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Abstract

This dissertation is concerned with quantum computation using many-body quantum

systems encoded in topological codes. The interest in these topological systems has

increased in recent years as devices in the lab begin to reach the �delities required

for performing arbitrarily long quantum algorithms. The most well-studied system,

Kitaev's toric code, provides both a physical substrate for performing universal fault-

tolerant quantum computations and a useful pedagogical tool for explaining the way

other topological codes work. In this dissertation, I �rst review the necessary for-

malism for quantum information and quantum stabilizer codes, and then I introduce

two families of topological codes: Kitaev's toric code and Bombin's color codes. I

then present three chapters of original work. First, I explore the distinctness of

encoding schemes in the color codes. Second, I introduce a model of quantum com-

putation based on the toric code that uses adiabatic interpolations between static

Hamiltonians with gaps constant in the system size. Lastly, I describe novel state

distillation protocols that are naturally suited for topological architectures and show

that they provide resource savings in terms of the number of required ancilla states

when compared to more traditional approaches to quantum gate approximation.
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Chapter 1

Introduction

�Begin at the beginning,� the King

said gravely, �and go on till you

come to the end: then stop.�

Lewis Carroll, Alice in Wonderland

This dissertation is a culmination of around six years of thinking about, speaking

about, reading about, and arguing about ways to perform quantum computations,

always while balancing the desire for the right output with the demands of overhead.

By �perform quantum computations� I am not necessarily referring to any particular

algorithm, but rather to the theoretical collection of tools and protocols that allow

for the implementation of any quantum computation.

I've attempted to write this dissertation, where appropriate, in the same conver-

sational manner that helped me learn about the wonderful variety of topics in the

broader �eld of quantum information. In this vein, I've included many examples in

lieu of rigorous proofs; when proofs are called for I mercilessly banish them to an

appendix.
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Chapter 1. Introduction

The setting for the story I'd like to tell is the realm of topological error correcting

codes, and I will explore their properties, their uses, and their advantages. They

also hold a fundamental interest for me because I've always found topology to be

an exotic and exciting branch of mathematics. It is a branch I would know nothing

about if I didn't have the pedagogical tool of Kitaev's toric code [Kit03] to provide

a physical intuition for the abstract mathematics.

As an aspiring science writer, I've also endeavored to keep non-experts in quantum

information in mind. My goal is to maintain technical accuracy while providing

introductory material that is accessible to physicists in other �elds. And so, as the

King suggests, I begin at the beginning.

1.1 Setting the stage

While quantum computers promise to solve certain problems faster than the best

known classical algorithms [Sho94, Kit95, Gro96, Mos08, Jor09], they are also of

great fundamental interest. Barring major upheavals in the understanding of quan-

tum mechanics and computational complexity, they likely1 represent the limits of

what physical devices are capable of computing. Though these fundamental aspects

didn't pique my original interest�I became excited about the �eld when I was an un-

dergraduate via an article in Scienti�c American called �Computing with Quantum

Knots� [Col06]�as a graduate student I have learned much about the foundational

importance of quantum information as a whole. I also had no prior knowledge of

topology entering graduate school, but the pictures in the magazine article of parti-

cles undergoing an elaborate dance captured my imagination, and as a student I've

largely studied topological quantum error correcting codes. This dissertation collects

1I may be channeling Scott Aaronson by overstating the relationship between physics
and theoretical computer science. See Ref. [Aar13] for arguments in favor of promoting
discoveries in computer science to physical laws.
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Chapter 1. Introduction

some of the work I've done examining their uses as substrates for models of quantum

computation.

A crucial step in early quantum computing research was Shor's discovery of quan-

tum error correction [Sho95]. This was arguably one of the most surprising results

to come out of the nascent �eld of quantum information in the mid-1990s, follow-

ing closely on the heels of Shor's discovery of the quantum algorithm for factoring

[Sho94]. Intuition suggested that it might be impossible to protect against an un-

countable set of unitary errors, but the key insight�that performing quantum mea-

surements could digitize the e�ect of errors�made the notion of large-scale quantum

processing devices more feasible. The discovery of stabilizer codes by Gottesman

[Got97] framed quantum error correction in the familiar language of classical er-

ror correction and allowed the structure of a large family of quantum codes to be

understood in group-theoretic terms.

The original discovery of quantum error correcting codes was quickly followed

by the proof of the fault-tolerance accuracy threshold theorem [ABO97, ABO99,

Kit97a, Ste97, KLZ98, Pre98a, Pre98c] and the development of fault-tolerant meth-

ods [Sho96, Pre98a, Got98] that allow for arbitrarily long quantum computations

with modest resource overheads. The insight, borrowed from classical fault-tolerance

results, was to design circuits and protocols that did not allow errors to spread be-

yond one or two qubits. By preventing the catastrophic spread of errors, quantum

error correcting codes are able to maintain information by correcting away errors

faster than they can build up. Progress since then has re�ned the threshold theo-

rem by proving it for concatenated codes [AGP06], calculating thresholds for various

families of codes [CDT09, WFSH10], and developing fully fault-tolerant schemes for

quantum computation with relatively high thresholds [FMMC12]. Topological codes

have emerged as a promising path toward low-overhead fault-tolerant quantum com-

putation in two dimensions, and one of the most promising topological codes for this

3



Chapter 1. Introduction

use is the toric code. (�Toric� here signi�es that these codes were originally de�ned on

the surface of a torus, although I will demonstrate in Chapter 4 that planar versions

can also be de�ned.)

The introduction of toric codes by Kitaev in 1997 [Kit03] led to a litany of

papers studying the various properties of these codes: the calculation of thresh-

olds [DKLP02, Har04]; the development of di�erent decoding algorithms [DKLP02,

PC08, ES12, DCP10, Woo13]; the use of these codes in topological models of quan-

tum computation [FSG09, FMMC12]; the study of topologically ordered Hamil-

tonians constructed from the stabilizer generators of these codes [BHM10]; and,

more recently, the robustness of these codes to error channels with correlated errors

[FM14, JNT+14].

Although topology has played a role in physical theories for decades2 [LM77,

Wit89], it is only recently that the language and concepts of topology have entered

the �eld of quantum information. One recent example is the classi�cation of topo-

logically ordered states of matter by �string-net condensates,� which are quantum

ground states of local Hamiltonians that obey certain rules [LW05]. These rules can

be speci�ed either by constraints on the algebra of quantum operators acting on

the appropriate Hilbert space, or by a visual calculus of topologically inspired pic-

tures. Kitaev's toric code is an example of a system describable by these string-net

condensates, and will serve as the main pedagogical tool for most of this dissertation.

The discovery of the toric code was followed by Bombin's introduction of the

topological color codes [BMD06]. This family of codes features several advantages

over the toric codes, including a reduction in the required number of physical qubits

to achieve a desired level of error protection and the availability of a larger set

of naturally fault-tolerant gates. A disadvantage is their slightly lower threshold

[LAR11] compared to the toric code, likely due to their more complicated syndrome

2Centuries, even. Kelvin argued [Tho69] that atoms were knots of the ether in the 1860s.
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extraction circuits. Recent work by Duclos-Cianci et al. [BDCP12] demonstrates that

these codes are equivalent to two copies of the toric code via a local unitary mapping.

This implies that the problem of decoding the color codes can be mapped to the well-

studied problem of decoding the toric code. Alternatively, as derived in Ref. [LAR11],

the decoding problem can be mapped to the problem of solving a system of linear

equations with integer coe�cients, a problem expected to be computationally hard in

general. Progress on �nding a more computationally e�cient algorithm was recently

demonstrated by utilizing graph matching methods [Ste14].

Concurrent with the development of fault-tolerant methods using topological

codes was the recognition that these systems needed to be augmented with additional

protocols in order to allow for universal quantum computing. The Eastin-Knill The-

orem proved that no quantum code capable of correcting any single qubit error can

have a universal and transversal set of quantum gates [EK09]. By relaxing the con-

dition of transversality, state distillation protocols introduced by Bravyi and Kitaev

[BK05] allowed for a universal extension of the quantum operations that could be

performed in a fault-tolerant manner. Many new protocols for distilling these �magic

states� have been proposed since [MEK12, BH12, CAB12, DCS13], and the magic

state distillation �eld remains an active area of research with the goal of �nding ever

cheaper protocols for distilling states with a desired precision. As I will describe

later, the requirements of distillation schemes �t especially nicely with the naturally

fault-tolerant operations available to the toric code and the color codes.

These two families of topological codes feature prominently in this dissertation,

and many of the discussions involving the toric code translate directly to the color

codes. I will make it clear when this is not the case. In the next section I provide

a short description of each chapter to make the structure of this dissertation more

clear.
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Chapter 1. Introduction

1.2 Outline

In Chapter 2, I �x the notation I will use and additionally provide a short introduction

to the basic building blocks of quantum information theory. Chapter 3 introduces

the stabilizer formalism and its use in studying quantum error correcting codes. I

give an example with the Steane code, and I describe the problem of decoding�

that is, inferring a correction from a measured syndrome. I introduce fault-tolerance

in Chapter 4 and focus in particular on the ways that it is achieved naturally in

topological codes. Here I also describe how topological codes with a non-universal

set of naturally fault-tolerant gates can be made into universal quantum computers,

describing the idea of magic states in the process.

The next three chapters are comprised of original research projects I've com-

pleted as a graduate student. First, Chapter 5 studies the relationship between two

di�erent ways of encoding quantum information into topological color code defects.

The �triple defects� introduced by Fowler [Fow11b] inherit some of the properties of

the underlying code, and this is largely due to topology. I demonstrate that it is

impossible to change Fowler's triple defects into standard defects without the use of

topology-changing operations and teleportation. The necessity of these operations

demonstrates the fundamental di�erence between these two encoding schemes and

suggests that the nice properties of the underlying code will never be as natural for

the standard defects.

Second, Chapter 6 presents original research performed jointly with Dave Bacon,

Steve Flammia, Andrew Landahl and Alice Neels on a Hamiltonian model of quan-

tum computation that lives at the intersection of several other models: topological

quantum computation, holonomic quantum computation, and adiabatic quantum

computation. We demonstrate an approach to performing quantum computation

that adiabatically interpolates between static Hamiltonians while never causing the
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Chapter 1. Introduction

Hamiltonian gap to shrink below a constant. We analyze the procedures which

enable universality in detail, taking special care to avoid potentially harmful exci-

tations. Taken together with Chapter 7, these two chapters o�er one vision of a

functional quantum computer, albeit one that is not as robust as models utilizing

active error correction.

Lastly, in Chapter 7 I describe joint work with my advisor Andrew Landahl that

proposes a new family of magic state distillation protocols. These protocols are based

on a new family of quantum Reed-Muller codes�which we also introduce�that ad-

mit certain gates in a transversal fashion. In Appendix C we provide su�cient condi-

tions on code parity check matrices that guarantee that these gates are transversal.

Our protocols outperform the standard methods of approximating quantum gates

using a universal set for a wide regime of target accuracies.

1.3 List of papers and other projects

Chapters 6 and 7 collect results from two projects I've completed. Chapter 6, a

collaboration with Dave Bacon, Steve Flammia, Andrew Landahl, and Alice Neels,

is being polished and prepared for publication, and Chapter 7 has been posted as a

preprint to the the arXiv [LC13]. It will also likely be submitted for publication to

a journal in the future.

I've worked on other projects as a graduate student, including a collaboration

with Jonas Anderson on extending the work in Ref. [LC13], as well as a project on

performing estimation of error channels during rounds of quantum error correction

that is the brainchild of Joshua Combes. This latter project has a nearly-completed

manuscript and its submission is planned for the near future. I provide a list below

of the mostly �nished projects, their titles, author list, and, if known, the submission

journal.
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1. C. Cesare, A.J. Landahl, D. Bacon, S. T. Flammia, and A. Neels, �Adiabatic

topological quantum computing,� arXiv:1406.2690 [CLB+14]. To be submitted

to Physical Review A. Appears in this dissertation as Chapter 6.

2. J. Combes, C. Ferrie, C. Cesare, M. Tiersch, G. J. Milburn, H. J. Briegel, and C.

M. Caves, �In-situ characterization of quantum devices with error correction,�

arXiv:1405.5656 [CFC+14]. To be submitted to Physical Review X.

3. A. J. Landahl and C. Cesare, �Complex instruction set computing architecture

for performing accurate quantum Z rotations with less magic�, arXiv:1302.3240

[LC13]. To be submitted to Physical Review A. Appears in this dissertation as

Chapter 7.
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Chapter 2

The Language of Quantum

Information

In this chapter I set my notation and present the basic building blocks of quantum in-

formation. My perspective is largely from the �eld of quantum error correction, and

so I favor using notation that is used by that community. This chapter is organized

into three sections. First, I introduce the building blocks of classical and quantum

information, bits and qubits. Next, I introduce the mathematical representations of

quantum operators�which represent physical observables�and give quantum cir-

cuit examples of how they might be measured. Lastly, I discuss quantum channels,

focusing especially on non-unitary random error channels that are the typical models

for studying the robustness of quantum codes. The standard reference for everything

here is Ref. [NC00].
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Chapter 2. The Language of Quantum Information

2.1 Bits and qubits

The currency of classical information are strings x = x1x2 . . . xn such that

xi ∈ {0, 1} . (2.1)

That is, they are sequences of length n that live in the n-fold Cartesian product

of the two-element set {0, 1}. Each xi is called a bit, a shortening of binary digit.

Bit strings are communicated in classical communication protocols and computed on

using classical digital logic. These computations are often represented as circuits of

classical logic gates that serve as the building blocks of any classical computation.

A classical circuit can be speci�ed as a function from an input bit string x to an

output bit string y. The length of y could be anything in general, but for simplicity

I assume that it has the same size as x. (Note that n-to-1 functions, which have

outputs in the set {0, 1}, could be thought of as special cases of n-to-n functions

that have a canonical value chosen for the remaining n− 1 output bits.) In general,

classical circuits are not reversible. This is easily seen by examining the truth table

for the AND gate, listed in Fig. 2.1. However, it is possible to formulate universal

reversible models of classical computing, and in this case reversible circuits can be

represented as permutation matrices on the space of all n-bit strings [Ben73]. A

crucial limitation in classical computing (not including probabilistic computing) is

the inability to operate on superpositions of input bit strings. In other words, the

state space of classical bit strings lacks a vector space structure.

Quantum bits, called qubits, generalize the notion of classical bits by having the

state space structure of a complex Hilbert space. Colloquially, this is often expressed

as the capability of quantum states to be a classical 0 and a classical 1 at the same

time, but this is a statement laced with popular imprecision. An analogy certainly

holds, but the geometry of the two state spaces are vastly di�erent. The general

idea is that each classical bit string gets promoted to a basis vector in a complex
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x y x ∧ y
0 0 0
0 1 0
1 0 0
1 1 1

Figure 2.1: The truth table for the digital logic gate AND, demonstrating that it
is not reversible. This is easily seen by noticing that given the output value 0, the
input values for x and y are not uniquely determined.

Hilbert space, which is a complete vector space with a bounded norm. In the case

of a single qubit, it is isomorphic to the complex vector space C2. Single-qubit pure

states |ψ〉 are represented by vectors in this Hilbert space, and are expressed using

Dirac's �bra-ket� notation as

|ψ〉 = α|0〉+ β|1〉, (2.2)

where α and β are complex numbers obeying |α|2 + |β|2 = 1. The basis states |0〉
and |1〉 comprise the computational basis, and they are eigenstates of a particular

matrix to be introduced below. Although pure qubit states seem to be speci�ed

by three independent parameters�the real and imaginary parts of α and β gives

four parameters, and the normalization constraint takes one away�in fact only the

relative phase between the two basis states is physically meaningful. The global

phase is physically unimportant, and states |φ〉 and |ψ〉 can be identi�ed with each

other if

|φ〉 = eiθ|ψ〉. (2.3)

The physical geometry of qubit pure states is then isomorphic to the points on the

surface of the sphere S2, called the Bloch sphere, and each of the points represents

an in�nite number of choices for the parameter θ.

The Bloch sphere together with its interior is called the Bloch ball, and this

ball faithfully represents qubit states which are not pure. These mixed states�
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represented by Hermitian density matrices ρ ∈ C2×2 with tr (ρ) = 1�represent

classical statistical mixtures over sets of quantum pure states, but their decom-

positions into these sets is not unique. The purity of a general quantum state is

de�ned as tr (ρ2), where the state ρ can in general be written (again, non-uniquely)

as
∑

i pi|ψi〉〈ψi| for some collection of pure states {|ψi〉}. The purity is bounded

above by 1 and bounded below by 1/d, where d is the dimension of the Hilbert

space. For qubits, d = 2, and the so-called maximally mixed state can be written as

ρ = 1
2
|0〉〈0| + 1

2
|1〉〈1|. Mixed states model, for example, the uncertainty inherent in

imperfect state preparations.

Pure states of n qubits live in the tensor product of n copies of C2, and mixed

states are Hermitian operators in the complex vector space C2n×2n . With only two

qubits, there already exist quantum states that have no classical analog. For ex-

ample, entangled pure states, which cannot be written in a separable fashion as

|ψ〉 = |φ1〉⊗|φ2〉, exhibit correlations that are strictly stronger than any local hidden

variable theory can admit [Bel64]. Entanglement is a ubiquitous primitive in quan-

tum information theory, and the canonical entangled state of two qubits, the Bell

state

|ψ〉 =
1√
2

(|00〉+ |11〉) , (2.4)

can be used in a variety of quantum information protocols: from teleportation

[BBC+93] to superdense coding [BW92] to quantum key distribution [BB85].

Hamiltonians generate the time evolution of quantum states as given by the

Schrödinger equation,

− i~ ∂
∂t
|ψ〉 = H|ψ〉. (2.5)

Hamiltonians on systems of n qubits are represented by Hermitian 2n by 2n matri-

ces. Any generic Hermitian operator has a decomposition into a basis of Hermitian

operators, and one choice of such a basis for qubits is the Pauli operators and their

n-fold tensor products. The qubit Pauli operators have the following representation
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in terms of a particular qubit basis:

σX = X =


 0 1

1 0




σY = Y =


 0 −i

i 0




σZ = Z =


 1 0

0 −1




I =


 1 0

0 1




The canonical basis that these operators are expressed in is called the computa-

tional basis, labeled by the states |0〉 and |1〉. These two states are the +1 and −1

eigenstates of Z, respectively. The use of X, Y, Z instead of σX , σY , σZ is a common

quantum information notational convenience. Additionally, I will often write ZZ to

mean Z⊗Z rather than the matrix product. The case should be clear from context.

Each of the single-qubit Pauli operators has an eigenbasis. Since the canonical

basis we use is that of the operator Z, it is helpful to know what the other eigenvectors

look like in this basis. The eigenvectors of X and Y in the Z basis are given by

|±〉 =
1√
2

(|0〉 ± |1〉) (2.6)

and

| ± i〉 =
1√
2

(|0〉 ± i|1〉) . (2.7)

The ± in each state name labels its eigenvalue�that is, X|±〉 = ±|±〉 and Y |± i〉 =

±| ± i〉.
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U1

U4

U6

|ψ〉
U3

U5 |φ〉

U2

Figure 2.2: A simple example of a quantum circuit that applies a sequence of unitary
operators, called gates, to three qubits, represented by the three wires. Written
as the action of unitary operators on the input state |ψ〉, the output state |φ〉 =
U6U5U4U3U2U1|ψ〉.

The Schrödinger equation can be formally solved, but a time-dependent Hamil-

tonian will in general not commute with itself at di�erent times. The Dyson series,

an ansatz for constructing the evolution operator induced by a Hamiltonian H, is

evaluated in such cases. The resulting evolution operator is a unitary operator, repre-

sented by a 2n by 2n unitary matrix. Quantum computations can then be represented

as sequences of these time evolution operators using the graphical tool of quantum

circuit diagrams, shown in Fig. 2.2. These abstract away the underlying Hamiltonian

dynamics and problems related to solving the Schrödinger equation, and they are a

standard tool for representing coherent quantum dynamics.

There are several special unitary operators that appear frequently in error correc-

tion and quantum computation. These are listed in Fig. 2.3. Instead of referring to

these as unitary operators, and in analogy with classical logic, I will henceforth call

them gates. The gates S, H, and CNOT generate a �nite group, called the two-qubit

Cli�ord group�endomorphisms on the set of Pauli operators under conjugation�

that is intimately connected with quantum error correction and the classical simu-

latability of quantum circuits [Got99]. S is typically called the phase gate, since it

adds a phase of i to the computational basis state |1〉. Geometrically it can also be

thought of as a π/2 rotation about the Z axis of the Bloch sphere. The gate H,

called the Hadamard gate, interchanges the eigenbases of X and Z. CNOT , a 2-
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S =

(
1 0
0 i

)

H = 1√
2

(
1 1
1 −1

)

T =

(
1 0
0 eiπ/4

)

CNOT =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




Figure 2.3: A typical set of gates discussed in relation to universal quantum compu-
tation.

qubit gate, is a reversible analog of the classical XOR gate, which performs an X on

the second qubit register depending on the state of the �rst. It can entangle qubits

given the right input state. The �nal gate, T , is referred to by many di�erent names,

but results in a rotation by an angle π/4 about the Z axis. This gate is important

for magic state distillation protocols and is often used to extend the Cli�ord group

to a set that can approximate any quantum gate to a desired precision.

So far I have introduced quantum states, quantum circuits, and quantum gates.

However, these alone are not su�cient for universal quantum computation, since it

is also necessary to make quantum measurements at the end of a computation to

read out the results. I address these in the following section.

2.2 Quantum measurements

The notion of a generalized quantum measurement, given mathematically by a posi-

tive operator-valued measure over the space of quantum states, is important to tasks
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like parameter estimation, state discrimination, and tomography [WM10, Par04].

However, for the results I present in this dissertation, these general measurements

are not required to tell the story. The measurements that every quantum mechanics

student learns about in introductory classes and texts will su�ce.

A quantum measurement can be physically performed in a variety of ways, but

here I'm not interested in the physical implementation. Mathematically, a measure-

ment corresponds to an Hermitian operator, typically called an observable. The

eigenvalues of this operator are the possible outcomes of the measurement, and the

eigenvectors are the possible post-measurement states. The Pauli operators, men-

tioned earlier, play a particularly prominent role in quantum error correction, as the

operators measured for stabilizer codes are all Pauli operators. Since many measure-

ments of Pauli operators will be performed during quantum error correction, several

properties of the Pauli operators, which form a group under matrix multiplication,

are helpful to know.

The Pauli group of size n, Pn, is generated by all operators P of the form

P = ω
n⊗

i

Oi, (2.8)

where Oi is one of X, Y , Z, or I de�ned above and ω ∈ {±1,±i}. Since each of these
Oi obeys O2

i = I, each P also satis�es P 2 = ω2I = ±I. This means that each Pauli

operator is, up to a sign, its own inverse, which means that each Pauli operator is

invertible. Each P can also be diagonalized by some unitary operator, U , such that

P = U †DU . Here D is a diagonal matrix, and its diagonal entries are the eigenvalues

of P . Next, since

P 2 = U †DUU †DU

±I = U †D2U

±I = D2,

D2 is also ±I. This implies that every Pauli operator either has eigenvalues ±1

(when D2 = I) or ±i (when D2 = −I), since D is diagonal. For the rest of this
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dissertation, I will only be concerned with Abelian subgroups of the full Pauli group

(since these are precisely the subgroups that matter for stabilizer quantum error-

correcting codes, introduced in Chapter 3). This restriction to Abelian subgroups,

along with the added restriction that −I is not an element of the subgroup, forces

ω to be in the set {±1}. Consequently, this restricts to operators P that only have

eigenvalues ±1. In the rest of this section, where necessary, I will assume that this

restriction is enforced.

For every P other than ±I⊗n and ±iI⊗n, the eigenvalues appear an equal number
of times on the diagonal of D. This is easy to see by noticing that the U which

diagonalizes a given P has a very special structure. This U can be found simply

by writing out the eigenstates of a Pauli operator P . As a simple example, if P =

Y ⊗X ⊗ Z, the eight eigenstates would be

| ± i〉 ⊗ |±〉 ⊗ |0/1〉. (2.9)

These are product states which can be transformed to computational basis states by

local unitary rotations: the �rst qubit needs the Hadamard-like operator which ex-

changes Z and Y basis states, SHS†; and the second qubit needs only the Hadamard

H. In other words, the diagonalizing operator U is given by

U = SHS† ⊗H ⊗ I, (2.10)

which is just a product of local single-qubit unitary operations (and, notably, an

element of the Cli�ord group). The operator P is transformed by U to UPU † =

Z ⊗ Z ⊗ Z. This demonstrates that P also has an equal number of +1 and −1

eigenvalues since there is a choice of |0〉 or |1〉 for each local basis element (the

operator Z ⊗ Z ⊗ Z has manifestly balanced eigenvalues). This balanced nature of

Pauli operator spectra aids in the geometric analysis of quantum error correcting

code subspaces.

In particular, it is now simple to construct projectors onto the +1 or−1 eigenspaces
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of a particular Pauli operator. For a Pauli operator P ∈ Pn, they are given by

ΠP
+1 =

In + P

2
, (2.11)

and

ΠP
−1 =

In − P
2

, (2.12)

where In is the identity operator in Pn. These will be especially useful in the next

Chapter.

A further feature of the Pauli group is the fact that the elements all pairwise com-

mute or anti-commute. For the single-qubit Pauli group, X, Y , and Z all mutually

anti-commute, meaning, for example, that

{X,Z} = XZ + ZX = 0. (2.13)

This useful feature of the single-qubit Pauli group extends to calculations involving

larger Pauli group elements. For example, the two-qubit Pauli group elements X⊗X
and Z ⊗ Z commute with other, which can be proven using the single-qubit Pauli

anti-commutation relation above.

[X ⊗X,Z ⊗ Z] = XZ ⊗XZ − ZX ⊗ ZX
= XZ ⊗XZ − (−XZ + {X,Z})⊗ (−XZ + {X,Z})
= 0.

What decides whether two Pauli operators commute or anti-commute is simply

whether an even or an odd number of single Pauli anti-commutators are used in

calculations like the one above. Because each anti-commutator that is used intro-

duces a single negative sign, if an even number appear, they cancel and the two

operators commute because there is a remaining negative sign from the commutator.

If an odd number of anti-commutators are used, an odd number of negative signs

remain and will cause an anti-commutator to vanish. This second case can be seen
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with a simple modi�cation of the prior example.

{X ⊗ I, Z ⊗ Z} = XZ ⊗ IZ + ZX ⊗ ZI
= XZ ⊗ IZ + (−XZ + {X,Z})⊗ ZI
= 0.

Here only a single anti-commutator was used on the right hand side, causing the

expression to vanish. This fact, that Pauli group elements either commute or anti-

commute, will be used in the discussion of error correction in the next chapter.

Now that I've provided some of the basic properties of Pauli operators, I will

show how to perform measurements of simple operators using quantum circuits. In

particular, the way to perform a joint measurement of the operator Z⊗Z. I will use
a common technique that involves coupling the qubits of interest to an ancilla qubit

and making a single-qubit measurement of the ancilla qubit. These circuits are the

bread and butter of quantum error correction syndrome measurements.

The setting we will examine is pictured in Fig. 2.4. Here, two measurements are

being performed on an input state |ψ〉: the �rst is a measurement of the operator

M1 = Z ⊗Z ⊗ I, and the second is a measurement of the operator M2 = I ⊗Z ⊗Z.
Given outcomes of ±1 for each measurement, the post-measurement state can be

written as

|ψ′〉 =
ΠM2
i ΠM1

j |ψ〉√
〈ψ|
(
ΠM2
i ΠM1

j

)†
ΠM2
i ΠM1

j |ψ〉
, (2.14)

where i and j label the outcomes of the two measurements. In this particular case,

[M1,M2] = 0 and Eq. 2.14 can be simpli�ed, but this will not always be the case.

In general, application of a composite projector Π, corresponding to the product of

projectors for all measurements and outcomes, yields the post-measurement state.

Joint measurements, as represented by the operators M1 and M2, are typically

more challenging to perform. The generic scheme to combat this di�culty is to

couple the qubits of interest to another qubit in a known state. Then, a single-qubit
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Z ⊗ Z
|ψ〉

Z ⊗ Z

Figure 2.4: A circuit with an input state |ψ〉 and two joint measurements: �rst qubits
1 and 2 are measured, followed by qubits 2 and 3.

•
|ψ〉 • •

•
|0〉 Z

|0〉 Z

Figure 2.5: A circuit with an input state |ψ〉 and two ancilla-coupled measurements.

operator can be measured on the additional qubit, the result of which is the same as

the result of the joint operators M . This is depicted in Fig. 2.5, which is the ancilla-

coupled version of Fig. 2.4. It is easy to see that the two single-qubit measurements

are equivalent to the joint measurements. To see this, it is su�cient to use the fact

that CNOT 2 = I several times along with the rules for how CNOT conjugates Pauli

operators. These rules are:

CNOT (X ⊗ I)CNOT = X ⊗X,
CNOT (I ⊗X)CNOT = I ⊗X,
CNOT (I ⊗ Z)CNOT = Z ⊗ Z, and

CNOT (Z ⊗ I)CNOT = Z ⊗ I.

The rules for how Y ⊗ I and I ⊗ Y are conjugated are easy to derive from these

four relations. It is now clear that the single-qubit operators measured in Fig. 2.5�

namely I⊗I⊗I⊗Z⊗I and I⊗I⊗I⊗I⊗Z�become the operators Z⊗Z⊗I⊗Z⊗I
and I⊗Z⊗Z⊗ I⊗Z when they are conjugated in the proper way. The conjugation
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rules are often used in the following form

CNOT (X ⊗ I) = (X ⊗X)CNOT,

CNOT (I ⊗X) = (I ⊗X)CNOT,

CNOT (I ⊗ Z) = (Z ⊗ Z)CNOT, and

CNOT (Z ⊗ I) = (Z ⊗ I)CNOT,

to show what happens when a measurement is �pulled through� (i.e., commuted

with) a gate or vice versa. Additionally, since the ancilla qubits are prepared in

known eigenstates of Z, measuring these three-qubit operators�already equivalent

to measuring the single-qubit operators�are also equivalent to measuring the two-

qubit operators. These manipulations anticipate the manipulations of the stabilizer

group that I will introduce in the next Chapter, but for now I will abandon the

discussion where it is.

Of course, the results of quantum measurements are probabilistic in nature. The

likelihood pi of of getting measurement outcome i corresponding to the eigenstate |i〉
of an operator O is given by

pi = tr
(
ΠO
i ρ
)

= |〈i|ρ〉|2 . (2.15)

This is known as the Born Rule and governs the way that quantum states are con-

nected to experimental outcomes. Since for each i the Born Rule gives the probability

of measurement result i, we can de�ne the expectation value of the operator O in a

given state as

E[O] = tr (Oρ) , (2.16)

which gives the expected value of the average of many repeated measurements of the

same state ρ.

The last piece of the puzzle, before describing stabilizer codes and quantum error

correction, is a way of describing errors that can occur during quantum computations.

As with the case of general quantum measurements, I will not need to describe the full

power of general quantum operations. These are discussed in the following section.
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2.3 Quantum channels

The notion of a quantum channel generalizes the notion of a classical channel, and

provides a way of modeling and studying communication protocols. It is typically the

case that a message�be it English text or a telephone signal�will be degraded while

in transit to to its destination. The �eld of classical error correction was developed to

�gure out how to robustly send messages that might be corrupted while traveling from

sender to receiver. Quantum error correction solves essentially the same problem,

although the �communication� in the context of quantum computation is usually just

the output from one quantum gate being fed into the input of another quantum gate.

In other words, the sender and receiver in the quantum error correction setting are

at the same place but di�erent times.

A standard classical error channel is the bit-�ip channel. It acts by �ipping each

bit in a classical bit string x = x1x2 . . . xn independently with probability p. In other

words, if the sender sends the bit string x, the receiver will receive the bit string y,

which has values yi = xi with probability 1 − p and yi = 1 ⊕ xi with probability

p. Quantum channels resemble this classical channel, but of course act on a vector

space of quantum states.

A typical quantum channel, the uniform depolarizing channel, acts on single-qubit

quantum states as

D (ρ) = (1− p) ρ+
p

3
(XρX + Y ρY + ZρZ) , (2.17)

and corresponds to random X, Y , and Z errors that occur with probability p/3

each. This particular example demonstrates the trace-preserving property of general

quantum channels since

tr [D (ρ)] = tr
[
(1− p) ρ+ p

3
(XρX + Y ρY + ZρZ)

]

= (1− p) + p
3

+ p
3

+ p
3

= 1,
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where I used the cyclic property of the trace, tr (XρX) = tr (ρXX), and the fact

that tr (ρ) = 1.

Another useful channel in the context of the codes discussed in the next two

chapters is a composition of two channels. One is the analog of the classical bit-�ip

channel, given by

B (ρ) = (1− p) ρ+ pXρX, (2.18)

and the other is the phase-�ip channel, given by

P (ρ) = (1− p) ρ+ pZρZ. (2.19)

The composition of these two channels is like the depolarizing channel above, but

the probabilities in front of X, Y , and Z errors are not the same. The composition

is given by

P ◦ B (ρ) = (1− p)2ρ+ p(1− p)XρX + p(1− p)ZρZ + p2(ZX)ρ(ZX), (2.20)

and it is known as the bit-�ip phase-�ip channel. Note that in this channel X and Z

errors occur with probability O(p), while Y errors only occur with probability O(p2).

I will use this fact in the next chapter when I discuss decoding.

For fault-tolerant analyses of quantum error correction, two-qubit channels are

also used. The two-qubit depolarizing channel is de�ned as

T (ρ) = (1− p) ρ+
p

15

∑
OiOj ρ OiOj, (2.21)

where the sum runs over the 15 non-trivial two-qubit Pauli operators.

It is usually assumed that the same channel E acts on each of the qubits or pairs of
qubits, and that the channels are uncorrelated. This situation is also called identical

and independently distributed, or i.i.d., noise. This assumption aids in the decoding

process by guaranteeing that the likelihood of m errors decreases as pm.
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Chapter 3

The Stabilizer Formalism and

Quantum Error Correction

3.1 Overview

Physical errors on qubits�arising either from systematic errors in experimental con-

trol or random errors induced by coupling to an uncontrolled environment�can have

deleterious e�ects on quantum information protocols. The theory of Quantum Er-

ror Correction (QEC) studies methods and protocols that enable quantum devices

to function even in the presence of physical errors. The general strategy, depicted

schematically in Fig. 3.1, is to embed the Hilbert space of one or several qubits

into a larger Hilbert space, distributing the quantum information in such a way

that physical errors can be detected, diagnosed, and corrected. There have been

several approaches to this problem [Sho95, CRSS97, Ste96c], but one approach has

dominated the �eld since its introduction.

This Chapter presents an overview of the dominant approach�the stabilizer for-

malism introduced by Gottesman in Ref. [Got97]. This formalism provides a uni�ed
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…
 

k 
…

 
n Physical qubitsLogical qubits

Figure 3.1: A schematic of the process of encoding k logical qubits in n physical
qubits. I include this mainly to reinforce the distinction between logical and physical
and to remind the reader of the language. The 2k-dimensional Hilbert space of the
logical qubits is embedded in a precise way into the full 2n-dimensional space, to be
introduced and discussed below.

method to study a large family of quantum codes, among which are the topologi-

cal codes of Kitaev and Bombin discussed in Ch. 4. I begin by introducing some

notation and language common to all quantum error correcting codes, proceed to a

simple example called the Steane code, and then discuss the problem of decoding

quantum codes�that is, classically processing the syndrome measurement results to

infer a correction of the detected errors.

Quantum codes, much like classical codes, work by spreading the information of

one qubit among many, achieving a redundancy that aids in diagnosing and �xing

errors. Throughout this Chapter and the remainder of the dissertation, I will use the

labels n, k, and d when discussing quantum codes to refer to the following properties:

n is the number of physical qubits�the total number of qubits used by the code; k

is the number of logical qubits�the number of qubits protected by the code; and d

is the distance�a parameter relating to the code's error correcting power that will

be de�ned later in this Chapter.
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|ψ〉

Encoding Measure Syndrome Decoding Recovery
|0〉
...

|0〉
Figure 3.2: A schematic of the generic form assumed by quantum error correcting
codes. A state |ψ〉 and ancilla qubits in the state |0〉 · · · |0〉 are input. Next, the
state is encoded using a speci�c quantum encoding circuit. After this, errors on
the encoded data are diagnosed by performing measurements. The results of the
measurements are processed on a classical device and a quantum correction is calcu-
lated. Lastly, the quantum correction is applied and the process repeats itself (except
for the encoding step). The terminology used here is de�ned and discussed in this
Chapter.

Figure 3.2 provides a schematic of what quantum error correction looks like at

the quantum circuit level.

3.2 A classical interlude: the repetition code

It is a useful pedagogical exercise�before delving into the details of quantum error

correction�to understand a very simple classical code. The principles of quantum

stabilizer codes and classical codes are very similar, and the classical repetition code

is a very gentle introduction to the language and operation of coding theory.

As mentioned in the previous Chapter, encoding classical information is useful

when it has to be transmitted over a noisy channel or protected for some amount of

time. A typical way to model a noisy classical channel is by imagining that each bit

traveling through the channel gets �ipped with probability p�the bit-�ip channel.

The bit-�ip channel is depicted schematically in Fig. 3.3. The strategy for classical

codes is to send bit strings across the channel that can tolerate a few bit �ips, still

allowing the receiver to learn the intended message.
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1

0 0

1

1− p

1− p

p

p

Figure 3.3: A schematic depicting the action of the bit �ip channel on each bit xi of
a bit string x.

The repetition code is one of the simplest ways to solve this problem. To send

the bit value 0, simply send a string of n 0s; to send the bit value 1, simply send a

string of n 1s. We could identify the �logical� 0 and 1 values with these strings as

0L = 0102 · · · 0n (3.1)

and

1L = 1112 · · · 1n. (3.2)

Assuming the sender and the receiver agreed to the protocol beforehand, and assum-

ing the probability of bit �ips p is small enough�namely, p < 0.5�the receiver can

look at all the n bit chunks received and infer the intended bit value by doing a ma-

jority vote�counting the 1s and 0s in each n bit chunk and interpreting the intended

bit value as whichever count is greater. Instead of performing this majority vote,

another strategy is to look at the results of parity checks, which are often abbreviated

to just checks when the context is clear. Here, the parity of all the neighboring bits

are checked: an even parity for all neighboring bits corresponds to a valid codeword;

any odd parity checks correspond to corrupted codewords. The parity checks can be

written as a collection of conditions on the sums of neighboring bits modulo 2.

For example, in the three-bit repetition code, the bit value 0 is represented as
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Parity Check Error on First Bit Error on Second Bit Error on Third Bit
c1 = x1 ⊕ x2 1 1 0
c2 = x2 ⊕ x3 0 1 1

Figure 3.4: A summary of the e�ects of single bit errors on the three-bit repetition
parity checks.

000, and the bit value 1 is represented as 111. Imagine that during a communication

round, the receiver reads the bit string 001 as the �rst three bits of a message.

Majority vote decodes this message as a 0, since there are two 0s and only a single

1. The two parity checks�c1 = 0 ⊕ 0 = 0 and c2 = 0 ⊕ 1 = 1�allow not only for

the successful decoding of the message, but also directly suggest which of the bits

to �ip to return the corrupted codeword back to a true codeword. The e�ects of

single-bit errors on these parity checks is summarized in Fig. 3.4. The three single-

bit errors map to the three nontrivial parity check values. (The trivial case, when

both parity check bits are 0, indicates either that no errors have occurred or three

errors have occurred. The former occurs with probability (1 − p)3�corresponding

to the probability of no errors on three independent bits�and the latter occurs

with probability p3�corresponding to the probability of an error on each of three

independent bits.) Two-bit errors lead to the same three non-trivial syndromes,

but they only occur with probability p2. Using a decoding strategy that tries to

determine the most likely error consistent with the syndrome will lead, in this case,

to choosing the lowest-weight error. Thus, Fig. 3.4 functions as a decoding lookup

table to restore corrupted bit strings back to proper codewords.

If the code is being used in the setting of a memory rather than as a communi-

cation tool, it might also be interesting to ask how bits encoding the value 0 can be

changed into bits encoding the value 1. In the single-bit case this is just a single-bit

�ip, but in the case of the three-bit repetition code, we are looking for the equivalent
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operator that will toggle between the encoded values 000 and 111. Performing an

encoded bit �ip in this case is not too much harder: all three bits must be �ipped.

The number of bits that need to be �ipped to toggle between the two encoded states

is also intimately related to the number of errors the code can correct. For example,

suppose that a memory stores the value 0 as 000 and that the �rst two bits �ip.

The memory now reads 110, which, if we look at the table, has the parity check

values c1 = 0 and c2 = 1. This corresponds, in our correction scheme, to �ipping

the third bit. If we proceed to correct the bits in memory using the lookup table,

we will �ip the third bit and end up with the memory reading 111. The correction

has successfully returned the memory to a codeword but unfortunately to the wrong

one. The reason for this is that the error that occurred�bit �ips on the �rst two

bits�in conjunction with the corrective action of �ipping the third bit, is precisely

the action that toggles between the codewords. This is an intuitive way to under-

stand the connection between code distance, de�ned below, and the power of codes

to correct errors up to a certain size.

3.3 Stabilizer generators and the codespace

I like to think of quantum stabilizer codes in the language of introductory quan-

tum mechanics classes. The codes are de�ned by a set of Pauli operators called the

stabilizer generators, and this set of operators is very nearly a complete set of com-

muting observables: they do mutually commute with each other, but they are not

quite complete. (The stabilizer generators are generalizations of the classical parity

checks, and indeed are also referred to as parity checks, or just checks, themselves.)

I label the set of stabilizer generators S, and the elements of this set are labeled Si.

Together, the Si generate a group, called the stabilizer group, under multiplication.

As already mentioned, they satisfy [Si, Sj] = 0 for all i and j, and for an [[n, k, d]]
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quantum code there are n − k stabilizer generators. Since there are fewer than n

generators, this set of operators is not complete. However, the generators can be

simultaneously diagonalized because of the commutativity, and this simultaneous

eigenbasis is what provides a basis for the encoded qubits.

The codespace C of a stabilizer code is the 2k-dimensional Hilbert space de�ned

as

|ψ〉 ∈ C ⇐⇒ Si|ψ〉 = |ψ〉 ∀Si ∈ S. (3.3)

In words, C is the simultaneous +1 eigenspace of the set S of stabilizer generators,

and it is simple to demonstrate that C has dimension 2k.

Imagine enforcing the constraints Si|ψ〉 = |ψ〉 one by one, for each Si. Initially,

the Hilbert space of n qubits has dimension 2n. Since the Si are Pauli operators, they

have an equal number of +1 and−1 eigenvalues. This means that each new constraint

introduced by the Si divides this Hilbert space in half, since, in the diagonal basis,

half the states have eigenvalue +1 and half have eigenvalue −1. Dividing this 2n

dimensional space in half n − k times�once for each generator�leaves a Hilbert

space of dimension 2n−(n−k) = 2k.

Another important fact is that the operator −I⊗n cannot be an element of S,
since it only has −1 eigenvalues1. This requirement also disallows operators like

iZ ⊗ Z from being in S, since (iZ ⊗ Z)2 = −I ⊗ I. All other operators Si need

only be mutually commuting Pauli operators. As discussed in Ch. 2, the Pauli

group is allowed to additionally have multiplicative phases of {+1,−1,+i,−i}, but
as mentioned there, the restriction to an Abelian subgroup that does not contain the

element −I⊗n limits the coe�cients to values in {±1}.

The strategy of quantum error correction is to perform measurements of the

operators in the set S. Typically, these measurements are performed in the ancilla-

1Note that the condition −I⊗n|ψ〉 = |ψ〉 forces |ψ〉 = 0. Thus, adding −I⊗n to S
guarantees that the codespace is trivial.
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coupled manner described in Ch. 2. For states in the codespace, the measurement

should return a result of +1, but errors can move the state out of the codespace

and lead to measurement results of −1. Since errors are usually modeled as random

Pauli channels, I will leverage the properties of the Pauli operators introduced in the

previous Chapter.

Beginning with a state |ψ〉 ∈ C�meaning that Si|ψ〉 = |ψ〉�we can examine the

action of an operator E on the codespace. Suppose �rst that [E, Si] = 0. Then,

E|ψ〉 = ESi|ψ〉
= SiE|ψ〉
= Si (E|ψ〉) .

In other words, the state E|ψ〉 is still a +1 eigenstate of the stabilizer generator Si.

There are several possibilities for how to classify the operator E in the case when it

commutes with a particular Si. First, it could be an element of the stabilizer group

itself, in which case E|ψ〉 = |ψ〉 and the operator E has a trivial action. Second,

it could be an error that is not detected by measurement of the operator Si�no

single Si can detect all errors�in which case it would presumably be detected by a

subsequent measurement of a di�erent stabilizer generator Sj. Lastly, it could be a

logical operator for the code. These will be discussed in the next section.

The other case to examine is when E does not commute with Si. Since E and Si

are both Pauli operators, this means that they anti-commute, and in that case

E|ψ〉 = ESi|ψ〉
= −SiE|ψ〉

Si (E|ψ〉) = −E|ψ〉.

In this case, we call E a detectable error, since if E is applied to |ψ〉 a measurement

of Si signals that E|ψ〉 is no longer in the codespace.

The preceding discussion indicates that any element in the Pauli group can be
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decomposed into pieces which belong to the stabilizer group, the set of detectable

errors, and the set of logical operators. The logical operators will be discussed next.

3.4 Logical operators

A quantum code allows qubits to be protected to a certain degree, but so far I

have only discussed quantum codes in the context of a quantum memory�simply

storing a quantum state in a redundant and robust fashion. The ability to perform

computations�particularly computations on encoded quantum information�is also

desirable. For this reason I now introduce the notion of logical operators for quantum

stabilizer codes.

As mentioned in the last section, logical operators are Pauli group elements which

commute with all of the stabilizer generators. The additional restriction is that these

operators themselves cannot be elements of the stabilizer group�that is, the logical

operators are not products of stabilizer generators. This allows for the manipulation

of encoded information without introducing any detectable errors into the system.

Indeed, logical operators can also be called undetectable errors, since their application

does not lead to any −1 results while performing the measurements of the stabilizer

generators. The idea here is that if the environment couples strongly to a logical

operator, it can quickly corrupt the encoded information without disturbing the

operation of the code.

To discuss the action of logical operators�an action which follows naturally from

the unencoded single-qubit case�I �rst have to introduce the codewords. The code-

words are the states of the codespace C that are identi�ed with the encoded |0〉 and
|1〉 states�they represent the encoded computational basis. I will label these states
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with a subscript L, and a general encoded qubit state can be written as

|ψL〉 = α|0L〉+ β|1L〉. (3.4)

Here I've specialized to an [[n, 1, d]] quantum code�a quantum code encoding only a

single-qubit�but what I introduce next easily generalizes to the k-qubit case.

Each stabilizer code has an encoding circuit, consisting entirely of Cli�ord group

unitary gates, that takes as input a state to encode and a set of ancilla qubits. I

will give an explicit example of such an encoding circuit in the next section when I

describe the Steane code, but for now the precise form of the circuit is not important.

The essential function of this circuit is to map an input |0〉 to |0L〉 and an input |1〉
to |1L〉. Since the unitary gates are linear operators, their action extends to arbitrary
linear combinations of |0〉 and |1〉 as input, and hence will encode arbitrary quantum

states. The state |0L〉 can be canonically represented as the state |0〉⊗n projected

onto the codespace�that is, up to normalization,

|0L〉 =
1 + S1

2

1 + S2

2
· · · 1 + Sn−k

2
|0〉⊗n. (3.5)

Written using the projector notation of Ch. 2, the state |0L〉 is given as

|0L〉 =
n−k∏

i

Πi
+1|0〉⊗n. (3.6)

The logical X operator, denoted by XL, can be used to de�ne the state |1L〉 as

|1L〉 = XL|0L〉 = XL

n−k∏

i

Πi
+1|0〉⊗n. (3.7)

The actions of ZL and YL are de�ned in the obvious way.

The distance of a quantum error correcting code, labeled d, is the minimum

weight of all the logical operators. The weight of an operator is the number of

qubits on which the operator acts nontrivially. This can be a tricky parameter to

calculate, since the logical operators are not de�ned uniquely. For example, due to
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the de�nition of states in the codespace, there are many equivalent XL operators.

This equivalence class can be de�ned as

{O | O ∈ Pn, O = SXL ∀ S ∈ S} , (3.8)

that is, by �rst selecting a canonical XL, a set of equivalent XL operators O can

be generated simply by multiplying the canonical operator by any element of the

stabilizer group. This is due to the fact that XLS|ψL〉 = XL|ψL〉 by the de�nition of

the codespace. This freedom to deform the logical operators plays a prominent role

in the topological codes of Ch. 4 and is discussed mathematically in Appendix A,

and I will provide an example of this in the following section on the Steane code.

As a �nal note, in Ch. 5 I will use the notion of a �gauge qubit.� Borrowing

language from quantum �eld theory, where a gauge corresponds to a kind of coordi-

nate freedom, gauge qubits in quantum error correcting codes represent parts of the

codespace that do not store any important quantum information. As in quantum

�eld theory, a gauge can be �xed, and this is the setting in which I discuss gauge

qubits. Essentially, �xing the gauge corresponds to promoting one of the logical op-

erators for an encoded qubit to a stabilizer generator. The gauge qubit is thus in a

de�nite eigenstate, typically of XL or ZL.

3.5 Example: the Steane code

The Steane code, introduced in Ref. [Ste96c], is a [[7, 1, 3]] quantum code. It can be

constructed from a classical Hamming code, or a punctured classical Reed-Muller

code, but I will simply give its encoding circuit and de�ne its stabilizer generators,

codewords, and logical operators. The Steane code is particularly simple to un-

derstand because of the high degree of symmetry in its stabilizer generators and,

consequently, in its codewords.
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|+〉 •
|+〉 •
|+〉 •
|0〉
|0〉
|0〉
|ψ〉 •

Figure 3.5: An encoding circuit for the [[7, 1, 3]] quantum Steane code.

S1 = X ⊗X ⊗X ⊗X ⊗ I ⊗ I ⊗ I
S2 = X ⊗X ⊗ I ⊗ I ⊗X ⊗X ⊗ I
S3 = X ⊗ I ⊗X ⊗ I ⊗X ⊗ I ⊗X
S4 = Z ⊗ Z ⊗ Z ⊗ Z ⊗ I ⊗ I ⊗ I
S5 = Z ⊗ Z ⊗ I ⊗ I ⊗ Z ⊗ Z ⊗ I
S6 = Z ⊗ I ⊗ Z ⊗ I ⊗ Z ⊗ I ⊗ Z

Figure 3.6: The set of stabilizer generators for the Steane code.

I'll begin by giving an encoding circuit for the Steane code, pictured in Fig. 3.5.

This circuit takes an input state |ψ〉 and six ancilla states, and it outputs an encoded
version of |ψ〉. This circuit corresponds to the �Encoding� box in Fig. 3.2. The next

step in Fig. 3.2, �Measure syndrome,� corresponds to measurements of the stabilizer

generators introduced next.

The stabilizer generators of the Steane code are given in Fig. 3.6. The �rst thing

to note is that each of the generators is comprised either entirely of X-type Pauli

group elements or Z-type Pauli group elements. This is not always the case with

stabilizer codes, but it can be a useful feature when decoding in the presence of

certain noise models, like the bit-�ip composed with phase-�ip channel introduced

in Sec. 2.3. Codes with this property are called CSS codes, the name referring to the

authors who �rst studied them in depth [CS96, Ste96b]. Additionally, in the case of

the Steane code, there is a great deal of symmetry between the �rst three stabilizer
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generators and the last three: they are the same under the exchange of Z and X.

CSS codes with this additional symmetry are called �strong� CSS codes. Kitaev's

toric codes, mentioned in Chapter 1, are a family of non-strong CSS codes, while

Bombin's color codes, also mentioned in Chapter 4, are a family of strong CSS codes.

The logical states can be calculated as above, yielding for |0L〉

|0L〉 = 1√
8

(
|000000〉+ |1111000〉+ |1100110〉+ |1010101〉

+|0011110〉+ |0101101〉+ |0110011〉+ |1001011〉
)
.

Similarly, the state |1L〉 can be written as

|1L〉 = 1√
8

(
|1111111〉+ |0000111〉+ |0011001〉+ |0101010〉

+|1100001〉+ |1010010〉+ |1001100〉+ |0110100〉
)
.

From these expressions, it is obvious that one choice for XL is simply XL = X⊗7.

This operator simply exchanges all the components of |0L〉 and |1L〉. However, due
to the freedom of the equivalence class of logical operators, we could also choose the

operator X ′L = S1XL = I ⊗ I ⊗ I ⊗ I ⊗X ⊗X ⊗X.

The operator ZL can be chosen in a similar way, but by using the intuition gained

by knowing the form of XL, another method is to simply make an educated guess

and check if it works. Again, the operator must commute with all the stabilizer

generators and not be an element of the stabilizer group. Additionally, since it is a

logical Pauli operator, it also must anti-commute with the operator XL. Consider the

operator ZL = Z⊗7. This commutes with all of the stabilizer generators, but cannot

be constructed by multiplying any of them together. Additionally, this operator

anti-commutes with XL�and indeed also with X ′L as it must. The only thing left to

check is that it has the proper action on the codewords. Indeed it does, and this can

be seen by noticing that every component of |0L〉 has an even number of 1s and every

component of |1L〉 has an odd number of 1s. Thus the state |0L〉 will accumulate no
phase from this operator, while the state |1L〉 will pick up a −1.
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As in the case of the operator XL, ZL can also be multiplied by a stabilizer group

element to construct an equivalent logical operator. Due to the symmetry of the

generators and the logical operators, Z ′L can be chosen to be Z ′L = I ⊗ I ⊗ I ⊗
I ⊗ Z ⊗ Z ⊗ Z. It is the case that X ′L and Z ′L are both the smallest weight logical

operators that can be constructed. Thus, the Steane code has a distance d = 3.

As mentioned above, the distance of the code is related to its error correcting

power. Power in this case refers to the number of errors that the code can correct. A

code of distance d can correct all Pauli errors up to weight t where d = 2t+ 1. This

implies that the Steane code can correct any single error on a qubit. The three-bit

repetition code introduced earlier also had d = 3, and as we saw it could correct an

error on any single bit. In the next section I will list the lookup table for correcting

errors in the Steane code.

I'd like to brie�y discuss a strategy that allows the Steane code to correct more

errors. This is clearly not possible with just the 7-qubit Steane code; the number

of qubits will need to be increased. The question is whether there is an appropriate

strategy for increasing the number of qubits in a particular way that maintains the

structure of the code. It turns out that one way of doing this is to concatenate the

Steane code with itself.

Concatenation simply replaces each of the 7 qubits in the Steane code with 7

more qubits, each also encoded in the Steane code. At the physical level, then, there

are now 49 qubits, blocked up into 7 groups of 7. Error correction is �rst performed

on each of the 7 blocks and then on the superblock of 7 qubits as shown in Fig. 3.7.

The concatenation allows the code to tolerate more errors at the physical level, as

now it takes at least 5 errors to cause a failure since the concatenated code has

distance 9. A comprehensive study of di�erent concatenated encoding schemes for

use in fault-tolerant quantum computing was performed in Ref. [CDT09].
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···

{

{
Concatenated blocks

Superblock

}Decode and correct

Decode and correct

Decode and correct

Figure 3.7: A schematic depicting error correction in a concatenated code. First, er-
ror correction is performed on the level of concatenated blocks. Then, error correction
is performed at the next highest level�the superblock for the physical concatenated
blocks�and so forth.

3.6 Decoding quantum codes

Decoding, in the context of quantum error correction, refers to the process of classi-

cally analyzing the results of syndrome measurements and inferring a correction that

is compatible with the given syndrome. For instance, one strategy for decoding is

to choose the most probable error consistent with the syndrome, but this is not the

only such strategy. Assumptions about the noise model are an integral part of this

inference, and they can inform the choice of decoding algorithm.

For the case of the Steane code, decoding is largely an exercise in constructing

a lookup table that shows the syndrome for all the correctable errors. Then, given

a syndrome, the most probable error can be identi�ed and corrected. Decoding the

topological codes, introduced in Ch. 4, is a more complicated procedure due to the

fact that di�erent correctable errors can lead to the same syndrome.
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Stabilizer Generator Z1 Z2 Z3 Z4 Z5 Z6 Z7 I⊗7

(−1)〈S1〉 1 1 1 1 0 0 0 0

(−1)〈S2〉 1 1 0 0 1 1 0 0

(−1)〈S3〉 1 0 1 0 1 0 1 0

Figure 3.8: The SX syndromes for the Steane code corresponding to all the single-
qubit Z errors.

I will now provide the lookup table for the Steane code and discuss some of the

reasons that the code is unable to generically correct two-qubit errors. Recall the

stabilizer generators for the Steane code, provided in Fig. 3.6. As mentioned before,

there is a high degree of symmetry among the six generators. Depending on the noise

model, this may mean that the syndromes from only the X-type generators need be

discussed, since the same will be true of the Z-type generators as well. However, I

will discuss all the generators here for completeness and to aid a discussion on some

subtleties of decoding due to the error model that is assumed.

By Xi, Yi, and Zi below, I will mean an operator acting on qubit i with a Pauli

operator and identity on the other six qubits. Additionally, I will label by SX the

collection of stabilizer generators {S1, S2, S3} and by SZ the collection {S4, S5, S6}.
I will �rst examine the syndromes generated by all single-qubit Z errors, and I will

convert the measurement outcomes ±1 into binary strings to aid the discussion.

The binary strings corresponding the syndromes for all single-qubit Z errors are

listed in Fig. 3.8. Each stabilizer generator in SX corresponds to a row. A 0 along a

row means the corresponding stabilizer generator commutes with the error labeling

the column. Likewise, a 1 means that the stabilizer generator anti-commutes with

the error, leading to a −1 measurement result when the generator is measured. I've

included the last column�the identity operator leading to no errors�to complete

the collection of binary expansions of numbers from 0 to 7. If read from right to left,

the columns correspond exactly to these expansions, and the importance of this fact
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Stabilizer Generator X1 X2 X3 X4 X5 X6 X7 I⊗7

(−1)〈S4〉 1 1 1 1 0 0 0 0

(−1)〈S5〉 1 1 0 0 1 1 0 0

(−1)〈S6〉 1 0 1 0 1 0 1 0

Figure 3.9: The SZ syndromes for the Steane code corresponding to all the single-
qubit X errors.

is that bit strings of length three can provide unique labels for 8 di�erent items. In

the case of the SX generators in the Steane code, these 8 items are the 7 di�erent

single-qubit Z errors and the trivial case of no errors.

Of course, there are two-qubit (and above) Z errors that will also lead to these

same 8 syndromes, since the SX generators are the only measurements which will

detect Z errors of any size. The decoding strategy is to select the most likely error

that leads to the observed syndrome, and for most error models that are studied this

means selecting the single-qubit errors. The multi-qubit errors occur with probability

at most O(p2) in these cases, and will usually lead to logical errors causing the code

to fail. As an example, consider the error E = Z6Z7. This will lead to the syndrome

011, the same syndrome caused by the error Z5. The decoding procedure would

decide to apply the operator Z5 to �x the error, but the total e�ect of applying that

correction is now that the operator Z5Z6Z7 has been applied. As mentioned above,

this is a representative of the class of ZL operators for the Steane code. Unbeknownst

to the Steane code user, a logical Z has been applied.

I will also provide the collection of syndromes measured by the stabilizer genera-

tors SZ in the presence of single-qubit X errors. Due to the total symmetry between

SX and SZ , the form of these syndromes are not surprising. They are given in

Fig. 3.9. A entirely analogous discussion regarding multi-qubit X errors also applies

here, so I will refrain from restating myself.
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Stabilizer Generator Y1 Y2 Y3 Y4 Y5 Y6 Y7 I⊗7

(−1)〈S1〉 1 1 1 1 0 0 0 0

(−1)〈S2〉 1 1 0 0 1 1 0 0

(−1)〈S3〉 1 0 1 0 1 0 1 0

(−1)〈S4〉 1 1 1 1 0 0 0 0

(−1)〈S5〉 1 1 0 0 1 1 0 0

(−1)〈S6〉 1 0 1 0 1 0 1 0

Figure 3.10: The SX and SZ syndromes for the Steane code corresponding to all the
single-qubit Y errors.

The syndromes caused single-qubit Y errors�which, for the purposes of the syn-

dromes should just be thought of as single-qubit XZ errors�are then the same

three-bit strings for both SX and SZ . For completeness, I include these in Fig. 3.10.

Again, to stress the point, the SX and SZ syndromes are perfectly correlated. The

only syndromes we observe in the presence of single-qubit errors are of the form

x1x2x3000 (3.9)

for single-qubit Z errors;

000x1x2x3 (3.10)

for single-qubit X errors; or

x1x2x3x1x2x3 (3.11)

for single-qubit Y errors. There are 22 unique six-bit strings that have one of these

three forms. The following question arises: what happened to the other 42 six-bit

strings?

It is natural to think that the Steane code might be able to correct some two-

qubit errors. As demonstrated above, the code cannot correct two-qubit X or Z

errors, as the inferred corrections in these cases can lead to undesired logical errors.

How about errors consisting of and X and a Z on di�erent qubits? Consider the

error X1Z2. We can easily look up the syndrome in the tables above�it will have
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an SX syndrome of 110 and an SZ syndrome of 111. This syndrome does not fall

into any of the formats described above, and so it clearly does not correspond to a

single-qubit error. However, there are two other two-qubit errors that yield the same

syndrome. Both Y1Z7 and Y2X7 lead to the same syndrome. If X, Y , and Z errors

are equally likely, as for the uniform depolarizing channel, there is not a unique error

that is most likely to have caused the syndrome, and the wrong choice quickly leads

to undetectable logical errors. For channels in which Y errors are less likely than X

and Z errors, such as the bit-�ip phase-�ip channel, it is possible to come up with a

successful decoding strategy and correct two-qubit errors of the form XiZj for i 6= j.

For the standard case of a depolarizing channel, these additional syndromes cannot

be decoded successfully.

The fact that the two-qubit error syndromes are distinct from any of the single-

qubit error syndromes means that the Steane code is able to detect two qubit errors

in general. Error detection can be useful in some circumstances, such as in decoding

the distance 9 concatenated Steane code, but I will not be discussing it any further.
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Chapter 4

Topological Fault-Tolerance and

Avenues to Universality

4.1 Overview

The previous chapter introduced the stabilizer family of quantum error correcting

codes, which provides a simple framework for de�ning and understanding a large

class of quantum codes. In this chapter, I will focus on stabilizer quantum codes that

leverage the non-local correlations present in certain many-body quantum systems.

These codes utilize the topology of such systems to encode quantum information,

and they are broadly referred to as topological codes.

The mathematical �eld of topology, like geometry, is concerned with the shapes

of objects. The di�erence is that in topology, the �ne-grained structure of a manifold

is not of interest. It helps to think of topology as a coarse-graining of geometry in

which only global properties are retained. In particular, metric distance is not a

topological property, and, indeed, a metric need not even be de�ned for topological

spaces. However, it is not necessary to understand topology with a mathematician's
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rigor in order to appreciate its application to topological codes. It is really a sub�eld

of algebraic topology called homology that is the operative mathematics. I describe

some of the basics of homology theory applied to surfaces in Appendix A.

This chapter will be concerned almost entirely with two-dimensional arrange-

ments of qubits. More speci�cally, it is concerned with systems of qubits, and their

interactions, that can be embedded into surfaces. Such constraints are motivated by

experimental technologies that are limited to nearest-neighbor interactions between

qubits in two dimensions, although technologies that allow for more complicated in-

teractions are not incompatible with topological codes. In addition to this geometric

locality, topological codes also satisfy another kind of locality: the cardinality of

the interactions�that is, the number of qubits involved in each interaction�is a

constant that does not change with system size. This notion of locality need not

indicate that qubits are also close together, and so I mention it here as an additional

restriction.

I begin this discussion of topological codes in the next section by introducing

Kitaev's toric code. In addition to being the primary pedagogical tool in the �eld, it

also serves as the best example of how to perform universal fault-tolerant quantum

computing in encoded form. The toric code is most easily understood with lots of

�gures, and many will be provided. I will introduce the topological nature of the

logical operators in terms of loops and boundaries on a graph, and describe the set

of easily applied logical operators.

Next, I will describe a family of topological codes discovered by Bombin called

the color codes. These codes have a constant improvement in rate�k/n�over the

toric code, and o�er a richer set of natural logical operations. The logical operators

for the color codes have some interesting symmetry properties, and I will discuss

these properties along with work that has been done on the fundamental di�erences

between the toric code and the color codes.
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After introducing these two well-studied families of topological codes, I intro-

duce the notion of fault-tolerance and show the ways in which the topological codes

are natural candidates for fault-tolerant architectures. In particular, the topological

codes allow for both transversal implementation of logical gates as well as topologi-

cally protected braiding operations. Here I brie�y mention progress on self-correcting

quantum codes and discuss the relation of self-correction to the topological nature

of logical operators.

Fault-tolerant computation is only possible if errors can be dealt with faster than

they appear, and in the next section I introduce the notion of a code threshold to

study how robust the topological codes are to physical errors of a certain likelihood

p. The threshold of a code is a number pth such that for physical errors of probability

p < pth, arbitrarily long computations can be performed with only a modest increase

in the required resources.

Lastly, a universal set of encoded quantum gates does not exist for these topo-

logical codes, so a method of approximating arbitrary gates to a desired precision

is necessary. This typically involves compiling approximations over a �nite univer-

sal set, and then distilling states capable of teleporting gates that aren't already

available. The penultimate section of this chapter describes these procedures and

provides the �nal preparation and motivation for the remainder of the dissertation.

4.2 The toric code and planar surface codes

The toric code is a stabilizer quantum code that was �rst introduced by Kitaev in

Ref. [Kit03]. It can be de�ned on any graph but is most often de�ned using a square

lattice like that in Fig. 4.1. Graphs are simple mathematical objects de�ned by two

sets: a set V = {v1, v2, . . . , vn} of vertices and a set E of edges. The set E itself

has elements in the Cartesian product V × V such that eij ∈ E can be written as
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Z

Z

Z

Z

X
X

X
X

Figure 4.1: The surface code de�ned on a square lattice. The edges correspond to
qubits, the faces to Z-type stabilizer generators, and vertices to X-type stabilizer
generators. Depicted is an [[n, k, d]] quantum code with parameters n = 60 and
k = 0. The trivial nature of this code is due to the fact that all the boundaries are
�smooth,� as de�ned in the text.

eij = (vi, vj). Graphs can be represented visually by drawing a point for each vertex

and a line connecting vertices vi and vj only if there is an edge eij. There are a

variety of descriptors that can be used in front of �graph� that signify restrictions

on these sets, but I'll just mention that in what follows the graphs will be simple,

meaning the edges have no orientation or weighting, and there are no self-loops nor

multiple edges between vertices.

The de�nition of a toric code is actually slightly more general than what follows,
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but it is unnecessary to de�ne them in full generality. Indeed, most of the work

on performing quantum computations with the toric code makes precisely the same

restrictions. The original introduction of the code had the graph embedded on a

torus�or even surfaces of higher genus�but I will only consider embeddings in

the plane with boundaries. These �planar surface codes,� referred to henceforth as

�surface codes� for brevity, can arise, for instance, from a code de�ned on a sphere

with a puncture. The boundaries introduced by this puncture are important, but

before discussing the boundaries I will de�ne the general construction from a graph.

For the surface code, each edge of the graph corresponds to a physical qubit.

The stabilizer generators are also de�ned via graph elements. For each vertex of the

graph v, there is an X-type stabilizer generator de�ned by

Sv =
⊗

e|v∈e

Xe. (4.1)

Likewise, for each face of the graph f , there is a Z-type stabilizer generator de�ned

by

Sf =
⊗

e|e∈f

Ze. (4.2)

In words, the X-type generators are de�ned as a product of Pauli X operators on

each edge incident on a given vertex and I on all other qubits. The Z-type generators

are a product of Pauli Z operators on each edge that is adjacent to a given face and I

on all other qubits. For the surface code instance pictured in Fig. 4.1, most of these

operators have weight four, although some of the X-type checks on the boundary

have weight two or three.

Each face and vertex de�ne one of these operators, and the set of all such operators

comprise the set of stabilizer generators. By construction, the X-type and Z-type

operators are guaranteed to commute since they will either not overlap at all or will

overlap on two edges. The two species of stabilizer generator are shown in Fig. 4.1.
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Figure 4.2: An instance of the surface code encoding a single qubit. Note the di�er-
ence in the boundary compared to Fig. 4.1.

The boundaries of a code instance are important, as they completely determine

how many logical qubits are encoded (see Appendix A). In Fig. 4.1 there is only

a single type of boundary�it is called a smooth boundary and has weight-four Z-

type generators and weight-three (and weight-two at the corners) X-type generators.

This is in contrast to the boundaries pictured in Fig. 4.2, which are both smooth

and rough. A rough boundary is so named because the four-body X checks stick out

like spokes at the boundary. By a counting argument, I will demonstrate how many

qubits are encoded in each instance. Fig. 4.1�the case of only smooth boundaries�

has 60 edges, 25 faces, and 36 vertices. Naïvely, it seems there are 60 qubits and 61

stabilizer generators. However, not all of the generators de�ned by the vertices are
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Code Boundaries n n− k k
All smooth boundaries 60 60 0
Alternating boundaries 50 49 1

Figure 4.3: A summary of the parameters for the surface code boundaries discussed
in the text. The number of physical qubits is n, the number of stabilizer generators
is n− k, and the number of logical qubits is k.

independent. In fact, multiplying together any 35 of the vertex checks will result in

an operator equal to the remaining vertex check. The �nal count is then 60 qubits

and 60 independent stabilizer generators: the codespace does not encode a qubit,

but merely �xes a single qubit state. In contrast, the code pictured in Fig. 4.2 has

more interesting boundaries. The graph has 50 edges, 24 vertices, 15 faces, and 10

partial faces that only have three sides but that still de�ne generators. In this case,

there are 50 qubits and only 49 stabilizer generators, so the code contains one logical

qubit. This counting is summarized in Fig. 4.3

This logical qubit has corresponding logical operators. These correspond to

string-like operators that connect boundaries of the same type. One choice for a

complete set of logical operator representatives in this case is shown in Fig. 4.4.

These operators commute with all of the stabilizer generators, since XL is incident

twice on each face it touches and ZL is incident on two adjacent edges for each vertex

it traverses. They also intersect on a single edge, ensuring the proper commutation

relations for logical Pauli operators.

The structure of these operators demonstrates the precise fashion in which the

quantum information is associated with non-local degrees of freedom of the many-

body system. They must stretch from boundary to boundary, but the actual path

that they take is not important. Recall from the previous chapter that logical oper-

49



Chapter 4. Topological Fault-Tolerance and Avenues to Universality

ZL

XL

Figure 4.4: The two logical operators for a surface code encoding one qubit. Logical
Z is a string of Z operators connecting the two rough boundaries. Logical X is a
ladder of X operators connecting the two smooth boundaries. It can also be thought
of as a string of operators on the dual lattice (pictured here).

ators OL live in an equivalence class, with an equivalence relation

OL ∼ SiOL ∀Si ∈ S. (4.3)

The string-like logical operators of the surface code can be deformed by the multipli-

cation of any element of the stabilizer group. A representative deformation is shown

in Fig. 4.5. The insensitivity of the logical operator to the local twists and turns are

indicative of its topological nature. It only matters that the operator start on one

boundary and end on a boundary of the same type, without being a product solely

of stabilizer generators.
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(a) (b)

(c) (d)

Figure 4.5: A sequence of deformations of a surface code logical operator. The
dashed boxes represent Z type stabilizer generators de�ned on the faces. (a) shows
a canonical choice for ZL. In (b), this canonical choice has been multiplied by a
stabilizer generator, deforming the string. (c) shows a further deformation along the
same direction. Finally, (d) deforms ZL one face in the other direction.

The distance of the code pictured in Fig. 4.4 is d = 5, the minimum of the

weights of XL and ZL. This implies that the code can correct all errors up to weight

t = 2. However, the distance is not a good indicator of the error correcting power

of topological codes as there are many errors with weight above two that can also

be corrected. Before discussing the most pernicious errors of weight 3 and greater,

as well as higher-weight errors which can be corrected, I will describe the nature of
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toric code errors.

Random errors are typically represented by a Pauli channel acting independently

on each qubit. Errors that are not adjacent to the boundaries (or other errors) will

anti-commute with an even number of stabilizer generators. Since the generators are

localized to the vertices and faces of the graph, it is often convenient to think of the

violated checks as quasiparticles that inherit this localization. These quasiparticles

can correspond, for example, to the endpoints of error chains. By error chains,

or simply chains, I mean connected paths of operators on the graph or its dual.

Z-type error chains will be paths of Z operators on the graph while X-type error

chains will be paths of X operators on the dual graph1. The location of violated

stabilizer generators is identi�ed with a quasiparticle that can move around the

lattice in particular ways. In the case of a single-qubit X error, two neighboring

Z-type stabilizer generators will detect the error, as depicted in Fig. 4.6. Chains

of errors that do not reach the boundary will always result in only two violated

checks�namely, the checks at the endpoints of the chain. This situation, for a three-

qubit error chain, is depicted in Fig. 4.7. This interpretation of violated checks�as

particles at the ends of error chains�becomes a useful language when examining

certain decoders for the toric and surface codes.

One type of decoding, known as most likely error decoding, corresponds to �nding

the most likely error that could have caused a given pattern of violated checks. Due

to the existence of multiple correctable errors that lead to the same syndrome (the

de�ning property of degenerate codes), there exist more re�ned ways of determining

a correction. For the topological codes, another approach is to try and determine

the most likely class of errors which produced a given syndrome. The class of an

1The dual graph is constructed by sending each face in the original graph to a vertex in
the dual graph, and each vertex in the original graph to a face in the dual graph. Adjacent
faces in the original graph become adjacent vertices in the dual graph, and this de�nes the
dual graph edges.
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X

Figure 4.6: A single X error is detected by the two Z checks on adjacent faces. The
violated Z check operators can be thought of as localized particles that live on the
faces of the lattice.

error, which is de�ned via homology theory in Appendix A, boils down to whether

or not the error corresponds to a logical operator or to an element of the stabilizer

group. Once the class is decided, a representative member of the class is applied and,

due to the topological properties of the code, the code is returned to the codespace.

An example of the degeneracy of quantum codes and of the importance of the error

class is shown in Fig. 4.8. Imagine that the weight-2 X-type error E occurs, causing

the two indicated face checks to be violated. For an error model with identical

probabilities of X errors on each qubit, the likelihoods of the error chain E and the

error chain E ′ are the same. The correction that the decoder decides to apply might
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X

X X

Figure 4.7: For a chain of 3 X errors, still only two Z checks are violated. The
particle description of violated checks still holds, and it is clear that the pair of
particles is created at the endpoints of error chains.

be either E or E ′, but in the end it doesn't matter which correction is selected:

correcting with E will trivially lead to an identity; correcting with E ′ won't lead to

an identity, but the product of E and E ′ is an element of the stabilizer generators.

Acting on a logical state with a stabilizer generator is also a trivial action on the

logical space, and so in both cases the state is returned to the logical space and

preserved in the process.

A complementary way to study the surface code, or any stabilizer code, is with

a Hamiltonian constructed from the set of stabilizer generators. Indeed, the ground
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E

E0

Figure 4.8: Two errors�E and E ′�which lead to the same syndrome. Regardless of
which of these the decoder decides is the �actual� error, the e�ect on the logical state
is the same. If the real error is E, then the e�ect of the error and the correction E is
E2|ψL〉 = |ψL〉. If the real error is E, then the e�ect of the error and the correction
E ′ is E ′E|ψL〉 = Sf |ψL〉 = |ψL〉.

space of the Hamiltonian

H = −
∑

v

Sv −
∑

f

Sf (4.4)

is precisely the same as the codespace�codewords will have the lowest possible

energy, namely −(|V |+|E|). Errors act to raise the energy and corrections return the
system to the ground space. The Hamiltonian description of stabilizer codes is useful

when studying self-correction or in the context of the adiabatic code deformation

techniques described in Ch. 6.
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The dream of a self-correcting quantum memory, discussed in more detail in

Sec. 4.4.3, is that the system dynamics, governed by a Hamiltonian like Eq. 4.4 and

a coupling to a thermal bath, will keep the system near the ground space. The

string-like nature of the surface code logical operators has consequences for the self-

correcting capabilities of the code. Because only the endpoints of error chains violate

check operators, only the endpoints of error chains raise the energy of the system.

The amount the energy is raised is independent of the length of the chain; each error

chain contributes only a constant energy. Left to its own devices, a surface code that

is not actively corrected will quickly develop error chains that spread and lead to

uncorrectable logical errors [AFH09]. If the mechanism of random error creation is

via coupling to a bath at some temperature T , then it is possible to maintain the

surface code provided T is small relative to the energy gap in the system. This is

the setting imagined in Chapter 6, where the gap is also constant as a function of

system size. It puts an upper limit on the number of qubits that can be used, since

each added qubit also adds a spot for the bath to couple but does not increase the

system gap. Once an excitation is created, it can wander freely and corrupt the data.

Computations in such settings also have a short lifetime with respect to the system

size, which is precisely the wrong hallmark to have for self-correction.

As mentioned above, the violated check operators have an interpretation in terms

of particles. For the surface code, there are two species of particles. One species

corresponds to violated X checks and lives on the vertices; the other corresponds

to violated Z checks and lives on the faces. Consider the Z checks. On any given

face, a check will be either satis�ed or violated. These correspond to the absence

and presence of a particle respectively. Given the checks and the fact that the

quantum systems are qubits, the quantum double [dB94] construction will produce

the spectrum of particles that can arise as well as the way particles interact via

braiding. For the surface code, this construction is almost as trivial as possible:

there is one type of particle that can live on the faces and one that can live on

56



Chapter 4. Topological Fault-Tolerance and Avenues to Universality

vertices. Both are their own antiparticle and have no additional internal structure.

The presence of a particle can simply be labeled �1,� with the label �0� corresponding

the the trivial case of no particle. Thus, the particles can be described as elements

of the group Z2, with the group operation of addition corresponding to the fusion

of two particles. The two di�erent species of particle�which go under the various

names of face and vertex, �ux and charge, or magnetic and electric�interact when

one is braided around the other. However, the mutual statistics generated by this

interaction is abelian and introduces only a global −1 to the quantum state of the

system. By deforming the surface code graph, introduced as a �twist� in Ref. [Bom10],

these mutual statistics can be modi�ed to allow for nonabelian interactions. The

new interactions correspond to a theory of �Ising anyons,� but the details are beyond

the scope of this dissertation. For more on the topological origin of anyon mutual

statistics, see Ref. [LM77], and for more on a study of the allowed graph deformations,

see Ref. [KK12].

4.3 The color codes

The second family of topological codes I will introduce are Bombin's topological color

codes [BMD06]. As studied in Ref. [And11], under only mild assumptions about

stabilizer codes, the color codes and the surface codes are the only topological codes

that exist in two dimensions. Other work [BDCP12] has shown that the color codes

are locally equivalent to two copies of the surface code, but they are still interesting

in their own right in terms of studying resource requirements for universal quantum

computation.

As for the surface code, the color codes are de�ned on graphs but with the

additional restriction of face 3-colorability. Graph colorability is typically a statement

about vertices, but with the dual transformation it becomes a statement about faces.
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Figure 4.9: A distance-7 instance of the 4.8.8 topological color code. The label 4.8.8
corresponds to number of edges of the three faces adjacent to vertices away from the
boundary: one square and two octagons. Color codes are de�ned by graphs that are
face 3-colorable with the qubits on vertices and the stabilizer generators on faces.
Each face actually corresponds to two generators: one X type and one Z type.

In terms of the faces, 3-colorability means that each face can be colored with one of

three colors�in this case red, green, or blue�in such a way that adjacent faces do

not have the same color. This limits the types of graphs that furnish color codes,

and, in particular, requires that such graphs have vertices with degree three away

from boundaries.

The other di�erence with respect to the de�nition of the surface codes provided

in Sec. 4.2 is that the roles of the graph structures are slightly di�erent. For color

codes, qubits live on the vertices of the graph as opposed to the edges. (I should note

that this is not really a fundamental di�erence. A suitable graph transformation�

the medial transformation�will map a surface code to a model with the qubits on

the vertices. The original surface code de�nition, with the qubits on edges, was

inspired by the methods and language of lattice gauge theory.) Each face is then

associated with two stabilizer generators: one is a product of X operators on the

qubits adjacent to the face, and the other is a product of Z operators on those same

adjacent qubits. A distance-7 example is shown in Fig. 4.9. The graph in Fig. 4.9
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Figure 4.10: XL and ZL for the distance 7 4.8.8 color code. Both the logical operators
have the same shape and can even act on the same qubits. XL is a tensor product
of X operators on the bottom qubits and ZL is a tensor product of Z operators on
those same qubits.

is only one of several satisfying the rules about face colorability that can tile the

plane. It is called the 4.8.8 color code due to the number of edges of each face

surrounding vertices away from the boundary. Although there are other tilings that

can be used for color codes, the 4.8.8 code admits the entire Cli�ord group in a

transversal manner. This allows for the easy application of a large portion of the

gates required to perform a quantum computation. Other color codes, such as those

de�ned on the 6.6.6 (hexagonal) lattice, do not admit the full Cli�ord group in a

transversal manner. They are less useful as quantum computational substrates for

this reason.

Logical operators in the color code have a similar string-like structure as those

in the toric code, as pictured in Fig. 4.10. However, these logical operators can also

be represented graphically in a di�erent way: as what might be called a string-net

operator (though this form should not be confused with the string nets of Levin and

Wen [LW05]). This form of the logical operators is presented in Fig. 4.11. Presenting

the logical operators in this way demonstrates several interesting features of the color
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Figure 4.11: The string-net representation of color code logical operators. This
pattern of operators is equivalent�up to multiplication by stabilizer generators�to
the operators in Fig. 4.10. This �gure also introduces the notion of colored strings,
which is a convenient tool for discussing the homology of the color code graphs. Blue
strings connect to blue boundaries and travel through blue faces. The same holds
for the other two colors. The color of the boundary is determined by the color that
is absent along that boundary. Strings of a single color can split into two strings of
the remaining two colors, as is seen in this example.

code. First, string operators can be assigned a color, as can the boundaries. Blue

strings must end on blue boundaries and travel through blue faces, and so forth. The

color of the boundary is determined by the color that is missing from said boundary.

The blue string terminates on a blue boundary in Fig. 4.11 since on that side of the

�triangle� there are only red and green faces. There is also a color symmetry in that

blue strings can split into red and green strings.

In the Hamiltonian description of the color codes, the excitations corresponding

to the violations of one type of check can be labeled by elements of the quantum

double of Z2 × Z2, which is just a Cartesian product of the group that leads to the

surface code excitations. The explicit local mapping between the two models can be

found in Ref. [BDCP12].
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4.4 Topological fault-tolerance

4.4.1 The laws of fault-tolerance

Even with quantum information encoded in the non-local degrees of freedom in

topologically ordered quantum many-body systems, there is still no guarantee that

useful computations can be performed robustly. Naïve designs for encoded gates

can allow errors to spread in harmful ways, and the goal of (non-topological) fault-

tolerant protocols is to prevent the catastrophic spread of errors through a quantum

circuit.

To aid in the design of fault-tolerant circuits, Preskill [Pre98c] provided �ve laws

of fault-tolerant computation, loosely paraphrased in the following list:

1. Don't reuse ancilla qubits too many times.

2. Syndrome extraction should copy the errors, not the data.

3. Verify preparations of known states.

4. Repeat syndrome extraction.

5. Choose the right code.

These laws�really guidelines�allow the designer of quantum circuits to minimize

the ways that errors can spread. The �rst law and second laws are closely related;

both have to do with the fact that ancilla qubits are the shuttles that carry entropy

away from the data qubits. Thus, the ancilla qubits should be refreshed often enough

so that errors in the ancillae do not corrupt many rounds of syndrome extraction. The

syndrome extraction should also avoid coupling any logical operators to the ancilla

qubits�unless at infrequent times during the computation when non-destructive
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• • •

|ψ〉

|φ〉

Figure 4.12: A naïve implementation of the CNOT gate for the three qubit repetition
code. This circuit correctly implements the CNOT , but it does so in a way that
is not fault-tolerant. Note that a single X error on the top qubit can propagate to
three more errors on the bottom code block.

logical measurements are required�so as to limit the environment's access to the

encoded information. The third and fourth laws also help to mitigate the ways that

entropy can creep into the computation: the third law by ensuring that prepared

states are pure through veri�cation and the fourth law by ensuring that the result of

syndrome measurements is as errant as the encoded data. The �fth law favors the

use of a code that has as many easy fault-tolerant operations as possible�it is an

expression of the natural fault-tolerance of transversal quantum gates.

An example is the simplest way to understand these laws in action. Consider

performing an encoded CNOT in the three qubit repetition code. A naïve method

is to use the circuit depicted in Fig. 4.12. The goal of fault-tolerant protocols is to

prevent errors from spreading too badly, and the circuit in Fig. 4.12 allows a single

X error to spread in a maximally bad way. An X error on the top wire of the

upper block of qubits can propagate to three errors on the lower block of qubits. In
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•

|ψ〉 •

•

|φ〉

Figure 4.13: The fault-tolerant application of CNOT between two qubits encoded
in the repetition code. In this case, a single X error can spread to at most one other
qubit in the other block. Since each block can correct for a single X error, single
errors remain correctable as they traverse the circuit.

the case of the repetition code, the three errors in the lower block correspond to a

logical fault. If X errors have probability p, then a probability p event can cause

immediate corruption of one of the qubits. So, while the encoding was chosen so

that only X errors that happen with probability p2 are harmful, when a logical gate

is implemented in a naïve way, this protection can be lost.

The fault-tolerant way of implementing a logical CNOT between two qubits

encoded in the repetition code is shown in Fig. 4.13. Here, a single X error can

propagate only as far as one more qubit, and that qubit will be in the other code

block. Since each block can protect against a single X error, this circuit design

retains the error correcting power of the original code.
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4.4.2 Topological code defects

Up to now, I've been discussing [[n, 1, d]] quantum codes. To do anything besides just

store a quantum state and apply single-qubit rotations, I need to introduce a way to

have more than one qubit. One option has already been hinted at by the example of a

fault-tolerant CNOT in Fig. 4.13: simply store each qubit in a separate surface code

(or color code, etc.). This �pancake� architecture�used in Ref. [DKLP02]�requires

a three-dimensional arrangement of qubit lattices. Much better is to use defects

(also occasionally referred to as punctures in this setting) to increase the codespace

dimension of a single toric code lattice, and this is by far the most popular way to

introduce more qubits to topological codes.

One way to understand the e�ect of creating a defect is by observing what hap-

pens to the set of stabilizer generators. A defect in the toric code is just a �missing�

face or vertex check. Nothing is done to the lattice of qubits; one merely stops

measuring some of the check operators and possibly modi�es neighboring check op-

erators accordingly. This means that the set of stabilizer generators no longer has

n − k elements, but rather n − k − 1. Due to the decrease in the size of the set of

generators, the Hilbert space dimension of the codespace is doubled, from 2 to 4. A

4-dimensional Hilbert space now has room for two qubits, so another logical qubit

has successfully been added.

An alternate way to reason about why a defect introduces a logical qubit is

with homology theory. Adding a defect to a surface code lattice introduces a new

boundary on which operator chains can end. Since logical operators correspond

to strings that end on boundaries and that commute with all stabilizer generators,

having more boundaries means there will be more such operators. Loops around the

defect, trivial before a check was removed, are now nontrivial and also correspond to

new logical operators.
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Since there are two types of check operators, there are also two types of defects.

Confusingly, for the surface codes, each type has two names. �Smooth� defects are

also called Z-type defects, since they correspond to removed Z checks and have a

logical X operator that ends on a smooth boundary. �Rough� defects are also called

X-type defects, and they are created by removing X checks and have a logical Z

operator that ends on a rough boundary. Both types are shown in Fig. 4.14, along

with their associated logical operators.

These defects can interact with each other by braiding: one defect can be moved

around another defect, using the code deformation techniques described in Ap-

pendix D, and returned to its original location, enacting a quantum gate. For the

remainder of this dissertation, only the topological code defects introduced here are

discussed.

Braiding defects around one another requires only the ability to move defects

around the lattice, a procedure shown in Fig. 4.15. This sequence of measurements

modi�es the code without disturbing the logical information associated with the

defect qubit. However, more elaborate deformations of the code allow for defects

to execute nontrivial loops around other defects, leading to nontrivial action in the

codespace. In particular, braiding a smooth defect around a rough defect performs

a CNOT gate, as I will now demonstrate. Code deformation is described in more

detail in Appendix D.

In addition to moving the location of defects, code deformation techniques also

modify the surface-code logical operators. By observing the way that a complete

cycle modi�es the logical operators of a smooth defect and a rough defect, it is

simple to show that such a deformation enacts a logical CNOT between the two

qubits. The sequence of Figs. 4.16 to 4.19 shows this. It is demonstrated by showing

that the braid has the correct action on the logical operators if the smooth defect is

the control and the rough defect is the target.
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ZL

ZL

XL

XL

Figure 4.14: An example of the two types of defects that can be created in the
toric code. One, corresponding to a Z-type face check that has been removed, has a
logical Z operator equivalent to the removed face check and a logical X operator that
tethers the removed face to a smooth boundary. The other�which corresponds to
a X-type vertex check that has been removed�has a logical X operator equivalent
to the removed vertex check and a logical Z operator that tethers the vertex to a
rough boundary. More elaborate defect encodings are possible: for example, two
smooth defects can be used to encode a single qubit. The important thing is that
new boundaries are introduced, and any defect introduction in the planar version
will change the boundaries. Note here that there are two types of boundaries in the
graph without defects, but that the unpunctured lattice encodes no qubits.

Defects can also be created in the color codes in an analogous fashion. Here the

defects are referred to only as X-type or Z-type based on the checks removed to

create them. Additionally, they are assigned a color, and this is the same color as
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MX ±X

MZf

±ZZZZ

(a) (b) (c)

(d) (e)

Figure 4.15: A measurement-based method for defect movement. (a) A single smooth
defect in the toric code. (b) The movement procedure begins by measuring a singleX
on a qubit adjacent to the defect. This operator would normally anti-commute with
two of the code's check operators, but due to the defect it anti-commutes with only
a single operator: the remaining adjacent face check. (c) This check is thus removed
from the set of stabilizer generators and replaced with ±X based on the result of the
measurement. The defect now spans two faces. (d) The original face occupied by
the defect is remeasured. It commutes with all the remaining stabilizer generators,
and anti-commutes only with the newly introduced ±X single-qubit check. (e) The
reintroduction of the four-body face check removes the operator ±X from the stabi-
lizer generators and replaces it with ±ZZZZ. The defect has now been moved over
one face at the cost of potentially modifying one of the check operators by a −1.

the string that connects the defect to the appropriate boundary (XL for a Z-type

defect, for instance). The only subtlety arising from the color is that the color of

the encircling operator (ZL for a Z-type defect) is one of the other two colors. Color

code defect encodings are discussed in Chapter 5, but their movement in terms of

code deformation and the logical action of braiding�a CNOT�are essentially the

same as defects in the toric code. An example is shown in Fig. 4.20 for clarity.

The fault-tolerance of braiding [BMD09] is due to the fact that the defects are
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(a) (b)

(c) (d)

Figure 4.16: A sequence of code deformations showing that braiding a smooth defect
around a rough defect acts on the logical space as ZI → ZI. Frame (d) is equivalent
to frame (a) by multiplication of stabilizer generators.

well-separated, and if movement operations are interleaved with error correction,

errors cannot spread too badly. These code deformation techniques also describe

the creation of defects and measurements, although in both cases a change in the

surface topology is required�these deformations are not �smooth,� where this use of

�smooth� has nothing to do with the boundary type or defect type, but rather with

homeomorphisms. It is natural to ask whether or not the active error correction

rounds can be abandoned for such code deformation techniques. Can the system be

engineered to correct itself?
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(a) (b)

(c) (d)

Figure 4.17: A sequence of code deformations showing that braiding a smooth defect
around a rough defect acts on the logical space as IZ → ZZ. Frame (d) is not
equivalent to frame (a) by multiplication of stabilizer generators.

4.4.3 Possibilities for self-correction

Self-correcting codes utilize the physics of interacting qubits to passively prevent the

catastrophic spread of errors. It is known that the 4-dimensional version of the toric

code exhibits self-correction [DKLP02, AHHH10]. There are, unfortunately, many

negative results for 2- and 3-dimensional systems [Yos11, BT09, KC08, CLBT10].

Ref. [Yos11] in particular draws a strong analogy between the topological nature of

logical operators in a system and its stability to thermal �uctuations, providing the

intuition already presented above that string-like logical operators tend to wander

because of a constant energy barrier. The search for self-correcting quantum mem-

ories has recently been active in 3-dimensional systems that are not translationally
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(a)
(b)

(c) (d)

Figure 4.18: A sequence of code deformations showing that braiding a smooth defect
around a rough defect acts on the logical space as XI → XX. Frame (d) is not
equivalent to frame (a) by multiplication of stabilizer generators.

invariant, breaking one of the key assumptions of the no-go results in Ref. [Yos11].

In particular, the cubic code, introduced by Haah in Ref. [Haa11], explicitly

addresses the energy barrier problem by �nding a local code in three dimensions

that has logical operators with an energy barrier that grows logarithmically with

system size. The self-correction properties of this family of codes was studied in

Refs. [BH11] and [BH13], which found that for system sizes smaller than a critical

value, the memory lifetime was a polynomial in the linear size of the system. Ideally,

a self-correcting memory has a lifetime that is exponential in the system size. The

4-dimensional toric code has this feature [AHHH10], but the search is ongoing for a

code with more physical spatial locality demands.
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(a) (b)

(c) (d)

Figure 4.19: A sequence of code deformations showing that braiding a smooth defect
around a rough defect acts on the logical space as IX → IX. Frame (d) is trivially
equivalent to frame (a).

4.5 Topological code thresholds

One feature of particular interest for any code�quantum or otherwise�is the code

threshold. This is a value, pth, of the physical error probability below which the

code suppresses the logical error probability pL < pth. Above the threshold, the

physical qubits are so errant that there is no advantage to encoding�it would be

better o� to simply leave the information in unencoded form. The true threshold is

a thermodynamic quantity, and characterizes a phase transition from a �correctable�

phase (pL = 0) to an �uncorrectable� phase (pL = 1). There is a step-function

transition as a function of p between these two regions in the limit of an in�nite
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Figure 4.20: A green defect, either of X-type or Z-type in the 4.8.8 color code. The
string-like operator connecting to a boundary shares the color of the removed face,
and the encircling operator has one of the other two colors.

system size. However, the Monte Carlo methods typically used to calculate the

threshold can only simulate �nite-size systems, and the threshold can wiggle around

due to �nite size e�ects. In these cases, it is more proper to refer to the threshold as

a pseudothreshold that approaches the true threshold as the sizes of the codes are

increased.

Threshold calculations for the topological codes can be performed in a variety

of ways and in a variety of settings. One might assume that stabilizer group mea-

surements are error free and that ancilla qubits can be prepared perfectly. In the

literature this is usually referred to as the code capacity threshold, as it closely resem-

bles the absolute error rate the codes can handle in the presence of only data errors.

By more carefully modeling measurement and ancilla errors, more realistic thresholds

can be calculated, and the fully fault-tolerant treatment that models each step in

the error correction process as faulty provides the best estimate for the purposes of

quantum computation. (It is a bit of a leap to claim that the fault-tolerant threshold
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for error correction can be identi�ed with the fault-tolerant threshold for universal

quantum computation. However, the protocols needed to allow for universality can

be designed in a fault-tolerant way and interleaved with rounds of error correction.

The threshold for computation will be slightly reduced from the threshold for error

correction due to there being more spots in a circuit for errors to occur, but that

reduction will not be dramatic. The extended rectangle analysis in Ref. [AGP06]

studies this problem.)

Monte Carlo threshold estimation proceeds by choosing an error model, a code,

and a classical decoding algorithm. Depending on the setting, random errors are

applied to the data qubits, the data qubits and the syndrome qubits, or each gate in a

full circuit treatment, and the decoding algorithm examines syndrome measurements

and makes a guess for an action that will correct the errors. The correction either

leads to a logical fault or it doesn't. The procedure is repeated and the fraction of

logical failures out of the number of rounds of simulation gives the logical failure

rate for a given p. Many di�erent values for p are used to trace out a curve of pL vs

p, and the point at which this curve crosses the line pL = p is the pseudothreshold

for the chosen code. Many decoders have been used in threshold calculations for the

surface codes and color codes. Some of these are listed here:

1. Minimum-weight perfect matching [DKLP02, RHG07, RHG06, WFSH10, Ste14]

2. Renormalization group methods [DCP10]

3. Greedy expanding diamond algorithms [Den03, Woo13]

4. Integer programming methods [LAR11]

5. Optimal (free-energy minimizing) decoders [KBMD09]

A typical error pattern for a surface code in the non-fault-tolerant setting is shown

in Fig. 4.21. A decoder starts with the error pattern�just the red dots in Fig. 4.21.
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Z Z
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X X

Figure 4.21: A typical error pattern for the toric code in a code-capacity setting.
The decoder only gets to see the endpoints of error chains (the red dots). The
decoder may identify the corrective action with an error that is consistent with the
given syndrome. If the selected error and the actual error sum to something in the
equivalence class of logical operators, then the algorithm fails; otherwise, it succeeds.
For a given value of p, the value of pL, the logical failure probability, is then the
fraction of times the decoding fails. The same algorithm will be run with codes of
di�erent distance to study any �nite size e�ects and to examine the sub-threshold
error suppression achieved by moving to larger distance codes.

The �rst step of a decoder is often to identify an error that is consistent with the

positions of the violated checks. The decoder typically favors the lowest weight error,

as that is also usually the most likely of all the errors that could have caused the given

syndrome, but this is not necessarily the optimal approach to take. The degeneracy
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of the errors could also be taken into account. For instance, perhaps there is only one

error of weight w consistent with the syndrome, but there are 100 errors of weight

w + 1 that are consistent with it. Depending on the physical error probability p,

the latter set�with 100 members�might be more probable on the whole than the

singleton set with a weight w error. The example is contrived, but the idea in optimal

decoding is the same: take the degeneracy of errors into account and select the most

likely class instead of settling on the lowest weight error. This allows for minimizing

the error in decoding instead of maximizing the probability of identifying the error

that actually occurred.

4.6 Magic states and universality

The Eastin-Knill Theorem [EK09] states, with a modest set of assumptions, that

no quantum code can admit a universal and transversal set of gates. Research on

magic state distillation�initiated by Bravyi and Kitaev [BK05] but foreseen by Shor

[Sho96]�allowed for the fault-tolerant extension of non-universal gate sets by adding

one additional operation to the Cli�ord group: the ability to prepare mixed states

whose purity could be increased by special protocols. To perform a quantum com-

putation, one then typically proceeds as in Fig. 4.22. The situation described in the

�gure involves classical steps and quantum steps and is a particular on-demand way

of imagining the operation of a quantum computer. It does not require a single ma-

chine that can run any algorithm, but neither is it incompatible with such a notion.

It may even inform a decision on what a generic all-purpose machine might look

like, and I will comment on this later. However, it is not the only way to imagine

a fault-tolerant architecture. Recent work by Gottesman [Got13] shows that it is

possible, in principle, to perform a constant-overhead fault-tolerant simulation of a

given circuit, but this work leverages a family of quantum codes, the hypergraph
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Classical circuit description

Quantum compiling

Quantum code

State distillation

log↵
1

✏

log�
1

✏

log�
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✏

Figure 4.22: A �owchart for an on-demand quantum computer. First, a classical al-
gorithm generates a description of the quantum circuit needed to solve some problem.
Next, a quantum code is chosen to allow for non-ideal quantum gates and to provide
easily fault-tolerant operations. The choice of code provides a natural universal gate
basis to compile over, and the next step produces unitary approximations to all the
gates in the circuit that can't be performed exactly. Finally, the gate basis will have
some easy gates and some hard gates, and the hard gates are implemented via gate
teleportation of distilled magic states. Each step introduces a resource overhead,
explained more fully in the text.

product codes [TZ09], for which there is no known e�cient decoder. For the purpose

of concreteness, I will consider the series of steps natural to the topological codes

I've been discussing and ignore other proposals.

I will brie�y describe the steps listed in Fig. 4.22. First, given the inputs to

the quantum algorithm�for Shor's algorithm this would be the number to factor�

76



Chapter 4. Topological Fault-Tolerance and Avenues to Universality

a classical computer generates a description of the quantum circuit that needs to

be run. This is the ideal circuit that would provide the correct answer (perhaps

probabilistically) in the absence of all errors. Next, a topological code is chosen

to combat errors and allow for the implementation of as many easy operations as

possible (ideally the entire Cli�ord group). This causes a blowup in the number

of qubits needed for each of the original ideal qubits that is polylogarithmic in the

desired logical error rate ε. (In this �owchart I abuse the ε notation to avoid a

morass of ε′s and ε′′s. I will clearly state their meanings here in the text.) Quantum

compiling, which is a name for a family of classical approximation algorithms, is then

performed to get ε-approximations to all the gates in the circuit that are not already

available. This compiling is done over a universal gate set G, and a typical choice

is G =
{
H,S,CNOT, T, S†, T †

}
. Thus, for each U in the circuit that needs to be

approximated, the quantum compiling algorithm produces a sequence of Gi ∈ G that
is ε away from the target U in a chosen distance measure (usually trace distance).

The overhead introduced here is in the number of gates required to approximate U ,

and there exist protocols compiling over the G basis mentioned above which have

β = 1. Lastly, some of the gates in G are typically �easy,� meaning they have a

natural fault-tolerant implementation with constant overhead, and some of the gates

are �hard.� The T gate is usually one of the hard gates to perform, and magic state

distillation protocols are required which take faulty copies of the state T |+〉 and
return copies of higher �delity. Distilling a T |+〉 state with a target �delity of ε

incurs an additional polylogarithmic overhead, and the current best value is γ = 1.6

[BH12]. It is unknown if γ = 1 can be achieved.

In recent years, the quantum compiling and magic state distillation steps above

have received a lot of attention, as researchers have tried to beat down resource

costs to the minimum achievable [BH12, Sel12, KMM13a, MEK12]. Other lines of

research have attempted to circumvent the assumptions of the Eastin-Knill Theo-

rem by demonstrating ways of designing fault-tolerant circuits without the use of
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∣∣MG
〉

Z ±1

|ψ〉 • G(†)|ψ〉
Figure 4.23: A quantum circuit that uses the state

∣∣MG
〉
to apply the gate G or

G† on |ψ〉. The gate applied depends on the outcome of measuring the �rst qubit,
with a +1 heralding an application of G and a −1 heralding its inverse G†. This
circuit can be made deterministic by allowing a corrective gate on the bottom qubit
classically controlled on the −1 measurement outcome. However, for magic states
yielding small Z rotations, this corrective gate (G2) will most likely also have to be
applied via a magic state.

transversal gates [JOL13] or by leveraging unneeded degrees of freedom in gauge

codes [PR13]. It is safe to say that no one has yet discovered the de�nitive opti-

mal approach in terms of the added resources required to achieve universal encoded

quantum computation. In Chapter 7 I present work that essentially hops over the

quantum compiling step in the �owchart above and directly distills gates capable of

implementing Z rotations by angles of π/2k. As that chapter comprises a signi�cant

portion of the original work in this dissertation, I want to brie�y describe the idea

of magic states.

A magic state for performing a gate G that is diagonal in the computational basis

is given by
∣∣MG

〉
= GH|0〉 = G|+〉 =

1√
2

(
|0〉+ eiθ|1〉

)
, (4.5)

where G can be read o� as

G =


 1 0

0 eiθ


 . (4.6)

The circuit in Fig. 4.23 then implements the gate G or G† in a random fashion.

The ability to perform Cli�ord group operations, naturally fault-tolerant for many

quantum codes, is augmented by the ability to prepare ancilla qubits in
∣∣MG

〉
states

above some threshold �delity, completing the set of gates to one that is universal.

Preparing high-�delity copies involves a protocol for distilling them from lower �delity
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copies using only Cli�ord gates and measurements in the computational basis. (This

condition on allowing only Cli�ord gates can be relaxed as long as a full accounting

of the required resources is made.) Success of these protocols relies on having input

states below a certain error threshold (examples of which are calculated below) and

is heralded by the results of single qubit measurements furnishing a protocol's �nal

step.

The calculation of the threshold for a given protocol proceeds by examining the

action of projecting a product state of noisy inputs ρ⊗n onto the codespace of an

[[n, k, d]] quantum code. To determine the logical state ρL one ends up with after

such a projection, it su�ces to �nd matrix elements in the {|0L〉, |1L〉} basis to

construct

ρL =


 〈0L|ρ

⊗n|0L〉 〈0L|ρ⊗n|1L〉
〈1L|ρ⊗n|0L〉 〈1L|ρ⊗n|1L〉


 . (4.7)

Assuming that the noisy input state is

ρ = (1− ε)
∣∣MG

〉〈
MG

∣∣+ ε
∣∣−MG

〉〈
−MG

∣∣, (4.8)

where
∣∣−MG

〉
is the unique pure state orthogonal to

∣∣MG
〉
(an assumption justi-

�ed by a preparatory twirling operation, or results due to Jochym-O'Connor et al.

[JOYHL13]), the threshold can be backed out by �nding εout from

ρL = (1− εout)
∣∣MG

L

〉〈
MG

L

∣∣+ εout
∣∣−MG

L

〉〈
−MG

L

∣∣, (4.9)

which will be in terms of ε. An alternate way of viewing this procedure is as a mea-

surement of the logical operator that has the state |MG〉 as an eigenstate, namely

GXG†. Measurements in a Pauli basis can be converted into such a logical measure-

ment by simply rotating qubits prior to the measurement. For the case of transversal

logical operators, these rotations are simple to enact. It is also possible to derive

the distillation threshold by alternative methods. For instance, Ref. [MEK12] uses a

method of counting all the possible locations of O(p) errors in the distillation circuit.
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This is a useful tool for analyzing more complicated distillation protocols that don't

rely as heavily on symmetries of the code.

4.7 Outline of the remaining chapters

The remaining chapters of this dissertation comprise some of the original research I've

performed over the last six years. Loosely, they explore topological code architectures

for quantum computation. In Chapter 5, I give a largely pictorial description of a

result about di�erent defect encodings for the 4.8.8 color code. It demonstrates the

intuition that homology provides about what can be done by continuous deformation

in topological codes. Chapter 6 describes a model of quantum computation that uses

local adiabatic evolutions and the toric code to simulate a measurement-based model,

while maintaining a Hamiltonian gap that is constant in the problem size. Lastly,

Chapter 7 introduces a magic-state distillation protocol that attempts to circumvent

the quantum compiling step shown in Fig. 4.22. By directly distilling magic states

capable of performing Z rotations by angles of π/2k, it is possible to save on the

required number of resource states compared to a near-optimal protocol based on

the standard method of approximation. Along the way, I introduce a new family

of quantum codes that allows for transversal application of the π/2k gates. While

not topological codes themselves, the encoding circuits for these codes have natural

fault-tolerant realizations in topological codes, and so distillation protocols based on

their encoding circuits are easily implemented in topological code substrates.
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Chapter 5

Relationships Between Defect

Encodings in Topological Color Codes

The role that topology plays in topological codes is important, and in Appendix A I

demonstrate that stabilizer generators and logical operators have descriptions in the

language of homology. In this chapter I present a related argument about the di�er-

ence between two strategies for using defects in the color codes. As was mentioned

in Chapter 4, using defects in topological codes is a simple way to introduce more

logical qubits to a code. This can be understood in two ways. From the viewpoint

of stabilizer codes, introducing defects decreases the number of stabilizer generators

and, hence, increases the number of logical qubits. From the viewpoint of homol-

ogy theory, introducing defects yields a di�erent �rst homology group for the surface.

The new nontrivial cycles are precisely the logical operators for the newly introduced

qubits.

The importance of allowing topology-changing operations has been recognized

in proposals for fault-tolerant quantum computing with defects in topological codes

[RHG07]. However, here I want to study the similarities between two di�erent ways
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Figure 5.1: A distance-7 instance of the 4.8.8 topological color code. The label 4.8.8
corresponds to number of edges of the three faces adjacent to vertices away from the
boundary: one square and two octagons. Color codes are de�ned by graphs that are
face 3-colorable with the qubits on vertices and the stabilizer generators on faces.
Each face actually corresponds to two generators: one X type and one Z type.

of using defects, and I probe these similarities in a way motivated by topology: I

seek to turn a qubit encoded in a single defect into a qubit encoded in a triple

defect, �rst described in Ref. [Fow11b]. In the process, I do not want to allow any

topology-changing operations, as such actions will confuse the issue by changing the

number of logical qubits. In some sense this is an arti�cial restriction, but my goal

is to explore the nature of di�erent defect encodings instead of proposing a useful

quantum computational protocol.

Throughout this chapter I will use members of the 4.8.8 family of triangular color

codes�pictured in Fig. 5.1�due to the fully transversal availability of the Cli�ord

group. Defects will be either X-type or Z-type and will have a color given by the

color of the removed face. Recall that in the color codes only the faces correspond to

stabilizer generators, and that the boundaries can also be given colors. For example,

the bottom boundary in the �gure has the color red because it is the color that is

missing. Red strings, which connect red defects to the boundary, can end at the

lower boundary. I will abstract away most of the detailed colors in this chapter and

draw instead only the boundary colors and the colors of the defects. This will make
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the numerous �gures less busy and simpler to parse.

The goal will be to convert three single defects�one in a state |ψ〉 and two in

a known state�into a triple defect in the same state |ψ〉. It is possible to simply

teleport a single defect into a triple defect prepared in a �ducial state. While this

captures the appropriate �ow of quantum information, it does not address the topo-

logical question of whether or not there is an operation that can take three defects

and turn them into a triple defect through local deformations. The demonstration

will proceed along the lines of a sequence of obstacles and solutions until the solutions

have led to an insurmountable problem. The takeaway is that the triple defects are

a di�erent beast, and this is a re�ection of the structure they share with the overall

code.

The original motivation for this work was to optimize color code computations

for space savings. The idea was to store qubits that weren't participating in any

gates in single defects. Then, when a gate was called for, a single-defect qubit would

be turned into a triple defect for ease of logical gate application. After the gate,

the qubit would be returned to the single-defect encoding. This can be done using

teleportation, but the setting of this chapter is an exploration of the ways in which

the single-defect and triple-defect encodings are distinct. This is the nature of the

following discussion.

5.1 Triple-defect qubits

Before introducing triple defects, I'd like to abstract away the details of the color

code bulk. Instead of showing each individual qubit and face, I will just depict

the boundaries. The color code in Fig. 5.1 becomes the arrangement of colored

boundaries in Fig. 5.2. With this simpli�cation made, the string-net logical operators

appear like Fig. 5.3. Again, the geometry of the logical operators doesn't matter.
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Figure 5.2: The bulk of a 4.8.8 triangular color code abstracted away and the bound-
aries labeled by their color.

All that matters is that the endpoints of the strings are �xed to boundaries and that

any color splitting is consistent.

I now introduce the triple-defect encoding, shown in Fig. 5.4. It shows three

regions of Z-type stabilizer generators removed, one of each color. XL in this case

has a string-net structure, while ZL is depicted as a green string around the blue

defect region. In fact, removing three regions like this creates three new logical

Figure 5.3: The string-net logical operator for a 4.8.8 triangular color code with the
bulk structure abstracted away. These strings can be bent and pushed around, even
split apart if the proper rules are followed. However, the colored strings must always
end on the appropriate colored boundary.
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XL

ZL

Figure 5.4: The triple-defect encoding. Z-type stabilizer generators are removed
from three regions, each with a di�erent color. This creates three new logical qubits,
but two are ignored as gauge degrees of freedom. The remaining qubit has logical
operators chosen as shown, where there is additional freedom in the choice of ZL.
Due to the gauge �xing condition that the other two qubits are in the state |0〉, ZL
could be chosen to be an enclosing loop around any of the three regions. Note the
structure ofXL and its relationship to the structure ofXL for the string-net operators
associated to the original qubit encoded in the surface (as shown in Fig. 5.3).

qubits, but two of the qubits are essentially being ignored. In fact, since the system

was in the +1 eigenstate of all the operators removed to create the defects, they all

initially encode the state |0〉. If the two extra qubits are ignored and if they do not

succumb to any logical errors, then their own logical operators can be treated as a

physically meaningless gauge degree of freedom, as mentioned in Sec. 3.4. In this

case, the gauge is �xed: both ignored qubits are in the state |0〉. This allows for the
manipulation of the logical operators of the remaining qubit, and they can be chosen

as pictured in Fig. 5.4. The operator ZL is not unique�it can be deformed by gauge

logical operators to be an enclosing loop around any of the defect regions, provided

it is of a di�erent color than the region itself.

The advantage of this encoding is that the logical Pauli operators, the logical
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Figure 5.5: A logical Z operator for a triple-defect qubit.

Hadamard, and the logical S can all be applied in a simple transversal manner. The

application requires the defects to be deformed in a particular way, but �rst I want

to show that ZL has a form that is similar to XL. The loop of Pauli Z operators

shown in Fig. 5.5 is one choice for ZL. However, as for all stabilizer codes, this is

not its unique form. Fig. 5.6 shows that the singly-colored loop can be split at two

points into the two other colors. Multiplication by stabilizer generators allows the

three di�erent colors to be brought into contact with the three colored boundaries

Figure 5.6: An equivalent logical Z operator for a triple-defect qubit using the color
code rules about the splitting of colored strings.
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Figure 5.7: An equivalent logical Z operator for a triple-defect qubit using the color
code rules about the splitting of colored strings and multiplication by stabilizer gen-
erators There is no real distinction between these two rules, as the colored string
splitting is just another instance of stabilizer generator multiplication.

provided by the defects, as shown in Fig. 5.7. Finally, further stabilizer generator

multiplication deforms ZL into the pattern shown in Fig. 5.8.

Now that I've introduced an alternate form for ZL, I will show how to prepare

the defects for the application of the transversal (single-qubit) Cli�ord group. First,

the three defects are deformed such that they touch and enclose a region, as shown

in Fig. 5.9. This isolates XL from the rest of the code, as shown in Fig. 5.10, and

Figure 5.8: An equivalent logical Z operator for a triple-defect qubit.
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Figure 5.9: The three defects from Fig. 5.4 deformed so that they enclose a region
of a color code. Note that the enclosed region now just looks like a smaller version
of the full triangular code.

partially isolates ZL, as shown in Fig. 5.11. (For the case of X-type triple defects,

the same story holds with the roles of XL and ZL reversed.) In order to properly

apply a transversal logical operator, the exterior remnant of ZL, called a �byproduct

operator� must be measured. This �pruning� amounts to measuring a small exterior

Figure 5.10: The three defects are deformed so that they touch and enclose a region
of the code, isolating XL in the process.
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Figure 5.11: The three defects are deformed so that they touch and enclose a region
of the code, partially isolating ZL in the process but leaving a �byproduct operator�
external to the isolated region. This byproduct operator must be measured before
any logical operators are applied.

region and learning the eigenvalue of the exterior operator. The result of the mea-

surement is stored and used to modify the outcome of any future ZL measurement.

Then, with the exterior part of ZL removed, the desired logical operator is performed

transversally on the interior. Next, the check operators removed by the exterior mea-

surement are reintroduced, and the code in the exterior region is �xed. Finally, the

defects are shrunk back to their original size and the computation proceeds.

There are subtleties related to whether or not SL is transversal on the interior

region, but the criteria for SL transversality are given in Appendix C and can be

checked. The interior region can be sized appropriately for either transversal SL or

transversal S†L, both implemented with transversal physical S.
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X

X

X

XZ Z

Figure 5.12: The three-qubit repetition code encoding circuit, showing that XL for
the single defect is mapped to XXX on the three single defects and ZL for the single
defect predictably is not modi�ed. The propagation of Z ′L and Z ′′L for the two other
defect qubits and the gauge �xing condition�that Z ′L = Z ′′L = +1�allows for the
triple defect ZL to be a loop around any of the three defects.

5.2 Failure of conversion via topology

I will now present the sequence of obstacles and solutions that lead to the inability

to convert three single defects into a triple defect. As before, I will consider Z-type

defects, and the goal will be to take three single defects, encoding |ψ〉 and two |0〉
states, and turn them into a triple defect.

I begin by noting that using a repetition encoding almost seems to do the trick.

The e�ect on the logical operators is nearly the desired e�ect, modulo a leftover

surface logical operator. Fig. 5.12 shows that the X and Z operators are mapped

to the appropriate things through the repetition code encoding circuit. The form

of ZL after the circuit is precisely what is needed for the triple defect, including

the gauge freedom of multiplying by the gauge-�xed logical Z operators for the two

single defects in the state |0〉. However, it is not clear that the product of the three
X operators is the same as the string-net version shown in Fig. 5.4. Additionally,

there is no direct way to perform a CNOT between two Z-type single-qubit defects.

This latter objection is easily overcome by the circuit shown in Fig. 5.13, which

requires two additional single defect ancilla per CNOT . It turns out that the three
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to update the Pauli frames of the stabilizer generators
incident on these two interior qubits.

Because we will no longer use the weight-two opera-
tor, we may consider it to also be a “gauge” operator
in the language of subsystem stabilizer codes [68]. This
also makes its anticommuting partner a gauge operator,
which we may interpret to be either of the original de-
fect operators (on q or q0). By introducing these two
new gauge operators, we may reinterpret the defect log-
ical operator on the collective q and q0 region as acting
solely on its boundary. In particular, the interior of the
collective q and q0 region need never be involved in future
syndrome extractions.

An important question is whether the defect growth
process is fault-tolerant. The simplest circuit for mea-
suring XX or ZZ would perform CNOT gates into or
out of an ancilla qubit to each of the two relevant qubits,
as depicted in Fig. 29. Although a single error in this
ancilla qubit could propagate to two errors on the two in-
terior qubits, because we subsequently treat these qubits
as encoding a gauge qubit, we do not worry about errors
on these. It could still be the case that the value of the
measurement obtained is incorrect, which impacts the
update of the Pauli frame of the two adjacent stabilizer
generators in a correlated way. Thus a single syndrome
measurement error would propagate to two syndrome-bit
errors. To prevent this happening to first order in the er-
ror probability, we repeat the XX or ZZ measurement
twice and use the majority vote of the three outcomes to
update the Pauli frame.

Compared to the process of defect growth, defect con-
traction is much simpler: to shrink a defect by a single-
plaquette, one simply measures that plaquette operator
in the next round of fault-tolerant quantum error correc-
tion.

By a combination of local growth and shrinking pro-
cesses, one can deform the code with a (c, P ) defect at
one plaquette to a code with a (c, P ) defect anywhere
else. In other words, the move operation for a defect can
be decomposed into a sequence of more elementary grow
and shrink operations.

3. Measuring a defect

To destructively measure the logical operator encir-
cling a defect, one first shrinks the defect to size of a
single plaquette. Then one measures the defect with the
existing circuitry at that plaquette as though it were a lo-
cal stabilizer generator. The shrunken defect will have a
significantly lower tolerance to one type of Pauli error but
that error type is in the basis being measured in and will
not disturb the measurement outcome. To destructively
measure the string-like logical operator connecting two
defects, one brings the two operators as close together
as possible. One then measures the weight-two operator
connecting the defects using the circuitry used to grow a
defect from one site to encompass the other. Again, the

tolerance to errors of one Pauli type will be significantly
lower, but this will not be of the type that disturbs the
measurement.

To nondestructively measure a defect, one uses the cir-
cuit of Fig. 23, which uses destructive measurement of
MZ or MX , preparation of |0i or |+i, and the CNOT
gate described in the next section.

4. CNOT gate between defects

It is straightforward to show that moving a (c, Z) de-
fect qubit around a (c0, X) defect qubit (or vice-versa)
generates an encoded CNOT gate controlled by the (c, Z)
defect when c and c0 are di↵erent colors; the construc-
tion is essentially the same as that in Refs. [17, 49, 67].
Since this process traces out a braid in spacetime, we
call this process “braiding defects.” Also drawing upon
Refs. [17, 67], one can generate a CNOT gate between
two Z-type defects or two X-type defects, whether they
are the same color or not. The circuit for doing this be-
tween two Z-type defects is depicted in Fig. 30; the cir-
cuit for doing this between two X-type defects is similar.

|controli(c,Z) • |controli(c,Z)

|0i(c00,X)
⌫��⇣⌘✓◆ ⌫��⇣⌘✓◆ ⌫��⇣⌘✓◆ MZ

|+i(c0,Z) • |targeti(c0,Z)

|targeti(c0,Z) • MX

FIG. 30: Circuit for braiding a CNOT gate between Z-type
defects. The colors c and c0 may be the same or di↵erent,
but the color c00 is a color di↵erent from these. The circuit
for braiding a CNOT gate between X-type defects is simi-
lar: the CNOT gate directions are reversed, the types of the
defects and the types of the measurements have their Pauli
types swapped from X to Z and vice-versa, and the |0i state
becomes a |+i state and vice-versa.

One can convert an X-type defect into a Z-type defect,
or vice-versa, (changing its color as a side e↵ect) using
one of the circuits in Fig. 31. In conjunction with the
other type of CNOT gates mentioned, this allows CNOT
gates between two defects regardless of the colors or Pauli
types they have.

| i(c,X)
⌫��⇣⌘✓◆ MZ

|+i(c0,Z) • | i(c0,Z)

| i(c,Z) • MX

|0i(c0,X)
⌫��⇣⌘✓◆ | i(c0,X)

FIG. 31: Circuits for converting a Z-type defect into an X-
type defect and vice-versa.

Figure 5.13: A circuit allowing for a CNOT to be performed between two defects of
the same type. The labels c, c′, and c′′ correspond to the color of the defects. Since a
CNOT cannot be performed between defects of the same color, c must be a di�erent
color that c′′ and c′ must be a di�erent color than c′′. However, c and c′ are allowed
to be the same color.

X operators are almost equivalent to the proper logical string-net operator, but

I will have to enforce another gauge �xing condition. First, notice the sequence

of deformations shown in Figs. 5.14 to 5.18. This collection of �gures shows how

the three X operators�which tether each of the Z-type defects to the appropriate

boundary�can be deformed into the desired string-netXL operator for a triple defect

and a leftover piece that corresponds to the logical X operator of the qubit encoded

in the surface. Rather than repeating them in the main body of the text, I'll let the

�gure captions tell the details of the story.

Figure 5.14: After the circuit in Fig. 5.12, XL is composed of the three string-like
operators shown.
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Figure 5.15: The red string-like part of XL can be equivalently represented with a
split into green and blue strings that fuse back together.

Figure 5.16: Through the multiplication of stabilizer generators, the blue and green
splitting can be brought in contact with the boundaries of appropriate color.

The situation seems good if it is possible to make the qubit encoded in the surface

another gauge degree of freedom. If it's possible to prepare this qubit in the state

|+〉, for instance, then the leftover part in Fig. 5.18 would simply correspond to a

multiplication by +1 of the true triple defect XL�in other words, it would be a

trivial modi�cation and could simply be ignored. However, this would only bene�t

the use of Z-type triple defects. The X-type triple defects would not yield to the

same kind of modi�cation of ZL. The trick around this is to not use a triangular

code, but rather to use a code with boundaries that encode more than one qubit.
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Figure 5.17: Further multiplication by stabilizer generators allows for the endpoints
of part of the split blue and green strings to merge with other blue and green end-
points coming from the other two defects.

Figure 5.18: A last round of stabilizer generator multiplication pulls the joined blue
and green strings o� the boundary and shows that the XL is nearly the same as for
the triple defect encoding.

Pictured schematically in Fig. 5.19, one of the logical qubits could be prepared in

|+〉 and one could be prepared in |0〉. Then, triple defects of the appropriate type

could be created in the appropriate region, allowing for the necessary gauge �xing

requirements. The code distance for the qubits encoded in the original, unpunctured

surface will be much larger than for the qubits encoded in defects�be they single

or triple. In fact, it will grow linearly with both the distance of the defect qubits

and their number�in big-O notation, the surface qubit distance will be O(dn). This

93



Chapter 5. Relationships Between Defect Encodings in Topological Color Codes

|+i

|0i

Figure 5.19: The preparation of a color code surface encoding more than one logical
qubit. This allows the di�erent surface logical qubits to have di�erent �xed gauges,
which can be used to remove the leftover surface operators in Fig. 5.18.

means that it will be very unlikely for the gauge �xing condition to be broken by the

action of random errors.

At this point, the problem seems solved. Three single defects have been converted

into a triple defect, so what's the catch? The catch is that I have neglected the

presence of other defect qubits that are �oating around in the surface. After all, the

goal is to perform a computation, and many qubits will be needed. Figs. 5.20 to 5.22

show how the presence of other defect qubits can interfere with the deformations

presented in Figs. 5.14 to 5.18. At this point, the gauge �xing trick runs out of

Figure 5.20: A more realistic look at the deformations leading up to Fig. 5.18.

steam. It is not reasonable to demand that each of the qubits in the computation be
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Figure 5.21: Stabilizer generator multiplication still allows the blue and green end-
points to be fused.

Figure 5.22: Unfortunately, when pulling the operators o� the surface boundary
with multiplication by stabilizer generators, the presence of other defects causes the
strings to get �snagged.� Since these other qubits cannot all be gauged away, it is
clear that this procedure will fail in general by introducing unintended logical errors.

in a �xed, known state. This would amount to an entirely trivial computation. This

demonstrates that there is a fundamental topological obstruction�the existence of

a larger homology group than was considered at the start�that disallows the on-

demand conversion from single to triple defects without teleportation.
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5.3 Conclusion

The work presented in this chapter is arguably more mathematical than physical,

but it does provide good intuition for physical processes related to single-defect

encodings. For example, the inability to convert a single defect to a triple defect

without using teleportation means that it is likely a waste of time to try and �nd

protocols for applying SL and HL to a single defect qubit without �rst creating a

triple defect and teleporting the quantum state into it. However, it is not a proof of

impossibility, and more clever techniques may still exist.
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Chapter 6

Adiabatic Topological Quantum

Computation

This chapter describes joint work performed with Dave Bacon, Steve Flammia, An-

drew Landahl, and Alice Neels, the point of which is to present a model of quantum

computation that utilizes adiabatic interpolations between static Hamiltonians for

as many procedures as possible. Information encoded into a Hamiltonian with a

toric code codespace as its groundspace will have a lifetime that is exponential in

the inverse temperature of a thermal environment, but its lifetime will not grow with

system size. We studied this model to bring together ideas from several di�erent

models of quantum computing, including the adiabatic model, the holonomic model,

and the topological model. This work can be seen as an explicit analysis of general

schemes presented in Refs. [OBL09] and [ZB14], as well as an extension of the work

by two of my coauthors on adiabatic code deformation [BF09].

The contents of this chapter have been around in various forms since 2009, and

the writing was contributed to by all my coauthors. However, this version is my own

�nal edit. Additionally, my technical contributions to this project include the careful
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analysis of state injection and logical measurement, as well as the extension to the

color codes in Sec. 6.7.

6.1 Introduction

There are many approaches to constructing a quantum computer. In addition to

the numerous di�erent physical substrates available, there are a plethora of di�erent

underlying computational architectures from which to choose. Two major classes

of architectures can be distinguished: those requiring a substantial external active

classical control system to suppress errors [Sho95, Ste96a, Pre98a], and those whose

underlying physics eliminates much, if not all, of the need for such a control sys-

tem [Kit03, DKLP02, FGGS00]. Here we focus on the latter class of architectures

and address the question: �How does one quantum compute on a system protected

from decoherence by a static (i.e., time-independent) Hamiltonian?� We present a

solution that adiabatically interpolates between static Hamiltonians, each of which

protects the quantum information stored in its ground space. Since each of these

ground spaces can be described as a quantum error-correcting codespace, we call

this process adiabatic code deformation [OBL09, BF09]. This procedure amounts to

a simulation of the measurement-based process of code deformation employed in the

�rst class of architectures [DKLP02, RHG06, BMD09, Bon13]. We further show that

this procedure preserves the energy gap of the system throughout the evolution.

While previous work has made reference to adiabatic evolutions as a method for

performing topological quantum computation [NSS+08], our work can be seen as

making the assumptions of adiabatic evolution explicit for certain models of topolog-

ical quantum computers. In contrast, for example, to topological quantum comput-

ing in fractional quantum Hall systems where even the ground state of the system

is subject to debate, our models are exactly solvable and simple. Similar work has
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been performed for Kitaev's honeycomb model by Lahtinen and Pachos [LP09], who

examined the adiabatic transport of vortices in Kitaev's honeycomb lattice model

numerically. Here, we are able to investigate these issues analytically.

Our results marry three di�erent lines of research, which we now describe. The

�rst is the idea originated by Kitaev [Kit03] that quantum information can be pro-

tected from decoherence by encoding into the degenerate ground space of a many-

body quantum system. In particular, Kitaev suggested a family of systems such that

each system has a ground space equivalent to a quantum error-correcting codespace.

Moreover each of these ground spaces is separated from their �rst-excited space by an

energy gap�a gap which does not shrink with the system size (i.e., the gap is �con-

stant�). In Kitaev's original construction, the quantum error-correcting code also pos-

sesses a topological property that makes the distance of the code grow with the num-

ber of qubits in the system. This implies that any local perturbing interaction will

only split the energy of a degenerate ground state by an exponentially small amount

in the size of the system [BHM10]. Information encoded into the ground space should

therefore remain well-protected from the detrimental e�ects of decoherence. Further,

if one immerses the system in a bath with a temperature lower than that of the en-

ergy gap in the system, then one should expect a suppression of thermal excitations

out of the ground space. The decay rate of the quantum information encoded into

the ground space is not set by a length scale in the system, but instead the lifetime

scales as exp(cβ∆) where β is the inverse temperature, ∆ is the energy gap of the

Hamiltonian, and c is a constant [AFH09]. Crucially, this implies that the lifetime of

the information is exponentially lengthened as a function of the inverse temperature.

While one does not obtain, using Kitaev's original idea, a method for protecting quan-

tum information with a lifetime that grows with the size of the system�a hallmark

of �self-correcting� quantum memories [DKLP02, Bac06]�for a suitably low temper-

ature, the information lifetime will be long enough for all practical purposes. Thus,

via the use of a static many-body Hamiltonian, Kitaev proposed that quantum infor-
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mation could be protected without resorting to active quantum error-correcting algo-

rithms. Following Kitaev's introduction of this idea, numerous authors put forward

similar approaches. Many of these ideas stayed within the realm of topological protec-

tion [Fre03, FNS05, BW03, Kit06, FNW06, NSS+08], but others explored energetic

protection without reference to topological ideas [BW00, BBW01, WH05, Bac08].

Here we will focus on the topological models, but many of our results apply in the

more general setting.

Kitaev noted in his original proposal that the excited states of his Hamiltonian

act as particles with exotic statistics. In particular, he showed that the excitations

were quasiparticles called anyons [Wil82]�particles that exist in two spatial dimen-

sions that exhibit statistics di�erent from fermions and bosons and which interact by

braiding around one another in spacetime�an interaction that only depends on the

topology of the anyon worldlines. These excitations not only describe errors in the

codespace but can also be thought of as quantum information carriers in their own

right. Indeed for some many-body Hamiltonians, it is possible to have nonabelian

anyons (anyons whose braidings do not commute) that perform universal quantum

computation in the label space of the anyons. This is known as topological quan-

tum computing [Kit03, FKW02, FLW02, KKR10], the principal model of quantum

computing we will consider here.

In a topological quantum computation, one creates anyons from the vacuum,

braids them around one another in spacetime, fuses them together, then records

their label types. Although the topological nature of the anyonic interaction pro-

vides a degree of control robustness, it is not immediately clear why the processes

of anyon creation and fusion could not create new unwanted anyons. Such anyons

could in turn wander and disrupt the desired braid. The initialization process in

particular is quite subtle [Kön10]. Moreover, the there will likely be a background

of thermal anyons and anyons arising from material defects which could also disor-
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der the quantum computation. On top of all of this, even if a spacetime braid is

topologically correct, the mere act of moving anyons around�even adiabatically�

has the potential to generate new excitations because the adiabatic approximation is

not exact. Measurement-based topological quantum computation [BFN08, BFN09]

has the potential to overcome this last problem, but the other problems remain. In

summary, the great merit of topological quantum computation is that the �only�

thing that can corrupt it is uncontrolled anyons�the problem is that there are many

ways that uncontrolled anyons can arise. Even something as seemingly innocuous as

a lack of complete knowledge of the system's Hamiltonian could do this because it

could lead to anyons being trapped or leaking out of the system unbeknownst to the

computer operator [NSS+08]. We do not claim to address every possible adversarial

scenario for topological quantum computation here; our focus is on constructing an

architecture which limits the chances for uncontrolled anyons to appear.

The second line of research relevant to our proposal is the recent use of code defor-

mations to perform quantum computation on topological quantum error-correcting

codes [DKLP02, RHG06, BMD09, KKR10]. In this approach, one works directly with

the quantum-error correcting code used in topological quantum computing without

introducing a Hamiltonian to provide energetic protection of the quantum infor-

mation. Instead, one focuses on active error correction, but performed with the

topological quantum codes. Consideration of such codes for quantum error correc-

tion was �rst examined in detail by Dennis et al. [DKLP02]. In this approach, qubits

are arranged on a two-dimensional surface with a boundary, resulting in a single en-

coded qubit for each such surface. In order to build a quantum computer with more

than one qubit, such surfaces are stacked on top of each other so that transversal

gates can be achieved between the neighboring surfaces. Since the original analy-

sis, modi�cations [RHG07, BMD09] of this architecture have been introduced which

have considerable advantages over the three-dimensional stacking of Dennis et al. In

these models, one takes a surface code and �punctures� it by removing the quantum
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check operators (stabilizer generators) from a region, creating a defect [BK98]. For

each defect one obtains an encoded qubit with a code distance that is the minimum

of the perimeter of the defect and the distance from the defect to the nearest ap-

propriate boundary (which may lie on another defect). One can show that, via a

sequence of adaptive measurements, one can deform the boundary of the defect, and,

by using suitable deformations, braid defects in such a way that logical operations

are performed between the logical qubits associated with the defects.

The third line of research relevant to our proposal is the recent discovery of

methods to perform holonomic [ZR99] and open-loop holonomic [KÅS06] univer-

sal quantum computation in a stabilizer code setting [OBL09, BF09, Ore09]. In

holonomic quantum computing, adiabatic changes of a Hamiltonian with degener-

ate energy levels around a loop in parameter space induce unitary gates on each

energy eigenspace. The enacted gate depends on geometric properties of the Hamil-

tonian path and not on the exact timing used to traverse it (to within the limits of

the adiabatic approximation), thus o�ering a method to avoid some timing errors.

Universal quantum computation using holonomic methods was originally studied in

Ref. [ZR99]. Recently, Oreshkov et al. demonstrated a novel manner for achiev-

ing universality within the context of fault-tolerant quantum computing [OBL09].

In particular, this result showed how to perform gates on information encoded into

a quantum stabilizer code. Building along these lines, two of the present authors

(DB and STF) have shown how to achieve similar constructions within the con-

text of open-loop holonomic quantum computation [BF09, BF10]. In this setting,

instead of using cyclic evolutions, one can quantum compute using non-cyclic evo-

lutions. A consequence of this is a scheme known as adiabatic gate teleportation

where one mimics gate teleportation via a very simple interpolation between two-

qubit interactions [BF09]. Another consequence is that it is possible to perform

measurement-based quantum computing [RB01] using only adiabatic deformations

of a Hamiltonian [BF10]. Holonomic quantum computation, whether performed
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cyclically or non-cyclically, should be distinguished from (universal) adiabatic quan-

tum computation, in which the ground state is always nondegenerate throughout the

non-cyclic adiabatic evolution [FGG+01, AvK+04, OT08, MLM07, KKR06].

Here we combine many of the above insights into a new method for computing

on information encoded into the energy levels of a Hamiltonian. We consider a situ-

ation where, as in the �rst line of research, quantum information is encoded into the

ground state of a topologically ordered many-body system. Rather than storing in-

formation in the label space of anyons themselves, we consider information stored in

defects, which act somewhat like anyons, as in the second line of research. Finally, we

examine explicit adiabatic interpolations between Hamiltonians that simulate code

deformation, as in the third line of research. This is all done while keeping the energy

gap in the system constant, a necessary requirement to use these techniques to main-

tain the topological protection o�ered by these systems. Further, we demonstrate

how to prepare quantum information into �ducial states using adiabatic evolutions.

Some of these state-preparation procedures are robust to error, but some (e.g., the

preparation of certain �magic states� [BK05]) are not robust and thus require distil-

lation protocols. Finally we discuss how one can use code deformations to facilitate

measurements of certain logical operators. We discuss all of these procedures �rst

within the context of Kitaev's surface codes with defects, and then we discuss how

these results can be extended to the topological color codes [BMD06].

The systems and protocols we use are not strictly fault-tolerant. Without active

error correction, the lifetime of the codes studied are a constant independent of

the system size [AFH09]. As mentioned above, here we rely on a coupling to a

cold (with respect to the gap) thermal bath, which suppresses the creation of errors

exponentially in the size of the gap. We retain robustness to things like control

errors by virtue of the holonomic nature of the logical operations we implement, and

robustness to correlated �uctuations induced by the environment by keeping defects
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well-separated during braiding. Once the environment creates an excitation, it is free

to wander and corrupt the computation. We prevent the environment from doing

this by ensuring that it is cold, and we prevent ourselves from introducing excitations

accidentally by carefully designing our procedures. Mizel has taken a closer look at

the problem of fault-tolerant adiabatic quantum computation in Refs. [Miz10, Miz14],

but it remains unclear if these approaches work.

6.2 Surface codes with defects

We begin by working with a simple class of surface codes with defects to establish

the main ideas behind our procedures. In Section 6.7 we extend these ideas to the

topological color codes. We assume that the reader is familiar with the theory of

stabilizer codes [Got97], toric codes [Kit03], and with surface codes [BK98], the

specialization of toric codes to bounded planar surfaces. However, we review these

results to set our notation.

Let L be a two-dimensional square lattice that is l edges wide and l edges tall,

with the leftmost l vertical edges and bottommost l horizontal edges removed. (Other

lattices are possible; we make this restriction only to be concrete.) We call the sides

of the lattice with the edges removed the rough or X-type boundaries and the other

sides the smooth or Z-type boundaries; see Fig. 6.2. (The reason for having more

than one name for each kind of boundary is that the pictographic mnemonics of

�rough� and �smooth� do not persist for other topological codes, like the color codes,

but the distinctions of X-type and Z-type do.) A qubit is associated with each edge

of the lattice so that there are 2l2 qubits in total. For each plaquette (or face), p, of

the lattice, de�ne the plaquette operator Sp =
⊗

e∈∂p Ze where ∂p denotes the edges

bounding the plaquette and Ze is the Pauli Z operator acting on the qubit at edge e.

In other words Sp acts as the tensor product of Z operators on the qubits touching the

104



Chapter 6. Adiabatic Topological Quantum Computation

Z

Z

ZZ Sp

Sv

X

X

XX

Figure 6.1: Stabilizer generators (checks) for the surface code. An example of a
plaquette check Sp and a vertex check Sv.

plaquette p and acts trivially everywhere else in the lattice (see Fig. 6.1). Similarly,

for each vertex in the lattice, de�ne a vertex operator Sv =
⊗

e∈δvXe, where δv

denotes the edges incident at vertex v and Xe is the Pauli X operator acting on the

qubit at edge e. In other words, Sv acts as a tensor product of Pauli X operators

on all the edges surrounding a vertex and acts trivially on all the other qubits in the

lattice, as shown in Fig. 6.1.

It is important to note that the rough and smooth boundaries still have plaquette

and vertex operators de�ned; these operators simply act nontrivially on fewer qubits

than the operators in the bulk of the lattice. Since the lattice L has l2 plaquettes
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X

Z

Figure 6.2: A smooth (Z-type) defect. A logical Z operator is de�ned by a closed
loop of Zs on the lattice that surrounds the defect and a logical X operator is de�ned
by a connected path of Xs on the dual lattice from the defect to a smooth (Z-type)
boundary. Here we depict the removed region by removing that part of the lattice;
this simply indicates that the code of the system factors into a code in the drawn
region and a code inside of the defect.

and l2 vertices, there are also l2 plaquette operators and l2 vertex operators. These

operators are all independent in the sense that no strict subset can generate the

rest, and, moreover, they all commute since they are incident on each other an even

number of times.

The collection of all the Sp and Sv operators comprises the set of stabilizer gen-

erators for a quantum surface code, the codespace being de�ned by the simultaneous

+1 eigenspace of all the stabilizer generators. This set generates the stabilizer group
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X

Z

Figure 6.3: A rough (X-type) defect. A logical X operator is de�ned by a closed
loop of Xs on the dual lattice that surrounds the defect and a logical Z operator is
de�ned by a connected path of Zs on the lattice from the defect to a rough (X-type)
boundary.

for the code, which is simply the set of all the products of generators. The above

description actually speci�es a single state rather than a codespace since it has 2l2

checks on 2l2 qubits. This is a consequence of the particular way in which we chose

the boundary of the lattice, which disallows the existence of any additional operators

that commute with all of the generators but are not elements of the stabilizer group.

Encoding quantum information in the lattice requires the constructions described

next.

Consider a closed simple curve c on L which does not cross itself and which does
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not touch the boundary of L. Call the interior of this loop, excluding c itself, Ic.

Consider �removing� all of the qubits in Ic. Here by �removing� we do not mean

physically removing the qubits, but rather that we consider a new code in which

the stabilizer generators exterior to the region Ic are consistent with the description

above, while the region Ic has a di�erent set of stabilizer generators (not necessarily of

the plaquette and vertex type). We call this process puncturing (not to be confused

with the notion of puncturing associated with classical coding theory [MS77]), and

the resulting region of removed qubits is called a defect. Given such a defect, we can

study the properties of the new code induced on the exterior of Ic. Careful counting

of the stabilizer generators and qubits in this new code reveals that the puncturing

procedure has created a logical qubit [BK98]. The logical operators for the new

logical qubit can be chosen as follows: an encoded Z is a closed loop of Z operators

on the lattice L that encircles the defect and an encoded X is a connected path of

X operators on the dual lattice L∗ that starts on the smooth (Z-type) boundary of

the defect and ends on a smooth (Z-type) boundary of the lattice L which is not

the loop c (see Fig. 6.2). The distance of this code is the minimum of the length of

curves on L bounding the defect and the length of paths connecting the defect to

a smooth (Z-type) boundary of L. We note that the curve c itself is the minimum

weight choice for the encircling logical Z operator. Similarly, instead of starting

with a simple closed curve on the lattice, we can consider a simple closed curve on

the dual lattice and remove the interior of this curve. To be consistent with the

de�nition given for the former kind of defect, we must de�ne the encoded X to be

a closed loop c∗ of X operators on the dual lattice L∗ that encircles the defect and
the encoded Z to be a connected path of Z operators on the lattice L that starts on

the rough (X-type) boundary of the defect and ends on a rough (X-type) boundary

of the lattice L which is not in the loop c∗ (see Fig. 6.3).

Puncturing the surface code creates a single encoded qubit. By puncturing mul-

tiple times we can create a code with more than one encoded qubit, one for each
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additional puncture. The boundary curves of these defects can be on the lattice, in

which case we call the defect smooth (Z-type), or on the dual lattice, in which case

we call the defect rough (X-type). The distance of such a code is the minimum of the

distance between defects, the distance of a defect and the boundary of the lattice,

and the circumference of a defect.

Surface codes with defects were �rst explored within the framework of active

quantum error correction. Here we consider an alternative situation in which we

construct a Hamiltonian with a ground space that is degenerate and identical to the

codespace of a quantum error correcting code. The construction of such a Hamil-

tonian is easy from a theoretical point of view; it is simply the negative sum of the

stabilizer generators, G,
H = −∆

2

∑

S∈G

S. (6.1)

The constant in front is chosen so that all errors will have an energy penalty of a

least ∆ (errors adjacent to a boundary will have this penalty, while errors away from

boundaries will have a penalty of 2∆). Since the set of generators is commutative,

the eigenspaces of H can be labeled by their eigenvalues with respect to the operators

S, and since the eigenvalues of all the S are ±1, the ground state of this Hamiltonian

is equivalent to the codespace of the quantum code generated by G: S|ψ〉 = |ψ〉 for
all S ∈ G.

Hamiltonians like that in Eq. (6.1), which we call stabilizer Hamiltonians, have

interesting properties for protecting quantum information. The �rst property is that

operators which act nontrivially on the codespace (the degenerate ground space)

must be nonlocal, having a Pauli-weight at least as large as the code's distance.

This allows for the system to retain its information even when perturbed by a local

Hamiltonian [HL08, BHM10]. For toric codes, surface codes, color codes, and, more

generally, codes formed from quantum double models [dB94], this is a partial indi-

cation of a topological order in the system. (A more robust indicator would be a
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nontrivial topological entanglement entropy [HIZ05, KP06, LW06, FHHW09].)

While a stabilizer Hamiltonian is robust to local perturbations, if the system is

immersed in a thermal bath, the lifetime of information encoded into the ground

state does not necessarily scale as the size of the system (or the size of the defect

for a surface code with defects). For example, for the toric code, the lifetime of this

information is proportional to exp(2β∆) [AFH09], where β = (kBT )−1 is the inverse

temperature of the bath. It is widely believed that all stabilizer Hamiltonians with

local terms embedded in two spatial dimensions have a similar lifetime [BT09]. The

more challenging issue is how to compute with them without increasing the rate at

which information is destroyed. As mentioned in Sec. 6.1, if a stabilizer Hamiltonian

describes a topologically ordered system possessing anyons that have a su�ciently

rich nonabelian structure, then quantum computation can be carried out by creat-

ing, braiding, and fusing the anyons. However, it is not entirely clear that one can

controllably create single excitations without also creating other uncontrolled excita-

tions that could then disorder the system, nor how one can move the anyons without

causing other anyons to be produced. This has led to the search for self-correcting

quantum systems where the excitations are not point-like particles like anyons but

have boundaries with dimension [DKLP02, Bac06, BT09]. The energetic cost of an

excitation in such a system is proportional to the size of its boundary and thus would

be robust to errors during creation and movement processes�such a system would

energetically favor shrinking the boundaries of the errors to zero, causing them to

vanish. In particular, it has been argued that such systems would have a lifetime

proportional to their size, indicating that the system and the environment to which

it is coupled participate in a form of �self-correction� in which the environment that

creates the errors can also �x the errors; at a low enough temperature, the rate of

the latter process dominates the rate of the former. In this paper, we do not directly

address the question of self-correction; instead we attempt to better understand how

computation can be done adiabatically within existing models.
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6.3 Adiabatic code deformations

Before showing how to perform the adiabatic deformations and creation of �ducial

states, we brie�y review a scheme for performing adiabatic gate teleportation [BF09]

(AGT), as this gives an idea of how the protocols we introduce below operate. AGT

is a procedure for transferring information in one qubit to information in another

qubit (with a possible gate applied to this information) via the use of an adiabatic

evolution and an ancillary qubit. This example is on a system composed of three

qubits and here we consider the case where no gate is applied during the swapping

of the qubit between the �rst and third qubits. Initially the system evolves under a

Hamiltonian given by

Hi = −∆(I1X2X3 + I1Z2Z3), (6.2)

where Pi represents the operator P acting on the ith qubit and where we soon omit

the identity operators I. A �nal Hamiltonian is de�ned as

Hf = −∆(X1X2I3 + Z1Z2I3). (6.3)

The AGT protocol begins with the information encoded in the �rst qubit and Hi

turned on. Then, Hi is adiabatically turned o� while simultaneously turning on Hf .

In other words, the evolution is described by

H(t) = f(t)Hi + g(t)Hf , (6.4)

where f(0) = 1, f(T ) = 0, g(0) = 0 and g(T ) = 1 and T is the time taken to perform

the evolution. If f(t) and g(t) are chosen to be slowly varying and the time T is long

enough such that the evolution is adiabatic (meaning here that the probability of

exciting the system out of its ground state is made small), then the above evolution

will take information in the �rst qubit and send it to information in the third qubit.

For example, one may choose f(t) = 1 − g(t) and g(t) = t
T
so that the evolution is

made adiabatic for su�ciently large T . A constant error can be achieved for a �xed

constant T .
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To see that a constant energy gap is maintained during the above evolution and

that the information is transported from the �rst to third qubit, it is convenient

to use the formalism of stabilizer codes to describe this evolution. Indeed, it is

actually useful to de�ne three codes. The �rst code, call it S1, is de�ned by the

stabilizer generators X2X3 and Z2Z3 and the logical Pauli operators Z = Z1Z2Z3

and X = X1X2X3. A second code, call it S2, is de�ned by the stabilizer generators

X1X2 and Z1Z2 and the logical Pauli operators Z = Z1Z2Z3 and X = X1X2X3.

Suppose information is encoded into the stabilizer code S1 so that it is in the +1

eigenstate of both X2X3 and Z2Z3. Notice then that because X1 = X(X2X3) and

Z1 = Z(Z2Z3), information encoded into this code can be accessed by making a

measurement on the �rst qubit. Similarly, information encoded into the second

code, S2, is localized in the third qubit. The adiabatic evolution in Eq. (6.4) can

now be seen as adiabatically dragging a Hamiltonian which is a sum over stabilizer

generators in S1 to a sum over stabilizer generators in S2 such that the information

in the encoded qubit described by X and Z is not touched.

To analyze how the dragging between S1 and S2 occurs, it is useful to introduce

a new code, S3. This code has no non-identity stabilizer operators, but has three

encoded qubits. These are de�ned by

X1 = X1X2 Z1 = Z2Z3

X2 = X2X3 Z2 = Z1Z2

X3 = X1X2X3 Z3 = Z1Z2Z3 (6.5)

Notice that Z1 and X2 are the stabilizer generators of S1 and X1 and Z2 are the

stabilizer generators for S2. From this perspective, then, the adiabatic evolution is

from the initial Hamiltonian −∆(Z1 + X2) to the �nal Hamiltonian −∆(X1 + Z2).

These are then simple interpolations between single operators on encoded qubits,

and will have a constant energy gap. Indeed both S1 and S2 can be turned into S3

by promoting stabilizer generators in these codes to logical Pauli operators. When
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it is possible to perform such a change between codes via an adiabatic evolution we

say that we can adiabatically deform one code into the other. This technique is at

the heart of the constructions in this paper.

To see that the information encoded in the �rst qubit ends up at the third qubit,

�rst note that, during the above evolution, the third encoded qubit is not involved.

This implies that information encoded into this qubit will not be a�ected by the

evolution. Next note that X1 = X3X2, Z1 = Z3Z1 and X3 = X3X1, Z3 = Z3Z2.

Recall that we are dragging between the +1 eigenstate of X2 and Z1 to the +1

eigenstate of Z2 and X1. Thus, since information encoded into the third qubit is

not changed during the above evolution, we see that the protocol transports the

information in the �rst qubit to the third qubit.

More generally, the AGT protocol can be extended to enable universal quantum

computation [BF09]. We omit the details of this construction except for noting that

even when generalized, the energy gap used to guarantee adiabatic evolution is a

constant with respect to the number of qubits in the system. We will often refer

to this by saying that the energy gap of an adiabatic evolution is constant when

considered by itself�we use this language merely to imply that stringing together

similar parallel evolutions will not shrink the gap as a function of the number of

qubits involved in the evolution.

6.4 Adiabatic code deformations of the surface code

With the punctured surface code de�ned, we now present a series of adiabatic code

deformations that allow for a nearly universal set of operations. First, we show how

to prepare a surface code without any defects. Next, we show how to prepare smooth

defects in the +1 eigenstate of Z and rough defects in the +1 eigenstate of X. We

then show how to prepare smooth defects in ±1 eigenstates of X and rough defects
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in ±1 eigenstates of Z. (These procedures prepare the defects in eigenstates of the

string-like logical operators that tether the defects to a boundary.) Following this, we

introduce a procedure to allow code regions containing defects to be separated from

and attached to the rest of the code. We next show how defects can be deformed,

allowing them to be moved around the lattice. This additionally allows for the

CNOT to be enacted between a smooth and a rough defect. Finally, we show how

arbitrary ancilla states can be injected into defects and utilized in a computation.

The procedures above can be performed in an entirely adiabatic fashion and thus

bene�t from the protection of a Hamiltonian gap. Additionally, procedures like defect

braiding also bene�t from the topological nature of the surface code Hamiltonian,

requiring high-weight correlated errors corresponding to nontrivial cycles on the lat-

tice or dual lattice. We mention this now to highlight the di�erence between the

entirely adiabatic operations presented in this section and operations we present in

Sec. 6.5�such as measurement or heralded gate application�that do not inherit any

protection from the gap or the topology.

6.4.1 Creation of a surface code without defects

We begin by assuming that we have a large array of qubits, shown in Fig. 6.4,

stabilized by a Hamiltonian Hi given by

Hi = −∆
∑

j

Zj, (6.6)

where the sum runs over all the qubits. The ground state of this Hamiltonian is

unique and has all the qubits in the state |0〉. To prepare the surface, standard

active error correction techniques call for the stabilizer generators to be measured.

Here, we simulate these measurements in the vein of the �forced measurements�

introduced in Ref. [Bon13] by slowly turning o� Hi and turning on the Hamiltonian

introduced in Eq. 6.1 for the speci�c instance of a �small� surface code. Turning on a
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Figure 6.4: A large array of qubits in the state |0〉, each protected by a Hamiltonian
H = −∆Z.

Hamiltonian with a �large� surface code as the ground state would cause the system

gap to shrink proportional to the size of the code, so to be concrete we choose to

evolve initially to a Hamiltonian with a small surface code ground state. (We will

subsequently show how its size can be sequentially increased.) In other words, we

adiabatically follow the Hamiltonian

H(t) =

(
1− t

T

)∑

j∈Q

(−∆Zj) +
t

T

∑

S∈G

(
−∆

2
S

)
+
t

T

∑

j 6∈Q

(−∆Zj) , (6.7)

where Q is the set of qubits participating in the surface code terms. In this case,

G has 8 elements, the four plaquette operators and the four vertex operators shown

in Fig. 6.5. Provided T is large, the system will remain in the ground state. As

we showed before, the ground state of the Hamiltonian in Eq. 6.1 is the codespace

if a surface code. We choose it to be nondegenerate by our choice of boundaries,

although this is not a necessity. After the evolution, the array of qubits looks like

Fig. 6.5.

Having created a small surface code that encodes no qubits, we can increase its

size by modifying the boundaries adiabatically. For example, we can grow out part
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Figure 6.5: A large array of qubits, an 8-qubit region of which is now encoded in the
surface code (shown in red). The boundaries of the code are chosen to be trivial so
that the codespace is nondegenerate.

of the smooth boundary by performing an evolution of the form

H(t) =
(
1− t

T

)
(−∆Z1 −∆Z2 −∆Z3) +

t
T

(
−∆

2
Z1Z2Z3 − ∆

2
X1X2 − ∆

2
X2X3

)
,

where the numbering corresponds to Fig. 6.6. This also requires that the modi�cation

1

2

3

Figure 6.6: Growth of a small surface code region that involves only the qubits
labeled 1, 2, and 3.

of vertex checks on the smooth boundary being extended, which can be performed
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at the same time. Additionally, a similar procedure will allow the extension of rough

boundaries. By piecing these additional evolutions together, a larger surface code

region can be constructed while maintaining a Hamiltonian gap that is lower bounded

by a constant proportional to ∆.

For the remainder of this section, we will specialize our �gures so that they do

not include the black dots that represent qubits, instead keeping only the underlying

square lattice structure of the code. However, the full plane of qubits is still assumed

to exist.

6.4.2 Creation of a small Z(X) defect in a +1 eigenstate of

Z(X)

Here we describe how to create a two-plquette smooth defect in an unpunctured

surface code. (The creation of a rough defect will proceed in an exactly analogous

way with the roles of Z andX interchanged.) We create defects using two neighboring

plaquettes for pedagogical clarity, although creating single defects is also possible.

With two-plaquette defects, it is obvious that the creation process inherits protection

from a Hamiltonian gap and the topological nature of logical operators; for single-

plaquette defects, the Hamiltonian gap protection is not present.

To begin the creation procedure, the Hamiltonian is initially given by Eq. 6.1, the

negative sum of all the plaquette and vertex stabilizer generators for the code. The

defect will consist of two adjacent plaquettes, bounded by a curve c that encloses

these plaquettes. If the stabilizer generators associated to these two plaquettes are

Sp1 and Sp2 , we can promote them to Z operators for two encoded qubits�Zp1 and

Zp2 respectively�of a new code where the stabilizer generators Sp1 and Sp2 have

been removed. If we do this, then X for each qubit can be chosen as a string of Pauli

X operators beginning on the appropriate plaquette, traversing the dual lattice, and
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p1 p2

Sp1
= Zp1

p1 p2

p1 p2p1

Sp2
= Zp2

p2

Xp1
Xp2

Figure 6.7: Operators involved in creating the defect which includes p1 and p2. Note
that the X operations span to a nearby smooth boundary.

ending on a smooth boundary (see Figure 6.7). In fact, we can always choose these

operators so that they overlap on all but the qubit separating the two plaquettes.

We call these two encoded logical X operators Xp1 and Xp2 . The operator Xp1Xp2

is then the single Pauli X operator acting on the qubit between the plaquettes.

Suppose that we now perform the following adiabatic evolution: while turning o�

the two plaquette operators, Sp1 and Sp2 in the Hamiltonian, we simultaneously turn

on the PauliX operator between these two plaquettes. In terms of the encoded logical
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operators we have de�ned above, this is equivalent to starting with the Hamiltonian

Hi = −∆

2
(Sp1 + Sp2) = −∆

2
(Zp1 + Zp2) (6.8)

and ending with the Hamiltonian

Hf = −∆

2
Xp1Xp2 (6.9)

All the other terms in the Hamiltonian commute with the relevant operators and

therefore do not contribute to any spectral shifts which might cause crossings.

In order to understand what happens in interpolating between Hi and Hf , it is

convenient to note that Zp1Zp2 (which is a closed loop of Pauli Z operators sur-

rounding the smooth defect we are creating) commutes with these Hamiltonians.

Also note that initially the system in the +1 eigenstate of both Zp1 and Zp2 , and

hence also in the +1 eigenstate of Zp1Zp2 . Because Zp1Zp2 commutes with both

Hi and Hf , we may work in a basis in which Zp1Zp2 and the full Hamiltonian are

simultaneously diagonal. This commutativity ensures that the eigenvalue of Zp1Zp2

is conserved throughout the evolution. If we perform this evolution via a simple

adiabatic dragging between these Hamiltonians (as described in Section 6.3) then

the energy gap in the system during this evolution remains constant. At the end of

the evolution, the system is in the +1 eigenstate of both Zp1Zp2 and Xp1Xp2 , which

is simply a single Pauli X on the qubit between the plaquettes.

The above can be interpreted in terms of codes. By turning o� two stabilizer

generators and turning on only a single Pauli X, we have introduced an encoded

qubit by decreasing the number generators. The product of the two missing plaquette

checks is Z, and either Xp1 or Xp2 can be chosen as X. Additionally, because the

operator Z commuted with the Hamiltonian throughout the adiabatic evolution, the

encoded qubit is prepared in the +1 eigenstate of Z.

After this adiabatic evolution, the Hamiltonian does not quite factor into two

separate codes on the interior and exterior of the defect. The vertex operators adja-

119



Chapter 6. Adiabatic Topological Quantum Computation

cent to the defect region still check the single qubit on the interior. As a generating

set, the four-body checks adjacent to the defect and the single-body �check� on the

interior qubit can equally well be thought of as a generating set with two three-body

operators that do not act on the interior qubit, and the single-body operator that

does. However, in the Hamiltonian framework we must explicitly remove support

of these four-body checks on the interior qubits. We do this either by including the

modi�cation of the adjacent vertex checks in the evolution discussed above, or by

using another evolution afterward that performs the modi�cation. We will assume

that the former modi�cation is used.

We note at this point that, while the defect we've created is small and thus

susceptible to relatively low-weight loops of Z errors, these errors actually have no

e�ect. Since Z acts trivially on the state we've prepared�namely, |0〉�the fact that

the defect has a small perimeter is not detrimental. Once we start performing gates

that change the state, we will have to make sure that the perimeter is large, and that

the defect is far from the boundaries and other defects.

As mentioned above, the same arguments can be made for preparing rough defects

in the +1 eigenstate of X. In that case, two adjoining vertex checks are turned o�

while a single-body Z on the qubit in the middle is turned on. Two adjacent four-

body Z checks have to be modi�ed in this case, but the arguments are exactly the

same as above.

It might be useful to address a question that may have entered the reader's

head. The procedures above adiabatically interpolate between a Hamiltonian with a

nondegenerate groundspace to a Hamiltonian with a degenerate groundspace. Isn't

there a level crossing between the groundspace and an excited space that can cause

transitions away from the state we want to prepare? Protection from this coupling is

provided by the topological nature of the logical operators. The only operator that

can couple |0〉 and |1〉 for a smooth defect is the string-like operator X that connects
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the defect to a boundary. This amounts to another way of saying that the eigenvalue

of the operator Z is a conserved quantity throughout the evolution, and so such a

crossing is not meaningful.

Now that we've introduced a method for creating smooth defects in the +1 eigen-

state of Z and rough defects in the +1 eigenstate of X, we'd like to show how these

defects can be grown and moved around the lattice. This will allow us to introduce

other procedures, such as the isolation a defect from the bulk of the code and an

adiabatic code deformation that performs the CNOT .

6.4.3 Adiabatic deformation of defects

We now show how to deform a defect. This involves modifying the Hamiltonian by

adding or removing stabilizer generators, the combination of which allows defects to

be moved.

Consider a smooth defect that we wish to grow by turning o� a single adjacent

plaquette check in the bulk of the system. The number of edges bordering the interior

of the defect is either 1, 2, 3, or 4, as shown in Fig. 6.8. The procedure in each case

is basically the same, with the clean-up or potential removal of the adjacent vertex

checks being the only di�erence. The growth is achieved by turning o� the plaquette

check in the Hamiltonian and turning on a single-qubit −∆
2
X Hamiltonian for each

qubit in the interior after the evolution. We also modify any adjacent vertex checks

at the same time to make the code properly factor into an interior and an exterior.

We will brie�y analyze the di�erent interior edge cases.

For a single interior edge, as shown in Fig. 6.9, there is not much di�erent with

respect to the case of defect creation. As the plaquette check to grow into is turned

o�, a single-body X on the qubit adjacent to the defect and the plaquette is turned

on. To fully sever the interior and exterior regions, the only thing left to do is modify
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(a) (b)

(c) (d)

Figure 6.8: The four potential situations faced when growing a smooth defect. (a)
Only one interior qubit. (b) Two interior qubits. (c) Three interior qubits. (d) Four
interior qubits.

the two adjacent vertex checks from three-body operators to two-body operators.

The cases of 2, 3, and 4 interior edges are di�erent in that some vertex checks are

not only modi�ed but turned o� completely. For the case of 2 interior edges, as shown

in Fig. 6.10, the appropriate evolution turns o� the plaquette check while turning

on two single-body X Hamiltonians on the interior edges. Note that the two-body

vertex check that operated on both the interior qubits is now redundant in terms

of stabilizer generators: it is simply the product of the two single-body X terms

that were turned on. As such, it can simply be turned o� without having to worry
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(a) (b)

(c) (d)

�X

�ZZZZ

�XX

�XXX

Figure 6.9: Growth of a smooth defect with only a single qubit on the interior
after the procedure. (a) We wish to grow the defect to the indicated plaquette.
(b) We adiabatically turn o� the neighboring plaquette while (c) turning on a −X
Hamiltonian on the interior qubit. (d) This procedure causes modi�cations to the
neighboring X checks which can be performed simultaneously with steps (b) and (c).

about the codespace being a�ected; it merely provides an additional energy penalty

for errors on the two interior qubits. The result is that we've removed two stabilizer

generators�the plaquette check and the two-body vertex check�and added two

stabilizer generators�the two single-body X operators. Thus, we haven't added

any additional logical qubits, merely grown the perimeter of an existing one. As a

�nal note, the two adjacent four-body vertex checks also must be modi�ed to three-

body checks, and again, this can happen simultaneously with the other adiabatic
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evolutions. The case of 3 and 4 interior qubits, shown in Fig. 6.11 and Fig. 6.12

(a) (b)

(c) (d)

�X

�ZZZZ

�XXX�X

�XXX

Figure 6.10: Growth of a smooth defect with two qubits on the interior. (a) We
wish to grow the defect to the indicated plaquette. (b) We adiabatically turn o�
the neighboring plaquette while (c) turning on two −X Hamiltonians on the interior
qubits. (d) This procedure causes modi�cations to the neighboring X checks.

respectively, is almost identical. For the case of 3, the plaquette check is turned o�

while three single-body X Hamiltonians are turned on. In this case, two weight-two

vertex checks are now redundant, and as before they can simply be turned o� without

worrying about level crossings. The counting works in a similar way, in that we've

removed three stabilizer generators and added three, preserving the number of logical

qubits. The two adjacent weight-four vertex checks also get modi�ed to weight-three

operators. Finally, in the case of 4 interior qubits, the same adiabatic deformation is
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performed: the plaquette check is turned o� and four single-body X Hamiltonians

are turned on. Only three of the two-body vertex checks are independent, and so

only those three appeared in the original Hamiltonian. They are the three checks

made redundant by the single-body X Hamiltonians in this case. Unlike the other

cases, in this case there are no other vertex checks that need to be modi�ed.

(a) (b)

(c) (d)

�X

�ZZZZ

�XXX

�X

�XXX

�X

Figure 6.11: Growth of a smooth defect with three qubits on the interior. The
process is essentially the same as the one depicted in Fig. 6.10.

The procedure for shrinking defects is simply the inverse of the procedures intro-

duced above. By combining the �grow� and �shrink� operations, we can move defects.

As demonstrated in Ref. [RH07], an encoded CNOT gate can be performed by mov-

ing a smooth defect in a full loop around a rough defect. The smooth defect is the
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(a) (b)

(c) (d)

�X

�ZZZZ

�X �X

�X

Figure 6.12: Growth of a smooth defect with four qubits on the interior. The proce-
dure is the same as the others, but there are no resulting X check modi�cations.

control and the rough defect is the target, and the direction of movement�clockwise

or counterclockwise�is unimportant.

6.4.4 Detaching and attaching surface code regions with de-

fects

For some subsequent procedures we will consider, it is helpful to have an operation

that isolates a defect from the surface code or reintroduces a defect to the surface

code that was previously isolated. By using defect creation and growth operations
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· · ·

· · ·

1

2

Figure 6.13: The setup for pinching o� a smooth defect from a smooth wall.

described in Secs. 6.4.2 and 6.4.3, we can grow a defect �moat� around a defect of

interest so that the �castle� surrounding the defect has just a single �drawbridge�

connecting it to the rest of the surface, as depicted in Fig. 6.13. The only additional

operation we must consider to complete the isolation procedure is how to �lift the

drawbridge� by modifying the remaining check operators adjacent to it. As before,

we will only consider the case of manipulating smooth defects�the case for rough

defects is similar.

To isolate smooth defect, we must use smooth boundaries on the �castle� to ensure

that X for the defect will have a place to terminate once the �drawbridge� is lifted.

For concreteness, we assume that this smooth boundary corresponds to the large

boundary of the surface, but the same procedure could be performed using a defect

to create the isolated region.
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To remove the �drawbridge,� we simply turn o� the single plaquette check that

connects the two regions while turning on a single-body X on each of the two qubits

that need to be removed. (These qubits are labeled 1 and 2 in Fig. 6.13.) The

operator X1X2, which was an element of the stabilizer group before the evolution, is

now redundant, just as in the case of the interior checks that appear during defect

growth in Sec. 6.4.3, and it is also removed. Thus, we remove two checks�the check

associated with the �drawbridge� and the two-body check X1X2�and replace them

with two single-body X checks in the Hamiltonian. As before, the vertex checks

adjacent to the �drawbridge� must be modi�ed, and in this case they become three-

body operators. (As a closing aside, if we had tried to detach a smooth defect through

a rough boundary, the operator X1X2 would no longer have been an element of the

stabilizer group.)

Reversing the detachment procedure allows regions with defects to be attached to

to the surface, introducing (or reintroducing) isolated defects back into the code. This

attachment procedure is an important step in our protocols for making measurements

of X and Z and injecting ancilla states into the system, as discussed in Sec. 6.5.1

and Sec. 6.4.6. Additionally, we mention here that it is also possible to isolate and

reintroduce a rough defect through a rough boundary in an analogous fashion.

6.4.5 Creation of a X(Z) defect in a ±1 eigenstate of Z(X)

Another capability that will be useful for later procedures is the ability to prepare

rough defects in an eigenstate of Z and smooth defects in eigenstate of X. The

preparation of these defects in performed in a region that is disconnected from the

main surface, and it is then attached to the surface using the procedure described in

Sec. 6.4.4 to introduce it to the bulk surface.

To prepare a rough qubit in the +1 eigenstate of Z, we utilize a procedure very
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similar to the original creation of the surface, described in Sec. 6.4.1. Recall that

the stabilizer Hamiltonian on a region disconnected from the surface is simply a

sum of single-body −Z operators on each qubit. Once the location and size of the

disconnected region is chosen, we prepare it in a surface with solely rough boundaries.

Rather than following this up with the creation of a rough defect, we simply prepare

the surface by leaving a region of adjacent X checks turned o� and the single-body

Z terms on the interior of the region unchanged. Since the system began in an

eigenstate of any product of Z operators, and since Z for the rough qubit commutes

with all of the check operators we turn on, the system remains in the +1 eigenstate

of Z after the evolution.

We also could have prepared the rough defect in the −1 eigenstate of Z by �rst

performing an adiabatic evolution on each qubit of the form −Z → X → Z. This

has the e�ect of dragging each of the qubits into the −1 eigenstate of the local Z

operators, and now, given a region of appropriate size, Z will have an eigenvalue of

−1 both before and after the defect creation process. (The size constraints amount

to ensuring that the weight of the logical operator is odd.)

Smooth defects can be prepared in ±1 eigenstates of X in much the same way,

requiring only simple modi�cations. To prepare a smooth defect in the +1 eigenstate

of X, each qubit �rst undergoes the evolution induced by the adiabatic sequence

−Z → −X. Likewise, to prepare a smooth defect in the −1 eigenstate of X, each

qubit �rst undergoes the adiabatic evolution −Z → X. Now X will have the correct

value before and after the evolution that creates the defect, subject to the same size

constraints mentioned above.
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6.4.6 State injection into defects

Creating defects in known ancilla states is another important building block for our

model. In typical architectures based on the surface code, completing a universal

set of encoded quantum gates requires the ability to �distill� high �delity states�

called �magic states��using protocols like the one discovered by Bravyi and Kitaev

[BK05]. In this section, we describe how to implement these preparations in an

adiabatic simulation of the process of state injection.

In measurement-based injection of a magic state [RHG07], one �rst exposes a

qubit by preparing a single (unencoded) qubit in the state |ψ〉. Then, the state is

quickly encoded in a surface code defect, and the procedure is �nished by growing the

defect to a su�ciently large size so that it is well-protected from noise. This process

need not be perfect, but any error introduced by the injection procedure must keep

the total error in the encoded state |ψ〉 below the threshold of the distillation protocol.

We describe our adiabatic simulation of this process for an injection into a smooth

defect, but the rough-defect case is similar. We begin by preparing an all-smooth-

boundary surface near the edge of the bulk surface using the method described in

Sec. 6.4.1. We then create a rough defect in a +1 eigenstate of X in this region using

the procedure described in Sec. 6.4.2. The situation is depicted in Fig. 6.14. Because

this region has only smooth boundaries, there is nowhere for a string of X operators

from the defect to connect. Indeed, if we ignore the one qubit on the interior of the

defect, then what we would normally call X, a string of X operators enclosing the

defect, is already an element of the stabilizer group. It can be formed by taking the

product of all the vertex checks. (As an aside, we note that this is a consequence of

the topology of the sphere, for which all loops remain homotopic when a single point

is removed.) As discussed in Sec. 6.4.2, this leaves the single qubit on the interior of

the defect in the +1 eigenstate of Z.
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· · ·

· · ·

...

...
Figure 6.14: After the Hamiltonian deformation (or sequence of deformations), we
are left with a surface code with trivial boundaries encoding a rough defect in the
state |+〉.

We then transform this interior qubit to the desired state by an adiabatic evo-

lution. For example, if we want to prepare the state T |+〉, we evolve using the

Hamiltonian H(s) = (1− s)(−Z) + sUZU †, where in this case U = TH. If we think

of this as a logical qubit, then X is a single X on the qubit and Z is a single Z

on the qubit. Recall that the face checks originally incident on the interior qubit

have been modi�ed and are no longer incident. The situation is now described by

Fig. 6.15. Next, we adiabatically turn on the two vertex checks that were originally

turned o� to create the defect. We simultaneously (and adiabatically) also turn o�

the three-body plaquette checks, as they would otherwise anti-commute with the

�nal Hamiltonian. This evolution transforms the logical operators, since the initial

single-body Z does not commute with the �nal X checks. The transformation Z
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| i

· · ·

· · ·

...

...
Figure 6.15: The interior qubit is adiabatically dragged to the state |ψ〉, the desired
magic state.

undergoes is determined by the Pauli algebra and the demands of a stabilizer code.

Since Z must still commute with the code after the vertex checks are turned back

on (note that the formerly interior qubit has now been reintroduced to the code

because the vertex checks are incident on it once again), and it must not be in the

stabilizer group itself, a suitable choice of the new Z is the product of the old Z and

one of the three-body plaquette checks that also did not commute with the vertex

checks. What's left is what appears to be a normal two-plaquette defect as shown

in Fig. 6.16, but the crucial di�erence is that there is now no sense of an isolated

interior, since the neighboring vertex checks are still incident on the qubit inside. In

fact, since X has never been disturbed by any of the evolutions we performed, it is

still a single-body operator localized to the qubit inside the defect. This leaves the

encoded qubit prone to decohering environmental interactions, and so we make it
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· · ·

· · ·

...

...
Figure 6.16: The missing X checks are reintroduced to the code, causing neighboring
Z checks to be removed. This new defect is now encoded in the state |ψ〉 with an
encircling Z and a single-qubit X.

larger by �splitting� the defect apart into a pair of defects, as depicted in Fig. 6.17.

As we move the parts away from each other, we also grow their perimeters using the

methods described above to protect against Z errors.

These defects qubits could be used as-is, but to make them more like the defects

we've worked with so far, we simply take one of the halves and merge it with the

global smooth boundary of our preparation region, as depicted in Fig. 6.18. Finally,

we attach the surface containing this defect to the main surface using the procedure

described in Sec. 6.4.4. This defect can be shuttled in and the boundary can be

modi�ed to the original shape.

Encoded distillation circuits, such as the ones depicted in Figs. 6.19 and 6.20,
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· · ·

· · ·

...

...
Figure 6.17: Because X was only a single-qubit operator, the two removed faces are
moved apart and grown to combat decoherence.

require only one more procedure in addition to Pauli X and Z eigenstate prepara-

tions, encoded CNOT operations, and the preparation of defects in encoded T |+〉
and S|+〉 states, both of which have now been introduced. The last procedure is the

measurement of encoded Pauli X and Z operators, to be described in Sec. 6.5.1.

6.5 Non-adiabatic procedures for surface code de-

fects

The procedures presented in Sec. 6.4 are fully implemented using only adiabatic

evolutions of stabilizer Hamiltonians. However, these operations do not allow for
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· · ·

· · ·

...

...
Figure 6.18: One of the defects is merged with the boundary to make the standard
single defect.

universal quantum computation. The key missing ingredient is the capability to

perform logical measurements�namely, the ability to measure X and Z for smooth

and rough defects. These measurements are the only non-adiabatic ingredients ap-

pearing in our model. In this section we describe how to perform them as well as

use them in additional procedures, such as heralded application of X and Z gates.

Although the measurements are not protected by adiabaticity or a Hamiltonian gap,

their topological nature provides robustness to local errors.
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5

The equivalent post-decoding-circuit Z-check measure-
ments become elaborate entangled measurements that
cannot be reconstructed by simply measuring each qu-
bit individually, despite suggestive circuits drawn in the
literature [27, 69].

A clever alternative by Raussendorf et al. obviates the
need for measuring complicated operators by encoding
half of a Bell state and processing it to distill the output
on the other half [26]. Their protocol is as follows:

1. Prepare the state |�+i := (|00i + |11i)/
p

2.

2. Send half of |�+i through the coherent encoding
circuit for QRM(1, 4).

3. Prepare the state (T |+i)⌦15.

4. Apply A with probability 1/2 on each of these 15
qubits.

5. Teleport the T gate from each of these “twirled”
T |+i states to a corresponding qubit on the en-
coded half of |�+i.

6. Measure MX on each of the 15 encoded qubits.

7. Infer the X-check values from the appropriate prod-
ucts of these MX measurements. Declare failure if
the X-check syndrome is not 0. Otherwise, proceed
to the next step.

8. Infer the logical X value for QRM(1, 4) by taking
the product of all of the MX values. If it is �1,
apply Z to the other half of the original Bell state.
The unmeasured half of the original Bell state is
T †|+i with a higher fidelity.

The inclusion of the twirl operation is omitted by
Raussendorf et al. and by many others who have built
upon this protocol [70, 71]. However, twirling is essential
in the analysis by Bravyi and Kitaev in deriving Eq. (11)
below for the accuracy of the distilled output state:

✏out(✏) =
1 � (1 � 2✏)7(30✏+ (1 � 2✏)8)

2(1 + 15(1 � 2✏)8)
(11)

⇡ 35✏3. (12)

That said, Jochym-O’Connor et al. have discovered that
magic-state distillation works at least as well, and maybe
even better, when twirling is omitted in a distillation
protocol based on the five-qubit code [64]. Inspired by
this result, we too omit the twirling circuits from the
protocol yet still use the Bravyi-Kitaev formula as a sort
of loose guideline for how much the fidelity has improved,
expecting that the fidelity increase may even be better.

A quantum circuit that implements the Raussendorf
et al. protocol is depicted in Fig. 2.

The final Z correction from step 8 that may need to
be applied is not depicted in Fig. 2 because it can be
incorporated into the subsequent teleportation circuit in

|+i • T MX

|+i • T MX

|+i • T MX

|+i • T MX

|0i ⌫��⇣⌘✓◆ ⌫��⇣⌘✓◆ ⌫��⇣⌘✓◆ T MX

|0i ⌫��⇣⌘✓◆ ⌫��⇣⌘✓◆ ⌫��⇣⌘✓◆ T MX

|0i ⌫��⇣⌘✓◆ ⌫��⇣⌘✓◆ ⌫��⇣⌘✓◆ T MX

|0i ⌫��⇣⌘✓◆ ⌫��⇣⌘✓◆ ⌫��⇣⌘✓◆ T MX

|0i ⌫��⇣⌘✓◆ ⌫��⇣⌘✓◆ ⌫��⇣⌘✓◆ ⌫��⇣⌘✓◆ ⌫��⇣⌘✓◆ T MX

|0i ⌫��⇣⌘✓◆ ⌫��⇣⌘✓◆ ⌫��⇣⌘✓◆ T MX

|0i ⌫��⇣⌘✓◆ ⌫��⇣⌘✓◆ ⌫��⇣⌘✓◆ T MX

|0i ⌫��⇣⌘✓◆ ⌫��⇣⌘✓◆ ⌫��⇣⌘✓◆ T MX

|0i ⌫��⇣⌘✓◆ ⌫��⇣⌘✓◆ ⌫��⇣⌘✓◆ T MX

|0i ⌫��⇣⌘✓◆ ⌫��⇣⌘✓◆ ⌫��⇣⌘✓◆ T MX

|0i ⌫��⇣⌘✓◆ ⌫��⇣⌘✓◆ ⌫��⇣⌘✓◆ T MX

|+i • T † |+i
FIG. 2: Distillation circuit for T †|+i states, adapted from
Ref. [26]. After the Bell state preparation, the gates perform
the coherent encoding circuit for the 15-qubit shortened quan-
tum Reed-Muller code. (See Appendix A for details.) The T
gates are performed by gate teleportation, using the circuit
from Fig. 1. This distillation circuit also distills T |+i states
on T †|+i inputs.

Fig. 1 instead at a lower gate cost. To do this, the fi-
nal corrective step in Fig. 1 must depend on both the
MZ measurement there and the measurement indicating
whether the Z operator needs to be applied. The set of
possible corrections is then I, Z, S, and SZ = S†. The
number of gates in the teleportation circuit is then 3.75
on average instead of 3.5. The worst-case gate count is
still 4, however.

Let us now count the number of gates used by the
Raussendorf et al. protocol.

To achieve ✏out  ✏T , one iterates this distillation pro-
cess ` times, where

`(✏T , ✏) =

⇠
log ✏T

log ✏out(✏)

⇡
. (13)

In addition to this, each of these rounds must them-
selves be repeated t times because the X checks may
fail to give a trivial syndrome. Because low-error states
decode with higher probability, the expected number of
repetitions is small when ✏ is small. Specifically, the ex-

Figure 6.19: Distillation circuit for T |+〉 states, constructed from the 15-qubit Reed-
Muller code's encoding circuit.
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|+〉 • S MX

|+〉 • S MX

|+〉 • S MX

|0〉 S MX

|0〉 S MX

|0〉 S MX

|0〉 S MX

|+〉 • S†|+〉
Figure 6.20: A distillation protocol for S|+〉 states based on the encoding circuit for
the [[7, 1, 3]] quantum Steane code.

6.5.1 Measurements of X and Z for defects

In measurement-based surface code models, defect logical operators are measured

in-situ by simply measuring a region of individual qubits in the surface. The par-

ities of of the measurements are then used to infer the eigenvalue of X or Z with

probability 1 − O(pd), where d is the distance of the code and p is the probability

that an individual qubit measurement is faulty. In our Hamiltonian model, this in-

situ measurement is an issue because single-qubit measurements in the surface will

necessarily anti-commute with the code Hamiltonian, leading to excitations out of

the ground space. If it is the end of the computation, and we want to know the

state of all the defect qubits, we can just turn the Hamiltonian o� and measure ev-

erything. However, the use of magic states via gate teleportation (described later)

requires conditioning future actions on the classical outcome of logical qubit mea-

surements. In this section we present an ancilla-coupled method to perform these

logical measurements.
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|ψ〉smooth •

|0〉rough Z

Figure 6.21: An example of measuring Z for a smooth qubit. It requires the prepa-
ration of a rough defect in a +1 eigenstate of Z, as discussed in Sec. 6.4.5.

To measure X or Z for a defect in a �non-destructive� way (meaning that the

post-measured state stays in the codespace), we use the method of ancilla-coupled

measurement introduced by Steane in Ref. [Ste96c]. Fig. 6.21 depicts this process

for measuring Z for a smooth defect qubit in the state |ψ〉. First, we prepare a

rough defect in the +1 eigenstate of Z as described in Sec. 6.4.5. Next, we perform

a sequence of adiabatic deformations, described in Sec. 6.4.3, to enact a CNOT gate

between the smooth and rough defects. Then, the rough-defect ancilla is detached

from the code using the method demonstrated in Sec. 6.4.4. Finally, we turn o� the

Hamiltonian and destructively measure the isolated region in the Z basis. A similar

procedure performs a measurement of X for a smooth qubit (simply measure the

isolated region in the X basis), and a similar circuit can be used to measure logical

operators for a rough defect.

6.5.2 Heralded application of X and Z to defects

With the ability to perform ancilla-coupled measurements, introduced in Sec. 6.5.1,

and the Hamiltonian evolutions described in Sec. 6.4, we can apply X and Z to

defects using the circuit shown in Fig. 6.22, where the measurements are assumed to

be of the type described in the previous section. All of the pieces in this circuit have

been described previously. The preparation of a rough defect in the +1 eigenstate

of Z is described in Sec. 6.4.5; performing a CNOT between a smooth defect and
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|ψ〉smooth • MX • X
a
Z
b|ψ〉

|0〉rough MZ

Figure 6.22: Circuit used to apply one of the Pauli operators to a smooth defect
qubit. The outcome of the X measurement is b ∈ {0, 1} and the outcome of the Z
measurement is a ∈ {0, 1}. The outcomes of the measurement all occur with equal
probability and the �nal state depends on these outcomes as shown. If an undesired
operator is applied, the ancilla qubit is reinitialized and the circuit is implemented
again. However, now the appropriate operator is the one which undoes the operator
applied in the �rst iteration and applies the desired operator. (This, of course, will
just be a di�erent one of the four operators X

a
Z
b
.)

a rough defect is described in Sec. 6.4.3; and making measurements of X and Z for

smooth and rough defects was just described in Sec. 6.5.1.

6.6 The completed model

To summarize our surface code model, we list the procedures we have de�ned in

Sec. 6.4 and Sec. 6.5:

1. Sec. 6.4.1: Adiabatic preparation of a surface code encoding no qubits

2. Sec. 6.4.2: Adiabatic preparation of smooth defects in the +1 eigenstate of Z

and rough defects in the +1 eigenstate of X

3. Sec. 6.4.3: Adiabatic deformation of smooth and rough defects, allowing for

defect movement

4. Sec. 6.4.4: Adiabatic detaching and attaching procedures, allowing for the

isolation of regions containing defects
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5. Sec. 6.4.5: Adiabatic preparation of smooth defects in the ±1 eigenstate of X

and rough defects in the ±1 eigenstate of Z

6. Sec. 6.4.6: Adiabatic injection of ancilla states into defects

7. Sec. 6.5.1: Non-adiabatic procedures for �non-destructive� ancilla-coupled mea-

surement of X and Z for defects

8. Sec. 6.5.2: Non-adiabatic, measurement-based procedure for the heralded ap-

plication of X and Z

Magic state gate teleportation of the T gate is performed using the circuit in Fig. 6.23,

and the Hadamard gate can be performed with an ancilla state using the circuit in

Fig. 6.24. In both cases, the only operations required involve the procedures de�ned

|ψ〉 • S T |ψ〉

T |+〉 Z •

Figure 6.23: Gate teleportation circuit using the T |+〉 state. The S correction needs
to be performed half of the time and can be implemented in the same way using the
state S|+〉 = |+i〉 instead of T |+〉 (and utilizing a Z correction half of the time).

in the list above. Other procedures, such as performing a CNOT between two smooth

qubits, have been studied previously [RHG07] and also only require operations from

the list above. Thus, in encoded form, we can prepare Pauli X and Z eigenstates,

perform a universal gate set, and measure any qubit in either the X or Z basis.

Taken together, these procedures allow for universal quantum computation.
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|ψ〉 S S† A H|ψ〉

|+〉 • S X •

Figure 6.24: Circuit for applying the Hadamard gate with an ancilla state. The
correction A depends on the result of the measurement: if the measurement result
is +1, then A = X, and if the measurement result is −1, then A = Z. The S and
S† gates can be performed using a circuit like the one in Fig. 6.23.

6.7 Extension to 2D color codes

We brie�y discuss how we can adapt our surface code procedures to the two-dimensional

color codes, in particular to the 4.8.8 2D color code.

Color codes in two dimensions are de�ned on a two-dimensional lattice which

is trivalent (each vertex is of degree three) and three-colorable (we can color the

plaquettes by three colors such that no two adjacent plaquettes are the same color).

Fig. 6.25 is an example of such a lattice. As opposed to the surface code, the color

Figure 6.25: A lattice with colored plaquettes on which one can de�ne the color
codes.

codes have qubits on the vertices of the lattice. Let V (p) denote the vertices that
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are on the boundary of a plaquette, and de�ne a stabilizer group structure of the

color codes as follows. To every plaquette p, associate two stabilizer generators, the

tensor product of Pauli X on the adjacent qubits, given by

SXp =
⊗

v∈V (p)

Xv, (6.10)

as well as the tensor product of Pauli Z on the adjacent qubits, given by

SXp =
⊗

v∈V (p)

Zv. (6.11)

The representative code in Fig. 6.25 has four-body (red) and eight-body (blue and

green) stabilizer generators. (These are the weights away from the boundaries of

the code, where four-body blue and green faces also exist.) Boundaries in the color

code also have a slightly richer structure. They are no longer smooth and rough,

but rather, they have a color associated to them. This color is determined by the

boundary'smissing color. For example, in Fig 6.25, the bottom boundary is red, since

there are no red plaquettes adjacent to the bottom edge. A careful accounting of

qubits and checks in Fig. 6.25 indicates that there is a single logical qubit associated

with the surface. For our purposes, we will treat it as a �gauge� degree of freedom

using the subsystem stabilizer code formalism [Bac06]. The operators X and Z

associated with this qubit can be chosen as strings of Pauli X and Z operators,

respectively, along the bottom boundary.

Just as with the surface codes, we can create defects in the color code to store

more logical qubits. In addition to having a type (X or Z), the defects now also

have a color. To create the analog of a smooth defect, we remove a Z-type stabilizer

generator, and to create the analog of a rough defect, we remove anX-type generator.

For a Z-type defect, one choice for Z is the removed generator (equivalent to a

string of a di�erent color around the defect), and one choice for X is a string of Xs

connecting to the appropriately-colored boundary, corresponding to the color of the

removed plaquette.
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As for any stabilizer code, we can de�ne the Hamiltonian in Eq. 6.1, and it has a

ground space equivalent to the codespace of the code. In the case of the color codes

it can be written as

H = −
∑

p

(
SXp + SZp

)
. (6.12)

The color-code Hamiltonian, like the surface-code Hamiltonian, does not lead to a

self-correcting quantum memory, but we can use adiabatic interpolations between

static Hamiltonians of the type in Eq. 6.12.

As in Sec. 6.4.1, we can perform an adiabatic interpolation to initially create the

color code without any defects. We imagine the same setting�a large number of

qubits in the ground state of local Hamiltonians H = −Z�and prepare the code by

using an interpolation of the form

H(t) =

(
1− t

T

)∑

j∈Q

(−Zj) +
t

T

∑

p

(
−SXp − SZp

)
+
t

T

∑

j 6∈Q

(−Zj) . (6.13)

(Since Z for the newly created code commutes with this Hamiltonian at all times, and

since it initially has eigenvalue +1, the qubit associated with the surface is prepared

in the +1 eigenstate of Z. This is the gauge degree of freedom mentioned above.)

As for the surface code, we choose to create a small color code �rst and then grow

it to avoid a shrinking gap. The small color code is then grown in a manner similar

to Sec. 6.4.1. To create a green Z-type defect in the +1 eigenstate of Z, described

for the surface code in Sec. 6.4.2, two Z-type green plaquettes separated by one red

plaquette are turned o� while simultaneously turning on −XX on a pair of qubits in

between, as shown in Fig. 6.26. Note that during the defect creation a neighboring

blue plaquette gets modi�ed to a six-body operator and a neighboring red plaquette

gets modi�ed to a two-body operator. Red and green defects can also be created in

a similar way, and X-type defects can be created in the state |+〉 by reversing the

roles of X and Z above.

The surface code procedures for growing and moving defects, presented in Sec. 6.4.3,
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Figure 6.26: Two adjacent green plaquettes are turned o� while turning on the −XX
Hamiltonian shown, creating a Z-type defect in the +1 eigenstate of Z (shown here
as a light blue string encircling the defect).

can also be adapted to the color codes. We won't present the the cases for di�erent

numbers of interior qubits separately here. Rather, we examine the simplest case

when there are only two neighboring qubits. The other cases, as in the surface code,

simply require more modi�cations of adjoining checks. To grow a Z-type green defect

like the one in Fig. 6.26, �rst pick another green face. It will be separated from the

defect region by a red plaquette. Along one of the two lines connecting the defect

region to the green check, turn on −XX while turning o� the green plaquette. This

will incur a modi�cation a neighboring blue plaquette as well as the red plaqette

itself.

Next, we show that the color code also supports detachment and attachment

procedures, described in Sec. 6.4.4 for the surface code. Imagine a two-plaquette red

defect, depicted in Fig. 6.27, that we would like to isolate from the bulk code. To com-

plete the detachment procedure for a Z-type red defect, two −XX Hamiltonians�on

the qubits indicated by yellow dots�are turned on while turning o� the Z-type red
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Figure 6.27: A Z-type red defect isolation procedure. The �drawbridge� in this case
is the red plaquette adjacent to the yellow dots in the �gure. The Z-type check on
the red face is turned o� while the two −XX operators are turned on. The four-body
X operator that is the product of the two −XX Hamiltonians is in the stabilizer
group before the evolution, and it is trivially in the stabilizer group of the code
after the evolution. The blue and green plaquettes adjacent to the yellow dots are
modi�ed to be a four-body operators. (Also note that the X-type check on the red
plaquette must also turned o� to fully isolate the region, and two −ZZ Hamiltonians
are turned on.)

plaquette operator adjacent to the dots. In the process, the adjacent blue and green

plaquettes get modi�ed to four-body operators. Since the four-body X operator

that is the product of the two −XX Hamiltonians is in the stabilizer group at the

beginning and at the end of the evolution, we have successfully severed the two code

regions.

As discussed in Sec. 6.4.5, it is important that we are able to prepare Z-type

defects in eigenstate of X and vice versa. In this case, the procedure is essentially

identical, and proceeds by preparing single qubits in particular states (±1 eigenstates

of X for Z-type defects and ±1 eigenstates of Z for X-type defects). Just as before,

a defect location is anticipated and the preparation of the surface proceeds normally
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everywhere except for the defect.

Ancilla state injection for the color codes is slightly di�erent compared to the

procedures for the surface code introduced in Sec. 6.4.6. After isolating a region

with green boundaries, or creating such a region adjacent to a green boundary, we

use the procedures described above to introduce an X-type and a Z-type defect

at the same location, as pictured in Fig. 6.28. Notice that the interior red checks

Figure 6.28: The creation of a defect region with both the X-type and Z-type green
checks turned o�. There are four interior qubits prepared in two Bell pairs by this
procedure.

have also been modi�ed during this procedure, putting the four interior qubits into

two Bell pairs. Additionally, the neighboring blue plaquettes have been modi�ed

to six-body operators. An evolution is then performed that only touches these four

interior qubits, turning on the Hamiltonians pictured in Fig. 6.29 while turning o�

the two −XX − ZZ Hamiltonians. Next, just as we did for the surface code, we

adiabatically drag a qubit to the desired state, as pictured in Fig. 6.30. The �logical

qubit� is localized to the upper-right qubit, with single-bodyX and Z operators. The
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Figure 6.29: Four interior qubits are �exposed.�

Figure 6.30: The upper-right qubit is adiabatically dragged to the desired state. For
instance, to inject T |+〉 states, U = TH.

next step is to �grow� these logical operators in a particular way. This is achieved

by performing another adiabatic evolution on the four qubits to the Hamiltonian
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represented in Fig. 6.31, which is just the reintroduction of the red face checks that

we turned o� at the beginning. This evolution modi�es X and Z from single-body

Figure 6.31: The single-body terms in Fig. 6.30 are turned o� while turning on the
X-type and Z-type checks on the red plaquette.

operators to the operators shown in Fig. 6.32. Finally, the X-type checks on the

green faces currently housing the defect are turned on while the adjacent Z-type

blue faces are turned o�, leading to the situation depicted in Fig. 6.33. As in the

case of the surface code, one of these faces is moved away and absorbed into the green

boundary of the region. Then the region is attached and the green defect encoding

the state is moved into the bulk computational region.

None of the other procedures introduced in Sec. 6.4 and Sec. 6.5 are appreciably

di�erent for the color codes. Measurements are still performed in an ancilla-coupled

manner, and X and Z can still be applied in a heralded fashion. Logical CNOT

gates are still performed by braiding, with the control being a Z-type defect and

the target being an X-type defect. Ref. [LAR11] discusses how to perform a CNOT

between defects of the same type (or color). Thus, all the ingredients are precisely the
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Figure 6.32: X and Z after the reintroduction of the red plaquette in Fig. 6.31.

Figure 6.33: The arrangement of the defect after reintroducing the X-type green
plaquettes. X is a string of Pauli X operators connecting two blue faces and Z is a
loop of Pauli Z operators around a blue face.
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same, and encoded universal quantum computation can be performed via adiabatic

interpolations between static Hamiltonians and ancilla-coupled measurements.

6.8 Conclusion

We have presented a model of quantum computation that utilizes adiabatic inter-

polations between static Hamiltonians that encode quantum information in their

degenerate ground spaces. By utilizing the process of adiabatic code deformation,

we create and grow small code regions, introduce and braid defects, and inject arbi-

trary states into defects. Surprisingly, these procedures never cause the Hamiltonian

gap to shrink below a constant proportional to ∆, and they can all be performed

with the protection of a gap and topology. However, to perform logical measure-

ments we use an ancilla-coupled scheme, braiding and isolating an ancilla defect and

then turning pieces of the Hamiltonian o� and destructively measuring a code region.

Taken together, these procedures allow for universal quantum computation.

Our model lives at the intersection of three other models of quantum computation.

It provides explicit examples of adiabatic evolutions in the setting of a topological

code, and we make an e�ort to supply procedures that do not increase the rate at

which errors (anyons) are introduced to the system. Since we store information in

the ground space of a changing Hamiltonian, our model also borrows intuition and

robustness from holonomic quantum computing. Indeed, the braiding operations

we perform rely precisely on the non-trivial structure of ground space holonomies.

Lastly, our adiabatic interpolations are like miniature adiabatic quantum computa-

tions, and their implementations are made less noisy by traversing an adiabatic path

more slowly.

Unfortunately, the model we present is not fault-tolerant. While the lifetime of

the ground space, and thus the encoded quantum information, is exponential in ∆/T
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in the presence of coupling to a thermal bath, no protection is gained by increasing

the size of the code. It would be interesting to study a model that can actively

remove entropy from the system, utilizing active error correction in a way that is

compatible with the Hamiltonian nature of the model, but we do not address these

problems in this work.

We hope that the model we have analyzed here can be useful for a further under-

standing of the properties of quantum computation based on stabilizer Hamiltonians.

In particular, it would be interesting to extend this work to models such as Kitaev's

quantum double model [Kit03] or the Turaev-Viro codes [KKR10], where universality

can be achieved without the creation and distillation of magic states.
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Direct Distillation of a New Family

of Magic States

This chapter describes research with Andrew Landahl on a new family of magic state

distillation protocols and is available in Ref. [LC13]. Portions of this chapter were

originally written by Andrew Landahl, but this �nal edit it my own. The technical

results here are almost entirely my own, from the calculation of distillation thresholds

to the counting of resource states.

Since being posted as an e-print to arxiv.org, much other work has been performed

in the general area of addressing resource requirements in fault-tolerant quantum

computation. A non-exhaustive list includes approaches that don't use distillation

[PR13, JOL13], repeat-until-success methods for distilling states [PS13], bottom-up

approaches to distillation [DCP14], and asymptotically optimal compiling methods

with better constants [RS14, Kli13]. It remains unclear if any of these methods

supersede our work; a useful future project would be to compare and contrast the

variety of approaches that have been developed to address the ways that arbitrary

gates can be synthesized fault-tolerantly.
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7.1 Introduction

One of the biggest challenges in quantum information science is that quantum in-

formation is incredibly fragile. Even with great experimental care, decoherence can

quickly corrupt key features such as superposition and entanglement. To circumvent

the ravages of decoherence, one can consider alternative models of quantum computa-

tion, such as adiabatic quantum computation [FG98, AvK+04, MLM07], which may

o�er direct physical immunity to certain classes of noise [CFP01, ÅKS05b, ÅKS05a,

SL05, RC05, AJN06, Gai06, TS07, AAN09, ATA09, dBP10]. Another approach is

to encode quantum information redundantly in an error-correcting code and process

it fault-tolerantly to suppress the catastrophic propagation of errors [Sho95, Sho96].

Somewhat miraculously, this latter approach works, and works arbitrarily well, when

quantum computations are expressed as quantum circuits in which each elementary

operation has a failure probability below a value known as the accuracy threshold

[ABO97, ABO99, Kit97a, Ste97, KLZ98, Pre98a, Pre98c]. Estimates for the accu-

racy threshold vary, and depend in part on the speci�cs of the fault-tolerant quantum

computing protocol used. One of the more favorable estimates is ≈ 1% for a protocol

based on Kitaev's surface codes [Kit97b, DKLP02, RHG07, FSG09]. An outstand-

ing grand challenge in quantum information science is �nding a way to marry fault-

tolerance methods with intrinsically robust computational models to achieve fault tol-

erance with more achievable resource requirements [JFS06, Lid08, PSRDL12, YS13].

One of the factors driving up the resource requirements in fault-tolerant quantum

computing is the need to restrict the set of elementary operations in the �primitive�

or �physical� instruction set to be �nite. This is necessary because these instruc-

tions are presumed to be implementable only up to some maximal accuracy. One

of the main jobs of a fault-tolerant quantum computing protocol is to de�ne how

one should sequence these primitive instructions together to synthesize arbitrarily

accurate versions of each element of a universal �encoded� or �logical� instruction
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set, even when the primitive instructions themselves are faulty. Then, using these

logical instructions, one can realize any quantum algorithm arbitrarily reliably, even

in the face of decoherence and other sources of noise.

In a typical fault-tolerant quantum computing protocol, some logical instructions

are �easy� to synthesize in that they are either transversal or otherwise naturally

fault-tolerant. The accuracy of these logical instructions can be improved arbitrarily

well by using quantum codes with larger distance. More quantitatively, the number

of gates and qubits required to achieve approximation error ε for the �easy� instruc-

tions scales as O(logα(1/ε)), where α depends on the protocol, predominantly on

the quantum code and classical decoding algorithm it uses. Standard techniques

for realizing such gates include transversal action [Pre98a, Pre98c] and code defor-

mation [DKLP02, RHG07]. 2D topological codes using most-likely-error decoding

can achieve α = 3 [DKLP02, RHG07]; Pippenger has conjectured that it should be

possible to lower α all the way to 1 [Ahn04].

Most protocols also have a set of logical instructions that are �hard� to synthesize,

requiring additional methods and resources. The Eastin-Knill theorem, for example,

guarantees that no protocol based on quantum codes that can detect arbitrary single-

qubit errors can realize a universal logical instruction set by transversal action alone

[EK09]. A typical approach to synthesizing these hard logical instructions is to use

the �magic state� approach, in which the �hard� instructions are state preparations

that are distilled to high �delity using the �easy� instructions [BK05]. The number

of ideal gates and qubits required to achieve approximation error ε in this approach

scales as O(logβ(1/ε)), where β depends on the magic-state distillation protocol.

When the the resource costs for the �easy� gates are also considered, the combined

overhead scales as O(logα+β(1/ε)). In the well-studied Bravyi-Kitaev 15-to-1 distil-

lation protocol [BK05], β = log3 15 ≈ 2.47. More recent constructions by Bravyi and

Haah [BH12] and by Jones [JWM+12] achieve β = log2 3 ≈ 1.58. Bravyi and Haah
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conjecture that it should be possible to lower β all the way to 1 [BH12].

As an aside, it is worth mentioning that fault-tolerant quantum computing pro-

tocols based on some quantum codes have no �hard� logical instructions at all. For

example, the 3D (and higher-dimensional) topological color codes have this feature

[BMD07, LAR11]. They cleverly circumvent the Eastin-Knill theorem by making

(non-transversal!) quantum error correction be the process by which magic-states

are prepared. A challenge to using these codes in practice is that implementing them

without relying on long-distance quantum communication requires 3D spatial geom-

etry, but many quantum technologies are naturally restricted to 1D or 2D. Even

more challenging is that the only explicit 3D color code of which we are aware is

the 15-qubit shortened quantum Reed-Muller code [BMD07]. Concatenated schemes

using the 15-qubit code would lead to a fault-tolerant scheme with only �easy� in-

structions, but concatenated schemes typically su�er signi�cant performance losses

when realized in a �xed spatial dimension. For example, the largest accuracy thresh-

old of which we are aware for a concatenated-coding protocol in a semiregular 2D

geometry is 1.3× 10−5 [SR09].

Because of the additional overhead incurred in synthesizing �hard� logical instruc-

tions, research to date has focused on what one might term reduced instruction set

computing, or risc, architectures in which only a single �hard� logical instruction

is added to an otherwise �easy� logical instruction set. However, while a risc ar-

chitecture minimizes the number of hard instructions in an instruction set, it does

not necessarily minimize the number of hard instructions used in speci�c algorithms.

For example, in order to compile the logical instructions into a sequence that ap-

proximates a quantum computation with error at most ε, one must use O(logγ(1/ε))

gates, where γ depends on the quantum compiling algorithm used. The overall cost

of fault-tolerantly implementing a quantum computation is then O(logα+β+γ(1/ε)).

By increasing the size of the instruction set so that one has a complex instruction set
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computing, or cisc architecture, one can optimize both β and γ together rather than

separately. When quantum compiling is optimized independently, γ can be no lower

than 1 [HRC02], a value recently achieved by an explicit Diophantine-equation-based

algorithm by Selinger [Sel12] and Kliuchnikov et al. [KMM13a]. For comparison's

sake, the more well-studied Dawson-Nielsen variant of the Solovay-Kitaev algorithm

achieves γ = log 5/ log(3/2) ≈ 3.97 [DN06].

To compare and contrast the risc and cisc approaches more concretely without

being encumbered by details of quantum error correcting codes and fault tolerance

(which only contribute to α and a delineation of which logical instructions are �easy�

or �hard��properties shared by both approaches), we abstract these details away and

simply consider the straightforward problem of how to approximate π/2k rotations

of a qubit about its Z axis with a desired error at most ε′ when we are given the

ability to perform a proscribed set of �easy� instructions that are error-free and a

proscribed set of �hard� instructions that have error at most ε > ε′. In this setting,

it is clear that some kind of distillation of the hard instructions will be necessary to

synthesize the Z rotations with lower error. Z(π/2k) rotations are a natural candidate

transformation to use to compare risc and cisc approaches, because they arise in

many quantum algorithms, for example those that make use of the quantum Fourier

transform [NC00].

In Sec. 7.2, we formulate the statement of the problem we are considering more

precisely. In Sec. 7.3, we review the standard risc solution to this problem. In

Sec. 7.4, we describe our cisc solution, and compare it to the risc solution, demon-

strating that for a regime of target ε′ our solution o�ers a reduction in the number

of resource states used to achieve this task. Sec. 7.5 concludes. Appendix B elabo-

rates the shortened quantum Reed-Muller codes we use to e�ect our protocol, and

Appendix C formulates a testable set of criteria one can use to check if a code admits

Z(π/2k) transversally.
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7.2 Problem statement

Consider quantum Z rotations of the form

Zk :=


1 0

0 eiπ/2
k


 = eiπ/2

k+1

Rz

( π
2k

)
, (7.1)

for integers k ≥ 0. As a shorthand, we use Z to denote the Pauli operator Z0 and

S and T to denote the rotations Z1 and Z2 respectively. We are interested in the

scenario in which the Zk gates are not available directly, but rather their action on

|+〉 states is, where |+〉 := H|0〉 = (|0〉 + |1〉)/
√

2 and H := (X + Z)/
√

2. For

concreteness, let Zkmax
denote the set of states of the form

Zk|+〉 =
1√
2

(
|0〉+ eiπ/2

k |1〉
)

(7.2)

for 2 ≤ k ≤ kmax.

In conjunction with the set S of stabilizer operations [Got99], the set Zkmax
can

e�ect universal quantum computation, even when restricted to kmax ≤ 2 [NC00].

Here we restrict our attention to a certain (overcomplete) generating set for S, namely

the set consisting of the operations

{
I, X, Y, Z, S, S†, H

}
∪
{
|0〉, |+〉, MZ , MX

}
(7.3)

and

{
Λ(Xq1 ⊗ · · · ⊗Xqm) | qi ∈ {0, 1}

}
, (7.4)

where I, X, Y , and Z denote the Pauli operators, MX and MZ denote projective

measurements in the X and Z bases (but which may be �destructive� in that they do

not necessarily prepare X or Z eigenstates after the measurement), and Λ(Xq) de-

notes the one-control, many-target controlled-not gate, where the number of targets

m is some e�ciently computable number. The unitary gates in this generating set
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generate a subgroup of the stabilizer operations known as the Cli�ord group [Got99],

which is the set of operations that conjugate (tensor products of) Pauli operators to

(tensor products of) Pauli operators.

These generators of S are �easy� to perform at the logical level for the 4.8.8 2D

color codes, motivating our choice [LAR11]. The set is also almost �easy� for Kitaev's

2D surface codes [Kit97b], except generating S and S† requires some constant startup

costs that can be amortized [And12]. Amazingly, as noted in the introduction, all

elements from the set S ∪ Z2�a universal set�are �easy� to perform at the logical

level for 3D color codes, but 3D geometries are required to realize error correction

with these codes in a spatially local manner [LAR11].

While errors in the �easy� operations can be suppressed arbitrarily close to zero

by using arbitrarily large 2D topological codes, errors in the operations in Zkmax

cannot, making these operations �hard� for these codes. The states in Zkmax
can be

�injected� into such codes at the logical level [RHG07], but doing so also injects the

errors in the state. In other words, if the states in Zkmax
have errors that are at

most ε (as measured by the trace distance [NC00]) as primitive instructions, then

the injected states will have errors that are essentially the same when they become

logical instructions, assuming the injection process itself adds errors at a low enough

probability1.

Motivated by these properties of 2D topological codes, we will �x the control

model for our study to be the aforementioned generators of S and Zkmax
, and the

error model to be one in which the operations in S are error-free but in which

the Zk|+〉 states in Zkmax
each err by at most ε, as measured by the trace distance.

Notice that this control model makes no reference to codes or fault-tolerant quantum

computing protocols. We have abstracted these away to focus on how to combine

1How errors propagate in the injection process is an understudied problem in our opinion.
However, we will not consider this issue here because we are abstracting away the details
of quantum error correcting codes in our analysis.
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elementary operations in S and Zkmax
to achieve high-�delity Z rotations.

The question we address here is,

How many resource states drawn from Zkmax does it take to approximate

Zk with error at most ε′ < ε as a function of kmax, k, ε, and ε
′?

The values of k we are interested in could be smaller than, equal to, or larger

than kmax. However, since Z0 and Z1 are both in the error-free set S, we restrict our
attention to k ≥ 2.

7.3 Traditional quantum risc architecture solution

The standard method for re�ning the accuracy of a Zk rotation is to synthesize it with

what one might term a quantum reduced instruction set computing, or quantum risc,

architecture. The main idea is to only synthesize T := Z2 gates to high accuracy and

then rely on a quantum compiling algorithm to approximate Zk arbitrarily well with a

quantum circuit over T gates and adaptive stabilizer operations. The overall process

can be broken into the three steps of quantum compiling, quantum gate teleportation,

and magic-state distillation.

7.3.1 Protocol

Quantum compiling

The �rst step, quantum compiling, generates a classical description of an ideal quan-

tum circuit that approximates Zk to accuracy εqc using O(logγ(1/εqc)) quantum

operations drawn from some instruction set, for some small constant γ. While the
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error εqc can be measured in multiple ways, a wise choice is to measure εqc using

the completely-bounded (�diamond�) trace distance [Kit97a, Sac05, Wat09] for rea-

sons that we will explain later. Examples of quantum compiling algorithms include

the Solovay-Kitaev algorithm [Sol00, Kit97a, NC00, HRC02, DN06, Fow05, TVH12],

the Kitaev phase kickback algorithm [Kit95, CEMM98, KSV02], programmed an-

cilla algorithms [IWPK08, JWM+12, DCS13], genetic algorithms [MK13], and even

Diophantine-equation algorithms [KMM13a, Sel12]. When the accuracy demand is

not great, it is sometimes even plausible to use algorithms which take exponen-

tial time to �nd very short approximation sequences [Fow11a, AMMR13, KMM13b,

BS12]. As noted in the introduction, values for γ range from 3.97 to 1.

Quantum compiling algorithms typically assume that the elements of the in-

struction set are error-free. If one implements the compiled circuit Z(qc)
k for Zk with

operations that may be in error, the resulting approximation error will increase. To

calculate the total error εk in this �awed circuit Z̃(qc)
k , we use the fact that the dia-

mond norm has many useful mathematical properties, including obeying the triangle

inequality, the chaining inequality, and unitary invariance [GLN05]. Using these, we

can bound εk as

εk = d�

(
Zk, Z̃

(qc)
k

)
(7.5)

≤ d�

(
Zk, Z

(qc)
k

)
+ d�

(
Z

(qc)
k , Z̃

(qc)
k

)
(7.6)

≤ εqc + nT εT , (7.7)

where the compiled circuit uses nT T gates, each with error at most εT . To achieve

the desired approximation error of ε′, it follows that su�cient conditions are

εqc ≤ Cqcε
′ (7.8)

εT ≤ CT ε
′/nT , (7.9)

for positive constants constrained to obey

CT + Cqc ≤ 1. (7.10)
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For comparison with our protocol introduced later, we chose the Diophantine

equation-based compiling protocol presented by Selinger in Ref. [Sel12]. This pro-

tocol saturates the asymptotic lower bound (up to constants) on the number of T

gates required to approximate a single-qubit gate, and for Z rotations has a T count

of

nT (εqc) ≈ 11 + 4 log2

(
1

εqc

)
. (7.11)

Quantum gate teleportation

The second step, quantum gate teleportation, replaces each T gate in the quantum-

compiled circuit by an adaptive stabilizer circuit that teleports the T gate from the

state T |+〉 or T †|+〉 to the desired qubit. An example of a teleportation circuit

using T |+〉 is depicted in Fig. 7.1. The circuit is also correct if both T operators are

changed to T †; it is even correct if only one of the T operators is changed to a T † if

the classical control is also changed to act on a 0 instead of a 1.

|ψ〉 • S T |ψ〉

T |+〉 MZ •

Figure 7.1: Circuit for teleporting the T gate from the T |+〉 magic state.

Each teleportation circuit requires the use of just a single T |+〉 resource state.

The accuracy requirement set by εT will determine whether these are `bare' T |+〉
states of accuracy ε or whether these states are the result of one or more rounds of

distillation, described in the next section.
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Magic-state distillation

The third step, magic-state distillation, generates T |+〉 or T †|+〉 states with accuracy
εT from a much larger collection of states whose accuracy is only ε. Reichardt showed

that this is possible using an ideal (error-free) stabilizer circuit if and only if ε is less

than the distillation threshold (2−
√

2)/4 ≈ 0.146 [Rei05]. When operations in the

stabilizer circuit can err, the evaluation of the threshold is more complex, as studied

by Jochym-O'Connor et al. [JOYHL13].

There are multiple variations on how to implement magic-state distillation dis-

cussed in the literature [Kni04, Rei04, Rei09, BK05, MEK12, BH12]; a popular one is

the 15-to-1 Bravyi-Kitaev protocol [BK05] based on the 15-qubit shortened quantum

Reed-Muller code QRM(1, 4). (See Appendix B for an explanation of this notation.)

To date, the best distillation scheme in terms of resource costs is a hybrid of

the 15-to-1 Bravyi-Kitaev protocol [BK05], the 10-to-2 Meier-Eastin-Knill protocol

[MEK12], and the (3k+8)-to-k family of protocols discovered by Bravyi and Haah

[BH12]. Bravyi and Haah optimized combinations of these protocols to �nd the most

e�cient way of producing a state T |+〉 of target accuracy εT [BH12]. The optimiza-

tion yields about a factor of two improvement over a scheme which utilizes only a

combination of the 15-to-1 and the 10-to-2 protocols. We perform no such optimiza-

tion over protocols when we compare to our own distillation protocols, because we

already see a savings of more than an order of magnitude over these.

We chose to compare our protocol to resource costs incurred by the Selinger

approximation protocol in conjunction with the Meier-Eastin-Knill (MEK) 10-to-2

protocol. For completeness we now provide a brief description of how the MEK

protocol functions [MEK12]. The goal is to prepare a target resource state, in our

case T |+〉, with some desired accuracy εT given only faulty copies of the same state

with error ε > εT . The simplest way to prepare such a state would be to measure
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an operator whose eigenstate is T |+〉, but given access to only Cli�ord operations

this cannot be done. To circumvent this problem, more resource states of accuracy ε

are consumed to perform the desired measurement. For the MEK protocol, the total

number of resource states consumed per round is 10. Additionally, the measurement

performed is a logical measurement on an encoded qubit (or qubits). This allows for

the detection of errors during the measurement procedure and is responsible for the

increased accuracy of the output resource states. If the desired logical measurement

outcome has been observed, the syndrome for the code is measured and, conditioned

on the syndrome being error-free, running the decoding circuit leaves two resource

states with error O(ε2).

The code utilized by the MEK protocol is the [[4, 2, 2]] quantum error-detecting

code. The distilled states are the eigenstates of H, denoted |H〉, which are related

to T |+〉 by a Cli�ord rotation as follows:

|H〉 = SH (T |+〉) . (7.12)

The protocol proceeds as follows:

1. Encode two (�twirled�) copies of |H〉 in the [[4, 2, 2]] code. �Twirling� is per-

formed by the probabilistic process that applies either I or H to the state,

each with probability 1/2.

2. Perform a measurement of logical H1H2, which for this code is the same as

transversal H up to a SWAP. This measurement uses eight additional |H〉
states, which can be inferred from the identities in Fig. 1 of Ref. [MEK12].

3. If a −1 outcome is obtained for the measurement of H1H2, start over. If a +1

outcome is obtained, measure the syndrome for the code.

4. If an error-free syndrome is reported, decode. Otherwise, start over.

163



Chapter 7. Direct Distillation of a New Family of Magic States

5. After decoding there will be two higher �delity |H〉 states with error O(ε2).

Note that the syndrome measurements can be pushed through the decoding circuit,

becoming single-qubit measurements after decoding is performed.

Counting the number of resource states required to produce nT states of accuracy

εT is accomplished by numerically evaluating the recursive relationship

nT (`) = 5nT (`− 1)/a(ε`), (7.13)

where a(ε`) is the probability of the protocol accepting, given above Eq. (3) in

Ref. [MEK12], ε` is the accuracy after ` rounds of distillation, and the base of the

recursion is simply nT (0) = 5/a(ε). Intuitively, this just says that to produce one

resource state of accuracy O(ε2) requires on average 5/a(ε) states of �delity ε. We

use this, in conjunction with Eq. (3) in [MEK12] to calculate how many resource

states are required to achieve a target εT .

7.3.2 Resource analysis

As mentioned in the introduction, asymptotically the total number of operations

required to approximate a Zk gate with error ε′ is O(logα+β+γ(1/ε′)), where the

exponents describe various overheads of the steps involved: fault-tolerant stabilizer

operations (α), magic-state distillation (β), and quantum compiling (γ). While a

good starting point, asymptotic analysis like this fails to convey the great number

of elementary operations needed to implement Zk gates, as it sweeps the (large!)

constants under the rug. The explicit expression for the expected number of states

used by the risc approach to approximate Zk to error ε′ using T |+〉 states whose
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error is ε is

nrisc

states(Zk, ε
′, ε) =

[
11 + 4 log2

(
1

Cqcε′

)]
(7.14)

× nTstates
(
CT ε

′

nT
, ε

)
,

where nTstates(CT ε
′/nT , ε) is the number of T |+〉 states of error ε required to produce

a T |+〉 state of error CT ε′/nT . The idea here is to �rst use the results of Ref. [Sel12]
to approximate Zk to accuracy Cqcε

′, and then replace each T gate in the compiled

sequence with a teleportation circuit using a T |+〉 state of accuracy CT ε′/nT .

To better appreciate the compiling resources needed, we consider the case when

Cqc = CT = 1/2, which balances the quality demands of quantum compiling and

magic-state distillation. We give the T |+〉 state a generous error rate of ε = 10−4,

which is well below the estimated threshold of ≈ 1% for fault-tolerant quantum com-

putation with surface codes [RHG07, FSG09]. The number of states nrisc

states required

to synthesize Zk with these parameters to various approximation levels are plotted

in the dashed curve in Fig. 7.4. One appealing feature, especially for large values of

k, is that the curve does not depend on k�the number of states needed is solely a

function of the desired output precision.

7.4 Quantum cisc architecture solution

Now that we've described how to implement Zk rotations using a quantum risc

architecture, it's natural to ask if extending the instruction set to a quantum complex

instruction set computing architecture, or quantum cisc architecture, could provide

any advantage in terms of a reduction in the required number of resource states.

The point is that in any given quantum algorithm instance, one isn't interested in

applying arbitrary gates but rather a speci�c set of gates, say Zk gates up to some

maximum value of k in a quantum Fourier transform. Because of this, it may make
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more sense to just include those gates in the instruction set to begin with rather

than compiling them from a more limited instruction set. Even if it is only feasible

to include gates up to some value of Zkmax
, it is reasonable to expect that the length

of the resulting compiled sequences will be shorter if an arbitrary gate is required.

7.4.1 Protocol

In our protocol we consider a programmed-ancilla cisc architecture in which we

pre-compile Zk|+〉 states o�ine that can be used later to teleport the gate Zk on

demand via the circuit in Fig. 7.2. While the teleportation may require a Zk−1 gate

for correction, iterating this process recursively is a negative binomial process that

converges exponentially quickly�the expected number of Z rotations for any k is

two: Zk on |+〉 and Zk−1 after the measurement. To achieve error at most ε′ on the

teleported Zk gate, the Zk|+〉 state and the Zk−1 gate need to be performed with

errors at most C1ε
′ and C2ε

′ respectively, where C1 + C2 ≤ 1.

|ψ〉 • Zk−1 Zk|ψ〉

Zk|+〉 MZ •

Figure 7.2: Magic-state circuit for teleporting the Zk gate.

Our cisc approach is distinguished from previous programmed-ancilla approaches

[IWPK08, JWM+12, DCS13] in that we distill ancilla Zk|+〉 states directly as in-

structions unto themselves. This is a �top-down� approach in which some of the

time auxiliary Zk−1|+〉 states are needed, and even less of the time Zk−2|+〉 states
are needed, and so on, until we get to the point that very rarely do we need T |+〉
states. The previous approaches are �bottom-up� in that they always compile from

T |+〉 states upwards until the Zk gate is performed; some of these schemes (notably

the recent one by Duclos-Cianci and Svore [DCS13]) reduce resources by including
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intermediate targets, but ultimately they all start from T |+〉 preparations at the

lowest level. By starting from the top, we avoid the need to probe all the way to

the bottom most of the time. As we will see, this results in savings in the number of

operations needed to synthesize Zk gates.

The key to our construction is a family of shortened quantum Reed-Muller codes

that are de�ned in Appendix B. The property of these codes that we harness here

is that the QRM(1, k + 2) codes admit the logical Zk gate transversally, namely by

applying Z†k to each qubit independently. We know this because these codes satisfy

the conditions we derived in Appendix C. Because of this transversality property,

we can use the QRM(1, k + 2) code to distill Z†k|+〉 states using circuits that are

essentially the same as the one used in Refs. [RHG07, FMMC12] to distill Z2|+〉
states using the 15-qubit code, a circuit that is more compact than the one originally

described by Bravyi and Kitaev [BK05]. Speci�cally, if we replace the encoding

circuit for QRM(1, 4) with the encoding circuit for QRM(1, k+ 2) and replace each

T with Zk, the circuit becomes a distillation circuit for Z†k|+〉 states. Due to the

numerical results in Ref. [JOYHL13] that showed that magic states which are left

untwirled can still be distilled, we also omit twirling our bare input states. As an

example, we depict the distillation circuit for Z†3 in Fig. 7.3; we derived the encoding

circuit forQRM(1, 5) in the �gure using the methods outlined in Refs. [Got97, NC00].

We defer a proof of why these codes have the transversality property to Appendix C

and instead focus on how the protocol works here. We will note here, though, that

our proof generalizes the �tri-orthogonality� condition that Bravyi and Haah used to

establish the transversality of T gates for their codes to a lemma in coding theory

proved by Ward that we call Ward's Divisibility Test [War90, Liu06].

Using the QRM(1, k + 2) code to distill Zk|+〉 states yields the following distil-
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|+〉 • Z3 MX

|+〉 • Z3 MX

|+〉 • Z3 MX

|+〉 • Z3 MX

|+〉 • Z3 MX

|0〉 Z3 MX

|0〉 Z3 MX

|0〉 Z3 MX

|0〉 Z3 MX

|0〉 Z3 MX

|0〉 Z3 MX

|0〉 Z3 MX

|0〉 Z3 MX

|0〉 Z3 MX

|0〉 Z3 MX

|0〉 Z3 MX

|0〉 Z3 MX

|0〉 Z3 MX

|0〉 Z3 MX

|0〉 Z3 MX

|0〉 Z3 MX

|0〉 Z3 MX

|0〉 Z3 MX

|0〉 Z3 MX

|0〉 Z3 MX

|0〉 Z3 MX

|0〉 Z3 MX

|0〉 Z3 MX

|0〉 Z3 MX

|0〉 Z3 MX

|0〉 Z3 MX

|+〉 • Z†3|+〉

Figure 7.3: Distillation circuit for Z†3|+〉 =
√
T
†|+〉 states; it is the 31-qubit shortened

quantum Reed-Muller code's encoding circuit applied to half of a Bell state followed by the
logical Z3 gate and MX measurement of the qubits on this encoded half. The Z3 gates
are performed using the teleportation circuit depicted in Fig. 7.2. This circuit also distills
Z3|+〉 states on Z†3|+〉 inputs.
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lation polynomial:

εout(ε) =
1− (1− 2ε)2k+1−1

[
2ε(2k+2 − 1) + (1− 2ε)2k+1

]

2
[
1 + (2k+2 − 1)(1− 2ε)2k+1

] (7.15)

≈
(
1− 3 · 2k+1 + 22k+3

)
(ε3/3 + ε4 +O(ε5)). (7.16)

Approximate values for the distillation threshold for various k are listed in Table 7.1;

these are the same threshold values one would have obtained if one had used the

code for distilling Zk|+〉 to distill Zk+1|+〉 instead, but the improvement in accuracy

in such a case would only be to O(ε) instead of O(ε3) by generalizing the method of

Reichardt [Rei05].

k εout/ε
3 εthk

2 35 14.15%
3 155 6.94%
4 651 3.44%
5 2 667 1.71%
6 10 795 0.85%
7 43 435 0.43%
8 174 251 0.21%
9 698 027 0.11%
10 2 794 155 0.05%

Table 7.1: Distillation polynomials (to most signi�cant order) and distillation thresh-
olds for distilling Z†k|+〉 states.

Although the distillation threshold drops as k increases, it is still larger than or

comparable to the threshold of ≈ 1% for fault-tolerant quantum computation with

surface codes [DKLP02, RHG07, FSG09] for values of k less than or equal to 6,

where it takes the value εth6 ≈ 0.85%. This then sets a reasonable upper limit on

the size of the complex instruction set one should consider for performing Zk gates

in this way; going further would place greater �delity demands on the elementary

operations than fault-tolerance does.
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To achieve εout ≤ ε′, one must iterate the distillation circuit

`(ε′, ε) =

⌈
log ε′

log εout(ε)

⌉
(7.17)

times. The expected number of repetitions per iteration needed to achieve distillation

success is

E[t(ε)] =
2k+2

1 + (2k+2 − 1)(1− 2ε)2k+1 . (7.18)

Unlike in the risc protocol, in which the corrective step in the teleportation

circuit added no error, in our protocol each teleportation circuit may add error in

its adaptive Zk−1 gate. Therefore, we must implement the Zk−1 gate with low error

using our protocol recursively. We require that the error in the corrective Zk−1 gate

be at most the error in the Zk gates in Fig. 7.3. Due to the di�erences in the

distillation polynomials for di�erent values of k, it turns out that the error in the

Zk−1 gates for the corrective step is always less than the error in the Zk gates as

long as both are being implemented by magic states that have been subjected to the

same number of levels of distillation using our protocols.

7.4.2 Resource analysis

Asymptotically, our cisc protocol achieves a value of β = βk := log3(2k+2 − 1)

and γ = 0. The sum β + γ is less than the sum of the 15-to-1 Bravyi-Kitaev

magic-state distillation β and the Dawson-Nielsen compiling γ for k ≤ 9. However,

since the distillation threshold drops below 0.85% after k = 6, as argued earlier,

it is probably wisest to stop at k = 6. Compared to the best values we know

for β (≈ 1.58 by Refs. [BH12, JWM+12]) and γ (1 by Ref. [KMM13a]), our cisc

protocol would appear to be only superior for k ≤ 2. However it is important to

remember, as mentioned earlier, that arguing about asymptotics in this way can be

very misleading as the constants involved can be huge. Indeed, asymptotically our
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protocol is inferior in that it requires many more resource states than the Selinger +

MEK scheme. However, we �nd that for a fairly large range of values of ε′ and k, our

protocol performs better, not becoming worse until ε′ ≈ 10−10 for k = 5 and k = 6

and staying comparable or better for k = 3 and k = 4 to accuracies of ε′ < 10−70.

Due to the discrete jumps taken in the resource requirements of our protocol, the

precise analysis becomes a bit subtle. The plot in Fig. 7.4 gives a better feel for when

it is favorable to use our cisc protocol.

An important di�erence in accounting for the resource demands of our protocol

as compared to the risc solution is that, while we incur no overhead from quantum

compiling, we do have a potentially more resource intensive teleportation step. While

in the risc protocol the eventual use of a distilled magic state required only a possible

Cli�ord correction in the teleportation procedure, in the cisc protocol we have to

also account for the fact that when teleporting a Zk|+〉 state it may be necessary to

perform a Zk−1 correction that is accurate to at least the same ε′.

For the cisc architecture, we only allow ourselves access to Zk|+〉 states of pre-
cision ε and the use of QRM-based distillation routines, even for k = 2. Because

of this, we slightly overcount the resources required by not optimizing over the best

routine to produce a Z2|+〉 state of a desired ε′.

We produce our counts via the following recursive formula:

ncisc

states(k, `) =
(
2k+2 − 1

) [
ncisc

states(k, `− 1) (7.19)

+
1

2
ncisc

states(k − 1, `− 1)

]
· E[t(ε)

+
1

2
ncisc

states(k − 1, `),

where the base of the recursion is given by

ncisc

states(2, `) = E[t(ε)]15`. (7.20)
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The factor E[t(ε)], which accounts for the need to repeat the protocol if an improper

measurement outcome is obtained, is very nearly 1 for the �rst level of distillation

given bare states of accuracy ε = 10−4, and is even closer to 1 at higher levels when

the input states are accurate to even higher precision. The leading 2k+2 − 1 is due

to the number of Zk|+〉 states needed at each level ` of distillation. The �rst term

in the square brackets accounts for the fact that distilling a new state at level `

requires states already distilled to level `− 1, while the second term accounts for the

fact that each of these Zk|+〉 states from level ` − 1 are injected to our circuit via

teleportation and on average half will require a Zk−1 correction, also from distillation

level ` − 1. The �nal term counts the resources needed for the �nal teleportation

step that consumes the distilled magic state. Here, half of the time we will need to

perform a Zk−1 correction which must be distilled to the same level as the Zk gate

being applied.

7.5 Conclusions

Fig. 7.4 shows the results of counting resource states for the various protocols we've

described. Interpreting the results is subtle, with our protocols performing better

when using only one or two rounds of distillation and losing out later as the asymp-

totics take over. As mentioned earlier, our protocols are asymptotically much worse

that the current state of the art, but for accuracies of ε′ > 10−10, or indeed as low

as 10−70 for k = 3 or k = 4, the cisc solution outperforms the risc solution. Some

of the cisc protocols show an interesting reentrant behavior, becoming better than

the risc protocol as accuracy demands increase even though they started out using

more states at lower accuracies. This is due to the large jumps in accuracy when

another level of distillation is used in our scheme.

The di�erence between the architectures at low precision demand re�ects the fact
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Figure 7.4: Log of the number of resource states required to synthesize the quantum
Z(π/2k) gate as a function of the log of the inverse of the desired precision ε′ for the risc

architecture described in the text and our cisc architecture.

that when the hardware error rate is already below this demand (i.e., when ε < ε′),

the only gates required by our quantum cisc architecture are those used to teleport

the gate Zk from the state Zk|+〉 to the target state |ψ〉. The risc architecture

doesn't include the Zk gate for k > 2, so it must instead use a quantum compiling

strategy to synthesize Zk from T |+〉 states.

Our cisc architecture does have some limitations. To begin, as can be seen in

Fig. 7.4, as k increases, even at �xed precision demand ε′, the number of gates our

cisc architecture uses increases. At any �xed ε′, even those corresponding to very

low accuracies, there will be some k for which the risc architecture uses fewer gates.

However, a feature not apparent in this plot but apparent from Table 7.1 is that,
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even before this happens, the distillation threshold for our cisc architecture drops to

a point below the accuracy threshold for fault-tolerant quantum computation. Using

our cisc architecture beyond k = 6 would be foolhardy, as suddenly the distillation

of encoded instructions and not the capacity of the underlying code would set the

experimental hardware demands at the physical level. For this reason, we advocate

using our cisc architecture up to k = 6, and then relying on an external quantum

compiling algorithm (but with a larger base instruction set than a quantum risc

architecture would have) to synthesize Zk rotations for larger k values.

We focused on synthesizing Zk rotations for two reasons. First, numerous quan-

tum algorithms rely on the quantum Fourier transform, which in turn is naturally

decomposed into Cli�ord operations and Zk rotations. We thought it was impor-

tant to focus on synthesizing transformations that arise in actual algorithms rather

than operations that occur only in the abstract. Second, and more signi�cantly, we

were able to �nd a code family, the shortened quantum Reed-Muller codes, that we

could leverage to create distillation protocols for Zk rotations. The key enabling

property these codes possess is code divisibility. With this insight, we generalized

the �tri-orthogonality� condition of Bravyi and Haah [BH12] to a condition we call

Ward's Divisibility Test, which recognizes its analogous role in classical coding theory

[War90]. We haven't sought codes beyond the shortened quantum Reed-Muller codes

that pass Ward's Divisibility Test for admitting a Zk-distillation protocol. However,

we present and prove the correctness of this test in Appendix C in the hopes that

others will �nd it helpful in the quest to improve quantum cisc architectures.

One of the overall messages of our work is that it is not optimal to �rst optimize

the number of gates used to synthesize a universal instruction set and then opti-

mize the number of universal instructions needed to synthesize a gate of interest,

in this case, a Zk gate. Instead, one can reap signi�cant advantages by approach-

ing this as a single optimization problem. The best conjectured asymptotic scaling
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when approached as two separate problems requires a number of gates that scales

as O(log2(1/ε′)). By approaching this as a single optimization problem, one may be

able to achieve O(log(1/ε′)) for the combined process.

The resource tradeo� space for implementing quantum operations with �nite

discrete instruction sets is an area ripe for investigation. Beyond just minimizing

the number of resource states required to approximate transformations of interest

(our focus here), one might be interested in minimizing other metrics, such as the

number of gates, the number of qubits used, the depth of the approximating quantum

circuit, or the size of the approximating quantum circuit (which is its depth times the

number of qubits). Depending on the task at hand, one instruction set may be more

suitable than another. Investigations along these lines help us better understand the

limits and capabilities of �nite-instruction-set quantum information processing.
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Chapter 8

Summary and Outlook

8.1 Summary

In this dissertation, I've provided an introduction to fault-tolerant quantum computa-

tion using topological quantum error-correcting codes (Chapters 3 and 4), explored

the relationship between two ways of using defects in the topological color codes

(Chapter 5), presented a non-fault-tolerant model of quantum computation that

synthesizes three prior models (Chapter 6), and described a new family of magic

state distillation protocols that can implement a certain family of quantum gates

with fewer resources than previous methods (Chapter 7). All of these topics fall un-

der the general umbrella of using topologically ordered quantum systems to perform

universal quantum computation, but they have varying degrees of robustness and

resilience to noise.

For the models discussed in Chapter 4, fully fault-tolerant quantum computations

can be implemented using only nearest neighbor interactions on a two-dimensional

square lattice. A threshold of nearly 1% exists for a surface code architecture in

the presence of independent depolarizing noise on each qubit, and superconducting

176



Chapter 8. Summary and Outlook

technologies are approaching gate �delities that are at or below this threshold value

[BKM+14]. In contrast, the model presented in Chapter 6, based on adiabatic inter-

polations between static Hamiltonians, is not fault-tolerant. This is closely related to

the fact that the surface code Hamiltonian does not provide a self-correcting quan-

tum memory due to a ground state lifetime that is constant in the size of the system

[AFH09].

In both the Hamiltonian model for the surface code as well as its usual operation

as an error correcting code, the injection of special ancilla states and their subse-

quent distillation to higher �delities is required to enable a universal set of logical

gates. Chapter 7 addresses the resource costs for such state distillation protocols by

introducing a new family of protocols capable of directly distilling states that can

implement single-qubit Z rotations by angles π/2k. This direct distillation obviates

the need for a quantum compiling procedure for rotations of this type and provides

a savings in terms of the number of resource states needed to achieve a target gate

�delity (for a wide range of target �delities).

8.2 Outlook

The work in this dissertation naturally leads to several interesting questions. For

instance, it is natural to ask how the Hamiltonian model presented in Chapter 6

can be made fault-tolerant. In some sense, this question is equivalent to the prob-

lem of �nding a self-correcting quantum memory, where entropy introduced to the

system by environmental noise is naturally dissipated by the coupled environment-

system dynamics. As such, it might be fruitful to apply the techniques developed in

Chapter 6 to the (mildly unrealistic) four-dimensional toric code [DKLP02]�which

is fully self-correcting�or to the family of three-dimensional cubic codes introduced

by Haah [Haa11]�which are psuedo-self-correcting for systems up to a certain size
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[BH11, BH13]. Unfortunately, there are strong no-go results prohibiting the existence

of self-correcting quantum memories in two dimensions [Yos11], so searches for mod-

els using local Hamiltonians restricted to planar geometries will likely fail. Another

approach is to search for clever ways to interleave the gap-protected Hamiltonian

model with standard quantum error correction, although this approach begs the

question as to why the standard approach isn't just fully adopted. The Hamiltonian

techniques still need to prove their worth.

Follow-on questions to the work in Chapter 7 include extending the protocols to

many-to-few schemes�examined for T |+〉 state distillation in Ref. [BH12]�performing

a numerical optimization over the new collection of protocols to �nd combinations of

protocols with smaller resource costs, and examining the problem of compiling over

the enlarged quantum gate set provided by the ability to distill this richer set of of

states.
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Appendix A

Basics of Algebraic Topology

A.1 Overview

This appendix discusses one of the fundamental tools of algebraic topology, the �rst

homology group. Before de�ning what a homology group is, I need to introduce a bit

of machinery, but the point is that the elements of the homology group of particular

spaces are in one-to-one correspondence with the logical operators of topological

codes.

A.2 Introduction

Topology is the mathematical �eld that studies the invariant properties of spaces

under continuous deformations. For the purposes of this appendix, by �spaces� I

basically just mean surfaces�that is, two dimensional manifolds. However, I will

not be concerned with their geometric properties.

The classic joke is that, to a topologist, a donut and a co�ee mug are the same
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thing (Fig. A.1). This is because there exists1 a continuous mapping of the torus

=

Figure A.1: The topologist's view of the world. See the link referenced in Footnote 1
to see an animation of the deformation.

(the mathematical name for the donut) to the co�ee cup. This mapping doesn't need

to tear or puncture the surface of the torus; it only needs to stretch and pull and

push it around in order to complete the transformation. I �nd putty to be a helpful

mental picture.

A.3 Homotopy and the fundamental group

The approach I will take here is to introduce techniques of surface classi�cation that

fall under the purview of a �eld called algebraic topology, which associates algebraic

objects�like groups or chain complexes�to topological spaces. The idea is to guar-

antee that distinct topological spaces correspond to distinct algebraic structures. For

example, the torus and the sphere should �map� (in a technical sense) to di�erent

groups.2 Making these maps precise is then the goal. One way is to study the prop-

1If you've never seen the animation, I suggest taking a look at the Topology Wikipedia
page. Or you can visit the page for the animation directly: http://en.wikipedia.org/

wiki/File:Mug_and_Torus_morph.gif.
2For a daily dose of metamathematics, think of algebraic topology as a collection of

functors from the category of topological spaces to the category of groups. Objects in
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erties of loops in the space. Loops are just embeddings of a circle into a space X,

represented by maps as

γ : S1 → X. (A.1)

For example, Fig. A.2 shows an embedding of a loop in two spaces that seem very

similar, but which have di�erent descriptions in terms of algebraic topology. Suppose

(a) (b)

[0, 1] ⇥ [0, 1]

� �

[0, 1] ⇥ [0, 1] � {p}

p

Figure A.2: Two slightly di�erent spaces with di�erent topologies. (a) A square X
in R2 and a loop γ : S1 → [0, 1] × [0, 1]. This loop can be continuously contracted
to a point that is still in the space X. (b) A square X ′ in R2 and the same loop γ.
The only di�erence between X and X ′ is that the latter has a single point removed.
The loop γ can no longer be continuously deformed to a point that is also in X ′.

that the loop γ in each case is given by the embedding

γ(θ) = (r cos θ + 1/2, r sin θ + 1/2). (A.2)

where θ ∈ [0, 2π) and r < 1/2. Shown are two square regions taken from R2, but

one of them has a single point removed. The loop γ in (a) can be parameterized

by a parameter t ∈ [0, 1]. Now de�ne a family of such maps with decreasing radius,

the category of topological spaces are mapped to groups, and continuous homeomorphisms
acting in the category of topological spaces are mapped to trivial endomorphisms in the
category of groups.
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parameterized by t, as

Φ : S1 × [0, 1]→ X. (A.3)

Explicitly, as coordinates in the space X, Φt is given by

Φt = (r(1− t) cos θ + 1/2, r(1− t) sin θ + 1/2) . (A.4)

It is easy to see that the original embedding is retained at t = 0 and that at t = 1 only

a single point satis�es the equation. These two embeddings�and all the embeddings

for intermediate values of t�are called homotopic to one another. The di�erence in

the space X ′ is that the loop γ is no longer homotopic to a single point since the

point with coordinates (1/2, 1/2) is not contained in X ′. It is possible to construct a

group out of the di�erent equivalence classes of homotopic loops, where two loops are

equivalent if and only if they are homotopic. The group elements are then loops, and

the group operation is simply concatenating one loop with another. The orientation

of the loops provides a notion of a group inverse, and for this reason orientable

surfaces are required. The group of loops for a space Y is called the fundamental

group, and is labeled π1(Y ). For the two examples above, π1(X) is the trivial group

with only one element and π1(X ′) is the group Z, the group of integers. For the

torus, the fundamental group is Z× Z.

The fundamental group thus helps to classify topological spaces: two spaces are

homeomorphic�continuously deformable into one another�if and only if they have

the same fundamental group. Unfortunately, the fundamental group, due to its

reliance on embeddings of S1, does not do well distinguishing between spaces of

higher dimension. There are generalizations to embeddings of higher dimensional

objects, but calculations become very di�cult. Due to this di�culty, mathematicians

have developed tools with easier calculability at the expense of some classi�cation

re�nement. I will discuss one of these tools�homology�shortly, but �rst I'll have

to introduce the cellular complex decomposition of spaces.
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A.4 Cellular complexes

A cellular complex provides a simple way of constructing topological spaces. It builds

up a space X from collections of of n-skeletons, consisting of objects of dimension n.

The 0-skeleton is just a collection of points, each of which can also each be thought

of as 0-dimensional disks D0. The 1-skeleton is a collection of lines�1-dimensional

disks D1�that are attached to the points in the 0-skeleton by chosen maps. The

2-skeleton is a collection of disks�the common 2-dimensional disks D2�attached to

the 1-skeleton. This procedure can be terminated at some n-skeleton, in which case

the resulting space has dimension n. For my purposes here, I will only be concerned

with at most a 2-skeleton. I'll provide some examples to shine more light on the

construction.

A.4.1 Cellular construction of S1 and S2

The cellular decomposition of the circle is very simple, and it is shown in Fig. A.3.

I will label the elements of each n-skeleton as eni , where each en is just a copy of

Dn, the n-disk. The circle has a 0-skeleton with only one element: the point e0
1.

Additionally, the 1-skeleton has the point e0
1 as well as the line segment e1

1. The only

missing ingredient is a map that generically operates as

φi : ∂eni → Xn−1 (A.5)

for each eni in the n-skeleton Xn and where the operator ∂ means �the boundary of

the thing to the right.� In the particular case of the circle, there is only a single map

φ1 for the single element of the 1-skeleton e1
1. Additionally, the image of the map is

only a single point in the 0-skeleton�e0
1�and so the map is pretty trivial. It maps

the two endpoints of the line e1
1 to the point e0

1. This construction is reminiscent of

the construction of a circle by identifying opposite sides of a line segment. Such an
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0-skeleton 1-skeleton

Just a single point +

A single point

and a single D1

S1

Figure A.3: The construction of the circle S1 as a cellular complex. The 0-skeleton
is a single point, and the 1-skeleton is a single point and a line segment D1 with its
endpoints attached to the point.

identi�cation becomes manifest if we write the n-skeleton as a disjoint union of the

(n− 1)-skeleton and the collection of eni :

Y = Xn−1 qi Dn
i , (A.6)

where the symbol q corresponds to the disjoint union of two sets. However, the

resulting set Y does not contain any information about the gluing maps φi. The

quotient space Y/{x ∼ φi(x) ∀ x ∈ ∂eni }�which identi�es points in Y based on the

maps φi�is the real thing of interest. This quotient space is Xn.

The sphere S2 can be constructed in a very similar fashion, depicted in Fig. A.4.

The only di�erence between the sphere and the circle is the dimension of the disk

whose boundary gets glued to the point. If fact, this is the generic way of decompos-

ing Sn in terms of a cellular complex: a single point and a disk Dn whose boundary

is glued to the point.

Graphs are typically constructed as 1-skeletons only, but here we'll be interested

in the faces of graphs as well, and these are 2-dimensional objects. Thus, we will
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0-skeleton 1-skeleton 2-skeleton

Just a single point Just a single point
+

A single point

and a single D2

S2

Figure A.4: The construction of the sphere S2 as a cellular complex. The 0-skeleton
contains only a single point, as does the 1-skeleton. The 2-skeleton consists of a
single point and a single disk D2. The entire boundary of the disk gets glued to the
single point, thus completing the construction.

imagine graphs as having the structure of a 2-skeleton, and we'll discuss the homology

of such objects in the next section.

A.5 Homology

Hatcher [Hat01] has a nice example that introduces the ideas I'll need in this section,

and so I'll mostly follow him here.

Homology, as I mentioned before, is an attempt to study the algebraic properties

of topological spaces with tools that are easier to calculate than homotopy groups.

The algebraic structures will still be groups, but they will all end up being abelian

groups. This contrasts homotopy theory, which can result in nonabelian groups.

(This is partly the reason for calculational di�culties.)
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Homology can be thought of as a way to capture the role that �holes� play in

topological spaces. Alternately, since holes have boundaries, it can also be thought

of as a formal study of boundaries. I will focus on the boundary aspect of things,

but the example from Hatcher will be relevant to both interpretations.

Consider the graph X shown in Fig. A.5. It consists of two 0-cells e0
1 and e0

2

x

y

a b c d

Figure A.5: A graph X composed of two points and four directed edges.

(labeled as points x and y) and four 1-cells e1
1, e

1
2, e

1
3, and e

1
4 (labeled as the directed

edges a, b, c, and d). Brie�y, the fundamental group for X is generated by the

equivalence classes of homotopic loops�for example, the loops ab−1, bc−1, cd−1,

ac−1, ad−1, and bd−1. The group inverses correspond to crossing an edge opposite to

its orientation. It is helpful to enforce that certain loops are equivalent. For instance,

the loops ab−1 and b−1a are really the same circle, but they start at di�erent points.

Enforcing an equivalence relation on these loops�equivalent loops have the same
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orientation corresponding to the same circle but start at di�erent points�abelianizes

the group of loops and allows a switch to a notation more familiar for abelian groups.

The loop ab−1 becomes a− b and the loop ab−1dc−1 becomes a− b+ d− c.

Without a starting point, loops are now referred to as cycles, and it is these cycles

that are the objects of interest in homology theory. One way to de�ne a cycle is as

a combination of edges that has no endpoints. To get at this structure of cycles,

de�ne the boundary operator, ∂. This operator acts on formal linear combinations

of cells in a cellular complex. Let C0 de�ne a free abelian group with generators e0
i ,

C1 de�ne a free abelian group with generators e1
i , and so forth. Then the boundary

operator ∂n is a linear map,

∂n : Cn → Cn−1 (A.7)

that returns the boundary of elements in Cn (which will be elements of Cn−1). It also

respects the orientation of the cells, so that for our space X in Fig. A.5, ∂1a = y−x.
A general linear combination of the edges is simply

αa+ βb+ γc+ δd, (A.8)

which, when acted on by ∂1, yields

∂1 (αa+ βb+ γc+ δd) = (α + β + γ + δ) y − (α + β + γ + δ)x. (A.9)

In order for an arbitrary linear combination of edges to be a cycle, they must have no

boundary. This requires that (α + β + γ + δ) = 0, and for the space X in Fig. A.5

this is the whole story. The combinations a − b, b − c and c − d form a basis for

all the cycles�in other words, they span ker ∂1. The fact that there are three basis

elements corresponds to the fact that there are three �holes� in the space: between

a and b, between b and c, and between c and d. This is almost everything needed

to understand the role that homology plays in topological codes. The last piece will

require a slight modi�cation of the space X.
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Imagine modifying X to X ′ by attaching a 2-cell to the edges a and b, as shown

in Fig. A.6. The intuition from homotopy theory is that the cycle a− b can now be

x

y

a b c d
A

Figure A.6: The space X ′, nearly the same as the space X in Fig. A.5 but with a
2-cell attached to edges a and b. While not technically just a graph anymore, the
attached 2-cell captures the notion of a graph face, and I'll use this intuition to relate
this structure to the graphs embedded in surfaces that are used for topological codes.

contracted to a point through the �lled in space between edges a and b. It would

be nice if the homology could also pick this up and only count the two remaining

holes in the space. It turns out that the way to do this is to look at the boundary

operator for the 2-skeleton as well. If the added 2-cell is called A and given a proper

orientation, then ∂2A = a − b. The space of cycles that is really of interest is not

just ker ∂1, but rather ker ∂1/Im ∂2�the space of cycles that are boundaryless and

that are not themselves boundaries! The identi�cation induced by the quotient then

means that, for instance, the cycle a− b+ c− d is the same as the cycle c− d. This
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quotient space is referred to as the �rst homology group of the space, H1(X ′). The

�avor of this construction should be familiar from the logical operators and stabilizer

generators of the topological codes, and I will explain the precise connection in the

following section.

A.6 Homology in topological codes

The connection between homology and topological codes can now be made explicit.

The logical operators will end up being the elements of H1(X), equivalent up to

multiplication by stabilizer generators. This freedom to multiply by generators is

precisely the act of identifying cycles in ker ∂1 by equivalence up to elements of

Im ∂2. Consider the example of the small toric code shown in Fig. 4.4, reproduced in

a modi�ed form here in Fig. A.7 for convenience. As a cellular complex, the surface

is constructed from many 0-cells (vertices), 1-cells (edges), and 2-cells (faces). The

boundaries of the space (rough and smooth or, alternatively, X and Z) introduce

a subtlety that has not yet been addressed. The problem is that string operators

like ZL will not be boundaryless; they very clearly have a nontrivial boundary and

won't be in ker ∂1. One way to sweep this problem away is to identify the two rough

boundaries with each other. Now ZL ∈ ker ∂1. Another way to achieve the same

goal is to simply identify all the points on the boundary with the trivial 0-cell: the

identity element of C0, 0. This amounts to letting each of the black points in Fig. A.7

belong to a �special set� that is not counted as a boundary.

It can now be seen that the class of ZL operators corresponds exactly to the

nontrivial elements of H1(X), which in this case is just the group Z2 (for qubits�it

is Zd for qudits). Strings connecting the two rough boundaries have no boundary by

the de�nitions introduced above (or by identifying the boundaries), and the space of

equivalent logical operators is precisely these strings up to multiplication by stabilizer
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ZL

Figure A.7: Modi�ed reproduction of Fig. 4.4 showing a single logical operator for a
toric code encoding one qubit. Logical Z is a string of Z operators connecting the
two rough boundaries. The points along the rough boundary are to be understood
as either a �special set� of points that don't count as boundaries or, equivalently, as
being identi�ed with the trivial element of C0, the null point.

generators. That is, ZL is the only non-trivial element in ker ∂1/Im ∂2. Using the

dual lattice, the same calculations yield the class of XL operators.
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Quantum Reed-Muller Codes

One of the challenges in discussing quantum Reed-Muller codes is that there is not

a unique de�nition of what a quantum Reed-Muller code is in the literature [Ste96d,

ZF97, Pre98b, BK05, SK05, CAB12]. Fortunately, there is at least a well-established

de�nition for what a classical Reed-Muller code is. We state the de�nition for classical

Reed-Muller codes below, con�ning our attention to binary codes. We refer the

reader to standard texts for the de�nitions of supporting concepts such as Boolean

monomials and GF (2) [MS77].

De�nition 1. The rth-order binary Reed-Muller code of length 2m, denotedRM(r,m),

is the linear code over GF (2) whose generator matrix is composed of row vectors cor-

responding to the Boolean monomials over GF (2)2m of degree at most r.
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As an example, the generator matrix for the RM(1, 4) code is

G =




1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0

1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0




. (B.1)

From this de�nition, the codespace of binary Reed-Muller codes is just the space

of Boolean polynomials over GF (2)2m of degree at most r. It is a minor combinatoric

exercise to work out that the code RM(r,m) has rank k =
∑r

i=0

(
m
i

)
and code dis-

tance d = 2m−r. In standard coding theory notation, we say that the code RM(r,m)

is an

[n, k, d] =

[
2m,

r∑

i=0

(
m
i

)
, 2m−r

]
(B.2)

code.

It is straightforward to work out that the dual code to RM(r,m) is RM(m− r−
1,m). We use this to de�ne a quantum Reed-Muller code as a CSS code composed

of RM(r,m) and its dual:

De�nition 2. The rth-order quantum binary Reed-Muller code of length 2m, denoted

QRM(r,m), is the CSS code [CS96, Ste96b] whose de�ning X and Z parity check

matrices are the generator matrices for RM(r,m) and its dual RM(m − r − 1,m)

respectively.

Notice that in this de�nition, somewhat confusingly, the quantum parity-check

matrices are formed from classical generator matrices, not classical parity-check ma-

trices.

We are most interested in the shortened quantum binary Reed-Muller codes,

which we denote by QRM(r,m). These codes are formed by shortening each of the
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binary Reed-Muller codes from which it is formed. The process of shortening �rst

punctures a code by removing a bit on which only row of the generator matrix has

support and then expurgates it by removing the row in the generator matrix that

had support on that bit. For the Reed-Muller codes, this corresponds to removing

the �rst row and last column of the generator matrix when presented in standard

form, as in Eq. (B.1). In essence, shortening a Reed-Muller code restricts the space

of Boolean polynomials de�ning the code to those which have no constant term

and which also satisfy p(0) = 0. An equivalent way of characterizing the shortened

Reed-Muller code is as the even subcode of the punctured Reed-Muller code. The

parameters of the resulting quantum code are [[2m−1, 1]]. Code parameters for small

Reed-Muller codes, their duals, and their shortened quantum construct are listed in

Table B.1. Notice that the length of the code n does not uniquely specify which

shortened quantum Reed-Muller code one is referring to for n > 15.

(r,m) (m− r − 1,m) [n, k, d] primal [n, k, d] dual [[n, k]]
(0,1) (0,1) [2,1,2] [2,1,2] ∅
(0,2) (1,2) [4,1,4] [4,3,2] ∅
(0,3) (2,3) [8,1,8] [8,7,2] ∅
(1,3) (1,3) [8,4,4] [8,4,4] [[7, 1]]
(0,4) (3,4) [16,1,16] [16,15,2] ∅
(1,4) (2,4) [16,5,8] [16,11,4] [[15, 1]]
(0,5) (4,5) [32,1,32] [32,31,2] ∅
(1,5) (3,5) [32,6,16] [32,26,4] [[31, 1]]
(2,5) (2,5) [32,16,8] [32,16,8] [[31, 1]]
(0,6) (5,6) [64,1,64] [64,63,2] ∅
(1,6) (4,6) [64,7,32] [64,57,4] [[63, 1]]
(2,6) (3,6) [64,22,32] [64,42,8] [[63, 1]]

Table B.1: Parameters for (primal) Reed-Muller R(r,m) codes, their duals R(m −
r− 1, 1), and their CSS-combined shortened quantum versions QRM(r,m) for small
values. Shortened R(0,m) codes have no X generator, so the resulting quantum
codes are just classical codes; they are referred to by ∅ in the table.
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Appendix C

Criteria for a Code to Admit

Transversal Z(π/2k) Rotations

The shortened quantum Reed-Muller codes QRM(1, k+2) admit a transversal imple-

mentation of Zk by applying Z
†
k to each qubit in the code independently. This result

follows from arguments made by Campbell et al. in Ref. [CAB12]. Another way to

see this is to note that these codes obey Theorem 1 below. We o�er this alterna-

tive approach because it may be generalizable in a way that others could use to �nd

more e�cient codes that admit Zk transversally. It also relies on a lemma (Lemma 1)

that naturally generalizes an otherwise unusual criterion of �tri-orthogonality� noted

by Bravyi and Haah [BH12] for the QRM(1, 4) code. We believe that this Lemma,

which we call Ward's Divisibility Test, makes better contact with the classical coding

theory literature.

Theorem 1. A quantum [[n, 1]] CSS code [CS96, Ste96b] with stabilizer generators

de�ned by the parity check matrix H = diag(HX , HZ) via

SXi :=
n⊗

j=1

XHX
ij SZi :=

n⊗

j=1

ZHZ
ij , (C.1)
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where HX has rows v1, . . . vk+2, implements (Zk)
a transversally if

wt
(
vσ(1) · · · vσ(j)

)
≡ 0 mod 2k+2−j (C.2)

for all 1 ≤ j ≤ k + 2 and all σ ∈ Σj, and

n ≡ a mod 2k+1, (C.3)

where `⊗' denotes the tensor product, `wt' denotes the Hamming weight of a binary

vector, `Σj' denotes the permutation group on j items, and `v1 · · · vj' denotes the
componentwise product of v1, . . . , vj.

When a in this Theorem is odd, gcd(a, 2k+1) = 1, which means we can use an

algorithm like the extended Euclidean algorithm [CLRS01] to e�ciently �nd numbers

x and y such that ax + 2k+1y = 1. Iterating (Zk)
a x times results in a conditional

phase of π(1− 2k+1y)/2k ∼= π/2k; in other words, (Zk)
ax ∼= Zk when a is odd.

Condition (C.2) generalizes the tri-orthogonality condition of Bravyi and Haah

[BH12] into a kind of (k+ 1)-orthogonality condition. More fundamentally, we want

the classical linear code generated by HX to be a code in which every codeword has

a Hamming weight divisible by 2k+1. Ward studied such divisible codes in depth and

one of his results is that 2k+1-divisibility is testable by the condition of Eq. (C.2)

[War90]. More explicitly, Ward's Divisibility Test is captured by Lemma 1 below.

(Ward's result is actually more general; we use a version specialized to the binary

case, as noted by Proposition 4.2 in Ref. [Liu06].)

Lemma 1 (Ward's Divisibility Test [War90]). The binary linear code with generator

matrix HX whose row vectors are v1, . . . , vk+2 is divisible by 2k+1 if and only if

2k+2−j∣∣wt(vσ(1) · · · vσ(j)) (C.4)

for all 1 ≤ j ≤ k + 1 and all permutations σ ∈ Σj.
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While Ward's Divisibility Test has the advantage of being an explicit algorithm for

testing divisibility, it is not particularly e�cient, as it takes a time that is exponential

in k to execute. For codes with a high degree of structure, such as the shortened

RM(1, k+ 2) Reed-Muller codes, demonstrating 2k+1 divisibility is much simpler, as

noted in Ref. [Liu06].

Proof of Theorem 1. By Ward's Divisibility Test, every vector v in the rowspan L
of HX has a Hamming weight divisible by 2k+1. Since the logical |0〉 for the code is
|0〉 :=

∑
v∈L |v〉 (ignoring normalization), the action of transversal Zk on |0〉 is

Z⊗nk |0〉 =
∑

v∈L

Z⊗nk |v〉 (C.5)

=
∑

v∈L

(
eiπ/2

k
)|v|
|v〉 (C.6)

=
∑

v∈L

|v〉 (C.7)

= |0〉. (C.8)

Similarly, using Eq. (C.3), the action of transversal Zk on (unnormalized) |1〉 = X|0〉
is

Z⊗nk |1〉 = Z⊗nk X|0〉 (C.9)

=
∑

v∈L

Z⊗nk X|v〉 (C.10)

=
∑

v∈L

Z⊗nk |v ⊕ 1〉 (C.11)

=
∑

v∈L

(
eiπ/2

k
)n−|v|

|v ⊕ 1〉 (C.12)

=
∑

v∈L

(
eiπa/2

k
)
|v ⊕ 1〉 (C.13)

= eiπa/2
k |1〉, (C.14)

where 1 := (1, . . . , 1) denotes the all-ones vector, whose appearance comes from

the fact that up to local qubit basis changes, X = X⊗n for all CSS codes. These
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actions of Z⊗n replicate (Zk)
a on the logical basis, and therefore Zk implements (Zk)

a

transversally.
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Appendix D

Computational Tools for Code

Deformation

D.1 Code deformation

Code deformation�whether performed by measurements or via adiabatic Hamilto-

nian deformations�amounts to a sequential update to the set of stabilizer generators

of a quantum code. Using only group theory and a minimum input from quantum

mechanics, it is possible to determine the e�ect on the generating set and the logical

operators when a measurement is made.

This discussion is framed by the setting of stabilizer codes. Consider an [[n, k, d]]

stabilizer code with a generating set S and a set of logical operators L. Recall that
the operators in these sets are all Pauli operators and that for every Si, Sj ∈ S

[Si, Sj] = 0, (D.1)

and

[Si, Lj] = 0 (D.2)
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for all Lj ∈ L. The only operators that don't commute are the representatives of

Xi, Zi ∈ L for a single qubit.

Consider making a measurement of a Pauli operator M . After performing the

measurement, the resulting n-qubit state |ψ〉, may or may not be in the original

codespace, but it is in a de�nite eigenstate of M . Since M is a Pauli operator, its

eigenvalue is either +1 or −1. IfM commutes with all the elements of S and L, there
is only one possibility: an element of the stabilizer group has been measured, in which

case the action on the codespace is trivial. The commuting case is uninteresting and

does not lead to a modi�cation of either S or L.

IfM does not commute with elements in either or both of S and L, then something

has to give. The state |ψ〉 cannot be a simultaneous eigenstate of M and the anti-

commuting operators. If M only anti-commutes only with elements of L, then M is

equivalent to a logical measurement of one�or several�of the logical qubits. This

also requires no modi�cation of either sets; it simply projects the codespace into a

de�nite state of the measured logical qubits.

However, if M anti-commutes with elements of S, then the generating set needs

to be modi�ed. Recall that the generating set provides the conditions that de�ne

the codespace. Thus, if M does not commute with all the generators, a new gener-

ating set�one that incorporates the fact that M has essentially been promoted to

a generator�must be de�ned. The generating set is thus deformed by the measure-

ment, and the procedure is called code deformation.

How is the new generating set chosen? Call A the set of operators in S that

anti-commute with M . The new generating set S ′�initially empty�can then be

constructed in the following way:

1. Add M to S ′.
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2. Choose one of the elements of A and call it A.

3. For all the other elements of A, multiply them by A and add the result to S ′.

4. Add all of the elements in S −A to S ′.

Operators in Lmight also not commute withM . Replace all of these with the product

of the A chosen above and themselves. This trick�creating commuting operators by

multiplying together two anti-commuting operators�leverages the properties of the

Pauli group introduced in Sec. 2.2. The new generating set S ′ de�nes a commutative

Pauli subgroup and also commutes with the modi�ed logical operators. It de�nes a

new [[n, k, d]] quantum stabilizer code.

1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

Figure D.1: The surface codes corresponding to the example given in the code listing.
The surface code on the left is going to be �merged� with the surface code on the
right, e�ecting a joint logical measurement. This �gure depicts the surface code in its
medialized form, with the light purple face representing X-type stabilizer generators,
the white faces representing Z-type stabilizer generators, and the qubits on the
vertices.

D.2 Automated code deformation

The code provided in Sec. D.3 below simulates a step in the code deformation tech-

niques introduced in Ref. [HFDv12] for performing a CNOT gate between two qubits

encoded in surface codes (rather than by defect braiding). However, it has more
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general application and can simulate arbitrary deformations of CSS codes. The

numbering scheme used in the code example is shown in Fig. D.1.

D.3 Automated code deformation code listing

1 # The idea here is to automate the process of code deformation performed

# by making measurements and updating the set of stabilizer generators

3 # and logical operators.

#

5 #

# My idea is to store the generators as key:value pairs in a dictionary . E.g .,

7 #

# 'S1 ':[' Z', '2', '3', '5', '6']

9 #

# Logical operators are stored similarly .

11

13 stab_gens = {}

logical_ops = {}

15 measurements = []

17 mode = 'toric'

19 if mode == 'toric':

# I' ll write this with the built in case of merging two toric codes (in

21 # the Bombin picture).

23 # Below are the 8 stabilizers generators for the code "on the left " in

# the merging picture.

25 stab_gens['S1'] = ['Z', '1' , '8' ]

stab_gens['S2'] = ['X', '1' , '2' , '8' , '9' ]

27 stab_gens['S3'] = ['X', '2' , '3' ]

stab_gens['S4'] = ['Z', '2' , '3' , '9' , '10' ]

29 stab_gens['S5'] = ['Z', '8' , '9' , '15' , '16' ]

stab_gens['S6'] = ['X', '15' , '16' ]

31 stab_gens['S7'] = ['X', '9' , '10' , '16' , '17' ]

stab_gens['S8'] = ['Z', '10' , '17' ]

33

# Below are the 8 stabilizer generators for the code "on the right ."

35 stab_gens['S9'] = ['Z', '5' , '12' ]
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stab_gens['S10'] = ['X', '5' , '6' , '12' , '13' ]

39 stab_gens['S11'] = ['X', '6' , '7' ]

stab_gens['S12'] = ['Z', '6' , '7' , '13' , '14' ]

41 stab_gens['S13'] = ['Z', '12' , '13' , '19' , '20' ]

stab_gens['S14'] = ['X', '19' , '20' ]

43 stab_gens['S15'] = ['X', '13' , '14' , '20' , '21' ]

stab_gens['S16'] = ['Z', '14' , '21' ]

45

# Below are the stabilizer generators for the ∗added∗ qubits along the merge

47 # boundary.

stab_gens['S17'] = ['Z', '4' ]

49 stab_gens['S18'] = ['Z', '11' ]

stab_gens['S19'] = ['Z', '18' ]

51

# The input of the above could obviously be aided by a helper script which

53 # reads a text �le in a speci�ed format and generates the stab_gens

# dictionary.

55

# Below are the two sets of logical operators for the two codes to be merged.

57 logical_ops[ 'X1'] = ['X', '5' , '12' , '19' ]

logical_ops[ 'Z1'] = ['Z', '5' , '6' , '7' ]

59 logical_ops[ 'X2'] = ['X', '3' , '10' , '17' ]

logical_ops[ 'Z2'] = ['Z', '1' , '2' , '3' ]

61

# Below is the set of measurements we will be performing to deform the code.

63 measurements.append(['Z', '4', '5' , '11' , '12' ])

measurements.append(['Z', '10', '11' , '17' , '18' ])

65 measurements.append(['Z', '5', '6' , '7' ])

measurements.append(['X', '3', '4' , '10' , '11' ])

67 measurements.append(['X', '4', '5' ])

measurements.append(['X', '17', '18' ])

69 measurements.append(['X', '11', '12' , '18' , '19' ])

71

# Some functions to help in doing the updates.

73

def common_elements(list1, list2):

75 # Returns the set theoretic intersection of two lists .

return list (set( list1 ) & set( list2 ))

77

# Now for the actual code. The idea is the loop through the dictionary of

79 # measurements, updating the stab_gens and logical_ops dictionaries as

# needed.
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81 for meas in measurements:

print "\n\n=====Performing measurement of " + str(meas) + "====="

85 # First, determine whether we are measuring an X−type or Z−type

# operator and which qubits it has support on.

87 meas_basis = meas[0]

meas_support = meas[1:]

89

# Next, loop through the stab_gens dictionary to �gure out which

91 # elements anticommute with the measurement we are making.

replaced = {}

93 print "\n−−−−−Stabilizer modi�cations−−−−−\n"

for stab in stab_gens:

95

stab_basis = stab_gens[stab][0]

97

if stab_basis != meas_basis:

99

stab_support = stab_gens[stab][1:]

101 overlap = common_elements(stab_support, meas_support)

103 if overlap and (len(overlap) % 2) != 0:

105 # A pythonic way of ensuring that the returned list is

# not empty.

107

if not replaced:

109

print "Replacing " + str(stab_gens[stab]) + " with " + str(meas)

111 replaced[stab] = stab_gens[stab]

replaced_support = replaced[stab][1:]

113 stab_gens[stab] = meas

115 else :

117 # Here's where the fancy replacement rules happen.

# The Python operator "^" performs the symmetric di�erence between two sets.

119 # Here it is essentially doing the XOR (or addition modulo 2) for us.

new_gen_support = list(set(stab_support) ^ set(replaced_support))

121 print "Modifying " + str(stab_gens[stab]) + " to " + str([stab_basis] + new_gen_support)

stab_gens[stab ][1:] = new_gen_support

123

if not replaced:

125 print str (meas) + " commuted with all stabilizer generators!"

204



Appendix D. Computational Tools for Code Deformation

129 print "\n−−−−−Logical operator modi�cations−−−−−\n"

131 for log in logical_ops:

133 log_basis = logical_ops[log ][0]

135 if log_basis != meas_basis:

137 log_support = logical_ops[log ][1:]

log_overlap = common_elements(log_support, meas_support)

139

if replaced and log_overlap and (len(log_overlap) % 2) != 0:

141 new_log_op_support = list(set(log_support) ^ set(replaced_support))

print "Modifying " + str(logical_ops[log]) + " to " + str([ log_basis] + new_log_op_support)

143 logical_ops[log ][1:] = new_log_op_support

145 if not replaced and log_overlap and (len(log_overlap) % 2) != 0:

print "WARNING: NUMBER OF LOGICAL QUBITS IS BEING REDUCED!"

147 print "Replacing " + str(logical_ops[log ]) + " with " + str(meas)

replaced[ log ] = logical_ops[log]

149 replaced_support = replaced[log][1:]

logical_ops[log ] = meas

151

if not replaced:

153 print str (meas) + " commuted with all logical operators!"

155 print "\n\n\n\nStabilizer generators"

for gens in stab_gens:

157 print stab_gens[gens]

159 print "Logical operators"

for log in logical_ops:

161 print log ,logical_ops[log ]
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