13,493 research outputs found

    Modelling and identification of non-linear deterministic systems in the delta-domain

    Get PDF
    This paper provides a formulation for using the delta-operator in the modelling of non-linear systems. It is shown that a unique representation of a deterministic non-linear auto-regressive with exogenous input (NARX) model can be obtained for polynomial basis functions using the delta-operator and expressions are derived to convert between the shift- and delta- domain. A delta-NARX model is applied to the identification of a test problem (a Van-der-Pol oscillator): a comparison is made with the standard shift operator non-linear model and it is demonstrated that the delta-domain approach improves the numerical properties of structure detection, leads to a parsimonious description and provides a model that is closely linked to the continuous-time non-linear system in terms of both parameters and structure

    Preliminary space mission design under uncertainty

    Get PDF
    This paper proposes a way to model uncertainties and to introduce them explicitly in the design process of a preliminary space mission. Traditionally, a system margin approach is used in order to take the min to account. In this paper, Evidence Theory is proposed to crystallise the inherent uncertainties. The design process is then formulated as an optimisation under uncertainties(OUU). Three techniques are proposed to solve the OUU problem: (a) an evolutionary multi-objective approach, (b) a step technique consisting of maximising the belief for different levels of performance, and (c) a clustering method that firstly identifies feasible regions.The three methods are applied to the Bepi Colombo mission and their effectiveness at solving the OUU problem are compared

    Maximum-likelihood estimation of delta-domain model parameters from noisy output signals

    Get PDF
    Fast sampling is desirable to describe signal transmission through wide-bandwidth systems. The delta-operator provides an ideal discrete-time modeling description for such fast-sampled systems. However, the estimation of delta-domain model parameters is usually biased by directly applying the delta-transformations to a sampled signal corrupted by additive measurement noise. This problem is solved here by expectation-maximization, where the delta-transformations of the true signal are estimated and then used to obtain the model parameters. The method is demonstrated on a numerical example to improve on the accuracy of using a shift operator approach when the sample rate is fast

    Data-based mechanistic modelling, forecasting, and control.

    Get PDF
    This article briefly reviews the main aspects of the generic data based mechanistic (DBM) approach to modeling stochastic dynamic systems and shown how it is being applied to the analysis, forecasting, and control of environmental and agricultural systems. The advantages of this inductive approach to modeling lie in its wide range of applicability. It can be used to model linear, nonstationary, and nonlinear stochastic systems, and its exploitation of recursive estimation means that the modeling results are useful for both online and offline applications. To demonstrate the practical utility of the various methodological tools that underpin the DBM approach, the article also outlines several typical, practical examples in the area of environmental and agricultural systems analysis, where DBM models have formed the basis for simulation model reduction, control system design, and forecastin

    Global parameter identification of stochastic reaction networks from single trajectories

    Full text link
    We consider the problem of inferring the unknown parameters of a stochastic biochemical network model from a single measured time-course of the concentration of some of the involved species. Such measurements are available, e.g., from live-cell fluorescence microscopy in image-based systems biology. In addition, fluctuation time-courses from, e.g., fluorescence correlation spectroscopy provide additional information about the system dynamics that can be used to more robustly infer parameters than when considering only mean concentrations. Estimating model parameters from a single experimental trajectory enables single-cell measurements and quantification of cell--cell variability. We propose a novel combination of an adaptive Monte Carlo sampler, called Gaussian Adaptation, and efficient exact stochastic simulation algorithms that allows parameter identification from single stochastic trajectories. We benchmark the proposed method on a linear and a non-linear reaction network at steady state and during transient phases. In addition, we demonstrate that the present method also provides an ellipsoidal volume estimate of the viable part of parameter space and is able to estimate the physical volume of the compartment in which the observed reactions take place.Comment: Article in print as a book chapter in Springer's "Advances in Systems Biology
    • …
    corecore