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Abstract Landslides are a common hazard in the highly urbanized
hilly areas in Chittagong Metropolitan Area (CMA), Bangladesh.
The main cause of the landslides is torrential rain in short period
of time. This area experiences several landslides each year,
resulting in casualties, property damage, and economic loss.
Therefore, the primary objective of this research is to produce
the Landslide Susceptibility Maps for CMA so that appropriate
landslide disaster risk reduction strategies can be developed. In
this research, three different Geographic Information System-
based Multi-Criteria Decision Analysis methods—the Artificial
Hierarchy Process (AHP), Weighted Linear Combination (WLC),
and Ordered Weighted Average (OWA)—were applied to scientif-
ically assess the landslide susceptible areas in CMA. Nine different
thematic layers or landslide causative factors were considered.
Then, seven different landslide susceptible scenarios were gener-
ated based on the three weighted overlay techniques. Later, the
performances of the methods were validated using the area under
the relative operating characteristic curves. The accuracies of the
landslide susceptibility maps produced by the AHP, WLC_1,
WLC_2, WLC_3, OWA_1, OWA_2, and OWA_3 methods were
found as 89.80, 83.90, 91.10, 88.50, 90.40, 95.10, and 87.10 %,
respectively. The verification results showed satisfactory agree-
ment between the susceptibility maps produced and the existing
data on the 20 historical landslide locations.

Keywords Landslide Susceptibility Mapping (LSM) . Artificial
Hierarchy Process (AHP) . Weighted Linear Combination
(WLC) . OrderedWeighted Average (OWA) . Relative Operating
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Introduction
Chittagong Metropolitan Area (CMA) is highly vulnerable to land-
slide hazard, with an increasing trend of frequency and damage.
Devastating landslides have hit CMA (Fig. 1) repeatedly in recent
years (Table 1). The major recent landslide events were related to
extreme rainfall intensities having short period of time. All the
major landslide events occurred as a much higher rainfall amount
compared to the monthly average. Moreover, rapid urbanization,
increased population density, improper landuse, alterations in the
hilly regions by illegally cutting the hills, indiscriminate defores-
tation, and agricultural practices are aggravating the landslide
vulnerability in CMA (Khan et al. 2012).

In addition, there is no strict hill management policy within
CMA. This has encouraged many informal settlements along the
landslide-prone hill-slopes in Chittagong. These settlements are
being considered as illegal by the formal authorities, while the
settlers claim themselves as legal occupants. This is how there is
acute land tenure conflict among the formal authorities, the set-
tlers, and the local communities over the past few decades. This
kind of conflict has also weakened the institutional arrangement

for reducing the landslide vulnerability in Chittagong City
(Ahammad 2009).

At this drawback, it is therefore essential to determine the
landslide prone areas in CMA (Fig. 1b) so that appropriate land-
slide disaster risk reduction strategies can be developed. Produc-
ing up-to-date and accurate landslide susceptibility maps can
ensure safety to people and property at risk and avoid extensive
economic loss (Kavzoglu et al. 2013).

Literary works on landslide susceptibility modelling
Landslides are one of the most significant natural damaging di-
sasters in hilly environments (Ayala et al. 2006). Social and eco-
nomic losses due to landslides can be reduced by the means of
effective planning and management (Rajakumar et al. 2007). Land-
slide hazard assessment is generally based on the concept that ‘the
present and the past are keys to the future’. This is why, most
landslide hazard analyses take into account an up-to-date land-
slide inventory that represents the fundamental tool for identify-
ing the hill-slope instability factors in triggering landslides (Lee
and Sambath 2006).

Various geo-structural as well as causative-factor based ap-
proaches are already available for landslide susceptibility zoning.
But Geographic Information System (GIS) modelling of landslide
phenomena has taken precedence in recent time. Geospatial tech-
nologies like the use of GIS, Global Positioning System (GPS), and
Remote Sensing (RS) are useful in the hazard assessment, risk
identification, and disaster management for landslides. GPS is a
space-based global navigation satellite system which provides the
information of position and time anywhere in the world in all
weather conditions (Akbar and Ha 2011). Previous studies showed
the application of GPS for mapping and identifying landslide zones.
GIS is used for data collection, storage, and analysis of processes
where geographic information is involved. The use of GIS for land-
slide mapping is common in various studies. Remote sensing is the
science in which information is acquired about the surface of earth
without physically being in contact with it. RS is also used for
monitoring and mapping of landslides (Akbar and Ha 2011).

Mapping the areas that are susceptible to landslides is essential
for proper land use planning and disaster management for a
particular locality or region. Throughout the years, different tech-
niques and methods have been developed and applied in the
literature for landslide susceptibility mapping. Landslide suscepti-
bility maps can be produced using both the quantitative or qual-
itative approach (Park et al. 2013).

Qualitative maps weight each factors affecting the landslides
based on the practical experience and expertise of the researcher
(Park et al. 2013). Qualitative methods simply portray the hazard
zoning in descriptive terms (Guzzetti et al. 1999). But because of the
developments in computer programming and geospatial technolo-
gies, quantitative techniques have become popular in recent decades.
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Moreover, it incorporates the causes of landslides (instability factors)
and probabilistic methods (Bai et al. 2010).

There are mainly four methods available to map landslide suscepti-
bility, namely landslide inventory based probabilistic, deterministic,

Fig. 1 a Location of the study area in Chittagong hill tracts and b location of CMA

Table 1 Major landslide events in CMA in recent years*

Date Location Rainfall sequence (cumulated
rainfall)

Consequences

13 August 1999 Gopaipur, Kotwali Thana, Chittagong 435 mm – 12 days
2 – 13 Aug 1999

10 people killed

24 June 2000 Chittagong University Campus 108 mm – 8 days
17 – 24 June 2000

13 people killed and 20 injured

29 June 2003 Patiya, Chittagong 658 mm – 10 days
20 – 29 June 2003

4 people killed

3 August 2005 Nizam Road Housing Society, Panchlaish
area

25 mm – 2 days
2–3 August 2005

2 people killed and 12 injured

11 June 2007 Matijharna Colony,Lalkhan Bazar 610 mm – 8 days
4 – 11 June 2007

128 people killed and 100 injured

10 September 2007 Nabi Nagar, Chittagong 452 mm – 7 days
4 – 10 Sept 2007

2 people killed

18 August 2008 Matijharna, Chittagong 454 mm – 11 days
8 – 18 August 2008

11 people killed and 25 injured

26 June 2012 Lebubagan area and Foys lake surroundings 889 mm – 8 days
19 – 26 June 2012

90 people killed and 150 injured

*Source: Comprehensive Disaster Management Programme‐II (CDMP‐II), Ministry of Food and Disaster Management, Bangladesh; and Field Survey, (September 2013).
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heuristic, and statistical techniques (Guzzetti et al. 1999). Landslide
inventory-based probabilistic techniques involve the inventory of land-
slides, construction of databases, geomorphological analysis, and pro-
ducing the susceptibilitymaps based on the collected data (Duman et al.
2005). Deterministic techniques (quantitative methods) involve the es-
timation of quantitative values of stability variables and require the
creation of a map that displays the spatial distribution of input data
(Godt et al. 2008; Isik Yilmaz 2009).

Heuristic analysis (qualitative method) is based on the intrinsic
properties of the geo-morphologists to analyse aerial photographs or
to conduct field surveying (Yilmaz and Yildirim 2006). In this kind of
analysis, researchers establish the susceptibility and the analyst uses
expert knowledge to assign weights to a series of parameters for
preparing the qualitative map (Isik Yilmaz 2009). Statistical analysis
is used to analyse factors affecting landslides in areas with environ-
mental conditions similar to those where past landslides have been

Fig. 3 Landslide vulnerable areas in Matijharna, CMA. (Source: Field visit, September 2013)

Fig. 2 Annual rainfall pattern of
Chittagong City from 1960 to 2010.
(Data source: Bangladesh
Meteorological Department, 2013)
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reported (Park et al. 2013). These methods use sample data based
on the relationship between the dependent variable (the pres-
ence or absence of landslides), and the independent variables
(landslides triggering/causative factors). Through these statis-
tical techniques, quantitative predictions are possible to make
for areas where there is no landslides and with similar con-
ditions (Isik Yilmaz 2009).

Within these techniques, the probabilistic and statistical
methods have been commonly used in recent years. These
methods have become more popular, assisted by GIS and RS
techniques (Lee and Sambath 2006). The probabilistic (non-
deterministic) models like frequency ratio, bivariate analysis, mul-
tivariate analysis, and Poisson probability model (Bui et al. 2013)
are more frequently used to determine the landslide susceptibility
zones (Zêzere et al. 2008). Among the widely used statistical
method is the logistic regression (Isik Yilmaz 2009). Many re-
searchers have also used different techniques such as heuristic
approach (Karsli et al. 2009) and deterministic models (Avtar
et al. 2011).

Moreover, GIS-based Multi Criteria Decision Analysis (GIS-
MCDA) provides powerful techniques for the analysis and
prediction of landslide hazards. GIS-MCDA belongs to heuris-
tic analysis. These include the Analytic Hierarchy Process
(AHP), the Weighted Linear Combination (WLC), the Ordered
Weighted Average (OWA), etc. (Feizizadeh and Blaschke 2013).

Most recently, new non-parametric techniques like cellular
automata, fuzzy-logic, artificial neural networks (Poudyal
et al. 2010), support vector machines, and neuro-fuzzy models
have also been used for landslide susceptibility modelling
(Park et al. 2013).

The primary objective of this paper is to apply GIS-MCDA
techniques for the Landslide Susceptibility Mapping (LSM) in
CMA, Bangladesh. The reason behind choosing GIS-MCDA is
that it is being widely used in LSM in recent years (Feizizadeh
and Blaschke 2013; Park et al. 2013; Ahammad 2009; Kayastha
et al. 2012).

Study area profile
Chittagong is the second-largest and main seaport of Bangla-
desh. The city is comprised of small hills and narrow valleys,
bounded by the Karnaphuli River to the south-east, the Bay
of Bengal to the west, and Halda River to the north-east (Fig.
1b). The city has a population of about 5 million and is
constantly growing (Community Report, Chittagong District
2012). The study area, CMA, is situated within 22° 14′ and
22° 24′ 30″ north latitude and between 91° 46′ and 91° 53′ east
longitude (Fig. 1b). The total area of CMA is approximately
775 km2 (using Bangladesh Transverse Mercator projection).
CMA is also known as 'Chittagong Metropolitan Master Plan
(CMMP) Surveyed Area'.

Fig. 4 Landslide inventory map Fig. 5 Land cover map
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CMA is a part of the Chittagong Hill Tracts (CHT) region
(Fig. 1a). Therefore, it is important to know about the
characteristics of CHT to understand the causes and geological
reasons of landslides in CMA. CHT is originated as a result of the
collision between India and Asia. Later, India broke apart from
Australia and started to drift north-easterly. That is the time when
the history began for CHT (Chowdhury 2012). The weather of CHT
(Fig. 1a) is characterised by tropical monsoon climate with mean
annual rainfall nearly 2,540 mm in the north-east and 2,540 to
3,810 mm in the south-west. The monsoon season is from June to
October, which is warm, cloudy, and wet (Chowdhury 2012).
Moreover, due to climate change, CMA is experiencing higher
intensity of rainfall in recent years which is making the landslide
situation worse (Mangiza 2011). A gradual upward shift in
precipitation is noted in the last five decades (1960–2010), with
an abrupt fluctuation in the mean annual precipitation levels
(Fig. 2).

The hilly soils in CHT are mainly yellowish brown to reddish
brown loams which grade into broken shale or sandstone as well
as mottled sand at a variable depth. According to the physiography
of Bangladesh, CHT falls under the Northern and Eastern Hill unit
and the High Hill or Mountain Ranges sub-unit. At present, all the
mountain ranges of CHT are almost hogback ridges. They rise
steeply, thus, looking far more impressive than their height would
imply. Most of the ranges have scarps in the west, with cliffs and

waterfalls. The region is characterised by a huge network of trellis
and dendritic drainage consisting of some major rivers draining
into the Bay of Bengal (Chowdhury 2012).

In general, the geological structures and soils are weak in CMA.
Moreover, the hills have steep slopes that are vulnerable to landslides
(Khan et al. 2012). The general soil type in CMA is termed as ‘brown
hill soil’. The soils consist of hard red clay with a mixture of fine sand
of the same colour and nodules containing a large percentage of
sesquioxides. The soils are moderately to strongly acidic. Major
limitations include very steep slopes, heavy monsoon rainfall, erod-
ibility of most soils, difficulty of making terrace, generally low soil
fertility, and rapid permeability. The soils are highly leached and have
a low natural fertility. Hills are mainly under natural and plantation
forests. Shifting cultivation is practiced in some places (Islam 2012).
The landslides in CMA were classified as ‘earth slides’ since those
consist of 80 % sand and finer particles. These landslides were
shallow in nature and occurred just during/after the rainfall. It has
been stated that the rainfall intensity and duration play very impor-
tant roles in producing these shallow landslides in CMA (Ahammad
2009). Figure 3 depicts how people of Matijharna, an informal
residential area within CMA, are living at the risks of landslide
hazards. On 11 June 2007, about 128 people died and 100
others were injured in this area due to landslides triggered by heavy
rainfall for continuous 8 days (CDMP-II, Ministry of Food and
Disaster Management, Bangladesh 2012).

Fig. 6 Precipitation map Fig. 7 NDVI map
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Data collection
To produce landslide susceptible maps, it is important to
know the causative factors and to prepare the necessary
thematic layers. For this research purpose, nine different GIS
layers have been produced for LSM. All the raster images
(30 m×30 m) were projected to ‘Bangladesh Transverse Mer-
cator (BTM)’ using ‘Everest Bangladesh’ datum. Moreover,
where necessary, the maps were classified using Natural
Breaks (Jenks) method with 5 classes. Natural breaks classes
are based on natural groupings inherent in the data. It iden-
tifies break points by picking the class breaks that best group
similar values and maximize the differences between classes.
The features are then divided into classes whose boundaries
are set where there are relatively big jumps in the data values.
Natural breaks are data-specific classifications; this is why this
method is chosen (ArcGIS® 10 Help 2012). The details of the
data collection procedure and ways of preparing the thematic
layers are described as follows:

Landslide inventory map
A total of 20 landslide locations were identified in CMA
through field visits. The latitude and longitude values were
collected using a GPS device. The Digital Elevation Model
(DEM) image (acquired on 29 November 2013) was collected
from the Advanced Space-borne Thermal Emission and

Reflection Radiometer-Global Digital Elevation Model web-
portal (Tachikawa et al. 2011). The 20 observed landslide
locations in CMA are represented in Fig. 4.

Land cover map
Landsat Thematic Mapper (TM) satellite images were used for the
land cover mapping (2010) of CMA. The images were acquired
from the Global Visualization Viewer of the United States Geolog-
ical Survey (USGS). The land cover classification methodology was
based on the Object Based Image Analysis (Uddin 2013; Ahmed
and Rubel 2013). Finally, five broad land cover types (urban area,
semi-urban area, water body, vegetation, and bare soil) were iden-
tified (Fig. 5).

Now, it is important to perform accuracy assessment. As it was
not possible to ground truth the classified image, therefore, a total
of 300 reference pixels were generated using stratified random
sampling method. Then, the reference pixels were compared with
the base map (2010) collected from the Chittagong Development
Authority (CDA). The producer’s, users, and overall accuracy were
found as 84.88, 87.67, and 86.80 %, respectively (Ahmed and
Ahmed 2012).

Precipitation map
The daily observed precipitation data (1960–2010) were collected
from the Bangladesh Meteorological Department (BMD). More-
over, the average annual precipitation map (Fig. 6) was extracted

Fig. 8 Elevation map Fig. 9 Slope map
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from the maps collected from the Geological Survey of Bangladesh
(GSB) and the USGS website (Persits et al. 2001).

Normalized difference vegetation index map
The Normalized Difference Vegetation Index (NDVI) is a stan-
dardized index that allows generating an image displaying green-
ness (relative biomass). The NDVI equation is as follows (ArcGIS®
10 Help 2012):

NDVI ¼ IR − Rð Þ= IR þ Rð Þð Þ ð1Þ

where IR=pixel values from the infrared band (band 4)
and R=pixel values from the red band (band 3). This index
output values between −1.0 and 1.0, mostly representing
greenness, where any negative values are mainly generated
from clouds, water, and snow, and values near zero are
mainly generated from rock and bare soil. Very low values
of NDVI (0.1 and below) correspond to barren areas of rock
or sand. Moderate values (0.2 to 0.3) represent shrub and
grassland, while high values (0.6 to 0.8) indicate temperate
and tropical rainforests (Ahmed et al. 2013a; ArcGIS® 10 Help
2012). In this research, the Landsat 4–5 TM images from the
same season (dry and summer) were acquired from the offi-
cial website of the USGS. Finally, the NDVI map (Fig. 7) of
CMA was prepared by analysing band 3 and band 4.

Elevation and slope map
Elevation and slope maps were produced from DEM layer.
The maps were then classified using Natural Breaks (Jenks)
method (ArcGIS® 10 Help 2012) with 5 classes (Figs. 8 and
9).

Other layers
The road network, drainage network, and water body layers were
collected from CDA. The distance images from all these layers
were prepared using ‘Euclidean Distance’ technique (ArcGIS® 10
Help 2012), which gives the distance from each cell in the raster to
the closest source (Figs. 10, 11, and 12). The Euclidean distance
tools give information according to Euclidean or straight-line
distance. Euclidean distance is calculated from the centre of the
source cell to the centre of each of the surrounding cells. True
Euclidean distance is calculated in each of the distance tools
(ArcGIS® 10 Help 2012). The soil permeability map (Fig. 13) was
collected from GSB and USGS (Persits et al. 2001).

Landslide susceptibility-mapping methods
In this research, three MCDA methods were used for LSM. These
were AHP, WLC, and OWA. MCDA is a GIS-based overlaying
method used to combine a set of criteria to achieve a single
composite basis for a decision according to a specific objective
(Eastman 2012). MCDA technique is useful for overlaying large
data/maps and easy to understand/implement. The expert’s or

Fig. 10 Distance to road map Fig. 11 Distance to drain map
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decision maker’s preferences get importance in these methods.
Therefore, the main drawback of MCDA is only failing to choose
appropriate assumptions/criteria for suitability analysis
(Malczewski 2004). In this study, IDRISI® Selva and ArcGIS®
10.2 software were used for LSM in CMA.

Analytical hierarchy process
The AHP method is used to derive the weights associated with
suitability/attribute map layers (Saaty 1977). Later the weights can
be combined with the attribute map layers (Malczewski 2004).
AHP can deal with complex decision making and also useful for
checking the consistency of the evaluation measures as suggested
by the decision makers. The input of this method can be price,
weight etc. AHP builds a hierarchy of decision criteria through
pairwise comparison of each possible criterion pair (Poudyal et al.
2010; Feizizadeh and Blaschke 2013).

The weights can be derived by taking the principal eigenvector of
a square reciprocal matrix of pairwise comparisons between the
criteria. It is also necessary that the weights sum to one. The com-
parisons concern the relative importance of the two criteria involved
in determining suitability for the stated objective. Ratings are pro-
vided on a 9-point continuous scale: (1/9, 1/8, 1/7,1/6, 1/5, 1/4, 1/3, 1/2, 1,
2, 3, 4, 5, 6, 7, 8, 9). The values range from 1/9 representing the least
important, to 1 for equal importance and to 9 for themost important,

covering all the values in the set (Eastman 2012). It is also possible to
determine the degree of consistency that has been used in developing
the ratings (Eastman 2012). It is a procedure by which an index of
consistency, known as a consistency ratio (CR), can be produced.
The CR indicates the probability that the matrix ratings were ran-
domly generated. It is stated that matrices with CR ratings greater
than 0.10 should be re-evaluated (Saaty 1977).

Weighted linear combination
In WLC or simple additive weighting method, the decision maker
directly assigns the weights of relative importance to each attribute
map layer. A total score is then obtained for each alternative by multi-
plying the importance weight assigned for each attribute by the scaled
value given to the alternative on that attribute and summing the prod-
ucts over all attributes. When the overall scores are calculated for all of
the alternatives, the alternative with the highest overall score is chosen
(Malczewski 2004). Due to the criterion weights being summed to one,
the final scores of the combined solution are expressed on the same
scale (Feizizadeh and Blaschke 2013). In this case, the higher the factor
weight the more influence that factor has on the final suitability map
(Saaty 1977).

Ordered weighted averaging
The OWA method was introduced by Yager (1988). It involves both
criterion importance weights and order weights. An importance

Fig. 12 Distance to stream map Fig. 13 Soil permeability map
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Table 2 Pairwise comparison matrix, consistency ratio and weights of the sub-criteria of the data layers

Factors (1) (2) (3) (4) (5) Eigen values

Distance to drain (m)

(1) 0 – 934.3992953 1 0.0448

(2) 934.3992954 – 1,940.67546 2 1 0.0699

(3) 1,940.675461 – 3,234.459099 3 2 1 0.1098

(4) 3,234.4591 – 5,318.888297 6 4 3 1 0.2408

(5) 5,318.888298 – 9,164.300781 7 6 5 4 1 0.5346

Consistency ratio: 0.04

Elevation (m)

(1) 2 – 8 1 0.0501

(2) 8.000000001 - 17 3 1 0.0964

(3) 17.00000001 - 29 4 2 1 0.1521

(4) 29.00000001 – 43 6 5 4 1 0.4548

(5) 43.00000001 – 67 4 3 2 1/2 1 0.2465

Consistency ratio: 0.03

Land cover

(1)Water body 1 0.0434

(2) Vegetation 3 1 0.1196

(3) Urban area 7 6 1 0.5019

(4) Semi-urban area 5 4 1/3 1 0.2537

(5) Bare soil 3 1/3 1/5 1/3 1 0.0814

Consistency ratio: 0.08

NDVI

(1) 0 – 0.055633098 1 0.4380

(2) 0.05563098 – 0.131871048 1/2 1 0.2913

(3) 0.131871048 – 0.203988027 1/4 1/3 1 0.1544

(4)0.203988027 – 0.300830828 1/5 1/4 1/3 1 0.0881

(5) 0.300830828 – 0.525423706 1/9 1/8 1/7 1/6 1 0.0282

Consistency ratio: 0.07

Precipitation (mm)

(1) 2,870 – 2,880 1 0.0618

(2) 2,880.000001 – 2,900 2 1 0.0973

(3) 2,900.000001 – 2,930 3 2 1 0.1599

(4) 2,930.000001 – 2,970 4 3 2 1 0.2625

(5) 2,970.000001 – 3,000 5 4 3 2 1 0.4185

Consistency ratio: 0.02

Distance to road (m)

(1)0 – 161.5549469 1 0.4185

(2) 161.554947 – 371.0794983 1/2 1 0.2625

(3) 371.0794984 - 711.196167 1/3 1/2 1 0.1599

(4) 711.1961671 – 1,210.826172 1/4 1/3 1/2 1 0.0973

(5) 1,210.826173 – 2,139.275635 1/5 1/4 1/3 1/2 1 0.0618

Consistency ratio:0.02

Slope (°)

(1)0 – 1.222515914 1 0.0515

(2) 1.222515915 – 3.124207336 2 1 0.0718

Landslides



weight is assigned to a given criterion/factor for all locations in a
study area to indicate its relative importance according to the deci-
sion maker’s preferences (Malczewski 2004). Order weights are a set
of weights assigned not to the factors themselves but to the rank
order position of factor values for a given location/pixel (Eastman
2012). The number of order weights is equal to the number of criteria
and must sum to one (Jiang and Eastman 2000).

Results
Calculating factor weights has a crucial role in the production of land-
slide susceptibility maps by applying GIS-MCDA methods (Kavzoglu
et al. 2013). The calculations of relative weights of the factors and order
were based on the expert opinion surveying, analysing the landslide
inventory map, and local knowledge obtained from field surveying.

LSM using AHP method
To apply the AHP method, first it is necessary to construct a
pairwise matrix. Then, both the weight values of sub-criteria of
the criterions and the datasets/factors were calculated (Tables 2
and 3). In the next step, the CR was calculated in order to deter-
mine whether the pairwise comparisons were consistent or not
(Saaty 1977). In this research, the resulting CR for all the cases was
found less than 0.10 (Tables 2 and 3). It means the relative weights
were appropriate and the comparisons were consistent (Saaty 1977;
Feizizadeh and Blaschke 2013).

It was found that the highest weight was assigned to soil perme-
ability map. Slope, elevation, land cover, and NDVI factors were also
found effective. The other layers (i.e., precipitation, distance to drain,
road, and stream) were identified as less important (Table 3).

Table 2 (continued)

Factors (1) (2) (3) (4) (5) Eigen values

(3) 3.124207337 – 5.976744469 3 4 1 0.1565

(4) 5.97674447 – 9.780127312 7 6 5 1 0.4869

(5) 9.780127313 – 34.6379509 4 3 2 1/2 1 0.2333

Consistency ratio:0.04

Soil permeability

(1)Mixed moderate 1 0.0385

(2) Moderate 2 1 0.0522

(3) Rapid 3 4 1 0.1088

(4) Slow 5 4 3 1 0.1900

(5) Very slow/ low 9 8 7 6 1 0.6105

Consistency ratio:0.08

Distance to stream (m)

(1)0 – 90.86816789 1 0.3999

(2) 90.8681679 – 237.6552083 1/2 1 0.2427

(3) 237.6552084 – 454.3408395 1/3 1/2 1 0.1592

(4) 454.3408396 – 789.8540748 1/3 1/2 1/2 1 0.1200

(5) 789.8540749 – 1,782.414063 1/4 1/3 1/2 1/2 1 0.0783

Consistency ratio:0.02

Table 3 Pairwise comparison matrix, factor weights and consistency ration of the data layers

Factors (1) (2) (3) (4) (5) (6) (7) (8) (9) Eigen values

(1) Distance to drain 1 0.0469

(2) Elevation 5 1 0.1989

(3) Land cover 3 1/3 1 0.0975

(4) NDVI 2 1/4 1/2 1 0.0706

(5) Precipitation 1/3 1/7 1/4 1/3 1 0.0366

(6) Distance to road 1/3 1/8 1/6 1/5 1/2 1 0.0243

(7) Slope 5 1 5 4 3 6 1 0.1989

(8) Soil permeability 7 2 5 6 8 9 2 1 0.3074

(9) Distance to stream 1/2 1/7 1/6 1/5 1/4 1/3 1/7 1/8 1 0.0190

Consistency ratio: 0.07
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After applying the AHP generated weights in the data
layers, the resulting map was reclassified into three meaning-
ful levels as: low, medium, and high susceptibility zones
(Fig. 14). This is helpful for presentation and evaluation pur-
poses. An expert knowledge-based classification was used to
define the class intervals. This technique of landslide suscep-
tibility zoning was implemented for the rest two methods
(WLC and OWA).

LSM using WLC method
Based on expert opinion surveying and using local knowledge,
three different combinations of factor weights were generated
(Table 4). At first, the factor maps multiplied the weights
from the pairwise comparison matrix and all the weighted
factor maps were then aggregated. Finally, the maps were
reclassified to produce the WLC generated landslide suscepti-
bility maps (Fig. 15).

Fig. 14 Landslide susceptibility map derived from AHP method
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LSM using OWA method
OWA method uses order weights in addition to criterion/factor
weights. Order weights control the manner in which the weighted
factors are aggregated (Eastman and Jiang 1996). In traditional
WLC method, criteria weights determine how factors trade-off
relative to each other (Jiang and Eastman 2000). Trade-off is the
degree to which one factor can compensate for another; how they
compensate is governed by a set of ‘factor weights’/‘trade-off
weights’. A factor with a high factor/trade-off weight may com-
pensate for low suitability in other factors that have lower factor/
trade-off weights (Eastman 2012). However, the level of trade-off is
not adjustable in WLC. But, in the case of OWA method, the
criteria weights can be adjusted according to the level of trade-
off by using the order weights (Jiang and Eastman 2000).

The factor with the lowest suitability score, after factor weights
are applied, is given the first order weight. The factor with the next
lowest suitability score is given the second order weight, and so on.
Applying order weights has the effect of weighting factors based on
their rank from minimum to maximum value for each location.
When ordered weights are the same, OWA creates a result that is
identical to WLC. This indicates that WLC is a special case of OWA
(Eastman 2012). In this research, the factor and order weights
(Tables 5 and 6) were obtained from the AHP and WLC methods,
respectively, as described above. This is how, three different OWA
generated landslide susceptibility maps were produced (Fig. 16).

Analysis of the results
At first, the landslide susceptibility maps were evaluated qualita-
tively. It helps to select the most appropriate method of LSM for a
particular area (Feizizadeh and Blaschke 2013). In the case of the
AHP method, high susceptibility zones cover about 23 % of the
total area, while about 54 % area was classified as medium sus-
ceptible, and the remaining 24 % area was classified as low sus-
ceptible zone (Table 7). About 42, 20, and 2 % areas fall within the
high susceptible zone for the WLC_1, WLC_2, and WLC_3, respec-
tively. Similarly, about 20, 3, and 1 % areas were classified as high
susceptible zones for the OWA_1, OWA_2, and OWA_3 methods,
respectively (Table 7).

Then the accuracies of the landslide susceptibility maps
were determined quantitatively. To do this, the landslide in-
ventory map with the 20 known landslide events was

compared with the respective susceptibility maps derived from
the AHP, WLC, and OWA methods (Table 7). For the AHP
method, the comparison shows that 100 % of the known
landslides fall into the high susceptibility zone. No known
landslide event was observed in the remaining categories
(Table 7). The comparisons showed that the high susceptibility
zones covered exactly 100, 100, and 90 % of the known
landslides for the WLC_1, WLC_2, and WLC_3, respectively.
Lastly, the high susceptible zones covered 100, 90, and 45 %
of the known landslides for the OWA_1, OWA_2, and OWA_3
methods, respectively. In all the cases, no landslide was ob-
served in the low susceptibility zones (Table 7).

High susceptibility zone covering 100 % of known land-
slides does not always mean that the results are accurate. In
some cases, high susceptibility zone occurred in the flat areas
with moderate or mixed moderate soil permeability indicates
that the results obtained using the MCDA methods also have
some errors. MCDA methods are generally based on weighting
the factor maps and finally overlaying those layers. As a
result, any incorrect perception on the role of the different
slope-failure criteria can be easily conveyed from the expert’s
opinion into the weight assignment (Kritikos and Davies 2011).
This can cause errors in the final outputs. In this research, a
total of 9 factor maps each with 5 classes were considered. It
is difficult to assign criteria weights for all these sub-factors
and develop a proper combination. Therefore, it is important
to keep the factor map layers and their classes into reasonable
numbers for getting better results. Errors can also occur due
to incorrect pairwise comparisons between the criteria, classi-
fying the factor maps and defining the susceptibility zones
qualitatively. Moreover, there might be errors in the GIS/
remotely sensed datasets, problems while conducting ques-
tionnaire surveying for defining the weights, and taking the
GPS values, etc. The main challenge of this kind of GIS-
MCDA analyses is to keep the errors as less as possible. This
can be achieved by defining the best combination of criteria
weights.

AHP method uses pairwise comparison of each criterion,
while WLC directly assigns the weights of relative importance
to each attribute map layer and OWA involves two-step
weighting (criterion and order weights). Each method follows

Table 4 Factor weights for WLC analysis

Factors Weight_1 Weight_2 Weight_3

Distance to drain 0.05 0.10 0.10

Elevation 0.10 0.10 0.15

Land cover 0.10 0.15 0.15

NDVI 0.10 0.10 0.10

Precipitation 0.05 0.05 0.05

Distance to road 0.05 0.05 0.05

Slope 0.10 0.15 0.15

Soil permeability 0.40 0.25 0.20

Distance to stream 0.05 0.05 0.05

Total 1.00 1.00 1.00
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Fig. 15 Landslide susceptibility maps derived from a WLC_1, b WLC_2, and c WLC_3 method
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its own way of assigning weights to factors or orders. There-
fore, it is not possible to declare that one method is superior
to other. As it is a trial and error/iterative process, the final
output maps may give some errors as well. Still the MCDA
methods give better accuracies, which are acceptable for pro-
ducing real-world LSM in terms of landslide disaster risk
reduction. Moreover, each MCDA method can produce differ-
ent types of landslide susceptibility maps based on assigning
different weights for the instability factors. The weights can be
obtained through expert opinion surveying, or even it can be
achieved from the participatory-based community surveying,
or it can be a combination of both. Finally, it is the re-
searcher's or policy makers’ decision to choose the appropri-
ate weighting combination and the output maps, as per the
local context and research/project objectives.

Validation of the methods
In order to determine the statistical reliability of the results, it is
important to perform validation of spatial results in a structured
manner (Ahmed et al. 2013b). To do this validation, Relative
Operating Characteristic (ROC) method was used in this research.
The ROC analysis is useful for cases in which the scientist wants to
see how well the suitability map portrays the location of a partic-
ular category, but does not have an estimate of the quantity of the
category. For example, the ROC could be used to compare an
image of modelled probability for landslides against an image of
actual observed landslides (Eastman 2012). The area under ROC
curves (AUC) constitutes one of the most common used accuracy
statistics for the prediction models in natural hazard assessments
(Ahmed and Rubel 2013). The minimum value of AUC is 0.5, which
means no improvement over random assignment. The maximum

value of AUC is 1 that denotes perfect discrimination (Nefeslioglu
et al. 2008).

The comparison results are shown in Fig. 17 as a line graph
(threshold type is equal interval and number of thresholds is
25 %). The AUC values are indicating the accuracies of the
methods used for LSM. The AUC values of the AHP, WLC_1,
WLC_2, WLC_3, OWA_1, OWA_2, and OWA_3 methods were
calculated as 0.898, 0.839, 0.911, 0.885, 0.904, 0.951, and 0.871,
respectively (Fig. 17). In general, the verification results showed
satisfactory agreement between the susceptibility map produced
and the observed landslide location map (AUC values ranged from
0.871 to 0.951). Finally, it can be stated that higher accuracy was
found for all the MCDA methods applied. But the landslide sus-
ceptibility map produced by the OWA_2 method appeared to be
slightly more accurate than those generated by applying the other
methods (Fig. 17).

Discussions and future research
GIS-MCDA methods are based on the weighting of the fac-
tors and orders of the thematic layers. Therefore, the pref-
erences of the decision makers play important role in
producing the LSM. In this case, the factor/order weights
should be assigned carefully after proper consultation with
the relevant experts, local people, and communities at risk,
and extensive field surveying is also required. From the
analysis, it was evident that urbanized areas with very low
soil permeability and steep slope were highly vulnerable to
landslide hazards.

Till now, in all the cases, the researchers used the previous
or existing land cover images to produce the landslide sus-
ceptibility maps. But land-use/land-cover maps can be treated

Table 5 Factor weights for OWA analysis

Factors Factor weight

(1) Distance to stream 0.0190

(2) Distance to road 0.0243

(3) Precipitation 0.0366

(4) Distance to drain 0.0469

(5) NDVI 0.0706

(6) Land cover 0.0975

(7) Elevation 0.1989

(8) Slope 0.1989

(9) Soil permeability 0.3074

Table 6 Order weights for OWA analysis

Order
weight

Weight
1

Weight
2

Weight
3

Weight
4

Weight
5

Weight
6

Weight
7

Weight
8

Weight
9

OWA_1 0.05 0.05 0.05 0.05 0.10 0.10 0.10 0.10 0.40

OWA_2 0.05 0.05 0.05 0.10 0.10 0.15 0.10 0.15 0.25

OWA_3 0.05 0.05 0.05 0.10 0.10 0.15 0.15 0.15 0.20
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Fig. 16 Landslide susceptibility maps derived from a OWA_1, b OWA_2, and c OWA_3 method
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as a dynamic variable because within the next few decades,
the land use of a particular area can be abruptly changed (e.g.
CMA). This change in land use pattern (e.g. deforestation,
hill-cutting) can put triggering impacts on occurring landslide
hazards (Mugagga et al. 2012). Therefore, while modelling

landslide hazard maps, it is very important to take into
account a new thematic layer—‘the future projected land
cover map’.

Same thing can happen for the trend in precipitation pat-
tern. It is already indicated that due to climate change, a

Table 7 Comparison of landslide susceptibility maps with the observed landslides

Methods Susceptible zones Area under category (%) Number of landslides Comparison with landslide area (%)

AHP High susceptibility 22.713 20 100

Medium susceptibility 53.609 0 0

Low susceptibility 23.677 0 0

WLC_1 High susceptibility 41.890 20 100

Medium susceptibility 36.791 0 0

Low susceptibility 21.319 0 0

WLC_2 High susceptibility 20.365 20 100

Medium susceptibility 66.079 0 0

Low susceptibility 13.556 0 0

WLC_3 High susceptibility 1.5520 18 90

Medium susceptibility 96.911 2 10

Low susceptibility 1.5370 0 0

OWA_1 High susceptibility 19.565 20 100

Medium susceptibility 46.149 0 0

Low susceptibility 34.286 0 0

OWA_2 High susceptibility 3.4750 18 90

Medium susceptibility 52.381 2 10

Low susceptibility 44.144 0 0

OWA_3 High susceptibility 1.3410 9 45

Medium susceptibility 46.115 11 55

Low susceptibility 52.544 0 0

Fig. 17 Assessment of model performance based on the ROC curves
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significant increase in annual and pre-monsoon rainfall in
Bangladesh is observed (Shahid 2011). Moreover, the recent
landslide events were related to the extreme rainfall intensities
within short period of time (Khan et al. 2012). Therefore, it is
also important to consider future rainfall pattern while pro-
ducing landslide susceptibility maps. These are the current
research gaps in landslide susceptibility modelling.

In this drawback, future research should take into consider-
ation the dynamic variables like the simulated land cover map and
future rainfall pattern to predict the future landslide scenario in
CMA. This will be a new kind of analysis and interesting outcomes
are expected. It will help answering whether using the simulated
dynamic variables will give better accuracy/results or not. It is
also expected that preparing landslide hazard maps, using this
kind of new modelling concept will add new knowledge to land-
slide susceptibility mapping in modern science. The flowchart of
this new concept is depicted in Fig. 18.

On the other hand, the term ‘Natural Disaster’ refers to extreme
natural events like tsunami, earthquakes, landslides, floods, cy-
clones, etc. But it has been argued that these events are not
disasters until a vulnerable group of people is exposed (Wisner
et al. 2003). Therefore, it is important to understand the under-
neath reasons for this progression of urban landslide vulnerability.
It is also evident that even being aware of the landslide risks
people are living in those risky areas. This situation needs to be
taken into consideration. Just producing some automated hazard
and susceptibility maps, using different scientific modelling tech-
niques, cannot reduce the landslide risks. The vulnerability of the
people at risk and human adaptation to landslides needs to be

analysed to address this problem properly (Alexander 2005; Alex-
ander 2000).

Conclusions
Landslides are a common hazard in highly urbanized hilly
areas in CMA, especially during the rainy season (Khan et al.
2012; Ahmed and Rubel 2013). Therefore, the aim of this re-
search is to produce acceptable landslide susceptibility maps
for CMA, so that appropriate landslide disaster mitigation
strategies can be developed. In this research, three different
GIS-MCDA methods—the AHP, WLC, and OWA—were applied
to scientifically assess the landslide susceptible areas in CMA.
Nine different thematic layers or landslide causative factors
were considered. Then seven different landslide susceptibility
scenarios were generated based on the three weighted overlay
techniques.

Later, the performances of the MCDA methods were validat-
ed using the area under the ROC curves. The accuracy of the
landslide susceptibility maps produced by the AHP, WLC_1,
WLC_2, WLC_3, OWA_1, OWA_2, and OWA_3 methods were
found as 89.80, 83.90, 91.10, 88.50, 90.40, 95.10, and 87.10 %,
respectively. The verification results showed satisfactory agree-
ment (Nefeslioglu et al. 2008; Feizizadeh and Blaschke 2013)
between the susceptibility maps produced and the existing data
on the 20 historical landslide locations. It is important to men-
tion that due to the dynamic nature of the land use and pre-
cipitation patterns, the landslide susceptibility maps are subject
to vary. Hence, these maps should be updated and modified,
time-to-time.

The preparation of landslide susceptibility map is the first
step towards the reduction of landslide hazard. But it is also
important to create awareness among the local people based
on the predictive landslide susceptibility maps. Moreover,
developing early warning system, increasing cooperation
among different public/autonomous/non-governmental organi-
zations, launching public awareness campaign, arranging rele-
vant seminars and workshops, and generating facilities for
proper evacuation system in crisis moments are highly
recommended.

The outcome of this research shall help the endangered local
inhabitants/communities, urban planners, and engineers to reduce
losses caused by existing and future landslides by means of pre-
vention, mitigation, and avoidance. The results will also be useful
for explaining the driving factors of the known historical land-
slides, for supporting emergency decisions, and for upholding the
efforts on the mitigation of future landslide hazards in CMA,
Bangladesh.
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