950 research outputs found

    An Overview of Applications of the Modular Multilevel Matrix Converter

    Get PDF
    The modular multilevel matrix converter is a relatively new power converter topology suitable for high-power alternating current (AC)-to-AC applications. Several publications in the literature have highlighted the converter capabilities, such as full modularity, fault-redundancy, control flexibility and input/output power quality. However, the topology and control of this converter are relatively complex to realise, considering that the converter has a large number of power-cells and floating capacitors. To the best of the authors’ knowledge, there are no review papers where the applications of the modular multilevel matrix converter are discussed. Hence, this paper aims to provide a comprehensive review of the state-of-the-art of the modular multilevel matrix converter, focusing on implementation issues and applications. Guidelines to dimensioning the key components of this converter are described and compared to other modular multilevel topologies, highlighting the versatility and controllability of the converter in high-power applications. Additionally, the most popular applications for the modular multilevel matrix converter, such as wind turbines, grid connection and motor drives, are discussed based on analyses of simulation and experimental results. Finally, future trends and new opportunities for the use of the modular multilevel matrix converter in high-power AC-to-AC applications are identified.Agencia Nacional de Investigación y Desarrollo/[Fondecyt 11191163]/ANID/ChileAgencia Nacional de Investigación y Desarrollo/[Fondecyt 1180879]/ANID/ChileAgencia Nacional de Investigación y Desarrollo/[Fondecyt 11190852]/ANID/ChileAgencia Nacional de Investigación y Desarrollo/[ANID Basal FB0008]/ANID/ChileAgencia Nacional de Investigación y Desarrollo/[Fondef ID19I10370]/ANID/ChileUniversidad de Santiago/[Dicyt 091813DD]//ChileUCR::Vicerrectoría de Docencia::Ingeniería::Facultad de Ingeniería::Escuela de Ingeniería Eléctric

    Multilevel Converters: An Enabling Technology for High-Power Applications

    Get PDF
    | Multilevel converters are considered today as the state-of-the-art power-conversion systems for high-power and power-quality demanding applications. This paper presents a tutorial on this technology, covering the operating principle and the different power circuit topologies, modulation methods, technical issues and industry applications. Special attention is given to established technology already found in industry with more in-depth and self-contained information, while recent advances and state-of-the-art contributions are addressed with useful references. This paper serves as an introduction to the subject for the not-familiarized reader, as well as an update or reference for academics and practicing engineers working in the field of industrial and power electronics.Ministerio de Ciencia y Tecnología DPI2001-3089Ministerio de Eduación y Ciencia d TEC2006-0386

    Modulation, efficiency and lifetime of two-level and multilevel converters for a hydropower application

    Get PDF
    Along with the integration of the renewable energy in the electrical grid, the pumped-storage hydropower has gained more and more attention due to its fast response and energy storage ability. To have a higher overall efficiency and more flexibility of the system, variable speed is preferred in the operation of the pumped-storage hydropower applications. The key component for the variable speed pumped-storage hydropower application is the full-size power converter, which is the main study object in this work.Different converter topologies, such as the two-level converter, the neutral point clamped converter, and the modular multilevel converter, have been investigated in this study. The simulation and experimental results verify the feasibility of the studied modulation and control methods for different converter topologies. The nine-level modular multilevel converter needs four times the amount of the power modules compared with the two-level converter, not to mention the extra submodule capacitors and arm inductors in the nine-level modular multilevel converter. However, the nine-level modular multilevel converter shows the best efficiency of 99.37% at nominal power in the loss study, while the classical two-level converter shows an efficiency of 98.44%. At the end, a lifetime study is conducted for power switches inside a modular multilevel converter, and it is found that with the used semiconductors design, i.e., the semiconductors have an RMS current value that of half of its stated maximum value, the lifetime requirement of 30 years can always be fulfilled

    Rapid Control Prototyping of Five-Level MMC based Induction Motor Drive with different Switching Frequencies

    Get PDF
    In this paper, Rapid Control Prototyping (RCP) of five-level Modular Multilevel Converter (MMC) based Induction Motor (IM) drive performance is observed with different switching frequencies. The Semikron based MMC Stacks with two half-bridge each are tested with the switching logic generated by phase and level shifted based Sinusoidal Pulse Width Modulation (SPWM) technique. The switching logic is generated by the Typhoon Hardware in Loop (HIL) 402. The disadvantages of Multilevel Converter like not so good output quality, less modularity, not scalable and high voltage and current rating demand for the power semiconductor switches can be overcome by using MMC. In this work, the IM drive is fed by MMC and the experimentally the performance is observed. The performance of the Induction Motor in terms of speed is observed with different switching frequencies of 2.5kHz, 5kHz, 7.5kHz, 10kHz, 12.5kHz and the results are tabulated in terms of Total Harmonic Distortion (THD) of input voltage and current to the Induction Motor Drive. The complete model is developed using Typhoon HIL 2021.2 Version Real-Time Simulation Software

    A TWELVE-PULSE LOAD COMMUTATED CONVERTER DRIVE SYSTEM WITH VSI FOR STARTING UP AND ACTIVE POWER FILTERING IN AN LNG APPLICATION

    Get PDF
    Variable Frequency Drives (VFDs) are an integral component of the industry in today’s age. VFDs provide a great range of control for electrical machines, and can be integrated in a variety of applications to meet the desired objectives of operation with improved reliability and efficiency. This thesis presents the Load-Commutated Converter (LCC) drive, which belongs to the Current Source Converter (CSC) based drive system family. Such drives are widely used in high power applications, due to power handling capabilities and the maturity of the drive system. The application under study is that of a helper/starter motor for a turbine compressor in a Liquefied Natural Gas (LNG) plant. Primarily, the thesis presents real-life scenarios of drive system operation such as constant/variable speed operation at constant/varying torque. The respective controllers for the LCC drive are presented alongside their results. In addition to simulating the drive system in this LNG application, current harmonic mitigation measures are presented in this study. The typical converter topology presented in this thesis is the 12-pulse type, however comparisons with different topologies (6, 18, and 24-pulse) have also been presented. Finally, a dual-purpose external Voltage Source Inverter (VSI) is used both as a starter and an Active Power Filter (APF), therefore addressing the issues of drive/load induced harmonics and LCC starting. As a conclusion, a controlled LCC drive model is simulated in SIMULINK to emulate the drive operation in actual plant conditions. The controlled drive is further studied for the presence of harmonics and their subsequent mitigation, by using passive as well as active power filters. The results obtained present the adequacy of the control system as well as the efficacy of the filters used for harmonics mitigation. Future work revolves around improving the efficiency of the APF, and the drive control system to be more robust and reliable. The system can further be investigated for enhancements as per operational requirements

    An enhanced dq-based vector control system for modular multilevel converters feeding variable speed drives

    Get PDF
    Modular multilevel converters (M2C) are considered an attractive solution for high power drive applications. However, energy balancing within the converter is complex to achieve, particularly when the machine is operating at low rotational speeds. In this paper, a new control system, based on cascaded control loops and a vector-power-voltage (vPV) model of the M2C, is proposed. The control system is implemented in a dq-synchronous frame rotating at ωe rad/s with the external loop regulating the capacitor voltages using proportional-integral (PI) controllers. The internal loop controls the converter currents using PI and resonant controllers. In addition, the control systems required to operate the machine at other points, i.e., at medium and high rotational speeds, are also discussed in this paper. Experimental results obtained with an M2C-based drive laboratory prototype with 18 power cells are presented in this paper

    Power Quality Enhancement in Electricity Grids with Wind Energy Using Multicell Converters and Energy Storage

    Get PDF
    In recent years, the wind power industry is experiencing a rapid growth and more wind farms with larger size wind turbines are being connected to the power system. While this contributes to the overall security of electricity supply, large-scale deployment of wind energy into the grid also presents many technical challenges. Most of these challenges are one way or another, related to the variability and intermittent nature of wind and affect the power quality of the distribution grid. Power quality relates to factors that cause variations in the voltage level and frequency as well as distortion in the voltage and current waveforms due to wind variability which produces both harmonics and inter-harmonics. The main motivation behind work is to propose a new topology of the static AC/DC/AC multicell converter to improve the power quality in grid-connected wind energy conversion systems. Serial switching cells have the ability to achieve a high power with lower-size components and improve the voltage waveforms at the input and output of the converter by increasing the number of cells. Furthermore, a battery energy storage system is included and a power management strategy is designed to ensure the continuity of power supply and consequently the autonomy of the proposed system. The simulation results are presented for a 149.2 kW wind turbine induction generator system and the results obtained demonstrate the reduced harmonics, improved transient response, and reference tracking of the voltage output of the wind energy conversion system.Peer reviewedFinal Accepted Versio

    Modelling and control techniques for multiphase electric drives: a phase variable approach

    Get PDF
    Multiphase electric drives are today one of the most relevant research topics for the electrical engineering scientific community, thanks to the many advantages they offer over standard three-phase solutions (e.g., power segmentation, fault-tolerance, optimized performances, torque/power sharing strategies, etc...). They are considered promising solutions in many application areas, like industry, traction and renewable energy integration, and especially in presence of high-power or high-reliability requirements. However, contrarily to the three-phase counterparts, multiphase drives can assume a wider variety of different configurations, concerning both the electrical machine (e.g., symmetrical/asymmetrical windings disposition, concentrated/distributed windings, etc...) and the overall drive topology (e.g., single-star configuration, multiple-star configuration, open-end windings, etc…). This aspect, together with the higher number of variables of the system, can make their analysis and control more challenging, especially when dealing with reconfigurable systems (e.g., in post-fault scenarios). This Ph.D. thesis is focused on the mathematical modelling and on the control of multiphase electric drives. The aim of this research is to develop a generalized model-based approach that can be used in multiple configurations and scenarios, requiring minimal reconfigurations to deal with different machine designs and/or different converter topologies, and suitable both in healthy and in faulty operating conditions. Standard field-oriented approaches for the analysis and control of multiphase drives, directly derived as extensions of the three-phase equivalents, despite being relatively easy and convenient solutions to deal with symmetrical machines, may suffer some hurdles when applied to some asymmetrical configurations, including post-fault layouts. To address these issues, a different approach, completely derived in the phase variable domain, is here developed. The method does not require any vector space decomposition or rotational transformation but instead explicitly considers the mathematical properties of the multiphase machine and the effects of the drive topology (which typically introduces some constraints on the system variables). In this thesis work, the proposed approach is particularized for multiphase permanent magnet synchronous machines and for multiphase synchronous reluctance machines. All the results are obtained through rigorous mathematical derivations, and are supported and validated by both numerical analysis and experimental tests. As proven considering many different configurations and scenarios, the main benefits of the proposed methodology are its generality and flexibility, which make it a viable alternative to standard modelling and control algorithms

    Power-electronic systems for the grid integration of renewable energy sources: a survey

    Get PDF
    The use of distributed energy resources is increasingly being pursued as a supplement and an alternative to large conventional central power stations. The specification of a powerelectronic interface is subject to requirements related not only to the renewable energy source itself but also to its effects on the power-system operation, especially where the intermittent energy source constitutes a significant part of the total system capacity. In this paper, new trends in power electronics for the integration of wind and photovoltaic (PV) power generators are presented. A review of the appropriate storage-system technology used for the integration of intermittent renewable energy sources is also introduced. Discussions about common and future trends in renewable energy systems based on reliability and maturity of each technology are presented
    corecore