24,692 research outputs found

    A system design for human factors studies of speech-enabled Web browsing

    Get PDF
    This paper describes the design of a system which will subsequently be used as the basis of a range of empirical studies aimed at discovering how best to harness speech recognition capabilities in multimodal multimedia computing. Initial work focuses on speech-enabled browsing of the World Wide Web, which was never designed for such use. System design is complete, and is being evaluated via usability testing

    Systems, interactions and macrotheory

    Get PDF
    A significant proportion of early HCI research was guided by one very clear vision: that the existing theory base in psychology and cognitive science could be developed to yield engineering tools for use in the interdisciplinary context of HCI design. While interface technologies and heuristic methods for behavioral evaluation have rapidly advanced in both capability and breadth of application, progress toward deeper theory has been modest, and some now believe it to be unnecessary. A case is presented for developing new forms of theory, based around generic “systems of interactors.” An overlapping, layered structure of macro- and microtheories could then serve an explanatory role, and could also bind together contributions from the different disciplines. Novel routes to formalizing and applying such theories provide a host of interesting and tractable problems for future basic research in HCI

    Design as conversation with digital materials

    Get PDF
    This paper explores Donald Schön's concept of design as a conversation with materials, in the context of designing digital systems. It proposes material utterance as a central event in designing. A material utterance is a situated communication act that depends on the particularities of speaker, audience, material and genre. The paper argues that, if digital designing differs from other forms of designing, then accounts for such differences must be sought by understanding the material properties of digital systems and the genres of practice that surround their use. Perspectives from human-computer interaction (HCI) and the psychology of programming are used to examine how such an understanding might be constructed.</p

    The evolution of auditory contrast

    Get PDF
    This paper reconciles the standpoint that language users do not aim at improving their sound systems with the observation that languages seem to improve their sound systems. Computer simulations of inventories of sibilants show that Optimality-Theoretic learners who optimize their perception grammars automatically introduce a so-called prototype effect, i.e. the phenomenon that the learner’s preferred auditory realization of a certain phonological category is more peripheral than the average auditory realization of this category in her language environment. In production, however, this prototype effect is counteracted by an articulatory effect that limits the auditory form to something that is not too difficult to pronounce. If the prototype effect and the articulatory effect are of a different size, the learner must end up with an auditorily different sound system from that of her language environment. The computer simulations show that, independently of the initial auditory sound system, a stable equilibrium is reached within a small number of generations. In this stable state, the dispersion of the sibilants of the language strikes an optimal balance between articulatory ease and auditory contrast. The important point is that this is derived within a model without any goal-oriented elements such as dispersion constraints

    A probabilistic framework for analysing the compositionality of conceptual combinations

    Get PDF
    Conceptual combination performs a fundamental role in creating the broad range of compound phrases utilised in everyday language. This article provides a novel probabilistic framework for assessing whether the semantics of conceptual combinations are compositional, and so can be considered as a function of the semantics of the constituent concepts, or not. While the systematicity and productivity of language provide a strong argument in favor of assuming compositionality, this very assumption is still regularly questioned in both cognitive science and philosophy. Additionally, the principle of semantic compositionality is underspecified, which means that notions of both "strong" and "weak" compositionality appear in the literature. Rather than adjudicating between different grades of compositionality, the framework presented here contributes formal methods for determining a clear dividing line between compositional and non-compositional semantics. In addition, we suggest that the distinction between these is contextually sensitive. Compositionality is equated with a joint probability distribution modeling how the constituent concepts in the combination are interpreted. Marginal selectivity is introduced as a pivotal probabilistic constraint for the application of the Bell/CH and CHSH systems of inequalities. Non-compositionality is equated with a failure of marginal selectivity, or violation of either system of inequalities in the presence of marginal selectivity. This means that the conceptual combination cannot be modeled in a joint probability distribution, the variables of which correspond to how the constituent concepts are being interpreted. The formal analysis methods are demonstrated by applying them to an empirical illustration of twenty-four non-lexicalised conceptual combinations
    corecore