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This paper proposes a way to model uncertainties and to introduce them explicitly in the
design process of a preliminary space mission. Traditionally, a system margin approach is
used in order to take them into account. In this paper, Evidence Theory is proposed to crys-
tallise the inherent uncertainties. The design process is then formulated as an optimisation
under uncertainties (OUU). Three techniques are proposed to solve the OUU problem: (a)
an evolutionary multi-objective approach, (b) a step technique consisting of maximising the
belief for different levels of performance, and (c) a clustering method that firstly identifies
feasible regions. The three methods are applied to the BepiColombo mission and their
effectiveness at solving the OUU problem are compared.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

In the early phase of the design of a space mission, it is
generally desirable to investigate as many feasible alterna-
tive solutions as possible. At this particular stage, an insuf-
ficient consideration for uncertainty would lead to a wrong
decision on the feasibility of the mission. Traditionally, a
system margin approach is used in order to take into ac-
count the inherent uncertainties related to the computation
of the system budgets. The reliability of the mission is then
independently computed in parallel. An iterative, though
integrated, process between the solution design and the
reliability assessment should finally converge to an accept-
able solution.

This paper proposes a way to model uncertainties with
Evidence Theory (ET) and to introduce them explicitly in the
design process. The overall system design is then optimised,
minimising the impact of uncertainties on the optimal value
of the design criteria (e.g. minimum system mass, mini-
mum system power, etc.). The minimisation of the impact of
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uncertainties in the design process is generally known as ro-
bust design and the associated optimisation process robust
optimisation. In the last few decades, robust design has been
gaining wide attention and its applications have been ex-
tended from improving the quality of individual components
to the design of complex engineering systems. The methods
for robust design have progressed from the initial Taguchi's
“parameter design method” (Taguchi, 1950) to recent non-
linear programming methods that formulate robust design
problems as nonlinear optimisation problems with multiple
objectives subject to feasibility robustness.

With Evidence Theory, also know as Dempster–Shafer's
theory [1,2], both aleatory and epistemic uncertainties, com-
ing from a poor or incomplete knowledge of the design pa-
rameters, can be correctly modelled. The values of uncertain
or vague design parameters are expressed by means of in-
tervals with associated probability. Each expert participating
in the design, assigns an interval and a probability according
to their experience. Ultimately, all the pieces of information
associated to each interval are fused together to yield two
cumulative values, Belief and Plausibility, that express the
confidence range in the optimal design point. In particular
the value of Belief expresses the lower probability that the
selected design point remains optimal (and feasible) even
under uncertainties.
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The use of Evidence Theory for robust engineering design
was proposed in 2002 by Oberkampf et al. [3] and was more
recently applied to the robust design of space systems and
space trajectories [4,5]. In this paper, Evidence Theory is ap-
plied to the optimal design of the mission BepiColombo. The
main spacecraft subsystems are modelled using Evidence
Theory to deal with uncertain parameters. The design pro-
cess is then formulated as an optimisation under uncertain-
ties (OUU) problem and the Belief is optimised (maximised)
together with all the other criteria that define the optimality
of the design point.

Note that the OUU is more computationally expensive
than an optimisation without uncertainty and of the clas-
sical margin approach. However, the benefits of robust
design optimisation, clearly presented in [17], are con-
siderable. Compared to standard optimisation, it provides
solutions that are poorly affected by the uncertainty in the
design parameter and gives a rigorous quantitative measure
of the impact of the uncertainty on the design budgets. This
later aspect is a key advantage with respect to the margin
approach. A demonstration of the actual ability of robust
design optimisation (and of Evidence Theory) to produce
better designs compared to the margin approach, in a real
scenario, is out of the scopes of this paper. The main objec-
tive, here, is to present some computational techniques to
deal with the OUU when Evidence Theory is used to model
uncertainty. The case study presented in this paper will
illustrate the use of Evidence Theory in the robust design of
a space mission.

Three techniques are proposed to solve the related OUU
problem: (a) an evolutionary multi-objective approach aim-
ing at minimising the effect of uncertainties on the objective
function, while optimising the mission goals, (b) a step tech-
nique consisting of maximising the belief for different levels
of performance using a local optimiser, and (c) a clustering
method that identifies, in the space of design and uncertain
parameters, the set of points for which the design criteria
assume values below a given threshold.

The results in thepaper showtheeffectiveness of the three
proposed techniques at solving efficiently the OUU problem.

2. Uncertainty modelling through Evidence Theory

The most common way to deal with uncertainty is the
probabilistic approach [18]. However, this theory does not
suit to represent every type of uncertainties, and unavoid-
able assumptions may significantly modify the result of the
analysis. Thus new theories have been developed. Evidence
Theory is one of them and is currently the most common
alternative to probability [3,19].

In this section, the different types of uncertainties are de-
scribed, leading to the justification of why probability the-
ory may not be suitable in our application. Finally, Evidence
Theory is presented and proposed as an alternative.

2.1. Types of uncertainty

Uncertainties are usually classified in two distinct cat-
egories, aleatory and epistemic uncertainty. According to
Helton [6], the definition of each type is1:

1 This comes actually from [7], citing Helton.

Aleatory uncertainty: The type of uncertainty which re-
sults from the fact that a system can behave in randomways.

Epistemic uncertainty: The type of uncertainty which re-
sults from the lack of knowledge about a system and is a
property of the analysts performing the analysis.

W.L. Oberkampf considers a third category, Error, also
called numerical uncertainty, which “is defined as a recog-
nizable deficiency in any phase or activity of modelling and
simulation that is not due to lack of knowledge” [8]. Such
uncertainties are well-known, and a good estimation of the
error should be easily available. This point distinguishes er-
rors to epistemic uncertainties.

Aleatory uncertainties are due to the random nature
of input data while epistemic ones are generally linked to
incomplete modelling of the physical system, the boundary
conditions, unexpected failure modes, etc. In the particular
case of preliminary space mission design, analysts face both
types of uncertainty. For example, the initial velocity of the
spacecraft, the gravity model or the solar radiation presents
aleatory uncertainties. However, most of the parameters
of the spacecraft subsystems are first assessed by a group
of experts, expressing their opinion on ranges of values.
The uncertainty associated to those parameters is therefore
epistemic.

The classical way to treat uncertainty, through probabil-
ity theory, requires an assumption on the probability density
function associated to a phenomenon. A probability density
function is well suited to mathematically model aleatory un-
certainties, as far as enough data (experimental for instance)
are available [8]. Even though, the analyst still has to assume
the distribution function and estimate its parameters. More-
over, Bae et al. [9] pointed out that aleatory uncertainty could
be in fact epistemic uncertainty when “insufficient data are
available to construct a probability distribution”.

Probability fails to represent epistemic uncertainties be-
cause there is no reason to prefer one distribution func-
tion over another [3]. When uncertainties are expressed by
means of intervals, based on experts' opinion or rare exper-
imental data, as it is the case in space mission design, this
representation becomes even more questionable.

A fewmodern theories exist [17] to better represent epis-
temic uncertainties, without the need to make additional as-
sumptions. Themost common one is Evidence Theory, which
we propose to use in the framework of preliminary space
mission design.

2.2. Overview of Evidence Theory

Evidence Theory was developed by Shafer [2] based on
Dempster's original work [1] and has been proven to model
adequately both types of uncertainty. The theory does not
request additional assumptions when the available informa-
tion is poor or incomplete. For instance, evidence on the
event A or B does not imply/require information on both
events A and B. Similarly, the knowledge of an event does
not imply knowledge of its opposite (for the probability the-
ory, P(Ā) = 1 − P(A)). Moreover, it is common to have the
information from diverse sources, such as different experts
or experiments. There is no reason, a priori, to choose one
source from the others. Evidence Theory offers the possibility
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to combine information from different sources. A number of
rules have been developed to combine evidence depending
on the context or how much they conflict. For a complete
list of rules, the interested reader can refer to the work of
Sentz and Ferson [7].

2.2.1. Frame of discernment U and basic probability
assignment

The frame of discernmentU, also known as the universal
set, is “a set of mutually exclusive elementary propositions”
[9]. In most engineering applications of the Evidence The-
ory, experts express their belief of an uncertain parameter u
being within various intervals. u ∈ [a, b] is then in this case
an elementary proposition, thus an element of U. The level
of confidence an expert has on an elementary proposition is
quantified using the Basic Probability Assignment (BPA) that
satisfies the three following axioms:

1. m(E)�0,∀E ∈U,
2. m(�)= 0, and
3.
∑

E∈Um(E)= 1.

An element ofU that has a non-zero BPA is named a focal
element (FE).

Whenmore than one parameter are considered uncertain
(e.g. u1 and u2), the frame of discernment is composed of all
the cartesian products of the intervals. The BPA of a given
cartesian product is then the product of the BPA of each
interval:

m((u1,u2) ∈ [a1, b1]× [a2, b2])

=m(u1 ∈ [a1, b1]) ∗m(u2 ∈ [a2, b2]) (1)

2.2.2. Belief and plausibility functions
As stated above, Probability Theory requires an assump-

tion on the probability distribution associated to a phe-
nomenon in order to compute the probability of an event
to happen. Such a probability is the uncertainty quantifica-
tion associated to that event. However, the knowledge of
the probability distribution is an important piece of informa-
tion that is not always available. Evidence Theory makes use
only of the available information and produces two quanti-
ties, the Belief (Bel) and the Plausibility (Pl) functions, that
represent the lower and upper bounds on the uncertainty
quantification. They are defined as follows:

Bel(A)=
∑
FE⊂A
FE∈U

m(FE) (2)

Pl(A)=
∑

FE∩A��
FE∈U

m(FE) (3)

Thus, propositions intercepting the set A but not included in
A are considered in Pl but not in Bel. Let us have a look at
an example. Fig. 1 represents a BPA structure of two uncer-
tain parameters u1 and u2. Parameter u1 can take its value
within the four intervals [a1, b1], [b1, c1], [c1, d1] and [d1, e1]
while the domain of u2 is divided in three parts [a2, b2],
[b2, c2] and [c2, d2]. Thus there is a total of twelve focal el-
ements FE1, . . . , FE12. Let us define the proposition A as the
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Fig. 1. Belief and plausibility of proposition A in a given BPA structure of
two uncertain parameters.

Fig. 2. Interpretation of the relation between belief, plausibility and un-
certainty.

area within the dash curve C. Only the focal elements FE1,
FE6 and FE10 (grey in the figure) are entirely surrounded by
C. In addition, FE2, FE3, FE5, FE7, FE9 and FE11 are partly inside
C (doted in the figure), therefore only partially implying the
proposition A. Therefore the belief and plausibility of A are

Bel(A)=m(FE1)+m(FE6)+m(FE10)

Pl(A)=m(FE1)+m(FE2)+m(FE3)+m(FE5)+m(FE6)+m(FE7)

+m(FE9)+m(FE10)+m(FE11)

If the pair (u1,u2) takes its value within [b1, c1]× [c2, d2], it
fulfils proposition A. However, if it is inside [c1,d1]× [b2, c2],
it may verify A in some cases but not always. Therefore, the
belief represents our confidence in A to be true while the
plausibility our confidence in A to be possible.

An important andmeaningful relation between belief and
plausibility functions comes directly from the fact that all
basic assignments must sum to 1.

Pl(A)+ Bel(Ā)= 1

where (Ā) represents the complement of A. This means that
Pl considers the uncertainty, while Bel does not (cf. Fig. 2).

2.3. Generic problem of optimisation under uncertainty

Let us consider a function f : Rm+n → R characterising a
system to be optimised. The function f represents the system
budgets (e.g. delta V budget, power budget, mass budget,
etc.), in the case of a space mission, and depends on some
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uncertain parameters u= [u1,u2, . . . ,um] ∈ U ⊆ Rm and de-
sign variables d= [d1, d2, . . . ,dn] ∈D ⊆ Rn.

A BPA is associated to the frame of discernment U of
the uncertain parameters u. The design variables are well
know and can be adjusted at will by the designer within a
domain D to optimise the system. For a given constant �,
named the threshold, the generic problem of optimisation
under uncertainty (OUU) can be defined as follows:

max
d∈D

Bel
U

(f (d,u)< �) (4)

Note that, the plausibility could be used instead of the belief,
or the proposition could be replaced by f > �, depending on
the system and goal of the optimisation. The computational
techniques in this paper would be equally applicable in all
cases.

To better understand how the belief of f < � is computed,
let us define, for a given design vector d:

U� = {FE ∈U|∀u ∈ FE, f (d,u)< �}
= {FE ∈U|max

u∈FE
(f (d,u))< �} (5)

Thus using Eq. (2) we have

Bel
U

(f (d,u)< �)=
∑

FE∈U�

m(FE) (6)

From the above definitions, it can be deduced that the com-
putational time required to solve the OUU problem can be-
come quickly prohibitive. In fact, in order to identifyU�, the
maximum of f over every focal element of U must be com-
puted and compared to �. In the event that the system func-
tion is convex, this maximum lies at one of the vertices of the
focal element. Otherwise, an optimisation problem has to be
solved for every focal element and for each new design vec-
tor. Furthermore, because of the cartesian product in (1) the
number of focal elements increases exponentially with the
number of uncertain parameters and associated intervals.

Finally, designers are usually interested in the variation
of the optimal belief with the threshold. Indeed, it may be
relevant to take a little more risk (a slightly lower value of
the belief) if the performance gain is significant. Therefore, in
practise the designers are interested in the trade-off curve,
solution of the bi-objective optimisation problem:⎧⎨
⎩

max
�∈R,d∈D

Bel
U

(f (d,u)< �)

min
�∈R,d∈D

�
(7)

The typical shape of the Pareto front of problem (7) is given
in Fig. 3. The complexity associated to the computation of
Belief and Plausibility together with the requirement to
solve bi-objective problem (7) demand for an appropriate
computational approach that can make Evidence Theory an
interesting tool for robust design optimisation of a space
mission. In the remainder of the paper some techniques
will be presented and discussed.

3. Three approaches to solve the OUU problem

The cost of the computation of the belief function and
its step-wise structure makes its maximisation difficult.

Fig. 3. Typical shape of the Pareto front of the optimisation under un-
certainty problem. The stars represent the Pareto optimal points. (This is
also representative of the shape of the belief function for a specific design
vector.)

In this section three different approaches to solve the prob-
lem defined in Eq. (7) are presented.

3.1. Direct approach: using a multi-objective optimiser

The most natural way to solve problem (7) is to use a
multi-objective optimiser (MOO) [4,5]. It allows investigat-
ing globally the design space and provides optimal designs
for various levels of the belief. This is desirable as it would
enable the decision makers to do a trade-off among them.

The direct application of a MOO algorithm to problem (7)
requires the definition of a dominance index quantifying the
Pareto optimality of a given design point. Let us introduce
the standard dominance index:

Ii = |{j|Bel(dj)>Bel(di) ∧ �j < �i, j= 1, . . . ,npop ∧ j� i}| (8)

where |.| denotes the cardinality of a set and npop is the
number of available design vectors. For the tests in this pa-
per we will use a population-based optimiser called EPIC
with the standard formulation of the dominance index (8).
EPIC is based on an algorithm that combines a determinis-
tic domain decomposition technique and a stochastic-based
multi-agent collaborative search. The interested reader can
find more details in [10–12].

The problemwith dominance index (8) is that each design
vector corresponds to a full Bel−� curve, i.e. a set of points in
the image space, one for each values of � (the stars of Fig. 3),
and not a single one. Moreover, the same Pareto front could
correspond to different design points. As we will see in the
remainder of this paper, these two difficulties can lead to a
significant overhead in the computational effort required to
a MOO algorithm to identify the global Pareto front.

In order to address some of the problems related to the
direct application of an MOO algorithm to the solution of (7)
we propose two other alternative approaches to the prob-
lem. One treats � separately, maximising Bel for given values
of �, the other identifies at first the subsets in U ×D that
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satisfy the condition f < � and then computes the value of
the Bel function.

3.2. Step method

To be able to compute the Belief, a threshold has to be
set in some way. The Step Method is very straightforward
as it computes the optimum belief for discrete values of the
threshold. An initial value is chosen by the user such that
a design vector d exists for which the Belief is equal to 1.
Then the threshold is decreased (or increased, depending on
the problem) and a local optimiser is used to find a optimal
d starting from the previous one. This process stops when
the belief reaches the minimum possible value, i.e. 0. This
procedure is detailed in Algorithm 1.

Algorithm 1. Step method.

Input: �, step
Output: Matrix Out where each row corresponds to a step.
The ith row of Out is composed of the value of the thresh-
old, the optimum design vector and the maximum belief
found at the ith step.
/* This first while loop should be avoided by
setting a high enough threshold

*/

while �d ∈D|Bel∗(�)= 1 do
�← �+ step
endw
Belmax ← 1
while Belmax>0 do

/* Update the threshold */
�← �− step
/* Optimisation of the belief for the given

threshold
*/

[Belopt ,dopt]←max
d∈D

Bel
U

(f (d,u)< �)

/* Add a line at the end of the output matrix
and save the results

*/

Out(end+ 1, :)= [�,Belopt ,dopt]
/* Update the optimum belief variable */
Belmax ← Belopt

endw

Due to the non-derivative nature of the belief function,
a gradient-based optimiser is not applicable. Therefore, a
derivative-free algorithm (the MatLab fminsearch algo-
rithm) was used. A drawback of the step method is that it
can fail to converge to the global Pareto front or to iden-
tify multiple design points. In fact, the use of the previous
optimal d to start a new step helps the local optimiser to
converge quickly but prevents the identification of a com-
pletely different design point. In order to overcome this
difficulty, a multi-start approach could be used, or even a
global optimiser operating on � only. However, the associ-
ated extra computational time would be significant.

3.3. Cluster approximation

The cluster approximation is an indirect way to solve
the problem described in Eq. (7). The main idea is to iden-
tify within the complete domain (i.e. the product of the

Uncertain parameter
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Fig. 4. Illustration of the cluster method with three focal elements FE1,
FE2 and FE3. The proposition f < � is true only within the subdomains s1,
s2 and s3. Two examples of design point d1 and d2 are given.

uncertain parameters domain and the design domain) the set
S� where the system function verifies the proposition f < �.
An approximated ˜Bel (resp. plausibility P̃l) of the proposition
f < � can then be cheaply computed by adding the mass of
the focal elements included (resp. intersecting) any element
of S�.

˜Bel(f < �)=
∑
FE⊂s
s∈S�

m(FE) (9)

P̃l(f < �)=
∑

FE∩s�0
s∈S�

m(FE) (10)

Fig. 4 illustrates the proposed method. In this example, there
are only three focal elements FE1, FE2 and FE3. The set of
subdomains where the system function verifies the propo-
sition is

S� = {s1, s2, s3}

Two different design points d1 and d2 are represented. For
d1, the approximations of the belief and plausibility are

˜Beld1
(f < �)=m(FE1)

P̃ld1
(f < �)=m(FE1)+m(FE2)

For d2, the approximations of the belief and plausibility are

˜Beld2
(f < �)=m(FE2)+m(FE3)

P̃ld2
(f < �)=m(FE2)+m(FE3)

To compute the approximation of the Bel function, the set
S� is computed for increasing values of the threshold until a
belief of 1 is found. At each step, sample points verifying the
proposition f (d,u)< � are identified, then classified in clus-
ters. The points of a given cluster define one subset si ofS�.
Then, the design maximising the approximation of the belief
˜Bel is selected. This procedure is described in Algorithm 2.
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In order to speed up the computation, axis-aligned box
(AAB) are used. Each subset si is associated with an outer
AAB (called also the axis-aligned boundary box) oAAB(si) and
an inner AAB, iAAB(si). If si is defined by the set of p points
in Rm+n (x1,x2, . . . ,xp), then its axis-aligned boundary box
oAAB(si) is defined as

oAAB(si)=
{
y ∈ Rm+n|∀k, 1� k� (m+ n),

min
1� j� l

xj(k)� y(k)� max
1� j� l

xj(k)
}

(11)

The inner AAB is an axis-aligned box that is contained within
the subset si. As opposed to the outer AAB, the definition of
the inner AAB is not unique. In this study the inner AAB was
centred in the barycentre of the sample points defining si
and its relative size was maximised within si.

The idea behind the inner and outer AABs is that it is
extremely cheap to check if a focal element is outside or
inside an AAB. The focal elements that are outside the outer
AAB are guaranteed not to be within U� and the one inside
the inner AAB are guaranteed to be within U�. Once this
selection process is done, only the focal elements that do
not enter in any of those categories need to be checked to
complete the computation of ˜Bel.

Algorithm 2. Cluster approximation method.

Input: �, step
/* Fix a low value for threshold � */
Output: Matrix Out where each row corresponds to a step.
The ith row of Out is composed of the value of the thresh-
old, the optimum design vector and the maximum approx-
imated belief found at the ith step.
X = {}; Xnew = {}
/*Initial sample points */
X← {[d,u]|f (d,u)� �}
/* Initialise ˜Belmax */
˜Belmax ← 0
while ˜Belmax<1 do
/*Update the threshold */
�← �− step
/* New sampling points */
Xnew ← {[d,u]|(�− step)<f (d,u)� �}
/* Update the set of valid sampled point */
X← {X,Xnew}
/*Identify the valid subdomains */
Partition in clusters the sample points X
for each cluster do

Compute the associated convex hull
Compute the oAAB and an iAAB

endfch
/* Find thedesign point giving the highest ˜Bel */
[ ˜Belopt ,dopt]←max

d∈D
˜Bel(d, �)

/*Add a line at the end of the output matrix
and save the results

*/

Out(end+ 1, :)= [�, ˜Belopt ,dopt]
/* Update the optimum belief variable */
˜Belmax ← ˜Belopt

endw

In order to identify if any of the remaining focal elements
fulfils the proposition f (d,u)< �,∀u ∈ FE, one only needs to
check if their vertices are within any of the subsets si. In our
implementation si is the convex hull of the sample points of
the ith cluster. If v is a point of Rm+n, we have

v ∈ si ⇐⇒ ∃k ∈ (R+)m+n|v=
p∑

k=1
�(k) ∗ xk and

p∑
k=1

�(k)= 1

(12)

The initial step of the revised simplex method was used
to determine whether or not the vector k in (12) exits
[13,14].

It is important to highlight that in the cluster approx-
imation, no assumptions are made on the convexity of
the system function f. Only the subset si are considered as
convex, which in the practical application related to space
design appears reasonable. If that was not case, another
way to define the subset si would be required (it could be
possible for instance to use an hypersphere or an hyper-
cube of fixed size around each valid sample point). Another
advantage of this method is that it shall identify all the
locally optimal design regions and thus various classes of
interesting designs (as in the direct approach). Finally the
global optimum is likely to be found using a simple local
optimiser, starting, for instance, from the barycentre of each
cluster.

4. Example of application

In this section, we will present the results of the three
previously described approaches applied to the preliminary
design of the BepiColombo mission. The objective is to min-
imise the wet mass of the spacecraft (for the low-thrust part
of the mission) considering uncertainties on a few parame-
ters. The first part of this section presents the calculation of
the mass budget of the spacecraft, i.e. the system function f.

4.1. Wet mass modelling

The mass model in this section was developed for
preliminary system mass assessment of a generic Solar
Electric Propulsion (SEP) mission. It is mainly based on
[15] and allows the estimation of the wet mass of the
spacecraft as a function of the thrust profile and specific
impulse.

The total SEP related mass is given by the following
equation:

mSEP
wet
=mtank +marray +mrad +mharness +mPPU +mthrusters

+mxenon (13)

where mtank is the mass of tanks and associated equipment,
marray is the mass of the solar arrays, mrad is the radiator and
associated structural mass, mharness is the mass of harness
equipment,mPPU is themass of power processing subsystem,
mthrusters is the mass of the thrusters and structural related
mass andmxenon is themass of xenon required to perform the
low thrust transfer. The expressions of all these quantities
are given in the following subsections.
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4.1.1. Mass of propellant
Themass of xenon is estimated from the �V budget using

the rocket equation.

mxenon =mTLO(1− e−�V/ISP∗g0 ) (14)

where mTLO is the trans-lunar orbit mass, i.e. the wet mass
of the spacecraft just after the escape from the Earth–Moon
system (specific to this mission,mTLO=2400kg), g0 is the grav-
itational acceleration (g0 = 9.80665ms−2), �V is the delta V
budget for the SEP transfer from the Earth–Moon escape to
the Mercury capture (in ms−1) and ISP is the mean specific
impulse of the SEP, during transfer (in s):

ISP =
4670
4720

∗ ISP
max T

(15)

In Eq. (15), ISP
max T

is the specific impulse at maximum thrust

(in s).

4.1.1.1. Delta V budget. The delta V budget is composed of
the deep space �V (cf. below), the �V correction for the
second Lunar Gravity Assist (40ms−1), the �V penalty for
solar aspect angle control (100ms−1), the �V for flyby navi-
gation (260ms−1), the �V for other navigation manoeuvres
(280ms−1) and the �V for contingencies (+5% of the deep
space �V).

The deep space �V is the total velocity variation, deliv-
ered by the SEP system, to transfer the spacecraft from Earth
to Mercury. The computation of the deep space �V would
require the solution of a computationally expensive optimal
control problem for each transfer. On the other hand, all the
three approaches to the solution of problem (7) require the
evaluation of several design vectors and thus the evaluation
of several transfers. Therefore, integrating the solution of the
above-mentioned optimal control problem into any of the
solution approaches of the OUU would be computationally
intractable. In order to overcome this difficulty, a surrogate
model [20] was built based on 180 different transfers pri-
orly computed using the EADS-Astrium Stevenage in-house
software orbit optimisation facility [15]. Each transfer corre-
sponds to a different value of P1 AU, the power generated by
the solar arrays at 1 Astronomical Unit (AU), and Tmax, the
maximum thrust. For this study, the DACE package [16] was
used to generate a Kriging surrogate model with a first order
polynomial regression model and an exponential correlation
model (cf. Fig. 5).

4.1.2. Tank mass
The mass of the tanks is estimated with:

mtank = �tank ∗mxenon (16)

where �tank is the specific ratio of the tank subsystem (�tank=
11%).

4.1.3. Solar arrays
For the solar arrays we need both the mass and the area.

4.1.3.1. Array area. The area of the solar arrays is a function
of the power required at 1AU:

A= P1 AU

�p ∗ Gs
∗ �A (17)

Fig. 5. Kriging surrogate of the deep space �V for the BepiColombo low
thrust transfers.

where �p is the power conversion efficiency (�p = 0.22751),
Gs is the solar constant at 1AU (Gs = 1367Wm−2) and �A is
the area margin for the solar arrays (�A = 1.2).

4.1.3.2. Array mass. The mass of the solar arrays is then de-
rived from their area with:

marray = (A ∗ �SA +m0
array

) ∗ �SA (18)

where �SA is the specific ratio mass/area of the solar arrays
(�SA = 2.89kgm−2), m0

array
is the inevitable structural mass of

the solar arrays and �SA is the mass margin for the solar
arrays (�SA = 1.1).

4.1.4. Radiator and associated structural mass
The radiator is sized based on the maximum power de-

livered at the shortest distance from the Sun. In the case
of the BepiColombo mission, this is at the perihelion of
Mercury's orbit, i.e. 0.3AU.

4.1.4.1. Maximum power. Pmax is the total power used by the
thrusters at maximum thrust, i.e. at 0.3AU. It is calculated
using a system of two equations linking the power used by
the thrusters, the thrust, the specific impulse and the voltage.
The power is a linear function of the thrust while the specific
impulse is a second order polynomial of the thrust:

ISP = b2T2 + b1T + b0 (19)

P = c ∗ (a1T + a0) (20)

where a1, a0, b2, b1 and b0 linear functions of
√
V (V is the

voltage in volt and c a constant). The voltage is first computed
using Eq. (19) and then Pmax is calculated using Eq. (20) with
T = Tmax and ISP = ISP

max T
.

4.1.4.2. Dissipated power. The total power that needs to be
dissipated through the radiator is given by

Pdis = �pPmax + Q (21)

where �p is the percentage of the maximal power that is
wasted (�p = 0.15), Q is the heat to be dissipated at the
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perihelion of Mercury's orbit and Pmax is the power used by
the thrusters at Tmax and ISP

max T
, i.e. at 0.3AU.

4.1.4.3. Radiator and associated structural mass. Two differ-
ent types of radiator were envisaged for BepiColombo. The
choice depends on the value of the dissipated power in
Eq. (21) being above or below a given threshold P dis

lim
. The

mass of the radiator and of the associated structure is cal-
culated using the following equation:

mrad =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
c0+c1

Pdis
P dis

lim

)
∗ �rad if Pdis <P dis

lim⎛
⎝c2+c3

Pdis
P dis

lim

+c4
(
Pdis
P dis

lim

)2
⎞
⎠ ∗ �rad otherwise.

(22)

where c0, c1, c2, c3 and c4 are constants and �rad is the mass
margin for the radiator (�rad = 1.15).

4.1.5. Harness
The mass of the harness is given by the following equa-

tion:

mharness =m 0
harness

+ �harnessPmax�harness (23)

where m 0
harness

is the inevitable mass of the harness subsys-

tem, �harness is the specific ratio mass/power of the harness
subsystem (�harness = 1.3763 × 10−3 kgW−1) and �harness is
the mass margin for the harness subsystem (�harness = 1.2).

4.1.6. Power processing unit
BepiColombo was designed with four power process-

ing unit (PPU). The mass of each of them is estimated us-
ing an equation linear with the maximum power Pmax and
quadratic with the mean specific impulse ISP .

4.1.7. Thrusters mass
The mass of the thrusters was estimated with the follow-

ing equation:

mthrusters =m 0
thrusters

+ nthrusterm nominal
thrusters

(24)

where m 0
thrusters

is the inevitable mass of the thrusters sub-

system, m nominal
thrusters

is the nominal mass of one thruster and

nthruster is the number of thrusters installed on the spacecraft
(nthruster = 2).

4.1.8. Remarks
The simple model presented here enables the estimation

of themass of themain subsystems of a low thrust spacecraft
with only three design parameters:

• P1 AU: the power to be generated by the solar arrays at
1AU.
• Tmax: the maximum thrust.
• ISP

max T
: the specific impulse at maximum thrust.

If no uncertainties in the model are considered, an op-
timal design point would correspond to a triplet of val-
ues, assigned to P1 AU, Tmax and ISP

max T
, which minimises the

Table 1
Margins applied to the mass budget of BepiColombo.

Margins Value Subsystem

�V +5% �V Contingency
�A 1.20 Area of the solar arrays
�SA 1.10 Mass of the solar arrays
�rad 1.15 Mass of the radiator
�harness 1.20 Mass of the harness subsystem

Table 2
Uncertainty representation through Evidence Theory.

Uncertain
parameter

Intervals Basic probability
assignment

Lower bound Upper bound

�p 0.18959 0.195 0.05
0.195 0.205 0.15
0.205 0.215 0.25
0.215 0.22751 0.55

�SA 2.89 3.00 0.10
3.00 3.10 0.15
3.10 3.25 0.35
3.25 3.3105 0.40

�harness 1.3763× 10−3 1.4500× 10−3 0.05
1.4500× 10−3 1.5500× 10−3 0.25
1.5500× 10−3 1.6000× 10−3 0.30
1.6000× 10−3 1.6515× 10−3 0.40

mass budget. However, although optimal, the resulting de-
sign point would not be reliable as the mass of system is
known to increase, from the preliminary design to launch,
for the effect of the initial uncertainties. If a margin approach
is used to predict the mass budget, it is common practise to
increase the mass of poorly known components by 20–25%,
the mass of known components by 10–15% and the mass
of consolidated designs by 5–10% [21]. Note that, these per-
centages are not derived from a rigorous calculation of the
propagation of uncertainties through the design process, but
are based on historical data and past experience. Further-
more, there is no prediction of any event, during the devel-
opment of the design process, that can further increase the
mass beyond the prescribed margins.

In the case of BepiColombo, margins were added to the
mass of the propellant (by an increase of the �V budget),
to the mass and area of the solar arrays, to the mass of the
radiator and to the mass of the harness (see Table 1). Since
the estimation of the mass of these components was deemed
to be uncertain, in the following, wewill use Evidence Theory
tomodel the related uncertainty and to study its propagation
throughout the system model.

4.2. The BPA structure

We assume here that the major source of uncertainty
comes from the power conversion efficiency �p, the area
density of the solar array �SA and themass/power ratio of the
harness �harness. Note that, in a real scenario, this choice is
dependent on the technology readiness of the components,
the current stage of the design, the expert opinion of the
designers. Therefore, more or different parameters can be
deemed to be uncertain. Table 2 presents the BPA structure
associated to the parameters selected for this study.
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Since for the OUU problem, Evidence Theory is used to
model the uncertainties related to �p, �SA and �harness, their
margins, i.e. �A, �SA and �harness, were set to 1.

In order to easily compare margin approach and robust
design based on Evidence Theory[ ], the BPA structure was
constructed in such a way that the uncertainty interval of
a given parameter ranges from the nominal value of the
parameter to its nominal value times the corresponding
margin.

4.3. Problem formulation

Using the notation of Section 2.3, let us define d, u and
their associated domains D and U, as

d= [P1 AU, Tmax, ISP
max T

] (25)

D= [4200W, 6450W]× [210mN, 400mN]

× [4000 s, 8000 s] (26)

u= [�p,�SA,�harness] (27)

U= [0.18959, 0.22751]× [2.89, 3.3105]

× [1.3763× 10−3, 1.6515× 10−3] (28)

The OUU, then, becomes:

⎧⎪⎪⎨
⎪⎪⎩

max
m∗SEP

wet
∈R+ ,d∈D

Bel
U

(mSEP
wet

(d,u)<m∗SEP
wet

)

max
m∗SEP

wet
∈R+ ,d∈D

m∗SEP
wet

(29)

5. Deterministic optimal design

For the case under investigation, the identification of an
optimal design point, when the margin approach is applied,
requires the solution of the followingminimisation problem:

min
d∈D

mSEP
wet

(d) (30)

where, margins �A, �SA and �harness in Table 1 are applied
to the corresponding parameters �p, �SA and �harness. Here
and in the following, we call (30) deterministic optimal design
problem. The deterministic optimal design problem aims at
finding the minimum wet mass of the spacecraft by adjust-
ing the design vector b, given a predefined value of �p, �SA
and �harness. The best-known solution to problem (30), found
using a global optimiser, is mSEP

wet
= 883.880kg which cor-

responds to ddet = [4650.0W, 230.00mN, 5648.0 s]. For this
design vector, the mass without the three margins consid-
ered in this test case (�A, �SA and �harness) would be 864.8 kg.
Therefore, it can be said that the margin approach predicts
and increase of the system mass by 19kg. However, the the
solution of problem (30) does not yield any measure of the
reliability of the deterministic design vector ddet and no in-
formation on the trade-off between reliability and perfor-
mance

Although this is not generally the case, for the sake of
the comparison betweenmargin approach and robust design
optimisation based on ET, we assumed that the vector ddet
corresponds to the best design with maximum reliability.
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Fig. 6. Comparison of the results given by the three proposed methods
(direct, step and cluster) to solve the OUU problem for the BepiColombo
test case.

Because of this assumption, together with the choice of
the BPA structure, the optimal design of the OUU for a belief
of 1, i.e. full certainty, is expected to be the same as the
deterministic one. This is obviously not generally the case
but will help here to better comprehend the results. i.e. it
was expected that the OUU yielded a Belief equal to 1 for
d= ddet .

6. Comparison of the three proposed methods

6.1. General results

For the step method, the initial threshold was set to
920kg and then decreased by 0.5 kg at each iteration. The
initial d chosen was the centre of the domain D. A total of
72 iterations were required to find the minimum mass cor-
responding to a Belief equal to 1, and 30 more to find the
mass for which the Belief is equal to 0 for any design vector.
Note that the first 72 iterations are very quick as the optimi-
sation was stopped as soon as a belief equal to 1 was found.
The step method yielded a minimum mass with maximum
reliability (Belief = 1) m∗SEP

wet
= 884.0 kg.

For the cluster approximation, the initial threshold was
set to 872kg and it was increased by 0.5 kg at each iteration.
A total of 34 iterations where required to reach a Belief of 1,
corresponding to aminimummasswithmaximum reliability
(Belief = 1) m∗SEP

wet
= 888.5 kg.

Finally, for the direct method using the MOO, the thresh-
oldm∗SEP

wet
was boundwithin the interval [860kg, 900kg]. After

about 100,000 evaluation of the Belief, 53 different Pareto
optimal points were found, all in the same neighbourhood.
Once again, the minimum mass with maximum reliability
(Belief = 1) was m∗SEP

wet
= 883.9 kg.

6.2. Trade-off curves and pareto fronts

Fig. 6 shows the Pareto fronts identified by the three pro-
posed method. It can be seen that the Direct Approach and
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Step Method give the best results. They both found the op-
timum design for a belief of 1. As expected, the optimum
design for a Belief of 1 is the same as the deterministic op-
timum. The cluster approximation gives the worst Pareto
front but still remains quite accurate (<10% of increase of the
mass). Moreover, the result is conservative (higher thresh-
old for the same Belief level) thus more robust.

Compared to the solution of problem (30), the curves in
Fig. 6 provide two additional pieces of information: a quan-
titative measure of the belief that the predicted wet mass
will be lower than the threshold, given the current infor-
mation; and the exact measure of the relationship between
reliability and performance, given the current information.
The latter aspect allows a quantitative trade-off analysis be-
tween reliability and performance, giving a full range of de-
sign options. It is important to underline that the result in
Fig. 6 is only based on the available information at the time
of the solution of the OUU and cannot be used to predict the
future occurrence of events, during the design process, that
will introduce further perturbations to the value of the wet
mass.

6.3. Localisation of optimal designs

A second important outcome of these tests is related to
the localisation of the optimum design found by the three
approaches. As already mentioned in Section 2.3, the de-
signer is interested in identifying different design options
that may be optimal at different level of belief.

The stepmethod, after finding the deterministic optimum
for a Belief of 1, converged, for all the subsequent levels
of Belief, to the same design point [4801.3W, 230.02mN,
5648.8 s].

On the other hand, the Direct approach identified
mainly three different design options. For a threshold
above 880kg all the solutions are in a neighbourhood of
the deterministic optimum, for a threshold between 880
and 877kg all the solutions are around the design vector
[4760W, 230mN, 5650 s] and finally, for the rest of the
curve, the Direct approach converges to the two previous
design options along with a third one in the neighbourhood
of [4815W, 230mN, 5629 s]. Fig. 7 shows the power at 1AU
of the optimum design points found for various belief levels.

The cluster method did identify only one design option in
the vicinity of the solution vector [5250W, 235mN, 5650 s].
This design option is not optimal for any level of belief as the
wet mass is not minimal. The Pareto optimal design solu-
tions identified by the Direct approach were within the fea-
sible domains enclosed by the convex hulls. However, they
generate approximated beliefs ˜Bel that are not maximal. This
problem could be due to the sampling technique or the use
of convex hull, and further investigations and tests are re-
quire to overcome this drawback.

6.4. Computational cost

As shown in the previous section, the three solution
methods display substantially different behaviours and can
lead to quite different results in terms of number and qual-
ity of the solutions. Furthermore, their computational cost
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Fig. 7. Localisation of the optimum power at 1AU found vs. the belief level,
found by the direct approach and the step method for the BepiColombo
test case.

Table 3
Computational time for the three proposed approaches.

Method Total CPU
time (s)

CPU time
for f (s)

Number of f
evaluations

Step 288 133 330,375
Cluster 1206 59 135,803
Direct 3859 1926 7,122,580

is substantially different. Table 3 summarised the compu-
tational time of each method applied to the solution of the
OUU of BepiColombo.

The step approach takes 13 times less than the Direct
approach, yields a similar Pareto front but provides only 1
design option. The cluster approximation requires about 3
times less function evaluations of the step approach and 52
times less function evaluations than the Direct approach but
produces a worse Pareto front. As the system function can
be computationally expensive, a lower number of call to f
is particularly attractive making the cluster approximation
quite interesting. To give an idea, in our case, a system func-
tion evaluation requires around 4× 10−4 seconds. If instead
the CPU time for computing the wet mass of the SEP system
was over 5×10−3, the cluster approximation would become
faster than the step approach.

The higher cost of the cluster method is mainly due to
the generation of the convex hull. A more efficient way of
dealing with the identification of Sv is under development
and will be the subject of a future publication.

The high number of function evaluations associated to
the Direct approach, instead, is mainly due to the nature
of the dominance index (as explained in Section 3.1) and
to the identification of multiple design options. This later
aspect, in particular, requires the exploration of multiple
neighbourhoods with a consequent increase in the number
of function evaluations.

6.4.1. Influence of the number of focal elements
The same simulations was run with only the cluster ap-

proximation and the step method for an increasing number
of focal elements (i.e. the number of intervals per in certain
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Fig. 8. Variation of the computational time for the cluster approximation
and the step method for increasing number of focal elements.

parameters has been increased to 8 and 16). Fig. 8 shows
how the cluster approximation can become even more at-
tractive, in terms of computational time, when building the
focal elements is expensive.

7. Conclusion and future work

In this paper, we have presented an initial investigation
of the use of robust design optimisation, based on Evidence
Theory[ ], to deal with uncertainties inherent to the prelimi-
nary design of a space mission. Evidence Theory appeared to
be an appropriate choice as, in this phase, epistemic uncer-
tainties are frequently encountered. The main benefits that
can be derived from this initial investigation are: (a) system
margins are replaced by a more meaningful and rigorous
uncertainty quantification, directly related to the source
of uncertainties and to the current level of information,
(b) multiple design options can be identified, corresponding
to different levels of performance and reliability, (c) the
decision maker is presented with a complete quantita-
tive trade-off between performance and reliability and
(d) the iteration process between optimisation and reliabil-
ity analysis is reduced if not avoided.

Three different approaches to solve the optimisation un-
der uncertainties problem were proposed and tested on a
realistic preliminary space mission design problem. Each of
them had some pros and cons. The step method appeared
efficient for problems with convex and inexpensive system
functions. However, it does not guarantee the identifica-
tion of the global optimum for each level of the Belief.
The cluster approximation produces acceptable results and
appears to be very attractive for non-convex, multi-modal
and expensive system functions. Finally, the use of an MOO
removes the issue of selecting the steps between two suc-
cessive thresholds and most importantly identify different
optimal design classes, but at the expense of a higher
computational time.

As highlighted in the paper, future work is necessary
mainly on the cluster approximation. The quality of the
sample is of high importance for good results, and more in-
vestigation is required here. Moreover, other method could
replace the use of convex hull to characterise the valid

domains. Regarding the direct approach, a redefinition of
the local Pareto optimality criterion would be needed to
reduce the computational time and will be presented in a
future work. Additionally, other test cases with more un-
certain parameters and with more than one local minimum
are required to complete the comparison among different
approaches.
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