46,427 research outputs found

    Modelling the spatial distribution of DEM Error

    Get PDF
    Assessment of a DEM’s quality is usually undertaken by deriving a measure of DEM accuracy – how close the DEM’s elevation values are to the true elevation. Measures such as Root Mean Squared Error and standard deviation of the error are frequently used. These measures summarise elevation errors in a DEM as a single value. A more detailed description of DEM accuracy would allow better understanding of DEM quality and the consequent uncertainty associated with using DEMs in analytical applications. The research presented addresses the limitations of using a single root mean squared error (RMSE) value to represent the uncertainty associated with a DEM by developing a new technique for creating a spatially distributed model of DEM quality – an accuracy surface. The technique is based on the hypothesis that the distribution and scale of elevation error within a DEM are at least partly related to morphometric characteristics of the terrain. The technique involves generating a set of terrain parameters to characterise terrain morphometry and developing regression models to define the relationship between DEM error and morphometric character. The regression models form the basis for creating standard deviation surfaces to represent DEM accuracy. The hypothesis is shown to be true and reliable accuracy surfaces are successfully created. These accuracy surfaces provide more detailed information about DEM accuracy than a single global estimate of RMSE

    Predicting glacier accumulation area distributions

    Get PDF
    A mass balance model based on energy balance at the terrain surface was developed and used to predict glacier accumulation areas in the Jotunheimen, Norway. Spatially distributed melt modelling used local climate and energy balance surfaces to drive predictions, derived from regional climate and topographic data. Predictions had a temporal resolution of 1 month and a spatial resolution of 100 m, which were able to simulate observed glacier accumulation area distributions. Data were stored and manipulated within a GIS and spatial trends and patterns within the data were explored. These trends guided the design of a suite of geomorphologically and climatologically significant variables which were used to simulate the observed spatial organisation of climatic variables, specifically temperature, precipitation and wind speed and direction. DEM quality was found as a critical factor in minimising error propagation. A new method of removing spatially and spectrally organised DEM error is presented using a fast Fourier transformation. This was successfully employed to remove error within the DEM minimising error propagation into model predictions. With no parameter fitting the modeled spatial distribution of snowcover showed good agreement with observed distributions. Topographic maps and a Landsat ETM+ image are used to validate the predictions and identify areas of over or under prediction. Topographically constrained glaciers are most effectively simulated, where aspect, gradient and altitude impose dominant controls on accumulation. Reflections on the causes of over or under prediction are presented and future research directions to address these are outlined. Sensitivity of snow accumulation to climatic and radiative variables was assessed. Results showed the mass balance of accumulation areas is most sensitive to air temperature and cloud cover parameterisations. The model was applied to reconstruct snow accumulation at the last glacial maximum and under IPCC warming scenarios to assess the sensitivity of melt to changing environmental conditions, which showed pronounced sensitivity to summer temperatures Low data requirements: regional climate and elevation data identify the model as a powerful tool for predicting the onset, duration and rate of melt for any geographical area

    Quality Assessment of Hydrogeomorphological Features Derived from Digital Terrain Models

    Get PDF
    Digital terrain models (DTM) provide a model for representing the continuous earth elevation surface that can contain errors introduced by the main phases of generation and modelling. Uncertainty of the model is rarely considered by users. Assessment of uncertainty require information on the nature, amount and spatial structure of the errors. DTMs of di®erent original resolution were compared in order to assess the quality of derived hydrological and morphological features. SRTM dataset with resolution of 100m, DEM dataset mosaic from various sources with a resolution of 60m and ASTER derived dataset with a resolution of 30m were used. The error propagation was modelled with a stochastic approach. The probabilistic distribution of extracted hydrological features was drawn considering the spatial structure of errors in the datasets. The features considered were stream network and watershed divides net. The distribution of the Strahler order of the features was studied. An analysis of the overall probability of features extracted from variously prepared datasets was carried in order to get information on where is the most probable stream network or watershed divides net.JRC.H.6-Spatial data infrastructure

    The agricultural impact of the 2015–2016 floods in Ireland as mapped through Sentinel 1 satellite imagery

    Get PDF
    peer-reviewedIrish Journal of Agricultural and Food Research | Volume 58: Issue 1 The agricultural impact of the 2015–2016 floods in Ireland as mapped through Sentinel 1 satellite imagery R. O’Haraemail , S. Green and T. McCarthy DOI: https://doi.org/10.2478/ijafr-2019-0006 | Published online: 11 Oct 2019 PDF Abstract Article PDF References Recommendations Abstract The capability of Sentinel 1 C-band (5 cm wavelength) synthetic aperture radio detection and ranging (RADAR) (abbreviated as SAR) for flood mapping is demonstrated, and this approach is used to map the extent of the extensive floods that occurred throughout the Republic of Ireland in the winter of 2015–2016. Thirty-three Sentinel 1 images were used to map the area and duration of floods over a 6-mo period from November 2015 to April 2016. Flood maps for 11 separate dates charted the development and persistence of floods nationally. The maximum flood extent during this period was estimated to be ~24,356 ha. The depth of rainfall influenced the magnitude of flood in the preceding 5 d and over more extended periods to a lesser degree. Reduced photosynthetic activity on farms affected by flooding was observed in Landsat 8 vegetation index difference images compared to the previous spring. The accuracy of the flood map was assessed against reports of flooding from affected farms, as well as other satellite-derived maps from Copernicus Emergency Management Service and Sentinel 2. Monte Carlo simulated elevation data (20 m resolution, 2.5 m root mean square error [RMSE]) were used to estimate the flood’s depth and volume. Although the modelled flood height showed a strong correlation with the measured river heights, differences of several metres were observed. Future mapping strategies are discussed, which include high–temporal-resolution soil moisture data, as part of an integrated multisensor approach to flood response over a range of spatial scales

    On daily interpolation of precipitation backed with secondary information

    Get PDF
    This paper investigates the potential impact of secondary information on rainfall mapping applying Ordinary Kriging. Secondary information tested is a natural area indicator, which is a combination of topographic features and weather conditions. Cross validation shows that secondary information only marginally improves the final mapping, indicating that a one-day accumulation time is possibly too short

    Spatial prediction of species’ distributions from occurrence-only records: combining point pattern analysis, ENFA and regression-kriging

    Get PDF
    A computational framework to map species’ distributions (realized density) using occurrence-only data and environmental predictors is presented and illustrated using a textbook example and two case studies: distribution of root vole (Microtes oeconomus) in the Netherlands, and distribution of white-tailed eagle nests (Haliaeetus albicilla) in Croatia. The framework combines strengths of point pattern analysis (kernel smoothing), Ecological Niche Factor Analysis (ENFA) and geostatistics (logistic regression-kriging), as implemented in the spatstat, adehabitat and gstat packages of the R environment for statistical computing. A procedure to generate pseudo-absences is proposed. It uses Habitat Suitability Index (HSI, derived through ENFA) and distance from observations as weight maps to allocate pseudo-absence points. This design ensures that the simulated pseudo-absences fall further away from the occurrence points in both feature and geographical spaces. The simulated pseudo-absences can then be combined with occurrence locations and used to build regression-kriging prediction models. The output of prediction are either probabilitiesy of species’ occurrence or density measures. Addition of the pseudo-absence locations has proven effective — the adjusted R-square increased from 0.71 to 0.80 for root vole (562 records), and from 0.69 to 0.83 for white-tailed eagle (135 records) respectively; pseudo-absences improve spreading of the points in feature space and ensure consistent mapping over the whole area of interest. Results of cross validation (leave-one-out method) for these two species showed that the model explains 98% of the total variability in the density values for the root vole, and 94% of the total variability for the white-tailed eagle. The framework could be further extended to Generalized multivariate Linear Geostatistical Models and spatial prediction of multiple species. A copy of the R script and step-by-step instructions to run such analysis are available via contact author’s website
    corecore