2,421 research outputs found

    A Review on the Application of Natural Computing in Environmental Informatics

    Get PDF
    Natural computing offers new opportunities to understand, model and analyze the complexity of the physical and human-created environment. This paper examines the application of natural computing in environmental informatics, by investigating related work in this research field. Various nature-inspired techniques are presented, which have been employed to solve different relevant problems. Advantages and disadvantages of these techniques are discussed, together with analysis of how natural computing is generally used in environmental research.Comment: Proc. of EnviroInfo 201

    Mapping and monitoring forest remnants : a multiscale analysis of spatio-temporal data

    Get PDF
    KEYWORDS : Landsat, time series, machine learning, semideciduous Atlantic forest, Brazil, wavelet transforms, classification, change detectionForests play a major role in important global matters such as carbon cycle, climate change, and biodiversity. Besides, forests also influence soil and water dynamics with major consequences for ecological relations and decision-making. One basic requirement to quantify and model these processes is the availability of accurate maps of forest cover. Data acquisition and analysis at appropriate scales is the keystone to achieve the mapping accuracy needed for development and reliable use of ecological models.The current and upcoming production of high-resolution data sets plus the ever-increasing time series that have been collected since the seventieth must be effectively explored. Missing values and distortions further complicate the analysis of this data set. Thus, integration and proper analysis is of utmost importance for environmental research. New conceptual models in environmental sciences, like the perception of multiple scales, require the development of effective implementation techniques.This thesis presents new methodologies to map and monitor forests on large, highly fragmented areas with complex land use patterns. The use of temporal information is extensively explored to distinguish natural forests from other land cover types that are spectrally similar. In chapter 4, novel schemes based on multiscale wavelet analysis are introduced, which enabled an effective preprocessing of long time series of Landsat data and improved its applicability on environmental assessment.In chapter 5, the produced time series as well as other information on spectral and spatial characteristics were used to classify forested areas in an experiment relating a number of combinations of attribute features. Feature sets were defined based on expert knowledge and on data mining techniques to be input to traditional and machine learning algorithms for pattern recognition, viz . maximum likelihood, univariate and multivariate decision trees, and neural networks. The results showed that maximum likelihood classification using temporal texture descriptors as extracted with wavelet transforms was most accurate to classify the semideciduous Atlantic forest in the study area.In chapter 6, a multiscale approach to digital change detection was developed to deal with multisensor and noisy remotely sensed images. Changes were extracted according to size classes minimising the effects of geometric and radiometric misregistration.Finally, in chapter 7, an automated procedure for GIS updating based on feature extraction, segmentation and classification was developed to monitor the remnants of semideciduos Atlantic forest. The procedure showed significant improvements over post classification comparison and direct multidate classification based on artificial neural networks.</p

    Data mining as a tool for environmental scientists

    Get PDF
    Over recent years a huge library of data mining algorithms has been developed to tackle a variety of problems in fields such as medical imaging and network traffic analysis. Many of these techniques are far more flexible than more classical modelling approaches and could be usefully applied to data-rich environmental problems. Certain techniques such as Artificial Neural Networks, Clustering, Case-Based Reasoning and more recently Bayesian Decision Networks have found application in environmental modelling while other methods, for example classification and association rule extraction, have not yet been taken up on any wide scale. We propose that these and other data mining techniques could be usefully applied to difficult problems in the field. This paper introduces several data mining concepts and briefly discusses their application to environmental modelling, where data may be sparse, incomplete, or heterogenous

    Remote sensing and geographic information systems technics for spatial-based development planning and policy

    Get PDF
    Indonesia's land-use and land-cover change (LULCC) is a global concern. The relocation plan of the capital city of Indonesia to East Kalimantan will be becoming an environmental issue. Knowing the latest land cover change modeling and prediction research is essential for fundamental knowledge in spatial planning and policies for regional development. Five articles related to integrated technology of geographic information systems (GIS) and remote sensing for spatial modeling were reviewed and compared using nine variables: title, journal (ranks), keywords, objectives, data sources, variables, location, method, and main findings. The results show that the variables that significantly affect LULCC are height, slope, distance from the road, and distance from the built-up area. The artificial neural network-based cellular automata (ANN-CA) method could be the best approach to model the LULCC. Furthermore, by the current availability of global multi-temporal and multi-sensor remote sensing data, the LULCC modeling study can be limitles

    Landslide susceptibility mapping using multi-criteria evaluation techniques in Chittagong Metropolitan Area, Bangladesh

    Get PDF
    Landslides are a common hazard in the highly urbanized hilly areas in Chittagong Metropolitan Area (CMA), Bangladesh. The main cause of the landslides is torrential rain in short period of time. This area experiences several landslides each year, resulting in casualties, property damage, and economic loss. Therefore, the primary objective of this research is to produce the Landslide Susceptibility Maps for CMA so that appropriate landslide disaster risk reduction strategies can be developed. In this research, three different Geographic Information System-based Multi-Criteria Decision Analysis methods—the Artificial Hierarchy Process (AHP), Weighted Linear Combination (WLC), and Ordered Weighted Average (OWA)—were applied to scientifically assess the landslide susceptible areas in CMA. Nine different thematic layers or landslide causative factors were considered. Then, seven different landslide susceptible scenarios were generated based on the three weighted overlay techniques. Later, the performances of the methods were validated using the area under the relative operating characteristic curves. The accuracies of the landslide susceptibility maps produced by the AHP, WLC_1, WLC_2, WLC_3, OWA_1, OWA_2, and OWA_3 methods were found as 89.80, 83.90, 91.10, 88.50, 90.40, 95.10, and 87.10 %, respectively. The verification results showed satisfactory agreement between the susceptibility maps produced and the existing data on the 20 historical landslide locations

    Tropical deforestation modelling : a comparative analysis of different predictive approaches. The case study of Peten, Guatemala.

    Get PDF
    The frequent use of predictive models for analysing of complex, natural or artificial, phenomena is changing the traditional approaches to environmental and hazard problems. The continuous improvement of computer performances allows more detailed numerical methods, based on space-time discretisation, to be developed and run for a predictive modeling of complex real systems, reproducing the way their spatial patterns evolve and pointing out the degree of simulation accuracy. In this contribution we present an application of several models (Geomatics, Neural Networks, Land Cover Modeler and Dinamica EGO) in a tropical training area of Peten, Guatemala. During the last decades this region, included into the Biosphere Maya reserve, has known a fast demographic raise and a subsequent uncontrolled pressure on its own geo-resources; the test area can be divided into several sub-regions characterized by different land use dynamics. Understand and quantify these differences permits a better approximation of real system; moreover we have to consider all the physic, socio-economic parameters which will be of use for represent the complex and sometime at random, human impact. Because of the absence of detailed data for our test area, nearly all information were derived from the image processing of 41 ETM+, TM and SPOT scenes; we pointed out the past environmental dynamics and we built the Input layers for the predictive models. The data from 1998 and 2000 were used during the calibration to simulate the Land Cover changes in 2003, selected as reference date for the validation. The basic statistics permit to highlight the qualities or the weaknesses for each model on the different sub-regions

    A review of Multi-Agent Simulation Models in Agriculture

    Get PDF
    Multi-Agent Simulation (MAS) models are intended to capture emergent properties of complex systems that are not amenable to equilibrium analysis. They are beginning to see some use for analysing agricultural systems. The paper reports on work in progress to create a MAS for specific sectors in New Zealand agriculture. One part of the paper focuses on options for modelling land and other resources such as water, labour and capital in this model, as well as markets for exchanging resources and commodities. A second part considers options for modelling agent heterogeneity, especially risk preferences of farmers, and the impacts on decision-making. The final section outlines the MAS that the authors will be constructing over the next few years and the types of research questions that the model will help investigate.multi-agent simulation models, modelling, agent-based model, cellular automata, decision-making, Crop Production/Industries, Environmental Economics and Policy, Farm Management, Land Economics/Use, Livestock Production/Industries,

    Modeling of Land Use and Land Cover (LULC) Change Based on Artificial Neural Networks for the ChapecĂł River Ecological Corridor, Santa Catarina/Brazil

    Get PDF
    The simulation and analysis of future land use and land cover—LULC scenarios using artificial neural networks (ANN)—has been applied in the last 25 years, producing information for environmental and territorial policy making and implementation. LULC changes have impacts on many levels, e.g., climate change, biodiversity and ecosystem services, soil quality, which, in turn, have implications for the landscape. Therefore, it is fundamental that planning is informed by scientific evidence. The objective of this work was to develop a geographic model to identify the main patterns of LULC transitions between the years 2000 and 2018, to simulate a baseline scenario for the year 2036, and to assess the effectiveness of the Chapecó River ecological corridor (an area created by State Decree No. 2.957/2010), regarding the recovery and conservation of forest remnants and natural fields. The results indicate that the forest remnants have tended to recover their area, systematically replacing silviculture areas. However, natural fields (grassland) are expected to disappear in the near future if proper measures are not taken to protect this ecosystem. If the current agricultural advance pattern is maintained, only 0.5% of natural fields will remain in the ecological corridor by 2036. This LULC trend exposes the low effectiveness of the ecological corridor (EC) in protecting and restoring this vital ecosystem.info:eu-repo/semantics/publishedVersio
    • 

    corecore