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Maximum-Likelihood Estimation of Delta-Domain Model
Parameters From Noisy Output Signals

Visakan Kadirkamanathan, Member, IEEE, and Sean R. Anderson

Abstract—Fast sampling is desirable to describe signal transmission
through wide-bandwidth systems. The delta-operator provides an ideal
discrete-time modeling description for such fast-sampled systems. How-
ever, the estimation of delta-domain model parameters is usually biased by
directly applying the delta-transformations to a sampled signal corrupted
by additive measurement noise. This problem is solved here by expecta-
tion-maximization, where the delta-transformations of the true signal are
estimated and then used to obtain the model parameters. The method is
demonstrated on a numerical example to improve on the accuracy of using
a shift operator approach when the sample rate is fast.

Index Terms—Delta operator, EM algorithm, expectation-maximization,
fast sampling, system identification.

I. INTRODUCTION

High-speed signal transmission in digital communications and con-
trol systems has become common in recent years due to advances in
technology that allow rapid signal processing and storage of the large
quantities of associated data. Communication receivers and control sys-
tems require processing of these fast-sampled signals in estimating
the communication channel or identifying system dynamics. The fast
sampling of signals is desirable for wide bandwidth systems, however,
commonly used discrete-time methods for signal processing are prone
to ill-conditioning at fast-sample rates [1], which requires careful con-
sideration. This contribution addresses the problem of parameter esti-
mation for fast-sampled linear time-invariant systems from noisy mea-
surement signals.

The term fast sampling refers here to a signal that is sampled rapidly
compared to the decay rate of the dominant system time constant. The
successive values of such fast-sampled signals are numerically sim-
ilar, which often leads to ill-conditioning of matrices containing sig-
nals transformed by the shift operator [2], [3]. The �-operator transfor-
mations of a signal, by contrast, tend toward the signal derivatives as
sample rate increases: The �-operator is a forward difference operator
that transforms a sampled signal to a first order discrete-time represen-
tation of gradient information [4]–[6]. Differing orders of � transfor-
mation at a sample point are unlikely to be numerically similar, which
typically gives an improvement in the numerical properties of signal
processing algorithms at fast-sample rates compared with the shift op-
erator [1].
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The �-operator has been widely studied in the adaptive signal pro-
cessing context to improve the numerical conditioning of recursive es-
timation algorithms such as least mean square (LMS) [7], lattice [8],
and Levinson [9] algorithms. In an offline modeling context the �-oper-
ator can be used to provide an exact discrete-time model of a system, or
in the direct identification of continuous-time systems where the esti-
mated parameters tend to the continuous-time values with an increasing
sample rate [10]–[13]. In each context, it is common to use an observed
signal to form the �-transformations of the signal.

Additive measurement noise on the output signal biases the estima-
tion of input–output (I/O) model parameters when using a linear regres-
sion technique such as least squares (LS), motivating prefiltering [14],
or noise modeling [15]. The bias is exacerbated further in the identifi-
cation of systems using the �-operator because of the (derivative-like)
amplification of high frequency measurement noise when forming the
� transformations. A naive attempt to model directly from the noisy
transformed signal, e.g., using LS, would lead to severe parameter bias.
Therefore, previous approaches to modeling systems in the �-domain
have focused on either low-pass filtering the observed signal before pa-
rameter estimation or attempting to compensate for the bias as part of
the parameter estimation stage, such as bias compensating least squares
[16].

The contrasting approach to systems modeling taken here is to re-
gard the �-transformations of the true output signal as unobserved, or
hidden, quantities. This motivates a state-space representation of the
model, which has a canonical form where the �-transformations of
the true output signal correspond to the system states. The state-space
model structure naturally leads to the formation of a state and parameter
estimation problem. The framework chosen here to solve the estimation
problem is maximum likelihood: the algorithm thus derived is based on
the principle of expectation-maximization (EM) [17]. This is advanta-
geous because EM is a well-known algorithm, often used in channel
identification [18], [19] as well as system identification [20]–[22] and
convergence behavior is well understood [23], [24].

In Section II, a brief background is given to the EM algorithm, which
highlights the main concepts and provides a basis for the following
algorithm development. The system model structure is presented in
Section III and the identification algorithm for the model is derived
in Section IV. An example of the identification procedure is given in
Section V, which demonstrates the performance of the proposed algo-
rithm and compares the results to an equivalent shift operator approach;
it is shown that the � approach performs accurately across a range of
sample frequencies whilst the shift approach is adversely affected by
fast-sample rates. The conclusions are made in Section VI.

II. BACKGROUND ON THE EM ALGORITHM

The EM algorithm is an iterative method of providing a maximum
likelihood estimate of a set of parameters �, which are dependent on
both a hidden data set X and an observed data set Y [17], [20]. The
maximum-likelihood estimate of the parameters may be obtained from
the log-likelihood function

L(�) = log p(Yj�) = log
X

p(X ;Yj�)dX : (1)

It is possible to obtain a lower bound on L(�) by introducing the dis-
tribution of the hidden data conditioned upon any available estimate
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of the parameter vector; in the iterative procedure of EM the available
estimate can be taken to be that at the kth iteration, �̂k , so that first

L(�) = log
X

p(X jY; �k)
p(X ;Yj�)

p(XjY; �k)
dX : (2)

Noting that p(XjY; �k) > 0 and that
X
p(XjY; �k)dX = 1, Jensen’s

inequality may be applied to (2) to yield the expression

L(�) �
X

p(XjY; �k) log
p(X ;Yj�)

p(XjY; �k)
dX (3)

which, after rearranging, leads to the desired expression of the lower
bound on L(�)

L(�) � F (�; �̂k) =
X

p(XjY; �k) log p(X ;Yj�)dX

�
X

p(XjY; �k) log p(XjY; �k)dX : (4)

Since F (�; �̂k) provides a lower bound on L(�), any value of � that
increases F (�; �̂k) must also increase L(�). Hence, the task of maxi-
mizing L(�) directly becomes one of iteratively maximizing F (�; �̂k).

The second term in F (�; �̂k) is not a function of �, which means
that it may be neglected when performing the maximization. This leads
to the definition of the first step in the EM algorithm, the expectation
problem, expressed as

Q(�; �̂k) =
X

p(XjY; �k) log p(X ;Yj�)dX

= [log p(X ;Yj�)jY; �̂k] (5)

where [:] denotes the expected value. The definition of the function
Q(�; �̂k) leads to the expression of the second step in the EM algorithm,
that is, the maximization problem

�̂k+1 = argmax
�

Q(�; �̂k): (6)

The two steps of the EM algorithm are repeated until some metric of
convergence is satisfied; properties of convergence of the log-likeli-
hood function and the parameter estimates are discussed in [23] and
[24].

III. SYSTEM REPRESENTATION

A single-input single-output (SISO) linear time-invariant system can
be described in I/O form using the �-operator as

�
n
zt + an�1�

n�1
zt + . . . + a0zt

= bm�
m
ut + . . . + b1�ut + b0ut + et (7)

where

� =
q � 1

T
(8)

and zt 2 is the system output at time t; ut 2 is the system input,
et � N(0; �2) is a zero mean Gaussian white process noise signal, T
is the sample time and q is the forward shift operator, i.e., qut = ut+1.

The modeling task is to estimate the parameter vector �, which is
typically performed using the one-step-ahead prediction model corre-
sponding to (7)

�
n
zt = �t� + "t (9)

where "t is the residual model error and

�t = [ t �t ] (10)

� = [� � ]T (11)

 t = [ �0zt . . . �n�1zt ] (12)

�t = [ �0ut . . . �mut ] (13)

� = [�a0 . . . �an�1 ] (14)

� = [ b0 . . . bm ] : (15)

An estimate of the parameter vector � can be obtained via a technique
such as maximum-likelihood estimation. However, it is usually the case
that the target data zt is corrupted by measurement noise and hence
unavailable. Therefore, it is appropriate to introduce an augmented I/O
model to describe such a system, which makes use of a canonical state-
space form.

The system dynamics described in (7) can be mapped into a state
equation, where the state vector contains the hidden data �kzt, for k =
0; . . . ; n � 1,

�xt = Axt +But +Wet (16)

where A 2 n�n is the state transition matrix, B 2 n�(m+1) is the
input matrix, W 2 n; xt 2

n is the system state and

xt =  
T

t (17)

ut = �
T

t (18)

A =
0 I

�
(19)

B = [ 0 �T ]T (20)

W = [ 0 . . . 0 1 ]T : (21)

The mapping from the hidden to observed output signal is described by
the measurement equation

yt = Cxt + vt (22)

where

C = [ 1 0 . . . 0 ] (23)

andC 2 n; yt 2 is the observed system output and vt � N(0; �2)
is zero-mean Gaussian white measurement noise.

In combination (16) and (22) provide a state-space representation
of the I/O system to be identified from measurement noise corrupted
output signals. The system considered is SISO, but (as is typical) the
state-space representation is readily extended to include multiple-input
multiple-output (MIMO) descriptions.

IV. MAXIMUM-LIKELIHOOD ESTIMATION

The aim of this section is to formulate the parameter estimation
problem for the �-domain model defined in (16) and (22), in terms of
the well-known EM algorithm [17], [20]. This draws on the theory de-
fined above in Section II on the background of the EM algorithm.

Lemma 1: The expected complete data log-likelihood function from
(5), Q(�; �̂k) = [log p(X ;Yj�)jY; �̂k], is defined for the �-domain
state-space model, described in (16) and (22), as

Q(�; �̂k) = �

N

t=1

1

2
(��xt � �t�)

T
�
�2(��xt � �t�) + c (24)

where c contains additional terms that are not dependent on � and xt
is partitioned according to xt = [~xTt �xt]

T .
Proof: The observed data set is defined asY = fy1; . . . ; yNg and

the hidden data set as X = f�x1; . . . ; �xNg, where N is the number
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of samples. The joint distribution of hidden and observed data can be
expressed as

p(X ;Yj�) =

N

t=1

p(�xtjxt)

N

t=1

p(ytjxt) (25)

where p(ytjxt) � N(Cxt; �
2). Furthermore, the distribution

p(�xtjxt) can be partitioned so that

p(�xtjxt) = p(��xtjxt)p(�~xtjxt) (26)

where from (9)

p(��xtjxt) � N(�t�; �
2) (27)

p(�~xtjxt) = �([I 0]xt) (28)

where �(:) denotes the Dirac delta function and I is the identity matrix.
Substitution of (26) into (25) leads to

p(X ;Yj�) =

N

t=1

p(��xtjxt)

N

t=1

p(�~xtjxt)

N

t=1

p(ytjxt): (29)

Substitution of (29) into (5), with appropriately parameterized normal
distributions, leads directly to (24).

Theorem 1: The parameter estimate that maximizes the expected
complete data log-likelihood function Q(�; �̂k) is

�̂k+1 =

N

t=1

�Tt �tjY; �̂k

�1 N

t=1

�Tt ��xtjY; �̂k (30)

where

�Tt �t =
 Tt  t  Tt �t

�Tt [ t] �Tt �t
(31)

�Tt ��xt =
 Tt ��xt

�Tt [��xt]
: (32)

Proof: Expanding (24) leads to the quadratic expression in �

Q(�; �̂k) = �

N

t=1

1

2
��2 ��xTt ��xt � 2�T�Tt ��xt

+ �T�Tt �t�
T

+ c (33)

Taking the partial derivative of Q(�; �̂k) with regard to � leads to

@

@�
Q(�; �̂k) =

N

t=1

��2 �Tt ��xt � �Tt �t� (34)

where the matrix �Tt �t is guaranteed positive definite by the pres-
ence of the process noise in (16); hence, �Tt �t is invertible. Setting
(@)=(@�)Q(�; �̂k) = 0 and solving for � leads directly to (30). Taking
the 2nd partial derivative of the Q function with regard to � leads to

@

@2�
Q(�; �̂k) = �

N

t=1

��2�Tt �t (35)

which is negative definite, verifying that �̂k+1 is located at a maximum,
completing the proof.

Remark 1: Numerically the estimation of the model param-
eters �̂k+1 is affected by the condition number of the matrix
�
(�)
k = N

t=1 [�Tt �tjY; �̂k] in (30). In the shift-operator version
of this algorithm the parameter estimates will be dependent on the
analogous term �

(q)
k ; for fast-sampled systems the matrix �

(q)
k will

typically be ill-conditioned because of the numerical similarity be-
tween successive samples, that is limT!0 cond(�

(q)
k ) = 1, where

“cond” indicates condition number. By contrast numerical ill-condi-
tioning is less likely to occur when using the �-operator to model a
fast-sampled system because the �-transformations of a signal tend to
the signal derivatives with increasing sample rate, which are unlikely
to be numerically similar [1]. Hence, the estimation of model param-
eters benefits numerically from being performed in the �-domain at
fast-sample rates as will be demonstrated in Section V.

The maximization of the function Q(�; �̂k) requires calculation of
the conditional expectations defined in (31) and (32); these are obtained
from the application of the following state-space model in the Kalman
smoother

xt+1 = Fkxt +Gkut + TWet (36)

where Fk = I + TAk; Gk = TBk , the subscript k denotes that
the system matrices are dependent on �̂k , and the measurement equa-
tion is defined in (22). Application of this model in one of the well-
known Kalman smoothing algorithms [25], [26] provides the informa-
tion needed to obtain the smoothed state estimate x̂t, the smoothed
state covariancePt, and hence the expectations defined in (31) and (32),
which are

[ tjY; �̂k] = x̂
T
t (37)

 Tt  tjY; �̂k = Pt + x̂tx̂
T
t (38)

[��xtjY; �̂k] =
1

T
x̂
(n)
t+1 � x̂

(n)
t (39)

 Tt ��xtjY; �̂k =
1

T
mt + x̂tx̂

(n)
t+1 � pt � x̂tx̂

(n)
t (40)

mt =Mt(1 : n; n) (41)

pt = Pt(1 : n; n) (42)

where x
(n)
t denotes the nth element of the vector xt; Mt =

cov(xt; xt+1); cov(; ) denotes covariance and the notation A(i : j; k)
denotes for a matrix A the vector formed from the elements in rows
i to j of column k. The covariance matrix Mt is obtained from a
nonstandard augmentation of the backward pass (described fully in
[27]), where

Mt = [PtJ
T
t�1 + Jt(M

T
t+1 �APt)J

T
t�1]

T (43)

for t = N; . . . ; 2, where J is the backward Kalman gain. The recursion
is initialized using the expression

MN = [(I �KNC)APN�1]
T (44)

where K is the forward Kalman gain.
Algorithm 1: The EM algorithm for estimating the parameters of

the �-domain model defined in (16) and (22) is as follows.
1) Initialize the parameter estimate �̂0.
2) Increment counter k and calculate the expectation quantities de-

fined in (31) and (32) using the augmented Kalman smoothing
algorithm, with the state-space model (36) parameterized by �̂k .

3) Maximize Q(�; �̂k) using (30) to obtain the updated parameter
estimate �̂k+1.

4) Test the convergence of the algorithm using an appropriate stop-
ping condition and then terminate if satisfied or go to Step 2 and
repeat.

The estimation procedure presented here is by construction a special
case in the generic form of the EM algorithm, hence convergence of the
iterative procedure outlined above to a local maximum of the likelihood
function L(��) follows from the standard proofs developed in [17] and
[23] and more recently in the system identification context in [21]. For
completeness, the convergence is proved here.
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Theorem 2: The sequence of log-likelihood values generated by Al-
gorithm 1 are guaranteed to be nondecreasing, that is

L(�̂k+1) � L(�̂k) for k = 1; 2; . . . (45)

and are assured to converge to a stationary point of the likelihood func-
tion L(��).

Proof: The proof draws on the standard format presented in [17]
and [23]; from (4) observe that L(�) is lower bounded by F (�; �̂k) and
that

F (�; �̂k) = Q(�; �̂k)�R(�; �̂k) (46)

where

R(�; �̂k) =
X

p(X jY; �k) log p(XjY; �k)dX : (47)

From (46)

F (�; �̂k+1)� F (�; �̂k) = [Q(�; �̂k+1)�Q(�; �̂k)]

�[R(�; �̂k+1)�R(�; �̂k)]: (48)

By definition of the maximization step in Algorithm 1 Q(�; �̂k+1) �
Q(�; �̂k) � 0; furthermore, the term R(�; �̂k+1)�R(�; �̂k) is known
to be the Kullback–Leibler distance between the density functions
p(XjY; �) and p(XjY; �̂) [28], which is � 0 with equality only if
the two distributions are equal. Hence, F (�; �̂k+1) � F (�; �̂k) � 0,
which implies that L(�̂k+1)� L(�̂k) � 0, completing the first part of
the proof.

The convergence of the likelihood function to a stationary point is
assured if the conditions of Theorem 2 of [23] are met, namely that
Q(�; �̂) is continuous in both arguments, which is the case here.

V. NUMERICAL EXAMPLE

An example identification problem is presented in this section, where
the parameter estimation procedure derived above was applied to sig-
nals generated from a third-order �-domain system. The results focus
on showing the performance of the method when increasing sampling
frequency, and are compared to a least squares approach and an equiv-
alent q-domain approach.

A. Data Generation

The discrete-time test system was generated by mapping the same
continuous-time system to the �-domain at varying sample rates. The
continuous-time system was

G(s) =
1

s3 + 0:5s2 + 0:4s+ 0:1
(49)

where s is the Laplace operator. The mapping to the �-domain resulted
in a model with higher input order (due to sampling zeros), which was
of the form

G(�) =
b2�

2 + b1� + b0

�3 + a2�2 + a1� + a0
: (50)

The �-domain system was identified from the I/O ut and yt data gen-
erated from simulating the system as described in (16) and (22), and
the analogous procedure was carried out for the q-domain case (i.e.,
data generation and identification were performed in the q-domain).
The input was defined as a sum-of-sinusoids signal, with 20 sinusoids

Fig. 1. Convergence of the parameter estimates to a steady value.

evenly distributed over the range [0,0.5) Hz. The process noise was de-
fined to have a signal-to-noise ratio (SNR) of 20 dB relative to the input
signal and was varied according to experimental conditions in the case
of measurement noise (e.g., from 10 to 60 dB). In order to investigate
the performance of the estimation algorithm at varying sampling rates,
the system was simulated across a range of sampling frequencies from
5 to 30 Hz. The system was simulated for 150 s at each sampling fre-
quency. The simulations were repeated at each sampling frequency 50
times to give an empirical estimate of the consistency of the algorithm
performance.

B. Parameter Initialization and Convergence

The parameter estimates were initialized using least squares, after
low-pass filtering the data with cutoff frequency !c = 0.5 Hz (using
a third-order Butterworth filter). Smoothing in the EM algorithm was
always performed on the raw signals using the updated parameters.
Parameter convergence of the EM algorithm was assessed using the
metric

��k =
(�k � �k�1)

T (�k � �k�1)

�T
k
�k

: (51)

The EM algorithm was run in each case for 20 iterations; the conver-
gence of one typical experimental trial is shown in Fig. 1.

C. Modeling Results

The identification results demonstrate that the EM procedure derived
here improves the accuracy of parameter estimates in comparison to
LS; application of LS results in significant bias for both q and � as
discussed in the introduction, which is shown in Fig. 2. The bias in pa-
rameter estimates increases with sampling rate for LS in both q and
�. The results demonstrate that the q-domain EM identification algo-
rithm is also adversely affected by increasing sampling rate, shown in
Fig. 2. In contrast, it is apparent that the �-domain EM approach per-
forms well across all sampling frequencies. One possible explanation
for this is that the matrix inverted during parameter estimation grows
progressively more ill-conditioned as sample rate increases (as shown
for typical data sets in Fig. 3).

The effect of ill-conditioning due to fast sampling on the estimation
of q- and �-domain model parameters is discussed in [1], from a per-
spective of least-squares, which is similar to the estimation step in the
EM algorithm presented here. The q-domain algorithmic problem may
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Fig. 2. Averaged RMSE (across all 50 trials) of the estimated �-domain and
q-domain model parameters from the application of both LS and the EM
algorithm.

Fig. 3. Condition number of the matrix inverted during parameter estimation
for both the q- and �-domain models at the final EM iteration, for a typical data
set at an SNR of 20 dB.

lie in the fact that if signal estimation is performed successfully, then
the sequential values of the estimated output signal will be very similar
due to fast sampling; this leads to the ill-conditioning problem at the
parameter estimation stage, because y(t) � y(t� 1) � . . . The � ver-
sion of the algorithm does not suffer from this ill-conditioning problem,
which is also demonstrated in Fig. 3, because the � transformations are
unlikely to be numerically similar.

To illustrate the performance of each EM algorithm and LS, for both
q and �, at a single fast-sampling frequency the simulations were per-
formed fixing sample frequency to 25 Hz and varying the SNR of the
measurement noise signal for 10 to 60 dB in steps of 10 dB. The re-
sults, shown in Fig. 4, demonstrate that the EM �-operator algorithm
is significantly more accurate than the equivalent q-operator approach,

Fig. 4. Averaged RMSE (across all 50 trials) of the estimated �-domain and
q-domain model parameters from the application of the EM algorithm and LS
when varying SNR at a fixed sample rate of 25 Hz.

which both improve on LS. As would be expected the accuracy of each
estimation method improves as the SNR increases. The results imply
that use of the EM �-operator algorithm can lead to improved param-
eter estimation compared to the shift operator for the modeling scenario
considered here, that is, identification from a fast-sampled output signal
corrupted by additive Gaussian white measurement noise.

The complexity of the LS estimate is on the order ofO(Nr3) where
r = n + m is the number of model parameters. By comparison the
complexity of the EM approach proposed here is dominated by the
parameter estimation step, which is of equivalent order to that of LS;
hence, it is of orderO(Nr3) per iteration. Hence, the EM algorithm is
more complex than the LS approach. However, the proposed EM esti-
mation algorithm is an offline technique and the additional complexity
may be of little practical importance; convergence for each example
data set used here was on a time scale of seconds. This is coupled with
a significant improvement in accuracy (in comparison to LS), which is
likely to offset the disadvantage of the increase in complexity in a typ-
ical modeling scenario.

VI. CONCLUSION

This contribution has treated the problem of identifying �-domain
model parameters from output signals that are corrupted by measure-
ment noise. The novel approach to identification taken here has been the
formulation of an estimation problem where the �-domain transforma-
tions of the true signal are directly estimated and are then used to obtain
the model parameters. The estimation problem has been solved using
a statistical signal processing approach based on the EM algorithm.
Implementation of the derived algorithm leads to maximum-likelihood
estimates of the parameters in a procedure that is guaranteed to be con-
vergent to a local maximum. The approach is shown here to lead to
significantly more accurate parameter estimates than an equivalent shift
operator method when fast sampling.
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An Efficient Structure for the Design of Variable Fractional
Delay Filters Based on the Windowing Method

J. Selva

Abstract—A variable fractional delay (VFD) filter is presented that con-
stitutes an efficient alternative to the usual Farrow structure. The filter
is constructed by multiplying the signal to interpolate by a window with
proper truncation properties, and then applying the Sampling Theorem.
The resulting interpolator involves less arithmetic operations than the ex-
isting variants of the Farrow structure. Besides, if its coefficients are nu-
merically optimized, its performance is close to that of the FIR equi-ripple
filter. The final part of the correspondence includes a description of the
VFD filter implementation corresponding to this interpolator.

Index Terms—Bandlimited signals, Farrow structure, interpolation, La-
grange polynomial, Lagrange-type variable fractional delay (VFD) filter,
VFD digital filter.

I. INTRODUCTION

The design of variable fractional delay (VFD) filters is a signal pro-
cessing field in which the requirements imposed on a given interpolator
are very stringent [1], [2]. Besides delivering accurate approximations
to a given signal from its own samples, the interpolator must only em-
ploy arithmetic operations and be parallelizable. Currently, the design
of VFD filters is dominated by the so-called Farrow structure in [3].
This structure can be regarded as an extension of an FIR filter that in-
troduces a fixed delay. In short, since the coefficients of this kind of
FIR filter are smooth functions of the fractional delay, Farrow’s idea
in [3] was to approximate them using polynomials, but switching the
order in which the filtering and polynomial evaluation operations are
carried out. The resulting interpolator (Farrow structure) has been op-
timized in various ways during the last two decades [4]–[7].

Though efficient, the Farrow structure implicitly requires the eval-
uation of one polynomial for each sample involved in the interpola-
tion. The purpose of this correspondence is to present a new VFD filter
structure that only requires one polynomial evaluation, plus a number
of arithmetic operations proportional to the filter length. Its derivation
is based on the classical windowing method which has been success-
fully used in other interpolation problems [8]–[10]. The interpolation
method in this paper is different to the “generalized interpolation” ap-
proach in [11] and [12]. This last approach is based on prefiltering the
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