23,631 research outputs found

    MODELING OF WAX DEPOSITION DURING OIL PRODUCTION USING A TWO-PHASE FLASH CALCULATION

    Get PDF
    Wax deposition is a serious problem in the Petroleum Industry that results in the plugging of flow strings, formation damage, loss of hydrocarbons, increased production cost. The existing models used jn the oil industry for predicting wax phase equilibrium parameters over-estimate the amount of wax that is formed in terms of the wax weight fraction and the number of moles of solid. The Coutinho correlation is the latest of these models and is used to calculate the melting temperature and the enthalpy of fusion of the crude oil components. It did not consider the effect of branching of carbon atoms in the hydrocarbon structure/compound. But branching of carbon atoms in the hydrocarbon compounds affects its melting point. In this work, the correlation for calculating the melting temperature in crude oil developed by Coutinho has been modified to take into account the effect of branching of carbon-carbon chains in isoparaffins and the model has been used to calculate a new set of equilibrium parameter. The modified regular solution theory was used to calculate the activity coefficient ratio that was used as an input to the new model. Wax phase equilibrium flash calculations were carried out with the new set of equilibrium parameters. The wax mixture was then characterized using the weight fraction of component in the solid phase and weight fraction of component in the solid phase in the mixture. In order to check the reliability of the model, the data presented by Hanquan was used as input into the models developed by Won, Chung, Countinho and the new one. The new model predicted a more conservative value for the number of moles of solid formed, weight fraction of component in the solid phase and weight fraction of component in the solid phase in the mixture for C1s-C4o.This is an improvement over the existing models which overestimate the values of the parameters

    Convex hull method for the determination of vapour-liquid equilibria (VLE) phase diagrams for binary and ternary systems

    Get PDF
    Amieibibama Joseph wishes to thank Petroleum Technology Development Fund (PTDF) for their financial support which has made this research possible.Peer reviewedPostprin

    Transient Behavior near Liquid-Gas Interface at Supercritical Pressure

    Get PDF
    Numerical heat and mass transfer analysis of a configuration where a cool liquid hydrocarbon is suddenly introduced to a hotter gas at supercritical pressure shows that a well-defined phase equilibrium can be established before substantial growth of typical hydrodynamic instabilities. The equilibrium values at the interface quickly reach near-steady values. Sufficiently thick diffusion layers form quickly around the liquid-gas interface (e.g., 3-10 microns for the liquid phase and 10-30 microns for the gas phase in 10-100 microseconds), where density variations become increasingly important with pressure as mixing of species is enhanced. While the hydrocarbon vaporizes and the gas condenses for all analyzed pressures, the net mass flux across the interface reverses as pressure is increased, showing that a clear vaporization-driven problem at low pressures may present condensation at higher pressures. This is achieved while heat still conducts from gas to liquid. Analysis of fundamental thermodynamic laws on a fixed-mass element containing the diffusion layers proves the thermodynamic viability of the obtained results.Comment: Submitted for publication in International Journal of Heat and Mass Transfer. 29 pages, 18 figure

    Modeling the gas-particle partitioning of secondary organic aerosol: the importance of liquid-liquid phase separation

    Get PDF
    The partitioning of semivolatile organic compounds between the gas phase and aerosol particles is an important source of secondary organic aerosol (SOA). Gas-particle partitioning of organic and inorganic species is influenced by the physical state and water content of aerosols, and therefore ambient relative humidity (RH), as well as temperature and organic loading levels. We introduce a novel combination of the thermodynamic models AIOMFAC (for liquid mixture non-ideality) and EVAPORATION (for pure compound vapor pressures) with oxidation product information from the Master Chemical Mechanism (MCM) for the computation of gas-particle partitioning of organic compounds and water. The presence and impact of a liquid-liquid phase separation in the condensed phase is calculated as a function of variations in relative humidity, organic loading levels, and associated changes in aerosol composition. We show that a complex system of water, ammonium sulfate, and SOA from the ozonolysis of α-pinene exhibits liquid-liquid phase separation over a wide range of relative humidities (simulated from 30% to 99% RH). Since fully coupled phase separation and gas-particle partitioning calculations are computationally expensive, several simplified model approaches are tested with regard to computational costs and accuracy of predictions compared to the benchmark calculation. It is shown that forcing a liquid one-phase aerosol with or without consideration of non-ideal mixing bears the potential for vastly incorrect partitioning predictions. Assuming an ideal mixture leads to substantial overestimation of the particulate organic mass, by more than 100% at RH values of 80% and by more than 200% at RH values of 95%. Moreover, the simplified one-phase cases stress two key points for accurate gas-particle partitioning calculations: (1) non-ideality in the condensed phase needs to be considered and (2) liquid-liquid phase separation is a consequence of considerable deviations from ideal mixing in solutions containing inorganic ions and organics that cannot be ignored. Computationally much more efficient calculations relying on the assumption of a complete organic/electrolyte phase separation below a certain RH successfully reproduce gas-particle partitioning in systems in which the average oxygen-to-carbon (O:C) ratio is lower than ~0.6, as in the case of α-pinene SOA, and bear the potential for implementation in atmospheric chemical transport models and chemistry-climate models. A full equilibrium calculation is the method of choice for accurate offline (box model) computations, where high computational costs are acceptable. Such a calculation enables the most detailed predictions of phase compositions and provides necessary information on whether assuming a complete organic/electrolyte phase separation is a good approximation for a given aerosol system. Based on the group-contribution concept of AIOMFAC and O:C ratios as a proxy for polarity and hygroscopicity of organic mixtures, the results from the α-pinene system are also discussed from a more general point of view

    Origin of the Significant Impact of Ta on the Creep Resistance of FeCrNi Alloys

    Full text link
    Heat resistant FeCrNi alloys are widely used in the petrochemical industry because they exhibit a unique combination of creep and oxidation resistance at temperatures exceeding 900^\circC. Their creep properties are often optimized by micro-additions of carbide forming elements. In the present work, the influence of Ta micro-additions has been experimentally investigated both on as-cast and aged microstructures to understand the origin of the significant impact of this element on the creep resistance. Calculations with thermocal software were also carried out to support experimental data. It is shown that a small addition of Ta is beneficial as it increases the volume fraction of stable MC carbides. We demonstrate also that additions of Ta may have a dramatic effect on the thermal stability of microstructures. This is attributed to a smaller equilibrium volume fraction of M23C6 and more pronounced heterogeneous precipitation at MC/matrix interfaces. The influence on the creep properties in then discussed
    corecore