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Abstract: The simulation and analysis of future land use and land cover—LULC scenarios using
artificial neural networks (ANN)—has been applied in the last 25 years, producing information
for environmental and territorial policy making and implementation. LULC changes have impacts
on many levels, e.g., climate change, biodiversity and ecosystem services, soil quality, which, in
turn, have implications for the landscape. Therefore, it is fundamental that planning is informed by
scientific evidence. The objective of this work was to develop a geographic model to identify the main
patterns of LULC transitions between the years 2000 and 2018, to simulate a baseline scenario for the
year 2036, and to assess the effectiveness of the Chapecó River ecological corridor (an area created by
State Decree No. 2.957/2010), regarding the recovery and conservation of forest remnants and natural
fields. The results indicate that the forest remnants have tended to recover their area, systematically
replacing silviculture areas. However, natural fields (grassland) are expected to disappear in the near
future if proper measures are not taken to protect this ecosystem. If the current agricultural advance
pattern is maintained, only 0.5% of natural fields will remain in the ecological corridor by 2036. This
LULC trend exposes the low effectiveness of the ecological corridor (EC) in protecting and restoring
this vital ecosystem.

Keywords: LULC change; machine learning; simulation; spatial planning

1. Introduction

Land use and land cover change (LULC) occurs due to human activities and natural
processes [1–4]. Currently, regardless of whether the impacts of change are positive or
negative, they are mostly driven to meet human needs [5]. LULC changes can significantly
affect some core aspects of how the Earth’s system works, such as biodiversity, soil quality
and ecosystem carrying capacity [5,6].

The conceptual difference between land use and land cover is functional. While land
cover is classified according to “what is physically on” the land surface (natural or other-
wise), land use refers to the activities carried out on a given portion of the territory [7–11].
In this research, both terms are presented in a combined form: land use and land cover
(LULC), since they are complementary and interrelated terms as substantiated by the
literature [12].

LULC dynamics are characterized by their complexity, which involves a set of interac-
tions between biophysical and socioeconomic processes [5,6]. Modeling is a tool that allows
us to understand the causes and consequences of LULC dynamics and analyze scenarios to
support land use planning [13].
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Artificial intelligence (AI), as an analytical method, has had an increasingly important
role in our society in almost every field [14–18], including among the territory analysis meth-
ods [19–21]. Different groups of AI systems use different algorithms and are suitable for
different purposes [22]. LULC dynamics can be typically modeled by methods that have var-
ious implementation complexities and efficiencies [23], such as Markov chains (MC) [24–27],
cellular automata (CA) [28–32], and artificial neural networks (ANN) [19,20,33–38]. Its
applications are suitable for urban [20,28,34,39] and rural [19,26,35,40,41] environments and
it can be applied to different settings. LULC dynamics often result from a complex inter-
system combination of factors, a non-trivial collective behavior, that cannot be derived from
an individual or a simple collection of systemic analyses. We adopted the ANN method
for LULC prediction because previous empirical studies comparing neural networks and
more traditional learning methods often find better forecasting results in the former [34].
Furthermore, neural networks offer fault-tolerant solutions and they can better learn from
and make decisions based on incomplete, noisy, and fuzzy information [42]. Moreover, we
used the MLP type of ANN, which is one the most popular ANN supervised techniques
currently used due to the robustness of the results [43,44].

Historically, land use and land cover dynamics in Brazil have two main drivers—
urbanization and the growth of the primary sector (agriculture, livestock and extrac-
tivism) [45–51]. While urbanization is responsible for the gradual and intense replacement
of natural environments by urban agglomerations, primary activities use extensive areas
but maintain a minimum of soil permeability and vegetation cover, even if not perennial.
In the state of Santa Catarina, a close relationship can be observed between the growth of
farming and silviculture and land use and land cover changes [52]. The constant growth of
the gross value of production (GVP) of the state’s mixed farming reflects this dynamic and
is also an important economic indicator [53]. This context of socioeconomic growth versus
LULC changes reveals the importance of using LULC change analysis and simulation
methods to support the development and assessment of public policies.

The assessment of LULC changes proposed in this paper aims to identify transition
patterns between LULC classes at a more detailed level of observation than is typically
performed in studies using only the transition matrix as the method of analysis [26,54].
The method is based on computing the persistence of LULC classes while identifying the
most significant changes. By computing the persistence of LULC classes, it is possible
to extract the maximum knowledge about the potential processes that determine a given
LULC change pattern. Through persistence, it is possible to assess LULC changes in terms
of the area that has changed, the dynamics of change between the various classes, and
the spatial pattern of change. This method allows scientists and managers to focus on the
strongest signals of systematic landscape transitions, ultimately necessary to link a pattern
and process [54].

The purpose of this research was to develop a simulation and analysis model of LULC
change trends for the year 2036, based on artificial neural networks (ANN) and in inter-class
systematic transition patterns proposed by Pontius et al. (2004) [54] in the Chapecó River
ecological corridor (EC), in order to provide a robust tool to support decision-making, land
use planning and sustainable development. ANN-MLP is a machine learning data-driven
method. The accuracy and robustness of its outcomes derive from training optimization
functions that fine-tune the learning process and minimize prediction error [55]. It is
recommended, for model robustness purposes, that the number of prediction years should
not be greater than the time interval between model input data [19,20,34,55], which in our
case are 18 years (from 2000 to 2018). That being said, we can adopt a one-size-fits-all
approach ANN type of model, because each dataset requires a tailored approach for the
sake of the model soundness. For each step of the study, the specific objectives were: to
select the physical, social, economic and environmental variables that could potentially
influence LULC dynamics; to parameterize and validate the LULC dynamics simulation
model for the year 2036; to identify LULC changes between the years 2000–2018 (observed)
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and 2018–2036 (simulated), and to assess the effectiveness of the creation of the ecological
corridor as an environmental preservation/conservation public policy tool.

This paper is organized as follows: Section 2 presents the description of the study area,
the used data, and the methodology adopted. Section 3 presents the results and discussions
about the main systematic transitions of LULC and the effectiveness of the ecological
corridor as a policy for conservation and environmental restoration. Finally, Section 4
presents the main findings of the research and implications of the method, presenting the
main conclusions of the research.

2. Materials and Methods
2.1. Study Area

The study area is located northwest of the state of Santa Catarina, in the southern
region of Brazil (Figure 1). It has an approximate area of 7242 km2 and is located between
the geographic coordinates 27◦5′0′′ and 26◦20′0′′ south latitude and 53◦0′0′′ and 51◦10′0′′

west longitude. It is delimited by the political boundaries of the 23 municipalities that make
up the Chapecó River ecological corridor (Chapecó EC). The Chapecó EC was created by the
State of Santa Catarina/Brazil Government through the State Decree, No. 2957 of 20 January
2010 [56]. It was designed due to the need to preserve biodiversity in essential remnants
of the Atlantic Forest biome and associated natural ecosystems [56]. Its main objective
is to “develop and implement a model to enhance, market and leverage native forests
(and other natural environments) as environmental assets, promoting the maintenance and
improvement of landscape permeability” [57,58].
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The Chapecó EC displays a high complexity of social arrangements. It houses 37 agrar-
ian reform settlements (family farmers and settlers), 3 indigenous lands, and 3 conservation
units (2 federal and 1 state) (Figure 1). The main economic activities are soybean cultivation,
beef, and dairy cattle raising, and timber production [58].

The study area occupies approximately 7% of the total area of the state of Santa
Catarina, where 185,116 inhabitants live (2.62% of the state’s population) [61]. Among
the 23 municipalities that make up the study area, Xanxerê stands out, with just over
50,000 inhabitants [62]. The other municipalities are considered small-sized (less than
50 thousand inhabitants). The study area has an agricultural and livestock tradition, with
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an average demographic density of 28.2 inhabitants per km2, lower than the state’s average
(99.7 inhabitants per km2), and an urbanization rate of 49.4% [61]. The municipalities that
make up the study area contribute 2.2% of the state GDP (6.2 million in 2017), and their
household income per capita is 30% lower than the state average income [61].

In 2018, there were 67.9 thousand people formally employed, of which 35% were in
the manufacturing sector, followed by the service sector (21.6%) and trade (18.5%) [63]. The
main industrial segment is food products manufacturing, which, together with the sectors
of pulp, paper and paper products manufacturing and wood products manufacturing,
accounted for more than 75% of the formally employed workforce [63].

Regarding natural characteristics, the study area is part of the Atlantic forest biome
and has a natural patchwork of vegetation types, composed of mixed ombrophilous forest
(araucaria forest), deciduous seasonal forest, and gramineous and hardwood steppe (nat-
ural fields) [58,64]. Geomorphologically, it is formed by the Campos Gerais Plateau and
the Dissected Plateau. On the Campos Gerais Plateau, the altimetric levels vary between
800 m and 1200 m and are higher than the surrounding areas of the Dissected Plateau unit.
The latter makes a tremendous topographic contrast with the areas of the Campos Gerais
Plateau, with its strongly dissected relief formed by deep valleys and terraced slopes. The
main soil types found in the Chapecó EC are latosols, nitosols, cambisols and litholic soils,
where cambisol is the predominant soil type [65–67].

As for the type of climate, according to Koeppen’s classification, in areas below
800 m, the climate is of the humid mesothermal type with hot summers (Cfa), where the
remnants of the deciduous seasonal forest are found. In areas above this altitude, the
climate is humid mesothermal with cool summers (Cfb), where the natural fields and the
mixed ombrophilous forest are. The average annual temperature ranges from 15 ◦C to
18 ◦C [68], with well-distributed rainfall throughout the year, varying between 1640 mm
and 2035 mm [67,68].

According to MapBiomas mapping [69], in 2018, the LULC agriculture class covered
33.36% of the study area. The forest class covered 28.96%, while pasture and silviculture
occupied just over 12% each. The grassland class accounted for 2.06% of the study area,
and artificial areas and water bodies combined accounted for less than 1% of the total area.

To represent the Chapecó EC through its physical, social and economic aspects and
simulate a LULC scenario for 2036, a method based on ANN was applied [5,34,70,71],
whose steps were: (i) data issues; (ii) parameterization of the LULC model; (iii) validation
of the LULC model; (iv) analysis of LULC changes between the observed period (2000–2018)
and the simulated period (2018–2036); and (v) the assessment of the effectiveness of the
Chapecó EC as a LULC management tool.

2.2. Modeling LULC Change

Figure 2 illustrates a procedural and methodological flowchart of the activities in-
volved in developing the model. The keys indicate the four specific objectives that make
up the proposed main goal. The processes resulting from the boxes in key 1 resulted in the
systematization of a set of 37 variables selected due to their potential explanatory factor
of LULC changes in the study area. This is the input for modeling LULC changes. Key 2
illustrates the processes performed for modeling the LULC changes for the Chapecó EC
under an artificial neural network approach. This step resulted in the simulation of LULC
changes for the year 2036 for the study area. The third key is the LULC change analyses for
the observed and simulated periods. This step of model building is intended to identify
the most significant patterns of change (which is ultimately necessary to link the pattern to
the process [54]), and the fourth key was an analysis of the effectiveness of the Chapecó
EC as an environmental management tool, assessing the changes that have occurred and
the trends of changes in the classes involving, mainly, the Atlantic forest remnants and the
natural fields.
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2.3. Data Issues

The choice of variables in LULC change studies should be based on the knowledge
of the forces that cause change and create dynamics in a specific territory. These forces
and the variables that represent them can be social, economic, demographic/population,
environmental, political, and cultural (driving forces) [5,34,70,71].

The selection of representative data for the variables implies the adoption of two main
criteria: 1—the existence of spatial representation at a scale compatible with the analysis
throughout the study area, and 2—the existence of a temporal history consistent with the
period studied with at least two representative dates [21].

Table 1 shows the metadata of the data sources used. The variables used in the
model match those commonly adopted in LULC simulations [19,20,34,35,72], and the
raw data used were obtained from various sources, with different formats and temporal
representations (Table 1).
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Table 1. Metadata.

Data Source Variables
(Quantity) Format Year

MapBiomas [69] 1 raster 2000 and 2018
Center for Environmental Resources Information and

Hydrometeorology-Epagri/Ciram [68] 2 raster 2002

Embrapa [66] 1 raster 2004
NIMA/NASA [73] 2 raster 2000
OSM/IBGE [74,75] 1 vector 2018

Agricultural Census/IBGE [61] 10 tabular 2006 and 2017
Demographic Census/IBGE [61] 2 tabular 2000 and 2010

Municipal Livestock Survey-PPM/IBGE [61] 4 tabular 2000 and 2018
Municipal agricultural production-PAM/IBGE [61] 4 tabular 2002 and 2017

Production of Vegetable Extraction and
Forestry-PEVS/IBGE [61] 1 tabular 2000 and 2018

Gross Domestic Product of the Municipality/IBGE [61] 2 tabular 2000 and 2018
Population estimate/IBGE [61] 1 tabular 2000 and 2018

Center of Socioeconomics and Agricultural
Planning-Epagri/Cepa [76] 1 tabular 2000 and 2018

Atlas of Human Development of Brazil/UNDP [77] 1 tabular 2000 and 2010
Annual Social Information Report—RAIS/Ministry of

Economy [63] 4 tabular 2006 and 2018

The organization and systematization of this dataset were conducted in a GIS (Geo-
graphic Information System) environment, using ArcGis 10.7 [78] and IDRISI Selva [79].
The representative data of each variable were converted to a raster format, with a 100-m
spatial resolution, and referenced to the SIRGAS2000 system, Universal Transverse Merca-
tor projection (UTM 22S). The choice of spatial resolution was based on the relation between
computer processing time and the minimum scale of the data, without prejudice to the
intended analyses regarding LULC dynamics [80]. We generated 68 rasters, equivalent to
37 variables multiplied by the number of corresponding years (Table 1). As an example, for
the LULC data from MapBiomas, two rasters were generated, one for the year 2000 and
another for 2018.

Table 2 presents the relationship of the variables (driving forces) used in the ANN-
based LULC change simulation model and their analysis dimensions. The data represent
a total of 37 variables, where 6 are from the physical dimension, 20 economic, 6 social,
3 technological, and 2 demographic. The analysis dimension makes up the forces that cause
change and creates dynamics in the territory (physical, social, economic, demographic, and
technological/political dimensions) [5,6,70,81,82].

The physical/natural dimension describes some of the study area’s natural, physical
and weather characteristics. In the economic dimension, there are variables that depict the
road infrastructure of the study area, agricultural production (herd size, yield and value),
employment and income distribution, and land value. The social dimension deals with
the social arrangements and socioeconomic development. The technological dimension in-
cludes some variables used to measure the technological level employed in rural properties.
Finally, there is the population dimension (general and rural).
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Table 2. Driving forces used in the ANN model.

Dimension Driving Forces

Physical/natural

Land use and land cover
Temperature

Accumulated precipitation
Type of soil

Type of relief
Altimetry

Economic

Road network
Rural agribusiness

Cattle herd
Swine Herd

Chicken Herd
Formal employment—commerce
Formal employment—industry

Formal employment—agriculture
Financing—Pronaf

Processing industries
Corn yield

Soybean yield
Bean yield

Tobacco yield
Gross Domestic Product—GDP

Agricultural land price
Per capita income
Log Production

Gross value added of agriculture and cattle raising
Milk production value

Social

Family agriculture
Land structure

Schooling of the head farmer
Age of the head farmer

Human Development Index—HDI
Rural workers

Technology
Use of agrochemicals

Mechanization in the rural property
Technical orientation

Population Population density
Rural population

LULC Class Nomenclature Definition

According to the MapBiomas project, nine LULC classes were originally presented in
the study area: forest formation, forest plantation, grassland, pasture, annual and perennial
crop, mosaic of agriculture and pasture, urban infrastructure, other non-vegetated area, and
river, lake and ocean [69]. For this research, the nomenclature of the classes was modified.
Urban infrastructure and other non-vegetated area were grouped together and termed
artificial areas. Table 3 presents the nomenclature of the classes changed according to the
LULC descriptions defined by the classification key adopted in the MapBiomas project [69]
and the phytogeographic typologies of Santa Catarina [64].
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Table 3. Land use and land cover description.

LULC Class Description

Forest (forest formation)
Dense, open, and mixed ombrophilous forest,

semi-deciduous and deciduous seasonal forest, and
pioneer formation.

Silviculture (forest plantation) Planted tree species for commercial use (e.g.,
eucalyptus, pinus and araucaria).

Grassland
Savannahs, park and grassland steppe savannahs,

steppe and shrub, and herbaceous pioneers
(natural fields).

Pasture Pasture areas, natural or planted, related to the
farming activity.

Agriculture (annual and perennial crop)

Areas predominantly occupied with annual crops
(short to medium-term crops, usually with a

vegetative cycle of less than one year, that has to be
re-planted after harvest) and in some regions with
perennial crops (areas occupied with crops with a

long cycle (more than one year), which allow
successive harvests without the need for a new crop).

Mosaic (mosaic of agriculture
and pasture)

Farming areas where it was not possible to
distinguish between pasture and agriculture.

Artificial Area (urban infrastructure +
other non-vegetated area)

Urban infrastructure: urban areas with a
predominance of non-vegetated surfaces, including

roads, highways and constructions, and other
non-vegetated area non-permeable surface areas
(infrastructure, urban expansion or mining) not

mapped into their classes and regions of exposed soil
in natural or crop areas.

Water bodies (river, lake and ocean) rivers, lakes, dams, reservoirs and other water bodies.

2.4. Parameterization of the LULC Simulation Model

To model LULC changes, the type of machine learning adopted was ANN, based
on the multilayer perceptron (MLP) network and the backpropagation algorithm. This
is the most widely used model conformation in this type of work [19,20,22,34,35,83–85].
Eight models named ANN1 to ANN8 were constructed (Table 3), based on experimentation
with different parameterizations [16,20,34,86,87], and IBM SPSS 24 was used [88]. The
input layer data, hidden layer activation function, and output layer data and parameters
have been kept constant in all eight models. The difference between the models was the
parameterization of the number of cases for the sample partitions for network training,
testing and validation; the number of hidden layers; the number of hidden layer neurons;
and the number of iterations (Table 4).

Table 4. Parameters of the ANN-MLP models.

Parameter Parameterization Object Parameterization
Adopted

Constants
parameters

Input layer Independent variables 67
Rescaling method Normalized

Hidden layer Activation function Hyperbolic tangent

Output layer
Dependent variable LULC 2018
Activation function Softmax

Error function Cross-entropy

ANN Models
ANN1 ANN2 ANN3 ANN4 ANN5 ANN6 ANN7 ANN8

Parameters

Partitions 7-2-1 6-2-2 7-2-1 6-2-2 7-2-1 6-2-2 7-2-1 6-2-2
Hidden

layer 1 1 1 1 2 2 2 2

Neurons 56 56 56 56 49-49 49-49 49-49 49-49
Iterations 500 500 1000 1000 500 500 1000 1000
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2.5. Validation of the Model

The validation of the model was based on the area under the curve (AUC) mea-
surement, derived from the relative operating characteristic, also known as the receiver
operating characteristic (ROC) [89]. The AUC value lets us know how well the model can
distinguish between the classes [35,90–92]. The higher the value, the better the ability of
the model to differentiate the classes. AUC values are between 0 and 1, where 0.5 indicates
that the model is unable to distinguish between the classes, and 1 corresponds to a perfect
fit [29,45,46] AUC values between 0.7 and 0.8 are considered acceptable, values between
0.8 and 0.9 are considered very good, and values above 0.9 are considered excellent [93].

2.6. Analysis of LULC Changes

The space–time analysis of LULC changes was based on the LULC class area for 2000,
2018, and 2036. Complementing this analysis, the method proposed by Pontius et al. [54]
and applied by Viana and Rocha [26] was adopted. From the calculation of the transition
matrix (cross-tabulation) between the LULC maps for the years 2000 and 2018 (observed
period), and 2018 and 2036 (simulated period), the behavior of each class and the transitions
between classes were verified.

The transition matrix presents, on its diagonal, the persistence for each LULC class (Pjj)
from the initial time (T1) to the final time (T2). The column total, P+j, denotes the landscape
proportion of each LULC class at the final time, and the row total, Pj+, is the proportion
of each LULC class at the initial time. The off-diagonal values represent the transitions
between classes from the initial to the final time. In addition to persistence, for each class,
eight more metrics were calculated: gain, loss, total change, swap, net change [26,54],
tendency to gain rather than lose, tendency to lose rather than persist, tendency to gain
rather than persist [26]. Table 5 shows the description of each metric used in the LULC
change analysis.

Table 5. Description of the metrics used in the analysis of LULC changes.

Change Metrics Description

Persistence (Pjj) Percentage of LULC class area that did not change over the time
interval considered (diagonal of the transition matrix).

Gain (Gj) Difference of the total value of each LULC class from the final
time (P+j) and the persistence value (Pjj).

Loss (Lj) Difference of the total value of each LULC class from the initial
time (Pj+) and the persistence value (Pjj).

Total change (Cj) Sum of the gain (Gj) and loss (Lj) of each LULC class.

Swap (Sj) Swap trend: twice whichever presents the smaller value (gain or
loss), for each LULC.

Net change (Dj) Absolute value of the area difference for each class at the final
time and at the initial time.

Gain-to-loss (G/L) Proportion of gain compared to loss.
Loss-to-persistence (Lp) Proportion of loss compared to persistence.
Gain-to-persistence (Gp) Proportion of gain compared to persistence.

To analyze the transitions between classes and identify whether those transitions were
random or systematic, the method of comparing expected and observed LULC values was
applied [54].

To this end, six new LULC change matrices were generated, three for a gain situation
and three for an area loss situation between classes, containing: (i) the expected area
percentage of each class if the changes occurred randomly; (ii) the difference between the
observed area percentage and the expected area percentage for each class—this difference
defines the fingerprint left on the landscape (subtraction method); (iii) the ratio between the
fingerprint and the expected percentage area for each class, which highlights the strength
of the transition and provides values that indicate a systematic, or otherwise, transition
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process between LULC classes. The details of the equations used to generate the matrices
can be seen in [26,54].

2.7. Assessment of the Effectiveness of the Chapecó River EC as a Public Policy

To assess the effectiveness of the Chapecó River ecological corridor as an environ-
mental management public policy tool, the legal instruments that define the mechanisms
of direct or indirect action on LULC’s changing dynamics were considered. Article 2 of
Decree No. 2957 of January 2010 [56] sets out an objective of the ecological corridor I—“to
preserve the remnants of the mixed ombrophilous forest (forest) and southern fields from
economic mechanisms, based on the valorization of regional vocations and the region’s
natural resources.” The Chapecó River EC management plan [58] identifies as primary
threats to LULC, a change in the expansion of silviculture (planting exotic trees); agriculture
in areas of natural fields; and deforestation (forest).

In order to assess the effectiveness of the conservation of the remnants of the mixed
ombrophilous forest and the natural fields (southern fields) and to verify the power of the
response to the threats and the objective of the creation of the ecological corridor, the metrics
that describe the transition process of the forest, silviculture, agriculture and grassland
classes were used.

3. Results and Discussions
3.1. Model Validation and LULC Simulation for 2036

The results of the ANN model’s performance and network training time are presented
in Table 6. The complete results for the “rounds” of the eight parameterized models are
available in the Supplementary Materials for this article (S1: Model ANN-MLP).

The model that met the pre-established performance criteria was the ANN1 model,
with the highest cross-entropy value. The hit percentage, when predicting LULC classes,
was similar for every model. The network training time was the second-fastest, and the
processing time was half the time that the models with two hidden layers took (ANN5 to
ANN8). To determine the accuracy of the ANN1 model, the area under the ROC curve was
used [94]. The curves numbered 1 to 8 correspond to the following LULC classes: forest (1),
silviculture (2), grassland (3), pasture (4), agriculture (5), mosaic (6), artificial area (7), and
water bodies (8) (Figure 3).

Table 6. Performance results of ANN-MLP based models.

ANN Models
ANN1 ANN2 ANN3 ANN4 ANN5 ANN6 ANN7 ANN8

Results
Cross-entropy error 133,961.6 134,384.8 135,483.9 134,766.5 134,606.6 134,151.7 134,429.9 134,039.8

Percent Correct 67.1 67.1 67.1 67.1 67.1 66.8 67.0 67.1

Training time 0:15:14.9 0:16:12.2 0:14:51.0 0:17:13.1 0:28:17.8 0:21:27.4 0:27:29.9 0:22:06.2

All LULC classes presented values higher than 0.7, demonstrating that the model
has high separability and accuracy among the different land use and land cover classes.
These results are consistent with other ANN-based LULC simulation studies [34,35,81].
The model showed excellent accuracy in the forest, grassland, agriculture, artificial area
and water bodies classes (>90%). The silviculture and pasture classes, with a value between
80% and 90%, were classified as “very good,” and only the mosaic class was classified as
“acceptable” (79.4%).

The mosaic class is composed of two classes: agriculture and pasture, which may
explain the higher degree of uncertainty in its classification in a machine learning and
simulation process. According to the accuracy studies of the MapBiomas project volume 4.1,
this class presented an approximately 35% inclusion error [69]. Another characteristic of this
class that may explain its lower hit rate, is its sparse spatial distribution and surrounding
larger patches of other LULC classes (Figure 4).
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Thus, the ANN1 model was considered fit to simulate LULC changes between 2018
and 2036 (Figure 4c).

3.2. LULC Changes
3.2.1. Spatial and Temporal Evolution of Land Use and Land Cover

The spatial and temporal evolution of LULC in the study area, which occurred between
the years 2000 and 2018, and the evolution trends for the year 2036 can be observed in the
maps of Figure 4. Table 7 shows the areas of the LULC map classes for each evaluated year.

In 2000 and 2018, the forest class was predominant, covering 33.39% and 28.96% of the
study area, respectively (Figure 4 and Table 6). However, from 2000 to 2018, there was a loss
of 320 km2 of forest. According to the simulation result, under constant current conditions,
this area may be recovered by 2036.

Between 2000 and 2018, the silviculture class increased from 4.46% of the total area to
12.62%—an increase of 190%. According to the simulation result, silviculture will again
occupy close to 6% of the study area in 2036.

The agriculture class area grew between 2000 and 2018 and will keep on growing,
according to the simulation for 2036. While between 2000 and 2018, it increased by 35%.
According to the model, the agriculture class area is expected to grow by 9.1% in the
2018–2036 period.

In 2000, the grassland class already occupied a small area (4.8% of the total area)
compared to the other LULC classes. From 2000 to 2018, it lost 55% of its area (in Brazil, the
loss of this ecosystem in 32 years (1985 to 2017) was 9.8% [95]) and, according to the model,
the trend indicates that only 0.47% of the study area will still be covered by grassland
by 2036.

Despite different methodological approaches, these results corroborate with other
studies of LULC change, where they identify trends of expansion of agricultural ar-
eas, such as agriculture and silviculture, and a loss of forest area in different regions
of the country and the world (Latin America, Africa, South and Southeast Asia, and
China) [5,19,45–50,52,70,71,95], and the marked loss of grassland area in the southern re-
gion of Brazil [95–98]. Trends of increasing forest area and loss and/or relative stagnation of
areas dedicated to agriculture are perceived in different regions of the world [20,26,70,99].

Table 7. LULC for 2000, 2018, and 2036 (in km2).

LULC Class 2000 2018 2036

Forest 2418.36 2097.62 2418.25
Silviculture 315.60 914.02 422.88
Grassland 350.55 148.99 34.22

Pasture 1699.32 886.34 1306.09
Agriculture 1787.50 2416.28 2637.90

Mosaic 614.54 677.71 363.66
Artificial Area 30.70 50.14 31.65
Water bodies 25.76 51.23 27.68

Total 7242.33 7242.33 7242.33

3.2.2. LULC Changes and the Main Systematic Transitions Observed between the Years
2000 and 2018

The most significant transitions between classes in terms of area percentage between
2000 and 2018 were from pasture to agriculture (5.46%), from pasture to mosaic (4.17%),
and from forest to silviculture (3.42%) (see Table 8). Ecologically, the transition between
agricultural areas (pasture, agriculture, and mosaic) does not determine the loss of natural
areas, but silviculture has proved to be an invasive activity in forests.

In addition to the forest and silviculture transition, which proved to be significant, the
behavior of the agriculture and grassland classes has to be assessed, since these classes are
related to the threats and the goal of the creation of the ecological corridor.
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The transition matrix (Table 8) may induce a naïve analysis of the results, simply
highlighting the most significant transitions, usually associated with the classes with more
coverage in the study area. An example of this is the grassland class, which despite having
lost 55% of its area in the analysis period (Table 7), does not stand out as one of the major
transitions (Table 8).

Table 8. LULC transition matrix 2000–2018 (in %) *.

2018
LULC Class Forest Silviculture Grassland Pasture Agriculture Mosaic Artificial Area Water Bodies

2000

Forest 25.85 ** 3.42 * 0.00 0.77 1.74 1.42 0.02 0.17
Silviculture 0.07 4.25 ** 0.00 0.01 0.01 0.01 0.00 0.01
Grassland 0.05 0.60 1.51 ** 0.52 1.96 0.18 0.00 0.01

Pasture 1.71 2.93 0.41 8.59 ** 5.46 * 4.17 * 0.09 0.10
Agriculture 0.24 0.60 0.13 1.22 21.54 ** 0.77 0.10 0.08

Mosaic 1.03 0.82 0.00 1.10 2.65 2.78 ** 0.09 0.03
Artificial

Area 0.00 0.00 0.00 0.01 0.00 0.01 0.40 ** 0.00

Water bodies 0.01 0.00 0.00 0.02 0.00 0.01 0.00 0.31 **

* Major LULC transitions. ** LULC persistence.

In order to properly reveal the dynamic behaviors of LULC classes and transitions
between classes, complementary metrics need to be considered. These metrics are calculated
based on the transition matrix and depict the persistence, gain, loss, swap (associated with
a place change), and net change (associated with quantity change) of each LULC class, and
the systematic transitions, which are those that occur beyond what would be expected in a
random change process.

As shown in Table 9, approximately 1/3 of the study area experienced LULC changes,
and almost 70% of its area remained unchanged. In terms of total change, 16.33% was
attributed to an exchange process (Sj) and 18.44% was attributed to net change (Dj). This
means that the area’s change process was slightly higher (2.21%) than the place change
process.

Table 9. Summary of LULC changes (2000–2018) (in %).

LULC Class Pj Gj Lj Cj Sj Dj G/L Lp Gp

Forest 25.85 3.11 7.54 10.66 6.23 4.43 0.41 0.29 0.12
Silviculture 4.25 8.37 0.11 8.48 0.22 8.26 76.18 0.03 1.97
Grassland 1.51 0.55 3.33 3.87 1.09 2.78 0.16 2.20 0.36

Pasture 8.59 3.65 14.87 18.52 7.29 11.23 0.25 1.73 0.42
Agriculture 21.54 11.82 3.14 14.96 6.28 8.68 3.77 0.15 0.55

Mosaic 2.78 6.58 5.71 12.29 11.42 0.87 1.15 2.05 2.37
Artificial Area 0.40 0.29 0.03 0.32 0.05 0.27 11.13 0.07 0.74
Water bodies 0.31 0.39 0.04 0.43 0.08 0.35 9.58 0.13 1.25

Total 65.23 34.77 34.77 34.77 16.33 18.44
Note: Pj = persistence, Gj = gain, Lj = loss, Cj = total change, Sj = swap, Dj = net change, G/L = gain-to-loss ratio,
Lp = loss-to-persistence ratio, Gp = gain-to-persistence ratio.

The dynamics of the forest class were marked by the loss of its area at a rate more than
twice (7.54%) the area gain between 2000 and 2018. Furthermore, in terms of change, of
the 10.66% total change of the forest class in the study area, more than half of that change
is attributed to a pattern of place change (6.23%) rather than area change. As shown in
Figure 5a, the loss of forest remnants is concentrated around areas dedicated to silviculture.

The silviculture class was marked by an area gain relative to the loss process, at a rate
of 76.18% (G/L). This gain process occurred in the study area region where silviculture
was already a prevalent activity, substantiated by the gain patches around the persistence
patches (Figure 5b).
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The agriculture class was marked by an area gain dynamics, where the gain repre-
sented almost four times the loss rate (3.77%). The most significant gains of the agriculture
class were concentrated on the grassland areas and around persistence areas (Figure 5c). The
grassland class (Figure 5d) stood out with an area loss of more than two times (Lp = 2.20%)
compared to its persistence rate (Pj = 1.51%).
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The information provided in Tables 7 and 8 made it possible to quantify the net change
of each class, besides the gain, loss and swaps, and to identify the major transitions between
classes. However, to identify the most significant systematic transitions, Table 10 has to
be analyzed.

If the transitions between classes occurred randomly in terms of both gain and loss,
the “observed minus expected” metrics shown in Table 10 should be zero, but this is not the
case. Moreover, the farther away from zero is the “difference divided by expected” ratio,
the stronger the signal of a systematic transition.

In order to examine the main transitions, Table 10 presents those with the strongest
change signals (positive and negative).

Table 10. Interpretation the most systematics transitions (2000–2018).

Inter-Class LULC Transitions in Terms of Gains (2000–2018)

Transition Observed minus
expected (%)

Difference divided
by expected

Interpretation of
systematic transition

Forest in 2000 and
Silviculture in 2018 0.50 0.17 When silviculture gains, it

replaces forest
Forest in 2000 and

Agriculture in 2018 −3.50 −0.67 When agriculture gains, it
does not replace forest

Grassland in 2000 and
Agriculture in 2018 1.20 1.58 When agriculture gains, it

replace grassland
Pasture in 2000 and

Mosaic in 2018 2.48 1.47 When mosaic gains, it
replacespasture
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Table 10. Cont.

Inter-Class LULC Transitions in Terms of Losses (2000–2018)

Transition Observed minus
expected (%)

Difference divided
by expected

Interpretation of
systematic transition

Forest in 2000 and
Silviculture in 2018 2.08 1.55 When forest loses,

silviculture replaces it

Forest in 2000 and
Agriculture in 2018 −1.80 −0.51

When forest loses,
agriculture does not

replace it
Altitude fields in 2000

and Agriculture in 2018 0.83 0.73 When grassland loses,
agriculture replaces it

Pasture in 2000 and
Mosaic in 2018 2.58 1.63 When pasture loses,

mosaic replaces it

The transition between forest and silviculture shows a systematic transition pattern
due to strong transition signals, especially regarding the transition process in terms of
losses. When forest loses, this class is replaced by silviculture, marked by a fingerprint that
represents a difference of 2.08% of the study area. Studies point to a transition trend due to
economic pressure and market policies [45,49].

The transition between forest and agriculture shows a strong but negative signal of
the transition between classes. This means that when agriculture gains, it does not replace
forest, and when forest loses, it is not replaced by agriculture. The agriculture class gained
less from the forest (3.50% of its area) than would be expected due to a random process of
forest loss, and the forest class lost less to agriculture (1.80%) than would be expected due
to a random process of agriculture gain.

Similarly, the transition between agriculture and grassland represents a systematic
transition pattern. The expansion of agriculture over natural areas is evidenced in other
studies [5,52,70], and specifically over grassland areas [100]. The most robust evidence
of this systematic pattern is in the high signals of this transition in terms of gains. The
strength of this transition is equivalent to a rate more than one and a half times what would
be expected if the agriculture class gained randomly. A systematic pattern is evidenced
where agriculture replaces grassland but does not replace the forest.

The result of Table 10 demonstrates that two of the major transitions between classes
that were pointed out directly in the transition matrix (Table 7), also stand out as major
systematic transitions (forest to silviculture and pasture to mosaic). The grassland to agri-
culture transition, albeit not one of the major transitions evidenced in the transition matrix
of Table 7, was characterized as one of the most significant systematic transitions occurring
in the study area, according to the complementary analyses of LULC dynamics presented.
This result reveals the importance of analyzing the dynamics of LULC considering random
and systematic transitions [26,54,100].

3.2.3. LULC Changes and the Main Simulated Systematic Transitions for the Year 2036

The most significant transitions between classes expected to occur between 2018
and 2036 will be between agriculture and pasture (3.59%), silviculture and forest (3.42%),
mosaic and pasture (3.20%), and pasture and agriculture (3.19%). The transitions between
agricultural classes (pasture, mosaic and agriculture) are significant in terms of area but do
not determine any loss of natural area.

Although the simulation model (2036) indicates a 55% loss of the grassland class area
(Table 7), the transition pattern of this class is not highlighted by the transition matrix
as one of the key transitions (Table 11), just as it was not highlighted in the observed
2000–2018 period.



Sustainability 2022, 14, 4038 16 of 23

Table 11. LULC transition matrix 2018–2036 (in %) *.

2036
LULC Class Forest Silviculture Grassland Pasture Agriculture Mosaic Artificial Area Water Bodies

2018

Forest 25.85 ** 0.27 0.01 1.30 0.87 0.64 0.00 0.02
Silviculture 3.42 * 4.78 ** 0.04 2.27 1.58 0.52 0.00 0.00
Grassland 0.00 0.00 0.19 ** 0.39 1.47 0.00 0.00 0.00

Pasture 0.77 0.30 0.06 7.13 ** 3.19 * 0.75 0.01 0.02
Agriculture 1.74 0.20 0.16 3.59 * 26.50 ** 1.16 0.00 0.00

Mosaic 1.42 0.27 0.02 3.20 * 2.55 1.87 ** 0.02 0.01
Artificial

Area 0.02 0.00 0.00 0.06 0.15 0.06 0.40 ** 0.00

Water bodies 0.17 0.01 0.00 0.08 0.12 0.01 0.00 0.32 **

* Major LULC transitions. ** LULC persistence.

As it has been done for the observed period (2000–2018), the same metrics were
calculated based on the transition matrix for the simulation period (2018–2036) to analyze
LULC changes and identify key systematic transitions.

The results in Table 12 indicate that, according to the LULC simulation model for 2036,
32.9% of the total change is expected to occur in the study area, with approximately 20% of
that change tending towards swapping patterns, i.e., place change.

Table 12. Summary of LULC simulation changes (2018–2036) (in %).

LULC Class Pj Gj Lj Cj Sj Dj G/L Lp Gp

Forest 25.85 7.54 3.12 10.66 6.23 4.43 2.42 0.12 0.29
Silviculture 4.78 1.06 7.84 8.89 2.11 6.78 0.13 1.64 0.22
Grassland 0.19 0.29 1.87 2.16 0.57 1.58 0.15 10.09 1.55

Pasture 7.13 10.90 5.11 16.01 10.21 5.80 2.14 0.72 1.53
Agriculture 26.50 9.92 6.86 16.78 13.72 3.06 1.45 0.26 0.37

Mosaic 1.87 3.15 7.49 10.64 6.31 4.34 0.42 4.01 1.69
Artificial Area 0.40 0.04 0.29 0.33 0.07 0.26 0.12 0.72 0.09
Water bodies 0.32 0.07 0.39 0.46 0.13 0.33 0.17 1.23 0.21

Total 67.04 32.96 32.96 32.96 19.68 13.28
Note: Pj = persistence, Gj = gain, Lj = loss, Cj = total change, Sj = swap, Dj = net change, G/L = gain-to-loss ratio,
Lp = loss-to-persistence ratio, Gp = gain-to-persistence ratio.

According to Table 12, the forest class will experience an increase in area since it tends
to gain area rather than lose it at a rate of about two and a half times, as shown by the G/L
metric. A change in this class will be marked by a swapping pattern, corresponding to
6.23% of the total expected change (10.66%). Figure 6a shows that the forest class tends
to gain more area around the patches where this class persists and in areas previously
dedicated to silviculture.

Change in the silviculture class will be marked by a pattern of area loss, as shown by
the metrics Lj and Lp (Table 12 and Figure 6b). The Lj metric indicates that the likelihood
of the silviculture class losing area is more than seven times greater than that class gaining
area. Likewise, the Lp metric indicates that silviculture is more likely to be lost than to be
maintained (1.42%).

The agriculture class will present the most significant area persistence, with 26.5% of
its class (Table 12 and Figure 6c). By 2036, agriculture will keep on expanding as shown
by the gain metric (9.92%), higher than the loss metric (6.86%). Figure 6c illustrates a
higher concentration of agricultural area gain in grassland. Another characteristic of the
agriculture class is that it will respond to a swapping pattern, corresponding to 13.72% of
the total change of 16.78% expected for 2036.

The grassland class (Figure 6d) stood out due to an area loss of more than ten times
(Lp = 10.09%) compared to its persistence rate (Pj = 0.19%).
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The information provided in Tables 11 and 12 made it possible to quantify the net
change of each class, in addition to the gain, loss, swaps, and to identify the main transitions
between classes that will occur in the simulated 2018–2036 period. Similarly, to what was
done for the observed period, to identify the most significant systematic transitions, we
need to analyze the results of the transitions in Table 13.

Table 13 shows the transitions that indicated the strongest change signals (positive
and negative) for the simulated period (2036).

Table 13. Interpretation of the most systematics transitions (2018–2036).

Inter-Class LULC Transitions in Terms of Gains (2018–2036)

Transition Observed minus
expected (%)

Difference divided
by expected

Interpretation of
systematic transition

Silviculture in 2018 and
Forest in 2036 2.08 1.55 When forest gains, it

replaces silviculture
Forest in 2018 and

Agriculture in 2036 −3.44 −0.80 When agriculture gains, it
does not replace forest

Grassland in 2018 and
Agriculture in 2036 1.17 3.81

When agriculture gains, it
replaces grassland

weak

Mosaic in 2018 and
Pasture in 2036 2.04 1.75

When pasture gains, it
replaces
mosaic

Inter-Class LULC Transitions in Terms of Losses (2018–2036)

Transition Observed minus
expected (%)

Difference divided
by expected

Interpretation of
systematic transition

Silviculture in 2018 and
Forest in 2036 0.64 0.23

When silviculture loses,
forest replaces it. This

signal is weak

Forest in 2018 and
Agriculture in 2036 −0.83 −0.49

When forest loses,
agriculture does not

replace it
Grassland in 2018 and

Agriculture in 2036 0.79 1.15 When grassland loses,
agriculture replaces it

Mosaic in 2018 and
Pasture in 2036 1.78 1.25 When mosaic loses,

pasture replaces it
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According to the results shown in Table 13, the silviculture to forest transition tends
to behave as a systematic transition—even though, in case of loss, the replacement of the
silviculture class by the forest class shows a weak signal. The tendency to transition from
silviculture to forest may be related to the current slowdown in the silviculture market, as
shown in other studies [101].

When the agriculture class gains area, it does not replace forest, as shown by the
negative sign (−3.44%). When a forest loses area, it is not replaced by agriculture in a
random process of loss of the forest class.

The grassland class will change systematically to the agriculture class since when the
agriculture class gains area, it tends to gain it from the grassland class at a rate of almost
four times what would be expected if the agriculture class gains were random. Similarly,
when grassland loses area, it loses it to the agriculture class (0.79%) and (1.15%).

The transition between mosaic and pasture classes stands out due to the strong tran-
sition signals. When the pasture class gains area, it tends to gain it from the mosaic
class—2.04% of its area. Conversely, when the mosaic class loses area, it tends to lose it to
the pasture class (1.78%).

Of the four key transitions identified in the transition matrix in Table 10, two of them,
the transitions from mosaic to pasture and silviculture to the forest, stand out and are
confirmed as a trend of systematic transition patterns for the simulated period (2018–2036).

The grassland and agriculture transition were not evidenced as the major transition
in the transition matrix (Table 11). However, it is one of the most significant systematic
transitions identified for the simulated period, where, in terms of gains, it showed the
highest (positive) conversion signals. This result reveals a probability of maintenance of the
systematic transition of grassland into agriculture, with risks of significant loss of local bio-
diversity [96,97,102] and confirms the importance of elaborating future scenarios of LULC
change to support decision making and territory management, aiming at environmental
sustainability [19,34,55,80].

3.3. Effectiveness of the Chapecó River EC as an Environmental Management Tool

The Chapecó River EC was created in 2010, and the observed period of analyses of
LULC changes was from 2000 to 2018. Therefore, for ten years of this period (2000–2010),
this environmental management tool was not implemented in the study area.

The agricultural classes, indicated as threats, showed an expansion behavior in the
study area, with a systematic pattern of replacement of natural areas. Silviculture expanded
over forest remnants, and the loss of grassland resulted from the advance of agriculture.

For the observed period (2000–2018), there are clear indications that the protective
measures were insufficient to respond positively to the threats or even reverse an established
pattern of advancement of agricultural activities over natural areas.

For the simulated period (2036), the agriculture into grassland transition continues to
be a trend, where grassland conversion into areas dedicated to agriculture will leave only
0.5% of this natural cover in the study area, showing little power to respond to one of the
main threats presented in the Chapecó River EC management plan [58].

The loss of this ecosystem can have negative ecological, social, and economic conse-
quences. The natural fields of the Atlantic forest are among the most biodiverse grasslands
in the world and stand out as an essential ecosystem for biodiversity conservation, carbon
storage and the maintenance of significant ecosystem services [96,97,102].

Regarding forest remnants, forest areas (mixed ombrophilous forest or araucaria
forest) show a recovery trend, replacing silviculture areas. However, one cannot state
that this forest recovery is due exclusively to the effectiveness of the public policy of the
ecological corridor.

In the same period, there was a slowdown in silviculture in the state of Santa Catarina,
which expanded its planted area by 116.31% between 2000 and 2010; while between 2010
and 2018, that expansion rate dropped to 21.89% [69]. The rural environmental land register
(Cadastro Ambiental Rural—CAR) was also implemented [103]. This register is mandatory
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and ensures the environmental regularization and adequacy of rural properties in Brazil,
constituting a requirement to obtain benefits and financing and participate in programs
and authorizations. The CAR and the environmental regularization program (Programa de
Regularização Ambiental—PRA) establishes a formal commitment by the rural landowner
to maintain, recover or restore degraded areas or altered areas in permanent preservation
areas, legally reserve and restrict the use of the rural property areas, or to compensate legal
reserve areas.

4. Conclusions

The simulation of LULC dynamics being based on artificial neural networks (ANN),
allowed us to project a future alternative and identify the main land use and land cover
change trends for the Chapecó EC. The use of ANN to simulate LULC dynamics does not
require a priori knowledge about the data and the local dynamics. However, modeling vari-
ables describing the region’s physical, social, economic, and environmental characteristics,
and representing the driving forces of change in the territory can contribute to the machine
learning capabilities. The model offered excellent accuracy in most classes. Using a higher
complexity neural network parameterized with two hidden layers did not improve the
accuracy of LULC class separability and doubled the network’s training time.

The transition matrix is a key feature to analyze LULC dynamics. However, to detect
systematic LULC transitions, one must assess other metrics from the transition matrix, such
as each class persistence and net change. Performing an analysis of LULC dynamics based
solely on the most significant transitions presented by the transition matrix may lead the
researcher or decision-makers to wrongful conclusions. The dynamics of the grassland
class identified in this research is a case in point. The transition matrix did not reveal
the transition from grassland to agriculture as one of the major transitions. However, the
complementary analyses showed that, for both periods (observed and simulated), this
transition between classes was the primary and most robust systematic transition in the
landscape. Without this analysis, perhaps the systematic loss of one of the most important
biomes in the study area would go unnoticed since, proportionally, its area is much smaller
than the area of the other LULC classes.

The areas dedicated to agriculture remain the main drivers for the replacement of nat-
ural areas, especially natural fields. The expansion of the agricultural activity in the study
area reflects a state policy guided by the foreign market, where agribusiness corresponds to
70.2% of the state’s total exports in 2020 [104]. Silviculture exhibits a systematic pattern
of replacing forest areas in the observed period (2000–2018). However, according to the
simulation, this pattern will be reversed, and forest areas systematically will replace the
silviculture class.

Given this scenario, the creation of the Chapecó River EC as a conservation and
environmental protection tool proved to be barely effective concerning the conservation of
one of the most critical ecosystems in the state, the natural fields. Natural fields stand out as
an important ecosystem for biodiversity conservation, carbon storage and the maintenance
of significant ecosystem services [96,97,102]. The loss of this natural vegetation can have
negative ecological, social, and economic consequences. New policies are needed to
promote and support the restoration of degraded areas, maintain sustainable land practices,
create conservation units, and include Brazil’s non-forest environments in the priority
agenda for conservation and restoration [97].

As for the recovery trend of forest areas, there are positive indications of the effec-
tiveness of the Chapecó EC as an environmental management tool. However, one cannot
assert that this recovery occurred only due to the implementation of this management
tool. Studies have to be complemented because other policies, such as the implementation
of CAR, market issues (e.g., a slowdown in the silviculture market, with a reduction of
approximately 10% of the planted area in the state between 2014 and 2020 [101]), and
physical conditions (slope, relief, type of soil), may have contributed to the decrease in
deforestation and forest recovery.
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