79 research outputs found

    Fully CMOS Memristor Based Chaotic Circuit

    Get PDF
    This paper demonstrates the design of a fully CMOS chaotic circuit consisting of only DDCC based memristor and inductance simulator. Our design is composed of these active blocks using CMOS 0.18 ”m process technology with symmetric ±1.25 V supply voltages. A new single DDCC+ based topology is used as the inductance simulator. Simulation results verify that the design proposed satisfies both memristor properties and the chaotic behavior of the circuit. Simulations performed illustrate the success of the proposed design for the realization of CMOS based chaotic applications

    Sinusoidal excitation on the Chua's circuit simulation of limit cycles and chaos

    Get PDF

    CMOS design of chaotic oscillators using state variables: a monolithic Chua's circuit

    Get PDF
    This paper presents design considerations for monolithic implementation of piecewise-linear (PWL) dynamic systems in CMOS technology. Starting from a review of available CMOS circuit primitives and their respective merits and drawbacks, the paper proposes a synthesis approach for PWL dynamic systems, based on state-variable methods, and identifies the associated analog operators. The GmC approach, combining quasi-linear VCCS's, PWL VCCS's, and capacitors is then explored regarding the implementation of these operators. CMOS basic building blocks for the realization of the quasi-linear VCCS's and PWL VCCS's are presented and applied to design a Chua's circuit IC. The influence of GmC parasitics on the performance of dynamic PWL systems is illustrated through this example. Measured chaotic attractors from a Chua's circuit prototype are given. The prototype has been fabricated in a 2.4- mu m double-poly n-well CMOS technology, and occupies 0.35 mm/sup 2/, with a power consumption of 1.6 mW for a +or-2.5-V symmetric supply. Measurements show bifurcation toward a double-scroll Chua's attractor by changing a bias current

    Field-programmable gate array design of image encryption and decryption using Chua’s chaotic masking

    Get PDF
    This article presents a simple and efficient masking technique based on Chua chaotic system synchronization. It includes feeding the masked signal back to the master system and using it to drive the slave system for synchronization purposes. The proposed system is implemented in a field programmable gate array (FPGA) device using the Xilinx system generator tool. To achieve synchronization, the Pecora-Carroll identical cascading synchronization approach was used. The transmitted signal should be mixed or masked with a chaotic carrier and can be processed by the receiver without any distortion or loss. For different images, the security analysis is performed using the histogram, correlation coefficient, and entropy. In addition, FPGA hardware co-simulation based Xilinx Artix7 xc7a100t-1csg324 was used to check the reality of the encryption and decryption of the images

    Chaos via a piecewise-linear switch ed-capacitor circuit

    Get PDF
    A nonlinear switched-capacitor circuit that generates chaotic signals is reported. The circuit is described by a first-order piecewise-linear discrete equation that exhibits a chaotic dynamics. Experimental results illustrating the circuit performance and its use as a noise generator are included.ComisiĂłn Interministerial de Ciencia y TecnologĂ­a 3467-8

    Saddle-Node bifurcations in classical and memristive circuits

    Full text link
    This paper addresses a systematic characterization of saddle-node bifurcations in nonlinear electrical and electronic circuits. Our approach is a circuit-theoretic one, meaning that the bifurcation is analyzed in terms of the devices’ characteristics and the graph-theoretic properties of the digraph underlying the circuit. The analysis is based on a reformulation of independent interest of the saddle-node theorem of Sotomayor for semiexplicit index one differential-algebraic equations (DAEs), which define the natural context to set up nonlinear circuit models. The bifurcation is addressed not only for classical circuits, but also for circuits with memristors. The presence of this device systematically leads to nonisolated equilibria, and in this context the saddle-node bifurcation is shown to yield a bifurcation of manifolds of equilibria; in cases with a single memristor, this phenomenon describes the splitting of a line of equilibria into two, with different stability properties

    Towards the automated modelling and formal verification of analog designs

    Get PDF
    The verification of analog circuits remains a very time consuming and expensive part of the design process. Complete simulation of the state space is not possible; a line is drawn by the designer when it is deemed that enough sets of inputs and outputs have been covered and therefore the circuit is "verified". Unfortunately, bugs could still exist and for safety critical applications this is not acceptable. As well, a bug in the design could lead to costly recalls and a loss of revenue. Formal methods, which use mathematical logic to prove correctness of a design have been developed. However, available techniques for the formal verification of analog circuits are plagued by inaccuracies and a high level of user effort and interaction. We propose in this thesis a complete methodology for the modelling and formal verification of analog circuits. Bond graphs, which are based on the flow of power, are used to automatically extract the circuit's system of Ordinary Differential Equations. Subsequently, two formal verification methods, one based on automated theorem proving with MetiTarski, the other on predicate abstraction based model checking with HybridSal, are then used to verify functional properties on the extracted models. The methodology proposed is mechanical in nature and can be made completely automated. We apply this modelling and verification methodology on a set of analog designs that exhibit complex non-linear behaviour

    Optically programmable logic cells as basic units for transmission and synchronization of chaotic signals

    Get PDF
    We proposed an optical communications system, based on a digital chaotic signal where the synchronization of chaos was the main objective, in some previous papers. In this paper we will extend this work. A way to add the digital data signal to be transmitted onto the chaotic signal and its correct reception, is the main objective. We report some methods to study the main characteristics of the resulting signal. The main problem with any real system is the presence of some retard between the times than the signal is generated at the emitter at the time when this signal is received. Any system using chaotic signals as a method to encrypt need to have the same characteristics in emitter and receiver. It is because that, this control of time is needed. A method to control, in real time the chaotic signals, is reported

    Chaos synchronization in optically programmable logic cells

    Get PDF
    A possible approach to the synchronization of chaotic circuits is reported. It is based on an Optically Programmable Logic Cell and the signals are fully digital. A method to study the characteristics of the obtained chaos is reported as well as a new technique to compare the obtained chaos from an emitter and a receiver. This technique allows the synchronization of chaotic signals. The signals received at the receiver, composed by the addition of information and chaotic signals, are compared with the chaos generated there and a pure information signal can be detected. Its application to cryptography in Optical Communications comes directly from these properties. The model here presented is based on a computer simulation
    • 

    corecore