX; YjZ) = I(Y; XjZ) is that 
the reversed sequence X n , X n - l , ... XI is also a Markov chain. 
Similarly, it is shown that a sufficient statistic can be defined 
in the manner that Z is a sufficient statistic for any decision 
about, or estimate of, X from the pair (Y, Z) just when X and 
Yare independent when conditioned on Z. This interpreta­
tion provides insight into (generalizations of) the theorem of 
irrelevance and the theorem of the magic genie, which are 
familiar to all readers of the classic textbook of Wozencraft 
and Jacobs [1]. The real utility of information theory for an­
alyzing probabilistic dependence becomes evident when con­
sidering networks of information sources, channels, encoders 
and decoders. Precise definitions of all these devices are given 
together with the rules for their interconnection in neworks. 
Principles for deducing probabilistic dependencies, or the lack 
thereof, in such networks are formulated. The distinction be­
tween causal dependence and probabilistic dependence is seen 
to be crucial to this formulation. The practical utility of the 
above concepts is illustrated by several examples chosen from 
cryptology. 
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Practical Save-up Strategies 
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Abstract - In 1982, Schalkwijk designed coding 
strategies for two-way channels by subdivision of a 
unit square. This method was used to construct dis­
crete coding strategies and save-up strategies for the 
BMC. This paper concerns the implementation of 
these strategies. 

I. Introduction to coding strategies 

Schalkwijk [2J first introduced the method of progressively 
subdividing a unit square to present a coding strategy for the 
BMC that outperforms Shannon's inner bound region. The bi­
nary multiplying channel (BMC), is a TWC which has two bi­
nary inputs Xl, Xz and a common binary output Y X 1 ,X2. 
Schalkwijk defined his strategy on the 1 X 1 unit square, rep­
resenting the messages of each terminal by intervals on [0,1). 

Discrete coding strategies on M x M squares for the BMC, 
where the messages are taken from a finite set of M messages 
were constructed using the same method. A discrete coding 
strategy subdivides the M x M square up to basic 1 x 1 squares: 
all information contained in a message is transmitted. 

Improvements to the rate of discrete coding strategies were 
obtained by save-up strategies in which the M x M square is 
subdivided into rectangular areas. Not all information con­
tained in a message is transmitted anymore: a remainder is 
saved up. Tables of various coding strategies are found in [I]. 

II. Discrete strategies 

Discrete strategies can be easily implemented using a fi­
nite state machine at each terminal i, i == 1,2, to perform the 
encoding/decoding. The input message mi and the channel 
output symbols Yl, Y2, ••. , Yk are used as input symbols for 
the finite state machine. It generates the next channel input 
symbol Xi,k+l, and finally the received message ma-i. 

In the figure, the leftmost picture shows the channel output 
symbol sequences of a 4 x 4 discrete coding strategy. Not all 
possible channel output symbol sequences are used; in general, 
about M2/2 different sequences show up in a M x M strategy. 
The decoder must have knowledge about at least one of the 
transmitted messages, to distinguish between message pairs. 
Cryptographic application of this feature was discussed in [3J. 

III. Save-up strategies 

Save-up strategies subdivide the M x M square up to rectan­
gular sets of message pairs. In a rectangular resolution prod­
uct, the input messages of the two terminals are statistically 
independent. Depending on the size of the rectangle a mes­
sage pair is situated in, some information bits still must be 
received, and some information bits still must be sent. These 
untransmitted information bits are saved up. When both ter­
minals have saved up log M bits of information, they encode 
them in a new message, and transmit it using the M x M 
strategy. The middle picture shows the 4 x 4 save-up strategy. 
Save-up occurs in the two 2 x 1 areas in the upper right/lower 
left corner, and in the lower right 3 x 3 square. 

When implementing save-up strategies in the way described 
above, practical problems arise. Memory is needed to keep 
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track of the save-up information, and to buffer incomplete 
messages. Also, the save-up process introduces decoding delay: 
it may take several uses of the strategy before the complete 
message is received. Third, buffer overflow may occur if save­
up takes place in only one terminal. Finally, the encoding 
of the saved-up pieces of information may not be performed 
without encoding losses: in the 4 x 4 strategy, it is possible 
that a single bit (one of the '00' pairs is selected) or a trit (log 
3 bits) is saved up. Conversion of trits to bits by a code with 
a finite block length is not possible without losses. 

IV. Two-power strategies 
To address the problems described above, a modification of 
the save-up strategy is used. In the so-called 2-power strategy, 
only those Nl x N2 areas are saved-up where Nl and N2 are 
powers of 2. This means that saved-up information can be 
easily converted into bits. The table lists rates R'(M x M), in 
bit per direction per transmission, of some 2-power strategies. 
The right part of the figure shows the 4 x 4 2-power strategy. 

Using a strategy where M is a power of 2 simplifies en­
coder/decoder design drastically. The strategy encoder takes 
log M bits from the input message stream to encode the first 
message for the strategy. When save-up occurs, some bits are 
left untransmitted. These bits, and enough new bits from the 
input message stream together are used to encode the next 
message for the strategy. Less memory is needed to admin­
ister the save-up process, no decoding delay or encoding loss 
occurs. Compared to the rate of a save-up strategy, a small 
price must be paid. 
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M #'(M x M) Dpt T(MxM R'(M x M) 
2 7 2 8.00 0.5714286 
4 43 3 52.00 0.6046512 
8 254 5 312.00 0.6141732 

16 1417 7 1756.00 0.6196189 
32 5149 9 6416.00 0.6230336 

Discrete R = 0.59259 Saveup R = 0.60521 2-power R = 0.60465 
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Abstract - We present a table of new ideal lin­
ear anti-jamming codes for the non-cooperative bi­
nary adder channel. For given parameters the codes 
are optimal in the sense that they have the lowest 
possible erasure probability. We also present upper 
and lower bounds on the erasure probability for any 
given linear anti-jamming code. 

I. Introduction 
We study a channel where binary information is transmit­

ted. On this channel there is intentional interference caused 
by a jammer. The jammer is supposed to be intelligent. This 
means that within the frame of certain constraints he adjustes 
his activities so as to cause the worst possible disturbance on 
the legal transmission. The limitations on the jammer are 
given by the constraint that also the jammer is supposed to 
transmit binary messages. 

The channel model used is the binary adder channel. Given 
binary inputs the output is given as the Euclidean sum, see 
11]. 

II. Code Construction 
Let M z be a given set. A code consists of a family 

{C (z); z EM.} of codes which the legal user can alternate 
between. For each transmitted message one code is pointed 
out by a key z E M% which is known by both the encoder and 
the decoder but unknown to the jammer. 

Let F ~ {O, I} and let E9 denote the usual binary addition. 
Let Co be a linear code in F n and let M % be an arbitrary set 
in Fn. We define subcodes C(z) as 

A 
C(z) = Co E9 Zj z E M z • 

The resulting total code is a linear anti-jamming code if 

C ~ U C(z) 
'EM. 

is a linear code, see [1]. 

III. The erasure probability 
Assuming equally probable sub codes the erasure probabil­

ity is given by 

A '" 1 L r(so) = max res) = max -I C 1 ,(x E9 s) 
sEF'" sEFn 

:z:EC 

where TO indicates whether a codeword can be decoded with 
or without ambiguity given the jamming vector s, see [1]. Ac­
cording to the same reference it is enough to search through 
all s E € where € is the set of all binary polynomials, of de­
gree less than or equal to the degree of g(x), represented as 
sequences of length n. We propose the following two bounds: 
Proposition 1 Let w(x E9 s) denote the Hamming weight of 
x E9 s and let dmin be the minimum distance within each sub· 
code. An upper bound for r(so) is given by 

1 
max r(s) :::; max I {x E C : w(x E9 s) ;?: dmin} 1'-1 C I' 
s€Fn sEe 
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Proposition 2 Let w(x) denote the Hamming weight of x 
and let ko be the dimension of Co. Then a lower bound for 
r(so) is given by the maximum of 

maxr(s);?: max (I {x E C: w(xE9s);?: n - ko + I} l). _1_ 
sEF" sE<\on 1 C 1 

and 

1 
max res) ;?: (I {x E C\Co : w(x) > n-ko+l} 1 +M",-l)'-I -. 
sEF" - C 1 

IV. The ideal codes 
Let 1 E9 xn = a(x )b(x )g(x) and let go(x) = a(x )g(x). Then 

the code C is generated by g(x) and the subcode Co of C 
generated by go(x). We present a list of ideal binary cyclic 
anti-jamming codes of lengths between 15 and 23 with an 
information-rate less than the capacity. For describing the 
codes we use the notation from [1] specifying a(x),b(x) and 
g(x). The polynomials are represented by the integers A, B 
and G obtained by changing E9 to + and inserting x = 2. In 
this case we have the information-rate R", 

1 
R", = degb(x) 

n 

and the key-rate Rz as 

1 
R. = - dega(x). 

n 

The erasure probability of an ideal code satisfies 

where M", =1 Co 1 and M. =1 M. I, see [1]. 

A II B II G II R II R II :I: . - logP E 

11,13 7 3,87,117 2/21 6/21 1.931 
13,87 7 3,11,117 2/21 9/21 2.834 
7,87 13 3,11,117 3/21 8/21 2.466 
13 7 3,11,87,117 2/21 3/21 1.028 
7 13 3,11,87,117 3/21 2/21 6.601. 10- 1 

87 7, 3,11,13,117 2/21 6/21 1.931 
87 13 3,7,11,117 3/21 6/21 1.864 
87 11 3,7,13,117 3/21 6/21 1.864 
7 3,13 11,87,117 4/21 2/21 6.301 .10-1 

7 19 3,25,31 4/15 2/15 6.301.10- 1 

7 31 3,19,25 4/15 2/15 6.301 .10- 1 

7 3,19 25,31 5/15 2/15 6.158.10-1 
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Communication Complexity of the Hamming Distance 
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The communication complexity C(f) is the number of bits 
that have to be exchanged between two persons Pl and P2 

in order to enable them to evaluate a function f(x, y) when 
initially each person knows only one of the arguments. 

A lower bound is obtained via the rank of the matrices 
MIc(f) = (a.,y)."y defined by 

{
I if f(x,y)= k 

a",y= Oiff(x,y)f.;k 

namely 

C(f) ~ flog2 I: rankMIc(f)1. (1) 
Ie 

Often this lower bound is close to the upper bound obtained 
from the protocol in which Pl transmits all the bits of x en­
abling Pz to determine f(x, y) which he returns. For the Ham­
ming distance dn (over an alphabet of size q this yields the 
upper bound C(dn ) :::; rn ·lOg2(q)l + rlog2(n + 1)1· 

The communication complexity of the Hamming distance 
was first considered by EI Gamal and Pang [2J. They deter­
mined C(dn } up to one bit if q = 2. This result was later 
extended by Ahlswede [1] to alphabet sizes q :;::: 4,5. So for 
q = 2,4,5 and all n ~ 1 

In order to prove (2) a lower bound using constant distance 
code pairs was applied. In [4] the rank lower bound (1) was 
used to prove that {2} holds for all q and the special pa­
rameters n :;::: pm. - 1, m ~ 1, where p is a prime factor 
of q. The matrices {Mk(dn)}k'=o of the Hamming distance 
just form the Hamming association scheme. The eigenval­
ues of Mk(dn) are the Krawtchouk polynomials Kk(X, q, n) :;::: 
2::7=0 m (~::::;) (-l)i (q - l}k-i evaluated at the integers x :;::: 
0, ... , n. If all these eigenvalues are different from 0, i. e., the 
Krawtchouk polynomials do not have integral zeroes, then by 
(1) the statement (2) is immediate. The proof in [4] makes 
use of number theoretic arguments. Another approach was 
done in [3] using the observation that two consecutive integral 
zeroes of K",(x, 2, n), k f.; i have difference greater than 2. 
This allows to give a new proof of statement (2) for alphabet 
size q :;::: 2 by application of the rank lower bound. 

In [1] a.lso the communication complexity of the Hamming 
distance (modulo 2) was exactly determined for alphabet sizes 
q = 2,4. With the rank lower bound (1), in [4] this result was 
extended to all positive integers q making use of the fact that 
for z = 0,1 

k,",.(mod 2) 

{ 
t(qn+(-1)'(2 q)n) 
(-1)'''2".-w-1(2 _ q)'" 

(3) 

° 1, ... ,n 
(4) 

where w is the number of l's in the binary representation of 
i. From this follows that 

{ 
2 for q 2 

C(dn (mod2» = rn .log2(Q)l + 1 for q ;;:: 3 (5) 
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Further, in [4] the communication complexity of the Hamming 
distance (modulo 3) was determined up to one bit exploiting 
recursion formulas for the Krawtchouk polynomials. 
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Abstract An optimization problem for constrained 
m-ary sequences is considered. It is shown that the 
solution to this generally difficult problem is easily 
found when a fractional generating polynomial for the 
constrained sequences has been derived. 

I. Notation 
We consider m-ary sequences of arbitrary length that sat­
isfy some constraints. Let Vi be a non-negative integer, 
(i = O ... m - 1). Denote the number of constrained se­
quences consisting of precisely Vi symbols i (0 ~ i < m) by 
M(VO,Vl, ... ,Vm-l). Let Q {q = {qO,ql, ... ,qm-t} I qi 2 
0, (i = 0 ... m - 1), and Ei qi ::-1} be the set of symbol dis-
tributions. Let l be a non-negative integer. Let q E Q. The 
notation [ql] is used to denote the vector (lo, it, .. -:-l=-I) such 
that Ii is the dosest integer to qi ·Z, (i = o ... m - 1). 

II. Assumptions 
We assume that the constraints on the m-ary sequences are 
such that 

1. If (vo, VI, ..• ,vrn-I) and (wo, WI, . .• , w",-d are vectors 
of non-negative integers such that Vi ~ Wi (i :: O .•. m-
1), then M(VO,Vl, ... ,Vm-l) ~ M(WO,Wl, ... ,W",-t}. 

2. The function P defined by 

P(i) 
. log .... M([qlJ) 

hmsup l 
1-00 

is continuous on Q. 

The function P can be interpreted as the average amount of 
information contained in a symbol of a constrained sequence. 

III. Optimization 
Let Ci > 1 be a constant (i = 0 ... m - 1). The constant Ci 
can be interpreted as the cost of using symbol i. Our goal is 
to maximize the function R defined by 

over all q E Q. Since P is continuous, the maximum is at­
tainable.- The function R can be interpreted as the average 
amount of information per cost unit. 

IV. Solution 
In general it is hard to obtain an explicit expression for P(q) in 
terms of q, so straightforward maximization is not easy. Some­
times it is possible, by using recurrence relations, to derive 
the generating polynomial P defined by p( Xo, Xl, ... , Xrn-l) = 
~ M( ) "O v",_1 f t' f 
.L....vo;O:O, ... Vm_l;O:O VO, ••. ,Vrn-l Xo ",Xm _ 1 asa rae lono 
a nominator polynomial pn, and a denominator polynomial pd. 
Then the maximization problem can be solved by the following 
theorem. 
Theorem 1 Let R 2 o. 
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1. If R < max~EQ R(i), then p(m- EoR , ... ,m-E"'-lR) = 
00 

2. If p(m-EoR , ... , m-Em- 1R ) = 00, then there exists a 
1 E Q such that R(i) = R 

The maximization problem is solved by numerically comput­
ing the solution R 2 0 of pd(m-EoR, ... , m-E"'-lR) 0 (pro­
vided Pn(m- EoR , ... , m-E",-lR) '# 0). 

V. Example 
Suppose that there are no constraints imposed on the se­
quences. Then 

M(vo, Vl, ... , v",-d == ( Vo + Vl + ... + V",-l ) 
VO,Vl,···,Vm-l 

The funct.ion P is equal to the m-ary entropy function H. The 
generating polynomial P is equal to 1/(1 - (xo + Xl + ... + 
Xm-l». From Theorem 1 follows that the maximum value of 
R(q) over all q E Q is the solution R> 0 of m-EoR+m-ElR+ 

... -+m-Em - 7R = 1-
This result can also be obtained by a Lagrange opti-

mization of function R: £(1,),) = ), . (EO<i< .... qi 1) + 
H(i)/ EO<i<m. qiCi. The equation :~ 0 (T E {O, ... , m 

I}) leads t;; -iogTn q, = I+E,R(9,)-)' EO<j<m qjEj. By mul­
tiplying this equation with qi and adding over all i, 0 ~ i < m, 
we obtain), = 1/ EO$i<m qjEj . Therefore the maximum 

value of R(q) is the solution R of m-EoR + m- E1R + ... + 
;; 1, obtained by qi = m-EiR . 

The above example shows that even in the case of uncon­
strained sequences, where the function P can be determined, 
the application of Theorem 1 saves some calcula.tions. On the 
other hand, when one is interested in the optimal values of qi, 
an immediate solution can not be obtained from Theorem 1. 

VI. Application 
The results described in this paper are used to show that 
multiple repetition strategies can achieve capacity [1]. The 
capacity achieving symbol distributions turn out to be easily 
computable. 
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Abstract - Several fundamental problems in mul­
titerminal source coding are identified and discussed. 
Among them are the CEO Problem (Berger-Zhang), 
for which we provide some exact asymptotics and the 
multiple descriptions problem for which we provide 
improved bounds. We also examine universal exten­
sions of these and other multiterminal source coding 
problems. 

I. Introduction 
Multiterminal source coding offers many analytical challenges. 
The CEO Problem, the multiple descriptions problem, the 
Slepian-Wolf problem with distortions and extensions of these 
and other problems to universal lossy coding, especially of the 
incremental parsing variety, are areas of active exploration. 
We shall provide an overview of recent progress and remaining 
challenges in this dynamic research area. 

II. The CEO Problem 
Here is a new problem in multiterminal source coding. A 
firm's Chief Executive Officer (CEO) is interested in the data 
sequence {X(t)}~l which cannot be observed directly. The 
CEO deploys a team of L agents who observe independently 
corrupted versions of {X(t)}~l. Either because the CEO is 
extremely busy or because the agents must remain clandestine, 
the combined data rate at which the agents may communicate 
information about their observations to the CEO is limited 
to, say, R bps. Suppose that the agents are not permitted to 
convene, Agent i having to send data based solely on his own 
noisy observations, {Y;(t)}. We show that then there does 
not exist a finite value of R for which even infinitely many 
agents can make D arbitrarily small. Furthermore, in this 
isolated-agents case we determine the asymptotic behavior of 
the minimal error frequency in the limit as L and then R tend 
to infinity. 

III. The Multiple Descriptions Problem 
Multiple description source coding concerns situations in 
which the transmission of the source information is distributed 
over two data streams at rates Rl and R 2 , respectively. When 
both data streams are received, the decoder uses the combined 
data at rate Rl + R2 to reconstruct the source information 
with average distortion do. If a communication breakdown 
prevents one of the data streams from reaching the receiver, 
the decoder has to base its reconstruction solely on the avail­
able data at rate either Rl or R2. This results in a higher 
distortion of either d1 or d2, respectively. The region n of 
all quintuples (Rl, R2, do, d1 , d2) has been determined in the 
so-called 'no excess rate' case defined by imposing the require­
ment Rl + R2 = R(do), where R(·) is the rate-distortion 
function of the source. The case with excess rate in which 
Rl + R2 > R(do) is permitted seems difficult. In the special 
case of the excess rate problem in which it is required that 
R t = R(d t ), t = 1,2. we obtain lower and upper bounds on 
do separated by only a tiny gap when evaluated for a binary 
equiprobable source and the Hamming distortion measure. 
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IV. Slepian-Wolf with Distortion 
This by now classical problems concerns two correlated 
sources, ,,,, Xk"" and ''''Yk'''' observed at separated terminals. 
We seek the region comprised of those pairs (R."Ry) of en­
coding rates that suffice to permit a recipient of both encoder 
outputs to recover the components of the source with respec­
tive distortions D., and Dy. When D., = Dy = 0 we have the 
Slepian-Wolf problem, when either D., = 0 or Dy = 0, we have 
the Wyner-Ziv problem. The case in which both D., > 0 and 
Dy > 0 remains open. We discuss some ideas for improving 
bounds on the rate region, especially for small D", and Dy • 

V. Universal Extensions 
All the above problems assume a priori parametric knowl­
edge of the joint distribution of all the source data. Since 
such knowledge usually is unavailable in practice, it is of con­
siderable interest to appemtp to extend the above results to 
universal contexts in which only the source alphabet and (per­
haps) the distortion measure are known, but not the source 
statistics. In particular, we seek lossy extensions of lossless 
incremental parsing algorithms of the Lempel-Ziv variety to 
multiterminal situations; the challenges here are many and 
the results to date are scant. 
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Abstract - In this talk we consider the asymptoti­
cally optimal universal prefix code on the set of pos­
itive integers }/+, especially concentrate on the Elias 
omega code, and if time permits, a code induced by 
Bentley-Yao unbounded search tree. 

1. Introduction and Notations 

The efficient representation of numbers is important in the 
computer science, and can be used for the data compression. 
In order to study the prefix code on }/+, we first introduce 
notations for representing binary sequences (if necessary, we 
extend the notations to r-ary sequence in trivial manner). We 
denote the standard binary expression of positive integer j E 
}/+ as U)2, the most significant bit(MSB) of which is 1. For 
example, (13h 1101. Next we express the Hoor function of 
log by 

A2(j) = llog2jj. (1) 

Moreover, ),~ is the k-hold composition of function ),2. 

2. Elias omega code 

Elias!l] introduced a universal code w :}/+ ..... {O, l}*, called 
the w-code, described by 

w(j) 
for j 1 
for j;::: 2 

(2) 

where k k(j) is the positive integer satisfying A~(j) = 1 
(which exists for any j ;::: 2). Then the codeword length of 
this prefix code w is given by 

L (A;(j) + 1) (j = 1,2, ... ). (3) 
i;?:U,;(j);?:o 

3. Bounds for the codeword length function of 
code w 

In order to introduce the bound for CE(j), we define the log­
star function log; (x) for x ;::: 1 as 

where log~(x) is the k-hold composition of the function 
log2(x), and w*(x) is the largest positive integer satisfying 
log~(x) ;::: O. Therefore, w*(x) = 1,log;(x) 0 for x = 1. 

Then we established upper and lower bounds for the length 
function CE(j). 
o Theorem 1 For any real x ;::: 1, 

(5) 

Here we have extended the domain of function CE (.) to the set 
of real numbers through the extension of '\2. Through a simple 
consideration, we can check that the upper bound is attained 
at the points j", = exp;'(l) (m = 0,1, ... ), where eXP2(x) = 
2'" and exp~(x) is the k-hold composition of function eXP20. 
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Moreover, the lower bound is also attained at the same points 
in the meaning of 

(6) 

Therefore, the two bounds are best possible as far as we re­
strict the bounding functions to such smooth functions. 

Furthermore, we remark that the unbounded sea.rch tree 
on }/+ induced by the Elias omega code has a more bea.utiful 
recursive structure than Bentley-Yao search tree[2J. 

4. Modified log-star function 

Due to the finiteness of the sum of 2- 1og;(i), that is, 

00 L T log; (j) < +00, 

j=1 

(7) 

we can construct a prefix Shannon code with the length func­
tion satisfying 

(8) 

for a normalizing constant c* = 1.5185.... This code has 
better performance than Elias omega code in larger integers. 
Then, is this the best prefix code on }/+? Next lemma gives 
an answer to this question. Before describing the lemma, we 
define the modified log-star function by 

for integer r ;::: 2 and real number oo. 
o Lemma 1 For integer r ;::: 2, set a; = logr(logr e). 

1) If a < a;, then 

00 L r-Iog:'.a{i) < +00, (10) 

j=1 

2) If a;::: a;, then 

00 L r - log:'." (j) = +00. (11) 
j=l 

We will discuss on the consequences from the lemma, and 
the topics about another kind of asymptotically optimal uni­
versal prefix codes. 
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Message arrivals encountered in digital transmission over 
most real communication channels are not independent but 
appear in clusters. Sources forming bursty (or clustered) mes­
sage arrivals are said to exhibit memory, I.e., statistical depen­
dence in the occurrence of message symbols, and thus cannot 
be adequately represented by a classical memoryless symmet­
ric source. A model of a bursty K -ary source using a Markov 
chain with two states "quiet" (or "idle") and "busy" (some­
times also called "active") is proposed. In the "quiet" state, 
the source transmits no (message) information, while in the 
"active" state, the source acts as a (K l)-ary discrete mem­
oryless source (DMS). The clustered arrivals of bits can be 
interpreted as a characteristic of the source or of the channel 
(DMS concatenated with a two-state Markov channel). Basic 
limitations on the amount of protocol information that must 
be transmitted over a link in a communication network to keep 
track of intramessage information (e.g., message lengths) are 
considered. Different strategies are developed to reduce this 
information drastically. Certain generalizations of the concept 
of sporadic sources are devised for some related applications. 
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1. Introduction 
We will show how a generalization of the direct sum con-
struction can be used to construct some exceptionally 
good covering codes, i.e. codes that have few codewords, 
given their length and covering radius. 

2. Notation 
An (n, M, d)r code denotes a (n, M, d) code with covering 
radius r. Let C be a binary code oflength n and let t ~ O. 
The density jl(C, t) of C is defined as the average number 
of codewords that is at distance at most t from a word in 

t 
the vector space lF~, i.e. jl( C, t) = 2-n ICI . E (':-). 

i=O ' 

3. The Direct Sum Construction; 
Generalizations 

One of the easiest ways to combine two codes C1 and C2 

is simply to take their direct sum V := C1 x C2. This 
construction, though simple, generally yields codes with 
a poor minimum distance and a poor covering radius. 
Sometimes, however, one can show that code V contains 
a proper subcode with better distance properties than V 
itself and (almost) the same covering radius as code V. 
These proper subcodes can be obtained via the following 
generalization of the direct sum construction: 
Definition 1 {l} Let C1 and C2 be the union of the k 

b d C(l) C(k) C(l) C(k) Th bl k . su co es 1 , ... , 1 ,resp. 2 , ... , z· e oc Wlse 
direct sum (BDS) of codes C 1 and C2 w. r. t. these subcodes 
is the code V;= u{Cii ) x C~i) 11:$ i :$ k}. 

The next theorem gives a bound on the minimum distance 
of the blockwise direct sum of two codes. 

Theorem 2 {l} Suppose that C1 has distance d1 and that 
all its disjoint subcodes have distances at least dll . Fur­
thermore, suppose that the respective distances for code C2 

and its disjoint subcodes are dz and dZ2 • Then the BDS 
of these two codes has distance d ~ min {dll , d22 , d1 + d2 }. 

It is possible to give a bound on the covering radius of the 
blockwise direct sum of two codes. This bound depends 
on a notion, called the k-norm. 

Definition 3 Let C be the union of k subcodes 
C(l), ... ,C(k). The k-norm N of code C w.r. t. subcodes 
C(ll, ... , C(k) is the maximum value of min d(x, C(i») + 

• 
maxd(x,C(j») over all x E lF~. 

J 

Theorem 4 f2} If C1 c lF~l has k-norm Nl w.r.t. 
subcodes cil

), •.. ,cik) and if C2 C lF~2 has k-norm N2 
w.r.t. C~l), •.• ,C~k), then their BDS has covering radius 
r ~ l(Nl + N2 )/2J. 
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4. Some Examples 

Bounds for the minimum distance and covering radius of 
codes constructed via the BDS-construction follow by a 
straightforward application of Theorem 2 and Theorem 4, 
once the distances and k-norm are known. In general, de­
termining the k-norm of a code is very hard. Below, we 
mention one of the results that can be obtained, when 
the BDS-construction is applied to codes for which deter­
mining the k-norm was a feasible task. For details and 
other results we refer to [3]. 

Up to now, the best known linear codes with covering 
radius two and odd codimension were those constructed 
by Gabidulin et aL [4]. These codes have parameters 
[n, n - (2m - 1), d]2, where 

if d = 3 or (d = 4 and m = 2), 
if d 4 and m ~ 3, 

if d 4 and m ~ 5. 

These codes have density approximately 1 g if d = 3, and 
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1
;6 if d = 4. Using the BDS-construction, one can do 

even better: one can construct codes with covering radius 
two that asymptotically have density 1, i.e. codes which 
are asymptotically optimal! 
Let m ~ 4 be even. Then there are systematic codes 
V~~_l with parameters (n, n (2m - 1), d)2, where 

n = { 2m + ~J2m' 2 if d = 3 and m ~ 4 is even, 
2m + i~ J2m' - 4 if d = 4 and m ~ 10 is even. 

In both cases, we find that the density of this class of 
codes satisfies jl(V~~_l' 2) -4 1, if m -> 00. This means 
that we constructed a sequence of asymptotically optimal 
codes with covering radius two! 
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Abstract - The context tree weighting algorithm was 
introduced at the 1993 ISIT. Here we are concerned 
with the context tree maximizing algorithm. We dis­
cuss two modifications of this algorithm. 

1. Introduction 
In this paper we assume that the source has a tree stucture. 
With the context (here we use the most recent symbols from 
the source sequence) one selects one of the leaves. Symbols 
following this context are assumed to be independent. The 
structure of the tree is called the model of the source. A full 
tree with depth D and with symbol counts in its nodes and 
leaves is called a context tree. In [2] an one-pass algorithm, the 
context tree weighting algorithm was introduced. This method 
uses such a tree. 
It has been proved for the individual redundancy p of a source 
sequence xi, with respect to a binary source with model 8 and 
with parametervector 8s that: 

This holds for every model S and every parametervector 8s. 
The context tree maximizing algorithm (see also [1]), a two­
pass algorithm, fulfills the same upperbound, but at the same 
time, it will give a slightly longer codeword. During the first 
pass the counts in the tree will be updated. After the first 
pass the two-pass algorithm will determine the "best" model, 
and in the second pass it uses this model to compress the 
sequence. Two-pass algorithms can have distinct advantages. 
Most important is that their complexity is considerably less 
than the complexity of the weighting algorithm. 

2. The context maximizing algorithm 
Just like the weighting algorithm, this algorithm uses the 
Krichevsky-Trofimov estimator for encoding memoryless se­
quences. This results in the following block probability for a 
sequence with a zeros and b ones (if a > 0 and b > 0) : 

( 
~.~· ... ·(a-~).~· ... ·(b-~) 

Pea,b)= . 
1·2· ... ·(a+b) 

In every node of the context tree we compute the maximized 
probability according to the following formula. With D we 
denote the maximum level of the tree, and l(s) is the length 
of the context in node s. Then we define 

P: _ { Pe(a.,bs ) 
'" - ~max(Pe(as,bs),P~sp;'S) 

if l(s) = D, 
if l(s) < D. 

One can find the model by walking depth-first through the 
tree. If the product of the maximized probabilities of the 
children is larger than the Pe in this node then s must be an 
internal node of the model, else s is a leaf. The maximizing 
algorithm will find a model which minimizes the description 
length (MDL). The description length is the sum of the cost 
needed to describe the model and the cost of describing the 
data with this model. 
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3. Restricted number of leaves: the yoyo method 
The maximizing algorithm can be constrained by a maximum 
number of leaves. This limits the complexity of the algorithm. 
The maximizing algorithm must now find the best model with 
not more than say C leaves. We walk through the context tree 
again in a depth-first search way. In every node we compute a 
list which contains for all c = 1, C the maximized probability 
achievable with not more than c leaves. If for a node, the 
maximized probability is reached with c'" nodes, then this 
list need only contain the entries 1, C",. In each node the list 
can be computed by combining the estimated probability in 
that node with the lists from its two children. 
For every total number of leaves one looks for the distribu­
tion of leaves over its two children that results in the highest 
product of the maximized probabilities. Finally one finds a 
list in the root with for every number of leaves up to M, the 
corresponding maximized probability. 
To determine the list in the root one needs at most D + 1 
open lists. Once one knows the appropriate total number of 
leaves, one knows which distribution of the number of leaves 
over each child resulted in this "optimal" solution. In this 
way the problem is reduced to two trees of depth D - 1. If 
one applies this technique recursively, we will find the best 
constrained model. 

4. Model description on the fly 
We could send the entire model description first, followed by 
the code for the data. To specify the model we need 2181- 1 
bit then. But this can be done in a smarter way. We will 
send description of parts of the model to the receiver, only 
if they are needed. The decoder walks through the context 
tree as far the current model allows. If the current context 
passes an endpoint (leaf) of the current model, which is not 
known to be a leaf or internal node of the MDL model yet, 
and this current context differs from the previous contexts 
that have passed this endpoint, then the decoder needs more 
information about the model. We must first tell him that the 
endpoint is a leaf or not. If not we should give him the same 
information about the next node on the context path, etc. 
This process ends when the current context diverges from the 
previous ones. The diverging node must be included. 
In total the encoder has to describe all internal nodes of the 
found model, plus all leaves (not at the maximum depth) 
which are followed by different context sequences. 
With this technique we gain compared to the first two-pass 
algorithm. But the model costs in the weighting algorithm 
are similar. The maximizing algorithms can be modified such 
that the best "on the fly models" will be found. 
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Abstract The worst-case probability of undetected 
error for a linear In, k; ql code used on a local binomial 
channel is studied. For the two most important cases 
it is determined in terms of the weight hierarchy of 
the code. The worst-case probability of undetected 
error for simplex codes is determined explicitly. A 
conjecture about Hamming codes is given. 

The local binomial channel was defined implicitly by Korzhik 
and Fink and explicitly by Korzhik and Dzubanov. It is a 
channel which is a q-ary symmetric channel for each transmit­
ted symbol, but the symbol error probability may vary from 
one transmitted symbol to the next. 
Let Puc (G, p) = Puc( G, PI, P2, ... , p".) denote the probability of 
undetected error when a codeword from a linear In, k; qj code 
G is transmitted over a local binomial channel with symbol 
error probability Pi for i'th transmitted symbol. It is easy to 
see that 

n ( ) w(c,) 

Pue(G,p) = L II ~ 1 (1 }
l-w(c;) 

Pi . 
cEe ;=1 q 
c;o!ii 

Let the worst-case error probability be defined by 

Pwc(G, v} = max{ Pue(G,p) I 0:5 Pi :5 v for 1 :5 i :5 n}. 
The support of a vector c is given by 

x(c) {i I Ci #- O}. 

For a vector C (CI, C2, ••• , en) and a set X {iI, i2, .. ~ , iT}' 
where 1 :5 i l < i2 < ... < ir S n, we let 

For an In, k; q] code G and a set X as above, we define 

Gx = {ex leE G and x(e) ~ X}. 

We use the notation p;. (G, p) for the probability of undetected 
error when G is used on a q-ary symmetric channel with error 
probability p. We have 

p;.(G,p) = Pue(G,p,p, ... ,pl. 

Theorem 1 Let G be an In, k; q] code. Then 

Pwc(G,v) max{P;.(Gx,v) I X ~ {1,2, ... ,n}}. 
Theorem 2 Let G be an In, k, d; q] code. Then 

1 
Pwc(G, 1) = (q _ l)d-l . 

Theorem 3 Let G be an In, k, d; qj code. Let 

s::::: max{ r 11:5 r:5 k and dr d1 + (r I)}, 

where d1 , d2, ... , dk is the weight hierarchy of G. Then 

q8 -1 
Pwc(G, (q - l)/q) = qd+s-1 . 
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Corollary 1 Let G be an In, k, d; q] code with minimum dis­
tance d > q. Then 

q-l 
Pwc(G, (q - l)/q) :::: -d-' 

q 

Corollary 2 Let G be an In, k, d; qj code. Then 

q 1 q 
-d :5 Pwc(G, (q -l)/q) :5 

q 

We consider a couple of particular classes of codes. 
The first class of codes we consider is the binary simplex codes. 
For each m ;:::: 1 there is a binary simplex code 8m with pa­
rameters n = 2= -1, k = m, dr = 2m 

- 2m
-7" for 1 :5 r:5 m. 

Theorem 4 For m ;:::: 3, let 

Then 

2"m-l 21H·-1 1 l)v (1 - v) -

for 0:5 v :5 vo(m) and 

for vo(m) :5 v :5 1. 

A similar theorem is true for the first order Reed-Muller codes. 
The binary Hamming codes Hm., where m ;:::: 1, have parame­
ters n = 2'" -1, k = 2m -1 - m, d = 3. We conjecture that 
the following result is true for all m (it is true for m :5 4). 

Conjecture 1 Define gr(V) for r ;:::: 2 by 

1 ( 2"-1) gr(V) = 2r 1 + (2r -1){1 - 2v) 

Let VI :::: 1, and for r ;:::: 2 let Vr be the root of the equation 
gr(V):::: gr+l(V) in the interval (0,1). 
Then VI > V2 > 'U3 > V4 > .. " 

for 0:5 v:5 'Um -l, and 

for Vr :5 v :5 Vr-l and r = 2,3,4, ... , m - 1. 

We have a similar conjecture for the extended Hamming codes. 
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Abstract - Fundamental parameters for a sequential 
decoder are studied, assuming the use of a burst error 
channel. Expressions are derived for the distribution 
function of the cumulative metric along the correct 
path, and for the expected number of computations 
in an incorrect subtree. They in turn give bounds 
both on the computational cut-off rate, RcoTnp, and 
on the maximal transmission rate over the channel, 
CD, given metric sets and decoder knowledge assump­
tions. Some of these results, previously stated in a 
general form only, are now given with the parameters 
specified in detail, cf. [Bra 94F. 

1. Background 

Due to its nature, the computational performance of sequen­
tial decoding deteriorates drastically when errors occur in 
bursts, and we have previously proposed a strategy to improve 
the performance of the decoder in such a situation. Because 
of its simplicity we have used the stack algorithm when it was 
necessary to choose a specific algorithm in the analysis. 
As our model we chose the Gilbert-Elliott channel, cf. [Gil 60, 
Ell 63]. Since this channel has two possible states according 
to the model, the Good and the Bursty, four different channel 
transitions are possible. Combined with the error probability 
of each state €G and eB, respectively, Fano-like metric incre­
ments for the eight situations are formulated. We have chosen 
to study the case when 0 ~ €G < eB ~ 0.5. 
To be able to analyse the behaviour of a decoder working 
for the Gilbert-Elliott channel we have defined two princi­
pal assumptions of the decoder's knowledge of the channel 
states, namely the optimistic and pessimistic assumptions, 
where complete and no knowledge is assumed, respectively. 
The metric set is developed for each assumption. The results 
discussed below are derived for both cases. Based on these 
assumptions we obtain general performance bounds that also 
are valid for our strategy. 

2. Results 

An important property of a sequential decoding algorithm 
is the expected number of computations per decoded node 
(branch). 
By viewing the probabilistic behaviour of the cumulative met­
ric along the correct path as a random walk, we have derived 
an expression F; for the Gilbert-Elliott channel that is related 
to the distribution function for the cumulative metric. 
With the same approach we have derived an upper bound 
N; for the expected number of visited nodes in an incorrect 
subtree. We also show that there is a relation between these 
expressions. 
Combining F; and N; we have found an upper bound ED [n] 
for the expected number of computations for correct decoding 
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Academy of Sciences in liaison with the Russian Academy of Sci­
ences, and in part by the Swedish Research Council for Engineering 
Sciences under Grant 91-91. 
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of one branch. With these results we can also find an ex­
pression for &,COTnP, the maximal transmission rate for which 
ED [n] still is finite. 
Finally, we derive expressions for the decoding procedure ca­
pacities CD: They are defined as the maximal transmission 
rates for which we can guarantee that there exists a code 
such that the probability of decoding error PE: can be chosen 
arbitrarily small, given the two decoding procedure assump­
tions, respectively. These expressions give only sufficient con­
ditions, in distinction to the ordinary channel capacity defini­
tion. We also show that it is necessary that the transmission 
rate R < CD in order to obtain a positive expected bit-metric 
increment along the correct path. 
No analytical expression for the channel capacity CGE of the 
Gilbert-Elliott channel is known, but we show that the op­
timistic decoding procedure capacity Co is equal to «fe, the 
channel capacity given that the receiver has full channel state 
knowledge, and also equal to 4!:, the channel capacity given 
that both the transmitter and receiver have full channel state 
sequence knowledge. 
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Abstract - We give a construction of codes correcting 
localized errors. It is based on ordinary error cor­
recting codes of even distance. In many cases the 
new codes outperforms ordinary codes for the same 
length and error correction capability. 

1. Introduction 

We consider binary block codes of length n correcting localized 
errors. Denote by E a subset of {I, 2, ... , n} which contains 
all unreliable positions, i.e. all positions where errors may 
occur during transmission. It is assumed that there will be no 
errors outside E. The number of elements in E is denoted by 
lEI. The concept of localized errors, which was introduced by 
Bassalygo, Gelfand and Pinsker in [1], is characterized by the 
fact that E is known to the encoder but not to the decoder. 
In [2] we present a number of code constructions for local­
ized errors. In many cases those constructions produce useful 
codes. However, for a lot of codeword lengths, ordinary error 
correcting codes are still the best known. That motivates the 
search for new constructions. 
The error correction capability of a code is denoted by t. An 
ordinary error correcting code of length n, size M and mini­
mum distance d will be referred to as an (n, M, d}-code. The 
maximum size, given nand d, is denoted by A(n,d). A code 
which can correct t localized errors will be referred to as an 
(n, M, t)-LE-code. 

2. Summary 

The codes will be designed to correct t or less errors. There­
fore we assume that the size of the set E is less than or equal 
to t. An ordinary code with minimum distance 2t can cor­
rect t - 1 and detect t errors. When t errors occur there 
are a number of codewords which are at distance t from the 
transmitted codeword. The important fact is that the en­
coder knows where possible errors may occur. Therefore the 
encoder knows exactly what the decoder has received if t er­
rors are detected. The encoder and the decoder can find the 
codewords at distance t from a certain vector by the same 
technique (change one position at a time and decode). These 
codewords are ordered and numbered in some way and it is 
important that the encoder and the decoder use the same or­
dering and numbering. The idea is to add a number, say p, 
of positions to an ordinary (n, M, 2t) even distance code. If t 
errors are detected by the decoder of the (n, M, 2t )-code the 
additional p positions are used to determine which codeword 
(of the possible candidates) was actually transmitted. 
Denote by Nt the maximum number of codewords (in the 
(11" M, 2t)-code) at distance t from any vector of length n. 
Then a sufficient value on p is given by p flog Nt 1. Since 
we do not know in general how many codewords there are at 
distance t from an arbitrary vector we may use the following 
upper bound, Nt ::; LnftJ. The main result is given by the 
following theorem. 
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n M t A(n,2t + 1) Ordinary Code 
2m + 1 2m 2m -. 2m

-
1 + 2 S 

2"'+2 2",;-1 2m .• 2Tn+4 R-M 
4t + 2 8t t 4t+4 H 

Table 2: Codes for localized errors with parameters 
(n,M,t) which exceed A(n,2t + 1) (in these cases the 
Plotkin bound). The last column indicates which or­
dinary code is used (S: Simplex, R-M: 1st order Reed­
Miiller, H: Hadamard). 

Theorem 1 Given an (n, M, 2t)-code an (n + p, M, t}-LE­
code can be constructed, where p is given by the following equa· 
tion, p rlog LnJt J1· 

3. Evaluation 
To be of any interest the codes constructed from theorem 1 
should in some sense be better than any already known codes. 
In particular they should be better than ordinary error cor­
recting codes, i.e. codes which do not use the additional chan­
nel information. Table 2 shows the parameters of some con­
structions which exceed the Plotkin upper bound for ordinary 
codes. Further examples can be found in [3]. 

4. Remarks 
For proofs and a more detailed investigation the reader is re­
ferred to [3]. In that paper we also look at the asymptotic 
performance of the codes. 
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On the Construction of Quasi-linear Synchronization Codes 
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Abstract - A frame synchronization technique, based 
on quasi-linear codes [3J, provides synchronization of 
frames with fixed length n in the presence of upto 
t errors in n consecutive symbols. New code con­
structions and upper bounds on the redundancy are 
presented, as well as computer search methods and 
corresponding results. 

1. Introduction 

In digital communication systems the transmitter usually 
groups data and error control information in so-called frames. 
A synchronization code can be used to provide the receiver 
with sufficient information about the position of the frames in 
the incoming data stream. 
A frame containing n q-ary symbols is regarded as a code 
word X XIX2:1:3 ••• X'" with Xi E Aq. The shift operator 
Ti(X, Y) is defined by Ti(X, Y) = Xi+lXi+2 .. ' X"YlY2 .•• Yi. 
The synchronization and error control properties of a code 
C C A; are determined by the code distance d(C), and by the 
code separation p(C), defined by 

p(C) = min d(Ti(X, Y), Z) . 
l<i<,,-l 
X,Y-;-ZEC 

(1) 

Each code C is comma-free [I) if p(C) ~ 1. Correct syn­
chronization and error correction can be guaranteed in the 
presence of no more than t substitution errors in n successive 
symbols for a code C with d(C) ~ (2t + 1) and p(C) ~ (2t + 1). 
Several synchronization code methods have been developed [4] 
for which peC) 1, among which comma-free (CF) codes and 
prefix synchronized (PS) codes. Although the redundancy of 
the CF-code and PS-code are close to optimal (~logq(n», the 
encoding and decoding procedure are complex, and no errors 
are allowed to occur in the most recent symbols (t 0). 
A quasi-linear synchronization (QLS) code, being a coset of a 
linear code, allows easy encoding and decoding for any sepa­
ration. A set P of positions, for which the values will be fixed, 
guarantees separation irrespective the value of the other (data) 
positions. The redundancy R(q, n, p), being equal to IFI, is 
bounded [3) by 

Rmin(q, n, p) (2) 

An arbitrary code distance d(C) can be obtained using error 
control codes like BCH-codes and Reed-Solomon codes. 

2. Bounds and Code Constructions 

The construction of a q-ary QLS-code with arbitrary code 
separation is generally difficult, especially codes with mini­
mal redundancy Rn'in(q, n, p), so called optimal codes. Using 
constructions proposed by Clague [2] and Levenshtein [3], op­
timal binary QLS-codes with separation p ~ 2 can always 
be obtained for any length n. For p > 2, the following up­
per bounds on the redundancy have been obtained for binary 
codes, based on construction methods. 
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Theorem 1 A binary QLS-code can be constructed with re­
dundancy Rl (2, n, p), bounded by 

Rl(2,n,p) ~ Rmin(2,n,p)+'P(p) 

with p - 2 ~ 'P(p) ~ 3p - 2. 

(3) 

Theorem 2 For n sufficiently large, a binary QLS-code can 
be constructed with redundancy R 2 (2, n, p), bounded by 

R 2 (2, n, p) ~ Rmin(2, n, p) + p - 1. (4) 

Several search methods can be used to find optimal codes for 
which p > 2. Codes have been found for codes with a length 
n upto 40 as depicted in Figure 1. 
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Figure 1. R(2, n, p) of CF-code, PS-code and QLS-codes 

Using combinatorial methods, some optimal codes can be con­
structed as well. The development of construction methods 
to improve the upper bound on the redundancy for any q-ary 
code of arbitrary length and separation is a topic for further 
research. 

3. Conclusion 
Two bounds and code constructions have been obtained. Sim­
ulation results support the conjecture, that optimal codes ex­
ist for larger separation. 
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Abstract In a tutorial manner we will describe 
some principles of an iterative decoding scheme of 
two dimensional product codes. With systematic 
convolutional codes this has been termed "turbo"­
(de)coding. It is shown that any combination of block 
and convolutional codes can be used. The Kullback 
entropy is used for a simple but effective criterion to 
stop the iterations. 

Recently [1] systematic feedback convolutional codes have 
been used to form a kind of interleaved product code by encod­
ing the information twice, directly ("horizontally") and with 
an interleaved sequence ("vertically" or any other "good" in­
dex sequence). The code is binary with elements denoted by 
+ 1 and -1. Since the code is systematic the information part 
has to be transmitted only once. As an example, two rate 
2/3 component encoders results in a code of a total rate of 
1/2, The codewords are transmitted as the information bits 
Xk,l :;;; Uk and the vertical parity bits XVk,2 as well as the hor­
izontal parity bits XHk,2' Using the respective y values and 
the channel reliability Le, the decoding is done in an iterative 
way. The essence of the iterative decoding steps in [1] is that 
an almost uncorrelated "extrinsic" information about the bits 
Uk is passed to the next decoding step and used as a priori 
log-likelihood ratio L-values 

P{Uk = +1) 
L(Uk) = log P(Uk ::;: -1)' (1) 

The method can be extended to any other binary code in 
systematic form (block or convolutional, in concatenated or 
product fashion) as long as a soft-in/soft-out algorithm is 
used which accepts L-values from the channel and from a 
priori knowledge, and at the same time produces L-values in 
the form of 

P(Uk HILeY) . 
L(Uk) log P(Uk :;;; -IILcY) ::;: L(Uk) + Lq "lYk,l + L.(Uk) 

(2) 
The authors in [1] derive their method by using the Bahl [2] 
algorithm. Codes represented by a binary trellis can be also 
decoded by the modified SOYA [3], which is less complex. We 
have further shown in [6] that for any linear binary block code 
soft output decoders exist, which have the output format (2). 

Using the MAP principle closed formulas for the soft output 
can be derived from [4] and [5] , which use the code directly or 
in its dual form. Depending on the code rate, the complexity 
of the soft-in/soft-out decoder could be less in the dual imple­
mentation. Cyclic codes allow an efficient implementation in 
a pipelined structure. 
For hard or soft-outputs the full value of (2) is used. However, 
for the next vertical or horizontal iterative decoding only the 
last "extrinsic" term Le(Uk) in (2) is passed on and used as 
the a priori information L(Uk) in the metric. 
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One problem of this iterative decoding scheme is to stop the 
iterations when no further improvement is made, in order to 
avoid unnecessary iterations. Let p(;)(!) be the probability 

distribution and L;~ (!k) be the vertical extrinsic values after 
the i-th iteration. Then the Kullback entropy as a measure 
of clossness between two distributions can be asymptotically 
expressed as 

We stop the iteration when the magnitude of this quantity has 
dropped by a factor of 1000. This is a very reliable indicator 
that no more errors will be corrected. 

Simulation results will be shown for block and convolutional 
codes with "turbo"-decoding on Gaussian and fully inter­
leaved Rayleigh fading channels. To mention one result: With 
two simple memory 2, rate 2/3 convolutional component codes 
and an interleaver of 30·30 information bits a BER of 8.8.10-5 

is achieved with 10 iterations 
on an AWGN channel with an EblNo of 2.5 dB. Using the 
stop criterion (3) only 3.1 iterations are needed on the aver­
age leading to a BER of 10.0· 10-5 

, Therefore we are able 
to reduce the number of iterations by a factor of 3.3 while 
missing only a few errors. 
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Abstract - The performance of the 'turbo' coding 
scheme is measured and an error floor is discovered. 
To achieve low bit error rates the system is augmented 
with an outer BCH code. Simulation results for dif­
ferent codes are provided and the complexity of the 
system is discussed. 

1. Introduction 

Recently it has been discovered that a very good performance 
can be achieved with iterative decoding of a parallel concate­
nation of small convolutional codes [1]. This coding scheme is 
named 'turbo' coding. The basic idea is to encode the infor­
mation sequence twice, the second time after a pseudo-random 
interleaver, and to do iterative decoding on the two encoded 
sequences in two decoders. The system can be regarded as 
a kind of product code. Due to the information exchange 
among the two decoders the decoding algorithm must provide 
soft output. We use the Bahl algorithm [2] which actually 
calculates the a posteriori probability of each information bit. 
The convolutional codes are used in a recursive systematic 
form since it gives an improved performance with this sys­
tem. Consequently, we need a minor modification of the Bahl 
algorithm. 

2. First Simulation Results 

The first simulations were based on the recursive systematic 
code (1,1 + D 4 /1 + D + D2 + D3 + D 4

). We use the same 
code for both encoders but for the second one the information 
sequence is not transmitted. This gives an overall rate of 1/3. 
We use a block length of 10384 information bits. All numbers 
including the channel input are represented as floating point 
values. 
As seen from Figure 1, the results achieved with this system 
are very promising since the Bit Error Rate (BER) after 18 
iterations is close to 10-5 already at 0.2 dB. Unfortunately the 
BER decreases very slowly for improved SNR. What we see is 
many frames with only a few bit errors. This is due to the low 
free distance of this coding scheme. The free distance might 
be as low as 10. This is the case when the information pattern 
for the minimum weight codeword is interleaved to a similar 
pattern. Although these low weight words exist they might 
be very rare (only a few specific places in the block of 10384 
bits). The actual profile depends on the specific interleaver. 

3. Improved Performance 

As seen from the first simulations the main problem with the 
'turbo' coding scheme is the error floor (or saddle) due to the 
low free distance. An obvious way to combat this is to use an 
outer code. Since the bursts consist of very few bit errors, we 
will use a (10384,10000) BCH code capable of correcting 24 
errors. This outer code corrects all the residual errors, but we 
loose 0.16 dB due to the decreased rate. 
Since the occurences of the minimum weight word depend 
on the interleaver a search for better interleavers might give 
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improved performance. However the performance with inter­
leaver structures like block interleavers are quite poor, and a 
search among the random interleavers can only remove a cou­
ple of the worst low weight words. 
The free distance of the coding scheme can be improved by 
choosing codes with more states or lower rate. We have 
made simulations with the CCSDS recommended code with 
64 states and rate 1/2. But as seen from Figure 1 there is 
no improvement for low SNR's. The reason for this might be 
that the first decoder in the first iteration only has the rate 
1/2 code, but the channel capacity is far below 1/2 (but of 
course not below 1/3). 
Finally we have made simulations with a system based on rate 
1/3 codes with only 8 states. This gives rate 1/5 for the 'turbo' 
coding scheme. In this case we have also used the outer BCH 
code. 

4. Complexity 
The performance must of course be compared to the com­
plexity. We have tried to estimate the number of operations 
needed in the Bahl algorithm and conclude that the complex­
ity is about four times the complexity of a Viterbi decoder. 
This means that the number of operations for 18 iterations 
with M = 4 codes is in the order of 213

. Compared to the 
Galileo system with iterative use of a M = 14 Viterbi de­
coder the augmented 'turbo' coding scheme can compete on 
performance as well as complexity. 
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Abstract - We consider binary block codes that are 
obtained from short binary component codes. The 
proposed construction is a generalization of product 
codes based on combinatorial configurations. The 
main goal of the paper is to derive codes that are 
suitable for iterative (turbo) decoding. 

1. Introduction 
A very good way to obtain long and powerful codes, which can 
be decoded efficiently, is to use code concatenation or prod­
uct codes. Such codes can be decoded by decoding the codes 
used as components in concatenation (component codes) and 
combining the results. In [1], Berrou and his co-workers pro­
posed a coding scheme that achieves reliable communication 
at signal-to-noise ratios very close to the Shannon Limit [1]. 
They used simple,recursive,systematic convolutional codes as 
component codes in a product code construction with inter­
leaving. 
Our goal is to construct block code based binary codes suitable 
for the decoding procedure from [1]. The concept of product 
codes implies that two codewords from the two component 
codes share precisely one bit. This is in fact the requirement 
in order to apply the algorithm from [1]. We can interpret an 
interleaved product code as a bipartite graph where the code­
words from the two component codes are the vertices and two 
vertices are adjacent if the corresponding codewords share a 
bit. The main objective in the construction of "interleaving 
rules" is that the girth (the minimum over all cycle lengths 
in the graph) of the corresponding graph is as large as possi­
ble. The reason is that this allows on the one hand to keep 
the iterated bit-wise estimates obtained in the algorithm from 
[1] statistically independent over a maximum number of it­
erations and on the other hand a large girth implies a large 
minimum distance of the proposed codes. 

2. Code Construction 

Let C;,i = 1,2 denote two binary codes with length N; dimen­
sion K; and minimum Hamming distance D;. We say that C; 
is a [N;,K;,D;] code. We define an interleaving matrix A as 
an r X v matrix which has precisely N1 ones in any column, N2 
ones in any row and all other entries equal to zero. A codeword 
in the interleaved product code C is now obtained by replac­
ing the ones in matrix A with zeros and ones in such a way 
that the resulting matrix B has the following properties: 1) 
After row-wise deleting those positions in B, where matrix A 
has zeros, any row in the resulting matrix is a codeword in the 
code C2. 2) After column-wise deleting those positions in B, 
where matrix A has zeros, any column in the resulting matrix 
is a codeword in the code C1. A codeword in C is now de­
fined as matrix B punctured in all position where A had zeros. 
The resulting code is linear and has length n = rN2 = vN1 • 

Counting the total number of linear conditions imposed by 
the two requirements on B we see that the dimension k of C 
satisfies k ~ n(K1/N1 +K2/N2 -1). A one in position (i,j) of 
A implies that in the graph G A associated with A the vertex 
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corresponding to the i-th codeword from C 2 is adjacent to the 
vertex corresponding to the j-th codeword from C1. It is clear 
that the vertices corresponding to codewords from C 1 and C2 
have degree N1 and N2. Let this graph have girth 2l. We 
have the following bound on the minimum distance of C. For 
a proof we refer to a forthcoming paper. 
Proposition The minimum Hamming distance d of code C 
is in case of odd 1 ~ 3 lower bounded by 

(1-3)/2 

d ~ DIll + D1(D2 - 1) L ((D1 - I)(D2 - I»i] 
i=O 

and in case of even 1 ~ 2 lower bounded by 

(1-4)/2 

d > DIll + D1(D2 - 1)[ L ((D1 -I)(D2 _I»i] 
i=O 

The construction of graphs with a large girth and with a fixed 
number of vertices of a given degree is in general a difficult 
problem. Given the girth 21, we have the following lower 
bound on the number of edges in the graph or equivalently 
the length n of the constructed code C: 

(1-3)/2 

n ~ NIlI + N1(N2 - 1) L ((N1 - I)(N2 _1))i] 
i=O 

in case of odd 1 ~ 3 and 

(1-4)/2 

n > NIlI + N1(N2 - 1)[ L ((N1 - I)(N2 - I»i] 
i=O 

+(N2 - I)((N2 - I)(N1 - 1»(1-2)/2] 

in case of even 1 ~ 2. 
The task of finding an interleaving matrix for large 1 is an 
intriguing and well investigated combinatorial problem. For 
1 ~ 3 the problem is reflected in t-design theory. In par­
ticular we find that the incidence matrix of a Steiner sys­
tem S(2, k, v) when interpreted as interleaving matrix corre­
sponds to a graph with girth 6 which satisfies the above bound 
with equality. In this case the component code lengths are 
N1 = ~=~, N2 = k and the overall length of the code equals 

n = vt~ll). We note that in case of symmetric Steiner sys­
tems obtained from projective planes such interleaving rules 
are easily implemented with the help of difference sets. 
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Abstract - The linearity of turbo-codes is shown. The 
criterion for optimal interleaving between two compo­
nent encoders is given. The union upper bounds on 
error rate of the whole code with perfect interleaving 
and component codes with known and binomial (as 
ideal) weight distribution (WD) are calculated. 

1. Introduction 
The codeword of the recently introduced turbo-codes [1] has 
the following structure 

(1) 

where F(·) is the function of the encoder, I is the k-tuple 
of information bits, G1 and G2 are the mapping matrices 
from the space of dimension k to the dimensions rand r' 
respectively, and l' is a version of I with interleaved (permu­
tated) coordinates. As mappings G1 and G2 both systematic 
block codes and terminated convolutional codes can be used. 
The rate of the whole code in both cases is R = k/(k + 2r) 
(where here and hereafter we only consider the case r = r'), 
but for terminated convolutional codes the redundancy part 
is r = (no - ko)(k/ko + m), where it is assumed that each 
component code has rate He = ko/no and memory m. 

2. Linearity of Turbo-Codes 
The linearity condition for binary codes, F(A EfJ B) = F(A) EfJ 
F(B), where EfJ denotes the modulo-two addition, should be 
true for any information vectors A and B. In our case, it 
immediately implies (A EfJ B)' = A' EfJ B', which is true for 
any permutation. Thus, only the all-zero codeword has to be 
transmitted, and only the WD's instead of distance profiles 
have to be determined. 

3. Union Bounds 
The classical additive (union) upper bound on the bit error 
rate for some systematic linear binary (k + r, k) code can be 
written as follows: 

k . 

PBER ~ L i L A(i,j)P(Ci+iICo), (2) 
i=l i=O 

where A( i, j) is the number of codewords with Hamming 
weight of information bits i and of redundancy bits j, and 
P(Ci+iICo) is the probability of error by maximum likelihood 
decoding for the code of two codewords whose weights are zero 
(Co) and i + j (Ci+i ). This probability is a strictly decreasing 
function of the weight i + j. 
Similarly, we can write for the codeword with a structure (1): 

k • 

PBER ~ L iLL A(i,j,j')P(Ci+i+i'ICo), (3) 
i=l i=O i'=O 

where A(i,j,j') is the number of codewords with weight of 
information bits i, first redundancy bits j, and second redun­
dancy bits j'. 
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4. Optimal Interleaving 
At first, consider one of two component codes. Dispose all 2k 
codewords into k groups so that each i-th (i = 1,k) group 
consists of (:) codewords of weight i in the information part. 
Note that if the information vector I belongs to the i-th group, 
then the permutated vector l' will be also in this group. 

Next, let j(i, l), l = 1, (:), be the weight of the redundancy 
part of the l-th codeword in the i-th group. Within each 
group dispose the codewords with non-decreasing weights 
of the redundancy so that for any l holds: j(i, l + 1) ;:::: 
j(i, l). Because of the decreasing character of the function 
P( Ci+i+i,ICo) (3) with increasing weight i + j + j', this aver­
age whole weight should be as large as possible. It means, e.g. 
for the G 1 = G2 , that within each group the first redundancy 
part with small weight after interleaving should be associated 
with second redundancy part with weight as large as possible 
and vice versa. In this case we can rewrite (3) as: 

k . m 
PBER ~ L i L P(Ci+i(i,I)+i(i,(~)-1+1)ICo), (4) 

i=l 1=1 

where for any i and l the j(i, l) are unambigously determined 
by A( i, j) (2) of the component codes. 
In general, the criterion for optimal interleaving can be for­
mulated in terms of WD's of first and second parity parts: Vi: 
j + j' ---+ max, where the expectation is evaluated over above 
mentioned WD's. 

5. WD's of Component Codes and Whole Code 
In [2], Battail has proposed the binomial WD: A(w) = 
(k!r) /2r, where A(w) is the number of codewords with weight 
w, as optimal WD of some (k +r, k) code. Following the simi­
lar idea (random choice of parity-checks inside of each group), 
we obtain: A(i,j) = (:) (j)/2r . Combining this result with 
(4), we have k 

PBER ~ ~ ~ (~) P(Ci+rICo), 

which is the union upper bound for turbo-codes with opti­
mal component codes, optimal interleaving, and maximum 
likelihood decoding. The WD of a whole code in this case 
is exactly (not normalised, but shifted) binomial: A(O) = 1, 
A(w) = (w~r) for r ~ w ~ k + rand A(w) = 0 otherwise. 
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Methods for Computing Reliability Information in Concatenated 
Coding Schemes 
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Abstract - For complexity reasons it is often more 
practical to use a concatenated coding scheme than a 
single code. To achieve good error correcting charac­
teristics from the outer codes, however, it is necessary 
that the inner codes supply some form of reliability 
information in addition to the decoded information 
sequence. Here it is investigated how to perform this 
for a convolutional code without adding any trace­
back steps to the classical Viterbi algorithm and with 
a minimum of complexity. It is discussed what inputs 
are required to do the estimation and an approxima­
tion for the a posteriori probabilities for erroneous 
decoding is analytically derived. It is also shown how 
to do the estimation using a neural network trained 
with the a posteriori probabilities for erroneous deci­
sions in a Viterbi decoding. 

1. Introduction 
In many situations, when the complexity of the decoder is 
limited, it is preferable to use sub-optimal decoding of a code 
that is too large to decode optimally. One way of doing this is 
to use a concatenated coding scheme instead of a single code. 
Most decoders perform better if they are provided with soft 
inputs, i.e., some form of reliability information about the in­
put symbols. To exploit this capability for the outer decoder it 
is therefore necessary that the inner decoder deliver reliability 
information in addition to its output sequence. 
Since the output errors from the inner decoder is correlated 
it is not unambiguous how the reliability information is best 
provided. However, assuming adequate interleaving, reliabil­
ity information on a symbol-by-symbol basis seems like a good 
choice. 

2. Theory 
Our goal is to derive an analytical expression for the reliability 
information, given only a window of the estimated noise. The 
reason for this is to compute the reliability information using 
as little complexity as possible. 
We assume an AWGN channel with known 8NR. We define 
the reliability sequence p as the probability for each bit in the 
received sequence XCi) to be an erroneous estimate of the sent 
sequence X(i) conditioned on the received sequence r: 

(1) 

By looking at only a window of r we get an estimate, p, of p. 
With some calculations we can split this expression into parts 
that with good accuracy can be approximated with Gaussian 
functions. 

3. Two algorithms 
We present two algorithms to compute reliability information: 
the forward-backward algorithm first described in the context 
of coding by Bah! et ai. [I], and the soft output Viterbi algo­
rithm (SOVA) suggested by Hagenauer and Hoeher in [2]. 
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4. Estimating reliability using neural networks 
In this chapter we use a feed-forward neural network to esti­
mate the a posteriori probability that Xk i= Xk, given a window 
of the estimated noise sequence e. For large window sizes, the 
expectation is that the neural network will find good approx­
imations of the reliability information with only small com­
plexity. 
We use the neural network as a data fitting function. For 
this we supply the network with a training set of input-output 
patterns from simulations of the forward-backward algorithm. 
We try different methods to choose the training set, and we 
try different sizes of the network. 
There are many parameters in the neural network that can be 
changed, and some of them we choose quite arbitrarily. 
Since the neural network contains many multiplications and 
non-linear functions, it requires that the parallelism of the 
network be exploited. Thus, a software implementation is not 
likely to be computationally effective. 

5. Results from simulations of the methods 
In simulations we see that a single code with comparable rate 
and complexity to a concatenated coding scheme performs 
better than any of the chosen concatenated schemes. This was 
expected since the decoder of the single code uses maximum 
likelihood decoding. 
When the outer decoder uses hard decisions the perfor­
mance becomes very bad compared to the single code. How­
ever, using reliability information computed with the forward­
backward algorithm gives a performance dose to the single 
code. 
As expected, the performance using neural networks, trained 
with the numbers that the forward-backward algorithm com­
putes, lies between the performance of hard decisions and 
MAP-decisions. We also see that the performance for the 
neural networks becomes better for increasingly big window 
size. It is somewhat disappointing to see that a relatively 
large window is necessary to approach the performance of the 
MAP-decisions, especially for a large code. 
We also note that the performance when the outer decoder 
uses reliability information calculated according to the analyt­
ical expression becomes very close to the performance when it 
uses information from the neural networks. 
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Abstract - The quaternary Goethals code is a Z4-
linear code of length 2m and minimum Lee distance 8. 
A decoding algorithm is presented which corrects all 
errors of weight ~ 3. 

1. Introduction 

Let Zl denote the ring of integers modulo I. Let p, : Z4 -> Z2 
denote the modulo 2 reduction map. We extend p, to Z4[X] in 
the natural way. A monic polynomial g(x) E Z4[X] is said to 
be a monic basic irreducible if p,(g(x» is a monic irreducible 
polynomial in Z2[X]. A Galois ring R of characteristic 4 with 
4"' elements is isomorphic to the ring Z4[xl/(f(X)), where f(x) 
is a monic basic irreducible of degree m. The multiplicative 
group of units R· of R contains a subgroup of order 2= -
1. Let (3 E R" be a generator for the multiplicative cyclic 

2"'1. 2 subgroup. Let T = {O, 1, (3, ... ,(3 -}. It can be shown 
that p,(T) = GF(2'ffl) and that every element r E R can be 
expressed uniquely as r = A + 2B where A, BET. 
Let n = 2= 1 where m is an odd integer. The quaternary 
Goethals code C is the code with parity check matrix 

[

11 
o 1 
o 2 

H 

In Hammons, Kumar, Calderbank, Sloane and Sole [1], it is 
shown that if m is odd, then C has minimum Lee distance 8. 

2. Decoding of the Goethals code 

We index the components of a vector r E Z:+1 by the elements 
of T. The syndrome of a received vector is S = r H tr 

eHtr = (t, A + 2B, 2G) where H tr denotes the transpose of H 
and e the coset leader. The syndrom equa.tions become 

t, 
XET 

L: exX = A+2B, 
XET 

A,BET 

2 L: exX3 = 2G, 
XET 

GET. 

For any coset containing a. vector of weight ~ 3, we will deter­
mine the error locations X, Y, Z and the corresponding error 
values ex, ey, ez of a coset leader. Since /-L(T) = GF(2"'), it 
is sufficient to find the projections x, y, and z in GF(2m) and 
the corresponding values ex, ey, and ez in Z4. 

Theorem 1 Let S = (0, A + 2B, 2G) denote the syndrome. 
(i) If abe = 0, then 0 is the coset leader. 
(ii) If a#-O and a4 + a2b2 + ac + b4 = 0, then the coset leader 
has Lee weight 2 and is uniquely determined by x = b2/a + a, 
ex = 1, Y = b2 /a and ey = -1-
(iii) If (i) and (ii) do not hold, then any coset leader has Lee 
weight;:::: 4. 
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Theorem 2 Let S = (1, A + 2B, 2G) denote the syndrome. 
(i) If b 0 and c = a3

, then the coset leader has Lee weight 1 
and is uniquely determined by x a and ex = 1. 
(ii) If b #- 0 and c = a3

, then the coset leader has Lee weight 
3 and is uniquely determined by x = a + b, ex = 2, Y = a and 
ey =-l. 
(iii) If b #- 0, c #- a3 and Tr(b3/(a3 + c» = 0, then the 
coset leader has Lee weight 3. The coset leader is uniquely 
determined such that x and y are solutions of b2u2 (a3 + 

c)u+a4 +a2b2 +ac+b4 =O,ex=ey l,z=a+ and 
ez = -l. 
(iv) Ifu(u) = u3+au2+(a2+b2)u+ab2+c has three distinct 
zeros in F then a coset leader has Lee weight 3 and is uniquely 
determined such that x, y, z are the three distinct zeros in F 
of u(u) and ex = ey = ez = -l. 
(v) If none of (i)-(iv) hold, then any coset leader has Lee 
weight;:::: 5. 

Theorem 3 Let S = (2, A + 2B, 2G) denote the syndrome. 
(i) If a = c = 0, then the coset leader has Lee weight 2 and is 
uniquely determined by x = b and ex = 2. 
(ii) If a #- 0, c = a3 + ab2 and Tr(b/a) = 0, then the coset 
leader has Lee weight 2 and is uniquely determined such that 
x and yare zeros of u2 + au + b2 = 0 and ex = ey = l. 
(iii) If a#- 0, c = ab2 and Tr(b/a) 1, then the coset leader 
has Lee weight 2 and is uniquely determined such that x and 
yare zeros of u 2 + au + a 2 + b2 = ° and ex ey = -l. 
(iii) If (i), (ii) and (iii) do not hold, then any coset leader has 
Lee weight;:::: 4. 

Theorem 4 Let S = (3, A + 2B, 2G) denote the syndrome. 
(i) If a := band c = a3

, then the coset leader has Lee weight 1 
and is uniquely determined by x a and ex = -l. 
(ii) If a #- band c a3

, then the coset leader has Lee weight 
3 and is uniquely determined by x b, ex = 2, y = a and 
ey l. 
(iii) If a #- b, c #- a3 and Tr«a + b)3/(a3 + e)) 0, then 
the coset leader has Lee weight 3. The coset leader is uniquely 
determined such that x and y are solutions of (a 2 + b2 )U2 + 
(a3+c)u+a4+a2b2+ac+b4 = 0, ex := ey = -1, z ::::: 
and ez = l. 
(iv) If u(u) = 1.1

3 + au2 + b2u + a3 + ab2 + c has three distinct 
zeros in F then a coset leader has Lee weight 3 and is uniquely 
determined such that x, y, z are the three distinct zeros in F 
ofu(u) and ex = ey = ez = 1. 
(v) If none of (i}-(iv) hold, then any coset leader has Lee 
weight;:::: 5. 
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Abstract - Classification of the bent functions is given 
if n = pm, p is a prime. 

1. Introduction 
Let x = (XO, Xl, ... , x,,-d be a complex valued sequence of 
length n. The periodic a.utocorrelation function of x is de­
fined by Rx (T) = E;':; x.x:+,., T = 0,1, ... , n - I, where 
a.Il indices are calculated mod nand x* denotes the complex 
conjugation of x. 
Definition 1 A sequence x is called a perfect sequence iJ all 
the out-of-phase autocorrelation coefficients are equal to 0, i.e. 

,,-1 

L x.x:+'I" = 0, T = 1,2, ... , n - l. 
0=0 

(1) 

Definition 2 A sequence x is called a polyphase sequence 
if all the components x. are nth roots of unity. 

Corollary 2 For this case, all the bent Junctions are equiv­
alent to the standard bent function f (x) = x 2 (see Corollary 
1). 

Let n = n1 n2, where gcd (nl , n2) = 1. By Chinese Remainder 
Theorem, each integer x, 0 :::; x :::; n - 1, can be represented 
in the form x xINl + x2N2 mod n, where Nl bln2 == 
1 mod nl, Ni == Nl mod n, and N2 == b2n1 == 1 mod n2, Ni == 
N2 mod n. 
The direct-product construction is proposed in [lJ. This con­
struction is given by 

Lemma 2 {1} Let n ::: nln2, where gcd(n1,n2) 1. If 
h (Xl), 0 :::; Xl :::; n1 - 1, and h (X2), 0 :::; X2 :::; n2 - 1, 
are bent functions of sequences of lengths nl, n2, respectively, 
then a function 

(4) 

Let ( be an nth primitive root of unity. A polyphase sequence x = Xl Nl + x2N2 mod n, 

can be represented in the form is the bent function oj a sequence of length n. 

(2) This Lemma can be inverted to some extent. 

where f (s), s = 0,1, ... ,n-l, are integers mod n. A function 
f (x) is called an index function. 

Definition 3 An index function f (x) is called a bent 
function if and only if the corresponding sequence x 
(/(0),(/(1), ... ,(/Cn - 1)) is perfect. 

It is clear that the number of different bent functions is fi­
nite. A general construction of bent functions is given in [lJ. 
Nevertheless, this construction does not describe all the bent 
functions. In this paper, we give the full classification of bent 
functions if n pm, p is a prime. 

2. General properties of bent functions 
Let a, b, c be integers and let d be an integer coprime to n, 
gcd (d, n) = 1. 
Lemma 1 If f (x) is the bent function then 

It (x) = f (dx + c) + ax + b (3) 

is also the bent function. 

We refer to the bent function It (x) as the equivalent bent 
function. 

Corollary 1 If a bent function f (x) is a polynomial, then 
there exists the equivalent bent function It (x) of the standard 
form It (x) = x 2 + g (x), where 9 (x) is a polynomial of degree 
not less than 3, or O. 

Theorem 1 If n = 2m, m is an odd integer, then a bent 
function does not exist. 

Theorem 2 Let n = p, p is a prime, p ;::: 3. All the bent func­
tions are quadratic polynomials f (x) = ax2 + bx + c, a, b, c E 
Zp, a ~ O. 
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Theorem 3 Let n = PIP2, where PI and P2 are distinct odd 
primes. Then f (x) is a bent function if and only if it can be 
represented in the form (4). 

Corollary 3 Let n be a square free integer. For this case, 
all the bent functions can be obtained by the direct-product 
construction. 

Theorem 4 Let n = p2k be even power of a prime p. Let 
Xo and Xl be the unique representation of x given by x = 
xo + Xlpk, where 0 :5. Xo :5. pI. - 1, 0 :::; Xl :::; pI. - 1. Then all 
the bent functions are given by 

(5) 

where F (xo) is a function taking values in Z" and G (xo) is 
a function taking values in Zpk such that G (a) ~ G (b), if 
a ~ b, a, b E Zpk. 

Theorem 5 Let n p2k+l be odd power of a prime p. Let 
Xo, X2 and Xl be the un'ique representation of x given by x 
Xo + Xlpk + X2pHl ,where 0 :::; xo :::; pk - 1, 0:::; X2 :::; pk 1, 
o :::; Xl :::; p - L Then all the bent functions are given by 

f (x) = F (xO)+XOXlpk +xoG (X2) pHl + [a (xo) x~ + b (xo) Xl] p2k, 
(6) 

where i) F(xo) is a function taking values in Z", ii) G(X2) 
is a function taking values in Zpk such that G (a) ~ G (b), if 
a ~ b, a, b E Zpk, iii) a (xo) is a function taking non zero 
values in Zp, iv) b (xo) is a function taking values in Zp. 
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Abstract The hyperplanes intersecting a 2-weight 
code in the same number of points obviously form 
the point set of a projective code. On the other hand, 
if we have a projective code C, then we can make a 
2-weight code by taking the multiset of points < c >E 
PC with multiplicity "Y(w), where W is the weight of 
c E C and "Y( w) = aw + f3 for some rational a and f3 
depending on the weight enumerator of C. In this 
way we find a 1-1 correspondence between projective 
codes and 2-weight codes. The second construction 
can be generalized by taking for "Y{ w) a polynomial of 
higher degree. In that case more information about 
the cosets of the dual of C is needed. Several new 
ternary codes will be constructed in this way. 

Let C be a projective q-ary In, k, d] code, with nonzero weights 
WI, ... , Wt. Each subcode D of codimension 1 in C has nonzero 
weights WI, ... , Wt with respective frequencies II, ... , ft, say, 
and these frequencies satisfy 

(this follows by counting all nonzero vectors in D), and 

where nD is the effective length of D, that is, the number 
of coordinate positions where D is not identically zero (this 
follows by counting the zero entries of all vectors in D). 
Since C is projective, we have nD =:: n - 1 for n subcodes D, 
and nv n for the remaining (q" - 1)/(q 1) - n sub codes 
of co dimension l. 
It follows that for arbitrary choice of a, {3 the sum 

L:(aWi + {3)/i 

does not depend on D but only on nD, and hence only takes 
two values. 
Fix a, f3 in such a way that all numbers aw; + (3 are nonneg­
ative integers, and consider the multiset X (in the projective 
space PC) consisting of the I-spaces (c) with c E C taken 
aw + {3 times, if w is the weight of c. Then X is the point set 
of a 2-weight code. 
For example from a ternary [16,5,9] code with weight enumer­
ator 01 9116 12114 1512 we can construct a ternary [69,5,45] 
code with weight enumerator 01 45210 5432 by taking a = t 
and (3 -3. 
Now, let C be a 2-weight linear q-ary In, k, d] code, with 
nonzero weights u and v. Let X be the corresponding multiset 
in PG(k - 1,q), so that IXI = n, and each hyperplane meets 
X in either IXI-u or IXI-v points. The hyperplanes meeting 
X in IXI u points (lXI - v points, respectively) obviously 
form the point set of a projective code. This construction can 
be said to be the inverse of the first construction. 
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For example a ternary [149,5,99] code has been proved to have 
weight enumerator 01 99222 10820 if it exists [2]. The sec­
ond construction would then yield a projective ternary self­
orthogonal [10,5,3] code, which cannot exist since 10 is not a 
multiple of 4. 
The first construction can be generalized in the following way: 
Suppose we have an In, k, d] code Cover G F( q) with nonzero 
weights WI, ••. , Wt. Let D be a subcode of co dimension 1 
of C. Let the frequencies of WI, ..• , Wt in D be denoted by 
/1, ... , ft· Then the Pless power moments [3] give us: 

r -n, 

where Vi n - Wi, Bj is the number of codewords of weight j 
in the dual of D and S( r, v} is a Stirling number of the second 
kind. Let pi(V) = E!:~p~i)v' be the polynomial that is 0 for 
V Vh, h f:. i and is 1 for v Vi, (i = 1, ... , t). Consider 
the set Xi in the projective space PC consisting of I-spaces 
< c > (c E C) with multiplicity Pi(V}, where W = n - V is the 
weight of c. Then Xi is a projective code that is intersected 
by D in (E~=1 Pi(Vh)!h)/(q 1) points. So if we can compute 
the weight enumerator up to weight t - 1 of the dual of any 
codimension 1 subcode of C (which corresponds to a coset 
of the dual of C), then we can compute the weights in Xi 
(i = 1, ... , t), using the Pless power moments. Once we know 
the weight in Xi corresponding to each coset of the dual for 
every i, we can construct codes by taking the union of some 
Xi'S. 
For example if we take for C the [12,6,6] extended ternary Go­
lay code, then we find a ternary [220,6,144] and a 1232,6,153] 
code, which both improve on the bounds in [1]. If we take 
for C the ternary [7,6,2] code, then we find a [140,6,90) and a 
[203,6,132] code, which also improve on the bounds in [1]. 
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Abstract A method is descrihed to decode first or-
der Reed-Muller codes by means of parallel processes. 
At the beginning of every parallel path, the coordi­
nates of the received word are being permuted. The 
decoding proces tries to find the errors, made dur­
ing transmission, in the permuted words and corrects 
these. 
After that, the coordinates of the permuted word are 
permuted back to their original order and the word 
passes through some test to conclude if the corrected 
word is a codeword or not. If it is a codeword and 
the number of errors is less than or equal to the error 
correcting capability of the code, then it will be the 
sent codeword. 
Let :!!; be the binary representation of the integer i, (0 :$ 
i < n = 2m

), with the least significant bit below. Hence 
.'!!Q,1fl, •.. ,1fn -l are the successive points of Vm . The first or­
der Reed-Muller code can be written by means of the set of 
polynomials of degree :$ 1. 

R-M(I,m) 
m 

= a o +Laixi,ai EGF(2)}. 
i=l 

The vector £ (f(1fQ) , 1(1fl)"'" f(1fn -1» is called the char­
acteristic vector of polynomial f. Let £ be the characteristic 
vector of a polynomial I E R-M(I, m). Then we can find the 
following 2",-1 equations for the coefficient am: 

em Co + C1 

am = C2 +C3 

am Cn -2 + Cn-I, 

(1) 

a.nd for the coefficient am-I: 

(4i,4i + 1,4i + 2,4i + 3) with 0:$ i < 2",-2. When we now 
calculate 

and compare these values with a.". and a",-I (found 
from set Am, respectively set A",-l), we can find back 
(€4i,€4i+I,€4i+2,€4i+3), if w«e4i,€4i+1,e4i+2,€4i+3» :$ 1. 
If w«e4i,€4i+1,€4i+2,e4i+3» > 1, we cannot find back 
(e4;, e4i+1, €4i+2, e4i+3). 

So, if we receive some word y with an errorvector € we have 
to find a - -

P E Aut(R-M(l, m» so that: 

where 

iii := P1fi' 0:$ j :$ n 1. 

In the above wa.y the decoding problem leads us to the follow­
ing Key Problem: 
We are looking for PI, ... , PI. E Aut(R-M(I,m)) with PI I, 
such that k is minimal with the property, that for V~ E 
GF(2)n with w{~) :$ 2",-2 - 1 there exists an "', (1 :$ K, :$ k) 
with: 

w( (eU4" €U4i+l , €;;'4.+2' e;;'4.+3» :$ 1, 

Vi, 0 :$ i < 2",-2 := P,.1f. 

These k permutations and the decoding of the received word 
after that, can be passed through at the same time in k paral­
lel paths, but there must be some test at the end of every path 
to conclude if the received word has been corrected completely 
and correctly and thus if the resulting word is the codeword 
which was transmitted. 

References 
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am.-l 
am-l 

= Cn-4 + Cn -2 

Cn -3 + Cn-i. 

Suppose, we receive the word y, while the codeword £ E 
R-M{I, m) has been transmitted-:- We assume that y £ + ~ 
with w(~) :$ 2m

- 2 - 1. Let us consider the sets: -

{YO + Yl, Y2 + Y3, ... , Yn-2 + Yn-d 
{YO + Y2, YI + Y3, ... , Yn-3 + Yn-t}. 

Because there are a.t most 2m
-

2 1 errors, we find that am. 
is equal to the majority of the values in Am. The same holds 
for am-I: am-l is equal to the majority in Am-i. 
Now, we can decode R-M{l, m) with a number of parallel 
paths in which only calculation of Equations (1) and (2) will 
be needed. 
We divide the coordinates of ]1..> ~ and £ in blocks of four: 
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Abstract - We study access structures in secret shar­
ing schemes determined by linear codes. They are 
known to be characterized by the set of minimal code­
words, also termed the projecting set of a code. After 
stating some simple properties of these sets, we find 
them for random linear codes, the Hamming codes, 
and the binary second-order Reed-Muller codes. 

1. Introduction 
A center D has to create a system of distributed access to 
a certain information So. Toward this end, it gives out to 
the users pI, ... , pn-I of the system some portions (shares) of 
information. The goal of the center is to ensure that only au­
thorized coalitions of users, putting their shares together, can 
learn So, while all other (unauthorized) coalitions can obtain 
from their joint knowledge no information about So. Suppose 
the shares Si, 1 ~ i ~ n -I, and the value So are taken from a 
finite set S. The set of authorized coalitions is called an access 
structure, denoted r. A subset r- <; r with the property that 
71,72 E r- implies that neither 71 <; 72 nor 72 <; 71 is called 
a minimal access structure. 
To define a secret-sharing scheme it is necessary to define a 
set of distribution rules, i.e., of functions that. assign shares to 
the users. If those functions are linear over some finite field, 
the scheme is called linear. 

2. Access Structures from Linear Codes 
The definitions below were introduced in [1, 2, 3J. Let H = 
IIhii ll,l ~ i ~ 1',0 ~ j ~ n-l, be a q-ary matrix and E an 
Fq-linear space of dimension r. Define a linear transform f 
by fee) = eH,e E E. The secret and the shares of the users 
are formed by coordinate 0 and coordinates 1 to n - 1 of the 
vector fee), respectively. When e runs over E, we obtain the 
entire collection of distribution rules of the system defined by 
H. 
Thus, we associate the users po (the center) and PI, ... , 
pn-l with the columns of H. A conference of users pj E 
7 <; {PI, ... , pn- t} can reconstruct So iff their columns span 
column 0 of H. Therefore, an access structure r of the secret­
sharing scheme defined by H is formed by the subset of the 
null space of H formed by vectors with a nonzero first coordi­
nate. Let C be a linear code. 
Definition. A codeword c E C {O}, whose leftmost nonzero 
coordinate is one, is called minimal if it covers no other code­
word with the leftmost nonzero coordinate equal to one. 
The set of minimal codewords in a linear code C characterizes 
the minimal access structure r of the corresponding scheme 
and the set of minimal codewords in CJ. does the same for the 
dual access structure [4). 
We shall discuss simple properties of minimal co dewords , 
which will enable us to give an immediate answer about access 
structures corresponding to binary Golay codes, binary codes 
dual to the BeH codes correcting a small number of errors, 
MDS, and "near-MDS" codes. 
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Typical linear codes. Let H be a randomly chosen matrix with 
independent entries taken from F q with uniform distribution 
and C == kerH be the corresponding tn, k) code. 
Theorem 1 Let Cw be the subset of wards of weight w ~ 
n - k + 1 in C. Then 

EICw n PI = n (q - 1)"'- II ( ,,-k _ qi). 
( ) 

1 w-2 

W qw(n-k) q 
;=0 

Hamming codes. Let C be the q-ary Hamming code of length 
n = (qm - l)/(q - 1). 

Theorem 2 The set P(C) is farmed by Btu vectors of every 
weight w,3 ~ w ~ m+ 1, were 

tu-2 

Bw = W!(ql_ 1) II (qm _ qi). 
,=0 

Second-order Reed-Muller codes. Let C = RM(2, m) be the 
second order binary Reed-Muller code and Aw the number of 
its words of weight w. Then Aw = 0 except for w 2m

- I , w = 
2",-1 ± 2",-1-\0 ~ h ~ Lm/2J. Let Bw = ICw n PI be the 
number of its minimal codewords of weight w > o. 

Theorem 3 For w = 2",-1 + 2Tn
-

1- h , h = 0,1,2, there are 
no minimal cadeworos (Bw = 0). Otherwise, B,u = Aw , except 
for the case w = 2",-1, when 

l"'/2J 
Btu == L A 2m-l_2m-l-l. (2",-2h+1 - 2). 

h=2 

Proofs and some further results are given in a manuscript by 
the same authors available on request. 
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Abstract The assumptions on which the broadcast 
channel with confidential messages is based are dis­
cussed. Slightly changed, more realistic assumptions 
lead to a new model, the broadcast channel with con­
fidential messages, with tampering. In order to gen­
erate a secret key the legitimate users need to take a 
certain worst-case scenario into account such that the 
tampering of the enemy does no harm. 

1. The BCC 

Csiszar and Korner introduced the broadcast channel with 
confidential messages (BCC). It consists of three participants: 
two legitimate users of the main channel, Alice and Bob, and 
a wire-tapper, Eve, the enemy. We consider the case where 
the main channel is a BSC(eA) (that is a binary symmetric 
channel with error probability eA) cascaded with a BSC(eB). 
Between these two channels Eve taps the wire with a BSC(eE)' 
Alice and Bob generate a secret key such that Eve can only 
obtain a negligible amount of information about it. In order 
to generate a secret key Alice and Bob first agree upon codes 
and a protocol to be used. 

2. Its Assumptions 

The assumptions on which the modelling of the BCC is based 
are the following: 
A1: the protocol and the codes used by Alice and Bob are 

known to Eve, 

A2: Eve knows eA, eB, and eE, 

A3: Alice and Bob know eE, and 

A4: Alice and Bob know eA and eB. 

Suppose we change assumption A4 into A4': 

(i) There exists a continuous injective function f such that 
for all parts P of the main channel the noise character­
istics of P are expected to be equal to few) with very 
small standard deviation (~~ 0), where w is the length 
of part P. 

(ii) Alice and Bob know an approximation l' of the length 
I > 0 of the main channel of which they know it is binary 
symmetric. 

(iii) Alice and Bob know an approximation Wi of the distance 
w from Alice at which Eve is wire-tapping. 

Let £ be arbitrarily close to O. The main channel can be seen 
as the cascading of parts with length c. By A4'.1 all c:-parts 
behave similarly with high probability. Therefore A4'.1 can 
be interpreted by 'each part of the main channel has been 
made by the same medium (this medium are these c:-parts)'. 
We conclude that A4' describes a more realistic situation than 
A4. 
We may assume that before Alice and Bob start to gener­
ate a secret key they communicate over public noiseless chan­
nels to agree on the protocol and codes. During this public 
communication they can approximate the error probability of 
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the main channel e eA(l - eB) + (1 - eA)eB. Alice trans­
mits n Os over the main channel, and over the public chan­
nel Bob transmits m the number of Is Bob received. Hence, 
for n large enough e is expected to be e' = min with small 
standard deviation. Given A4' we can prove that the noise 
characteristics of a part of the main channel with length w 
is expected to be a BSC(H1 - (1- 2e)w/l)) with verry small 

standard deviation. Hence, eA ~ t(l - (1 - 2e')W' /1'), and 
eB ~ ~(1 (1- 2e' ){I'-w')/I'). 

3. The BCC, with Tampering 
Suppose Eve tampers by producing extra binary symmetric 
noise with a source T on the main channeL Let us assume 
that 
A5: at the moment Alice and Bob start to communicate over 

the main channel they do not know the noise character­
istics of T with which Eve tampers. 

Then Alice and Bob wit not detect this tampering. Hence, 
they wil misjudge the situation and they wi! generate a key, 
which they think is secret, and of which Eve obtains a non­
negligible amount of information. We conclude that Alice and 
Bob need to take a special worst-case scenario into account. 
Suppose prior to the estimation of e Alice and Bob know that 
the error probability of 1 meter of the main channel is expected 
to be a with standard deviation 8 (not ~~ 0 as in A4'.I). Then 
we can prove that given this knowledge the error probability 
of the main channel is expected by HI - (1 - 2a)') ~ ia with 

standard deviation h/«1 - 2a)2 + 482)1 - (1 - 2a)21 ~ 8Ji. 
Now, prior to the estimation of e Alice and Bob agree on a set 
of error probabilities M indicating when Alice and Bob will 
use the BCC for secret key generation; that is if and only if 
e' EM. Let M = [0,i'a+3s0']. Then they know that with 
very high probability e' EM. 
Suppose Alice and Bob use the BCC. Then we can prove that 
with high probability T E {BSC(p) : 0 S; p S; eT}, where 
eT ;: (e' -i'a + 3s0')/{l- 21'a + 680'). Now, Alice and 
Bob wi! use a coding strategy for generating a secret key in the 
situation that Eve tampers with T = BSC(eT) (we notice that 
for this situation they can approximate the corresponding eA 
and eB, see Section II). We can prove that the key generated 
by this coding strategy remains with high probability secret 
for Eve in the real situation. 

4. Concluding Remarks 
The presented case can be generalized towards other BCC's. 
Also more realistic assumptions for A2 and A3 can be consid­
ered. We conclude that in a more realistic situation a certain 
worst-case scenario has to be taken into account and the noise 
characteristics of the main channel need regularly be checked 
(such that changes in the enemy's attack can be detected). 
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1. Summary 
Gemmell and Naor [1] proposed an authentication scheme 
(without secrecy) in which several messages are passed back 
and forth to obtain a (Cartesian) A-code in which the keysize 
is almost independent of the message length. 
However the security analysis made by Gemmell and Naor 
only took into account a certain substitution attack. By also 
considering the impersonation attack Gehrmann [2] showed 
that the number of rounds have to be an odd number to avoid 
impersonation attacks. Further he introduced a special six 
step substitution attack for which the probability calculation 
made by Gemmell and Naor did not hold. In this paper, the 
analysis is developed further. We propose new protocols and 
prove their security 1 

First we make an analysis of the different possible attacks on 
a multiround protocol. In a k round authentication protocol 
there is a transmitter A who wants to send an authenticated 
message m to a receiver B by using a transmission channel k 
times. An opponent 0 might interfere at any time in the com­
munication and put new own false messages into the channel 
or substitute observed ones. Let PI and p. be the probability 
of a successful impersonation and substitution attack respec­
tively , denote by Mk the set of possible message sequences, 
mt = m~,mt,···,m~_l is a by A sent and received message 
sequence and similar mf = m~, mf1, ... , mf-l is a by B sent 
and received message sequence. Furthermore let K be the se­
crete key and denote by Mk(K) E Mk, the subset of correct 
sequences under the specific key K. 
In the analysis we will use a chosen message substitution sce­
nario, in which we assume that 0 may freely choose the mes­
sage part of m~ and we then describe the by 0 controlled 
sequence as 

o ,A B A B A B 
m k = mo ,mo, ml ,m2 ,.'" mk-2, mk_l> 

where the t mark that 0 maybe not might control m~ com­
pletely. We give a proof of the following theorem: 
Theorem 1 The number of possible chosen message substi­
tution sequences m? equals 

(k+ 1) le(k) = (ktI ) . 

Next we give a modified secure k = 3 round protocoL 
Protocol: Let p > ~ and C be a code over GF(Q) 
length n and minimum distance d satisfying 

d;::: n-np 

(1) 

with 

and C A a Cartesian A-code for which the probability for a 
successful substitution attack equals p. and the probability of 
a successful impersonation attack equals PI < p •. Denote by 
Ci(m) E GF(Q) the code symbol at the i-th coordinate of the 
codeword corresponding to the message m. 

(i) A chooses a random number j, 1 ::; j ::; I and sends the 
message m~ = (j, m). 

I This work was supported in part by the Swedish Research 
Council for Engineering Sciences under Grants 92-662 and 94-457. 
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(ii) B receives message mff and chooses a random number 
i, 1 ::; i ::; n. B sends message mf1 = i. 

(iii) A receives message mt and uses the code CA to trans­
mit mt = CA{mt,CrnA(m~» = 

1 

CACmt, CmA (j, m». 
1 

(iv) B receives message mfj and calculates 
CA(mf,CrnB{m~) and accepts the message sequence 

1 

as authentic if and only if mfj = C~(mf1, CrnE (mff». 
1 

For the protocol above it is possible, by using the previous 
analysis, to prove the following: 

Theorem 2 Let a = maxm,i,c/U : Ci(j,m) = c}l. For the 
k = 3 round protocol above 

a a 
Ps = max( T + (1 - T )Ps,p + p. - PP.) (2) 

the probability for a successful substitution attack when we also 
take into account the chosen-message attack. 

Construction: Let Q = 2r
, r = V2,,-t-1 , l 2t and let C be 

an RS-code over G FC Q) with k = 28
, r - s = t. Hence 

n=Q d=n-k 2r 
- 2'. 

Thus p = (n d)/n kIn = 2'/2r 2r
-

t /2r = 
2-t

• Furthermore let (j, m) be regarded as the k-tuple 
(j 0 mo, ml,"', mk-I) over GF(Q), where j is the first t bits 
and mo the next r-t bits ofthe element jomo E GF(Q). The 
code symbol of index (J is obtained by evaluating the polyno­
mial Cp(j, m) :::: j+mo(J+-' .+mk_Ipk-l. Let the code C A be 
the A-code obtained from a RS-code over GF(2"), k 2,,-t, as 
suggested in [3], i.e., PI = 2-"; p. = 2v

-
t /2" = 2- t . Thus we 

have a construction which needs t random bits at the trans­
mission side, r random bits at the receiver side and with a 
key size of 2v bits. Furthermore the construction admits the 
message size: 

(3) 

Theorem 3 For the construction above 

P,<21
-

t
• (4) 
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Abstract - Matsui's linear cryptanalysis of iterated 
block ciphers has been extended to an attack called 
partitioning cryptanalysis. This attack exploits a po­
tential weakness of the cipher, namely that one can 
find a partition of the plaintext space and a partition 
of the last round input space satisfying the require­
ment that inputs to the last round are irregularly dis­
tributed over the classes of the second partition when 
the plaintexts are taken from a particular class of the 
first partition. The success probability of partitioning 
cryptanalysis is estimated by generalizing a theorem 
Matsui used to estimate the success probability of lin­
ear cryptanalysis. 

1. Introduction 

In linear cryptanalysis, Matsui exploits a linear expression be­
tween the plaintext and the last round input [3, 1J. His attack 
is successful if he can find a linear expression whose probabil­
ity differs substantially from t and if he has access to enough 
plaintext/ciphertext pairs. He then roughly proceeds as fol­
lows. For each possible key of the last round, he derives the 
inputs to this last round from the ciphertexts by decrypting 
the last round. Thus he is able to verify the linear expres­
sion for each plaintext/ciphertext pair, and after considering 
many plaintext/ciphertext pairs, he estimates the probability 
of the linear expression under the assumption that the con­
sidered last round key is the true key. According to [4J, the 
last round key yielding a probability most distant from ~ is 
the maximum likelihood estimate of the true last round key 
in linear cryptanalysis. 
Partitioning cryptanalysis [2] uses a partition A = 
{Ao, ... , Ac, -I} of the set of plaintexts, called the input parti­
tion, and a partition 6 = {Bo, ... , Bb-I} of the set of inputs 
to the last round, called the output partition, with the fol­
lowing property: the inputs to this last round are irregularly 
distributed over the output classes Eo, ... , Bb - I if all plain­
texts are randomly chosen from some fixed input class A E A. 
If such partitions exist, we use a maximum-likelihood esti­
mation, just as in linear cryptanalysis, to derive information 
about the last round key. 
The maximum transition probability for the input class A 
given the fixed key k(l.·r-l) is defined as 

where X is uniformly distributed over A, and denoted by 
p A!k(l"r-l). 

If we replace y(r-I) by an estimate y(r-l) = Fi1(y(r-I)} 

based on the ciphertext and the assumption that k is the true 
key used in the last round, the probability is supposed to be 0 
for all k E it \ {k(r)}; it is the set of potential last round keys 
among which the attack has to find the true one. This will be 
called the strong hypothesis of wrong key randomization. Let 
litl = 2"'. Note that if k = k(r)! y(T-I) = y(r-i). 
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Figure 4: Notation used for partitioning cryptanalysis of 
iterated block ciphers. 

2. Results 
Matsui gave a theorem estimating the success probability of 
linear crypt,analysis. We generalize his idea and prove a the­
orem estimating the success probability of partitioning crypt­
analysis, i.e., the probability that partitioning cryptanalysis 
finds the true last round key within it. 
Theorem 1: If the strong hypothesis of wrong key ran­
domization is fulfilled, if the counter values can be supposed 
to be independent, and if the number N of analyzed plain­
text/ciphertext pairs with plaintext randomly chosen in A is 
sufficiently large, then the success probability of a partitioning 
cryptanalysis exploiting the partition-pair (A, 6) and attacking 
a cipher with key Ic<t·· r) is given by 

J,r ·1: e-(u-A)2 . (~+ ~ . erf(u») (2"'-1)b du! (1) 

where R 

3. Conclusion 
We conclude that the success probability is approximately an 
increasing function of P A!k(l..r-l) (for fixed band m), and 
thus P Alk(l..r-l) is a valuable measure for the usefulness of the 
corresponding partition-pair. 
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Abstract - The symmetric key cryptosystem PGM is 
based on computations in finite permutation groups. 
PGM is intended to be used in cryptosystems with 
high data rates. This requires exploitation of the po­
tential parallelism in composition (multiplication) of 
permutations. As a first step towards a full VLSI im­
plementation, a parallel multiplier has been designed 
and implemented on an FPGA chip. Here we explain 
the principles of the architecture and report on the 
performance of the prototype chip. 

1. Introduction 
The symmetric key cryptosystem PGM based on logarithmic 
signatures for finite permutation groups was invented by S. 
Magliveras in the late 1970's. The system was described in 
[IJ. More literature about PGM itself can be found in [2J. 
Here we restrict ourselves to implementation aspects. 
To effect the fastest possible PGM encryption and decryption 
operations, one must compute efficiently products and inverses 
of permutations. Unlike multiplication of integers, composi­
tion of permutations is inherently parallelizable. Hence, we 
can achieve fast computation by designing a parallel permu­
tation multiplier. 

2. Principles of multiplication 
For easy understanding, we shall explain the principles by 
means of a simple example. We consider permutations of de­
gree 4 on {O, 1, 2, 3}, and represent them in cartesian form, 
11 [11(0), 11(1), 11(2), 11(3)]. For example, 11 = [2,3,0,1] is our 
notation for the permutation 11 = (02)(13) as the product of 
disjoint cycles. This form is particularly convenient for rep­
resenting permutations in hardware, and needs, in general, 
nlog2n bits to represent a permutation of degree n. 
The multiplication unit is in essence a crossbar switching net­
work, adapted for the special purpose. A 4x4 switching matrix 
is depicted in Figure 1. The matrix has three input ports, la­
beled A, Band C respectively, and one output port named 
Q. Ports Band C are connected to the vertical lines in the 
matrix, whereas A and Q to the horizontal lines. At the cross­
points of vertical and horizontal lines reside the switching cells, 
each consisting of a cell-logic and a transfer gate. If the gate 
is open (denoted by an asterisk * in the figure), it connects 
the corresponding vertical and horizontal lines. The input sig­
nals, coming from port C, pass through the open gates, and 
propagate simultaneously towards the output port Q. In the 
meanwhile signals become rearranged (permuted) according 
to the configuration of open gates. 
But how to configure the gates so that it effects a certain 
permutation? We found an efficient method of doing this, such 
that the configuration is computed on the spot, that is in the 
network itself. The signals coming from port A on horizontal 
and from B on vertical lines, are compared at each cell by 
the comparator logic which is responsible for controlling the 
corresponding gate. If the signals on the neighboring A and 
B lines are equal, the logic opens, if they are not, the logic 
closes the transfer gate. 
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COMPARATOR LOGXC 
- GATE (TRX-STATE SUFFER) 

Figure 5: Multiplication in a crossbar network 

It is now relatively easy to see that the result Q can be ex­
pressed in terms of the other operands as Q = (A 0 B- 1

) 0 C, 
where 0 denotes composition of permutations and B- 1 is the 
inverse of B. Expressions of any kind, composed by using 
multiplication and inversion, can be evaluated in the network, 
possibly needing more iterative steps and substitution of some 
operands by the identity permutation. 

3. Implementation details 

We have implemented a multiplier on an FPGA (Field Pro­
grammable Gate Array) chip. The chip is connected to a DSP 
(Digital Signal Processor) system. The DSP uses the multi­
plier chip as a co-processor, it provides the operands and in­
structions to control the assembly in the multiplier chip. More 
details of the implementation can be found in [2]. 
Unfortunately, the FPGA technology allowed us to realize a 
circuit only for degree n = 16. This is of course too small for 
real applications, however, our multiplier architecture is scal­
able to larger n. The processing speed is satisfactory, the chip 
is capable to perform 2.5 million multiplications per second. 
As continuation of the project, we intend to implement the 
entire PGM algorithm for degree 32 on an ASIC (Application 
Specific IC), and we expect to achieve a speed of 5 million 
multiplications per second. 
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Abstract - In authentication or pure secrecy situa­
tions with a source that has a nonuniform distribu­
tion, it is desirable to convert the source distribution 
into a uniform one. For a source with a fixed num­
ber of plaintext messages, we show how this can be 
done using homophonic coding. We also introduce a 
new measure of secrecy, the maximum guessing prob­
ability, and show a relation to H(MIC), the source 
equivocation1

• 

1. The model 
We use the model introduced by Simmons for authentication. 
The transmitter sends the plaintext message, denoted by rn, 
and taken from the finite set M, to the receiver by mapping 
rn into a ciphertext message c from the finite set C. The 
mapping is determined by the shared key k chosen from IC. 
When the receiver receives a message, he uses k to determine 
the plaintext message rn. 

2. Secrecy codes 

The amount of secrecy that a certain code provides is, accord­
ing to Shannon's theory of secrecy, described by the source 
equivocation H(MIC). If H(MIC) H(M), the code is said 
to provide perfect secrecy. We will now introduce a second 
measure. This will be the maximum probability that the en­
emy guesses the correct plaintext after observing a ciphertext. 
This probability is denoted Po. Observing c, the enemy's 
guess will be a plaintext message that maximizes P(rnle), i.e., 
max", P(rnlc). By maximizing over e E C, we formally define 
the maximum guessing probability Po as 

Po = maxP(slrn). 
m,s 

The two measures are related by the following inequality. 
Lemma 1 

log Po ;::: -H(MIC) ;::: H(KIC). 

(1) 

(2) 

Note that this relation is similar to the two relations for PI and 
Ps given in Simmons' bounds in authentication, Le., log PI ;::: 
-I(C; K) and log Ps ;::: -H(KIC). 
For uniformly distributed sources, secrecy codes having zero 
redundancy can easily be provided. Shannon's results together 
with Stinson's results [Stin90j give that for perfect secrecy 
IICI ;::: IMI· Perfect secrecy can be obtained by the Vern am 
cipher 

c = (m+ k), (3) 

where c, 5, k E Zn. Since we have perfect secrecy we also have 
that Pa max", P(rn) = lin. 
Assume a nonuniform source distribution for M. We consider 
the following way of constructing a uniform distribution using 
homophonic coding [Giint88]. Put the plaintext messages in 
"subsets", such that the probability of each subset is approxi­
mately the same as the most probable plaintext. The subsets 

1 This work was supported in part by the Swedish Research 
Council for Engineering Sciences under Grants 92-662 and 94-457. 
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are protected with perfect secrecy. We then add some unpro­
tected bits to specify the particular plaintext message in the 
encrypted subset. We will give away information about M, 
and thus we will not have perfect secrecy, but Pa will remain 
approximately the same! 
The strategy is implemented by the following algorithm. Let 
the probability of the most probable plaintext message be de­
noted po, and assume IMI ;::: 3. Let x ll/poJ. Here x will 
be the cardinality of the key set, which means that we will 
have x subsets. 
Let po ~ Pl ;::: ... ;::: PIMI-I, where P(M = m;) = Pi, and 
Pi is a rational number. Write x- 1 ,po, ... ,PIMI-l in common 
rational form 

-1 b Co 
X =-,PO=-"",PIMI-l 

Y Y 

In subset 0 we put mo. The subset is of size band rno of size 
co. Thus b - Co is the remaining part of the subset. Here we 
put the next plaintext message, in this case mI. We continue 
like this until we reach the case b Co - . . . Ck < O. Then m,. 
must also be put in subset 1, and the size for ffile in subset 1 
will be Ck + ... +co - b. It is necessary that the unprotected bits 
corresponding to rnk in subset 0 and in subset 1 are different. 
We continue to fill up all the subsets in the same way. Then, 
when we want to transmit a certain M, say M = ffik, we 
randomly choose among the Ck possibilities, and transmit the 
subset with perfect secrecy and the remaining bits without 
secrecy. 
An opponent observing the unprotected bits knows exactly to 
which source state each subset corresponds. Since the subsets 
are encrypted with perfect secrecy and all subsets correspond 
to different plaintext messages, he can do no better than to 
guess the subset, and succeed with probability l/x, i.e., Pa = 
l/x. 
The conclusion of our discussion is the difference between de­
manding perfect secrecy and demanding lowest possible Pa, 
I.e., Pa = po· 

Theorem 2 If we demand perfect secrecy, then 

IICI;::: IMI, (4) 

where equality can always be obtained by a Vernam cipher. 
IJ we demand Pa = max. P(s} po, then 

IICI ~ llpo, (5) 

where equality can be obtained iJ po can be written as the re­
ciprocal oj an integer. 
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A sequence of codes (em) with parameters [n"" km , dm 1 over a 
fixed finite field F q is called asymptotically good if n", tends 
to infinity, and d",/nm tends to a non-zero constant 0, and 
km/nm tends to a non-zero constant R, if m tends to infinity. 
If R > I-Hq(o), then the codes exceed the Gilbert-Varshamov 
bound. It was shown by Tsfasman, Vladut and Zink [6, 51 
that there exist asymptotically good geometric Gappa codes 
on modular curves such that 0 + R 2:: 1 - (ve;. 1)-1. If 
moreover q ~ 49, then these codes are better that the Gilbert-
Varshamov bound. The theory of modular curves is very deep 
and the construction of some these curves and their codes can 
be done in theory with polynomial complexity [4, 5] but are 
still to involved to have been constructed. 

In this lecture I will discuss the attempt of Feng and Roo 
[1, 2] to construct asymptotically good codes with complexity 
O(n3 ) using generalized Klein curves. Up to now their meth­
ods were not sufficient to prove their claims, but by a slight 
change of the equations of the curves Garcia and Stichtenoth 
[3] could prove that these curves have the required properties. 
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Abstract - In [1], Sakata extended the Berlekamp­
Massey algorithm [2] to n-dimensional arrays. Here 
further analysis of the structures described there is 
made, and a few corollaries are reformulated accord­
ingly to produce a version of the algorithm suited for 
software implementation. 

Given an n-dimensional array u over a. field K, Sakatas's algo­
rithm finds a minimal set of n-variate polynomials with coef­
ficients in K that are valid for u, i.e., a. set of linear recurring 
relations capable of generating the array. The principle is the 
same as for the one-dimensional case; to iteratively modify the 
polynomials by adding some multiple of a polynomial valid for 
a smaller part of the array using the Berlekamp procedure. If 
the set of polynomials satisfies the criterion that it constitutes 
a Grobner basis over the n-dimensional polynomial ring K[z] 
([IJ,[3]), the polynomial set defines an n-dimensional linear 
feedback shift register that produces the array as its output. 
In the one-dimensional case, at each iteration the degree of 
the minimal (not necessarily unique) polynomial capable of 
generating the sequence as seen so far is computed directly, 
whereupon the Berlekarnp procedure is used to find a valid 
polynomial of this degree. Applying the corresponding theo­
rem in the n-dimensional case, however, does not directly give 
the minimal degree set S, but a set of points e defining the 
excluded point set fa of the sub-array seen so far (Figure 1). 
This set corresponds to the shape of a LFSR defined by a set 
of minimal valid polynomials. Even though this set of poly­
nomials may not be unique, the excluded point set, and thus 
the shape of the LFSR, are. 
Thus, the set S of minimal degrees must be obtained from 
the set of points e defining the excluded point set, at each 
iteration. For any new minimal degree s+ > s, s+ = q c 
or 5+ = max(q c, s) for some c E e, where q is the point 
currently treated. To obtain the set S of minimal degrees in 
an efficient way from the set of points e defining the excluded 
point set, it is necessary to keep track of not only the points 
in each set, but also of their mutual relations. Specifically, the 
set [Se of pairs of adjoined points is of interest. These are 
defined as follows. 

A point 5 is adjoined to a point c iff, for some 
i E [::::::: {I, ... ,n}, Si Ci + 1, Sj $ Cj (j 1:- i). 

This relation is written as s I- c. Using two lemmas presented 
in [1], the sets S+ and e+, i.e., Sand e for the next iteration, 
can be computed from the current S, e and ISe in an efficient 
way at each iteration. 
Also, at each iteration I se must be updated. Two corollaries 
of the lemmata mentioned above provide criteria for identify­
ing all points in c+ E e+ to which each new minimal degree 
s+ is adjoined. From an implementation point of view, it 
is desirable that each c+ satisfies exactly one of these condi­
tions, to make sure that it is found only once. We show that 
by removing two conditions from each corollary this will be 
fulfilled. 
I se must also be updated for the points s that are not 
changed during the iteration. We give a slight modification of 
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one of the conditions mentioned above, which will provide a 
sufficient criterion. Regrettably, in this case the updating pro­
cedure will be of higher complexity than in the other cases. 
For bounded lSI and leI, I.e., for periodic arrays, the over­
all complexity will still be of order O(lpI2), where Ipl is the 
number of points in the array, dominated by the Berlekamp 
procedure. For a non-periodic array not satisfying any set of 
linear recurring relations, the updating may dominate, with 
an approximate worst-case complexity of order O(lpl(6-:-)) for 
an n-dimensional array. 
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Abstract - In this paper we determine all generalized 
Hamming weights of a class of algebraic geometric 
codes arising froIIl hyperelliptic curves. 

1. Generalized Hamming weights 

For an arbitrary code D we define the support as 

suppeD) = {i I there is ad ED with di i= a}. 

Let C be a code with parameters In, k, dJ. For any r, 1 ~ r ~ k 
we define the roth generalized Hamming weight as 

d r = min{ #supp(D) I Dr-dimensional subcode of C}. 

Since the definition of generalized Hamming weights by Wei 
in [2J, many papers have appeared that investigate these pa­
rameters for different classes of codes. 

2. Algebraic geometric codes 

Let X be an absolutely irreducible smooth curve over IFq of 
genus 9. For a set P = {PI, ... , Pn } of rational points of X 
and a rational divisor G of X with deg( G) < nand supp( G) n 
P = 0, we define the algebraic geometric code C(P, G) as the 
image of the map 

4>: L(G) ---+ IF:;, f ~ (f(Pt}, ... , f(P,.,». 

The code C(P, G) is linear with parameters In, k, dJ satisfying 
k = I(G) ;::: deg(G) + 1 - 9 and d ;::: n - deg(G). 
In the papers P-J and [4J the authors study the generalized 
Hamming weights of algebraic geometric codes. 

3. Hyperelliptic codes 

An absolutely irreducible smooth curve X is hyperelliptic if 
and only if its genus is at least two and there exists a mor­
phism of degree two from X to the projective line. X allows a 
unique involution (conjugation), the hyperelliptic involution, 
denoted by u. The fixed points of u are called hyperelliptic 
points. In this paper Poo is a fixed hyperelliptic point and 
1-t = {HI, H2, ... , Hh} is the set of all (not necessarily IFq­
rational) hyperelliptic points on X different from P 00' 

Here we consider algebraic geometric codes C(P, G) arising 
from hyperelliptic curves, with the properties that for any ra­
tional point PEP we have that u(P) E P, and G is a hyper­
elliptic divisor (which means G ~ 2lPoo for some I) of degree 
deg(G) < n. From Clifford's theorem and the Riemann-Roch 
theorem we find that the dimension of these codes is k = 1+ 1 
if I=:;9 - 1 and k = 21 + 1 - 9 if I > 9 - 1. Remark that 
this class of codes includes the most studied form of algebraic 
geometric code: codes C(P, G) with G = mP 00 and P all ra­
tional points on X except P 00 • 

By determining all generalized Hamming weights of these 
codes we generalize a result by Xing ([3]) who determined 
their minimum distance if I > 9 - 1 and q odd. It also gener­
alizes some results in [1], in which Munuera gives some bounds 
on the generalized Hamming weights of these codes. 
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4. The generalized Hamming weights 
After proving some lemma's concerning divisors of hyperellip­
tic curves it is possible to prove the following results. 
Let WI, ... , W", E 1-t be IFq-rational hyperelliptic points and 
let Pi, u(P;) , i = 1, ... , 7r be pairs of distinct conjugated IFq­
rational points of X. Then we have the following theorem. 
Theorem 1 Let 
P = {WI, ... ,W""PI,U(Pt), ... ,P",u(P,,)} and G ~ 2lPoo 

with 21 < n = 27r + w. Let 7r = 1- Ll for some Ll. Then the 
code C(P, G) has generalized Hamming weights 

n - 21 + 2(r - 1) + min{Ll- r + 1, 2g + 2 - w} 
i/1 ~ r ~ min{l- 9, Ll} 

n - 21 + r - 1 + Ll 
if I - 9 + 1 ~ r ~ Ll 

n-21+2(r-1) 
if Ll + 1 ~ r ~ 9 

n-k+r 
if r ;::: 9 + 1. 

Here k = 1 + 1 if 1 ~ 9 - 1 and k = 21 + 1 - 9 if I;::: g. 

5. Examples: maximal hyperelliptic curves 
In order to construct long codes of the type that we are con­
sidering in this paper, we need hyperelliptic curves with both 
many IFq-rational points and many hyperelliptic points. In 
this section we will give examples of curves that attain the 
Weil bound and have the maximal possible number of hyper­
elliptic points. 
Let q be odd. Then a hyperelliptic curve X of genus 9 has 
a (singular) plane model of the form y2 = f(x), with f a 
square-free polynomial of degree 29 + 1 or 2g + 2. The follow­
ing proposition gives a class of hyperelliptic curves that meet 
the Weil bound. 
Proposition 1 Let 9 ;::: 2 such that p = 2g + 1 is a prime 
power. Set q = p2. Let N be the number of IFq -rational points 
on the hyperelliptic curve X with plane model 

y2 = xP +x. 

Then X has genus g, contains 2g + 2 IFq -rational hyperelliptic 
points and N = q + 1 + 2g"fij. 
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Abstract - In the rapid development of decoding al­
gorithms for geometric Goppa codes, termination cri­
teria seem to form a neglected part. We present two 
criteria that obtain their information from the decod­
ing process and not from a priori assumptions on the 
error pattern. Their use should fasten correction of 
small errors and allow for correction of some errors of 
large weight. 

Let R be an affine ring (the ring of functions regular outside 
a fixed rational point P on a smooth complete absolutely ir­
reducible curve of genus 9 defined over a finite field F). The 
parity checks of a one-point geometric Goppa code C(m) are 
obtained by evaluation of functions from R of pole order at 
most m in the rational points different from P. Decoding algo­
rithms for these codes use recursion relations, corresponding 
to functions from R, on the finite array 8 of known syndromes. 

Theorem. Let the syndromes be known up to order m. Let 
10 be a recursion relation of smallest degree to on the finite 
array 8 of known syndromes. For m ;:: 2to + 29 - 1, the recur­
sion relation fo generates the unique infinite array 8' :J 8 of 
smallest rank that is compatible with the known syndromes. 
Let I = Rfo + Rh + ... + Rf" be the R-ideal generated by the 
recursion relations on the finite array 8, with v minimal, and 
such that the pole orders to, tl, ... , tv of fo, h, ... , Iv satisfy 
to < h < .. < tv. For m ;:: to + t" + 29 - 1, the ideal I 
describes the recursion relations valid on the infinite array 8'. 

Example. The case of a t-error-correcting Reed-Solomon 
code and error pattern of weight t corresponds to R = F[X], 
9 = 0, m = 2t - 1, to t, v = O. 

We remark that the bounds will in general apply only after 
some unknown syndromes have been computed with the Feng­
Rao majority scheme. But since the bounds do not depend 
on an a priori assumption on the weight of the error, they will 
be useful once the error is small compared to the capability 
of the code. On the other hand they allow correction of some 
error patterns of weight beyond the capability of the code. 
An extended version of this abstract including a proof of the 
theorem, a comparison with known termination criteria, and 
nontrivial examples is in preperation. 
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