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ABSTRACT 
A possible approach to the synchronization of chaotic circuits is reported. It is based on an Optically Programmable 

Logic Cell and the signals are fully digital. A method to study the characteristics of the obtained chaos is reported as well as a 
new technique to compare the obtained chaos from an emitter and a receiver. This technique allows the synchronization of 
chaotic signals. The signals received at the receiver, composed by the addition of information and chaotic signals, are 
compared with the chaos generated there and a pure information signal can be detected. Its application to cryptography in 
Optical Communications comes directly from these properties. The model here presented is based on a computer simulation. 
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1. INTRODUCTION 
A considerable interest has appeared in the last years concerning the application of chaotic circuits in order to 

obtain secure communications. The broadband nature of chaotic signals makes them tempting for use in this area and in 
spread-spectrum situations. The fact that such signals emanate from a deterministic dynamic system lends to the hope that 
one will also be able to control them sufficiently for many uses. Taken as isolated systems, chaotic dynamics appears to 
offer many impediments to anyone attempting to put them to use. The main problem to be addressed is then how to 
synchronize chaotic circuits. It is well known that two identical circuits are able to offer similar chaotic outputs. But if these 
circuits are not synchronized their output signals are not valid to be employed in a communication system. The main reason 
is the strong dependence of the obtained chaos on the initial and boundary conditions of the chaos generator circuit. Two 
chaotic signals with the same characteristics may have different values at any particular time if they are generated 
independently. Some additional conditions have to be imposed to the system in order to obtain identical chaotic signals at 
any time. One of these conditions is the synchronization. 

Several attempts have been made in this direction. The idea that chaotic systems could synchronize was first put 
forth in a paper almost ten years ago1. Several authors have followed the lines indicated in that paper. Pécora and Carroll2"4 

demonstrated the possibility of sinchronizing chaotic subsystems with a common driving signal. Their idea was to 
decompose the chaotic dynamical system in two subsystems, "driving" and response" subsystems. The driving subsystem is 
composed by two state variable components whereas the second one just has one and uses as input signal one of the state 
components of the first subsystem. Several authors have followed this idea and schemes using Chua's circuits are reported 
in the literature5. 

Another additional point needs to be considered. It concerns the characteristics of the chaotic signal to be 
employed. Almost in any of the reported situations the obtained chaos is analog. Although all physical systems are really 
analog, communication and computer systems are nowadays digital. The way to use analog signals in digital systems in to 
make the conversion analog/digital. This idea has been employed in any case where an application to communication is 
needed. It should be useful to obtain digital chaos from the very beginning of the process and to employ it with the same 
requirements of the information signals. 

The purpose of this paper is to present a way to obtain digital chaos and how to synchronize two chaotic systems. 
The main scheme of the proposed system is shown in Fig. 1. Two identical chaos generators are located at emitter and 
receiver. Information signal is added at the receiver and transmitted to the network. This composed signal is detected at the 
receiver and processed with another chaotic signal obtained there. The resulting signal is the information generated at the 
emitter. This configuration is the basis of our system: 

2. OPTICAL PROGRAMMABLE LOGIC CELL (OPLC) 
The main block of our chaos generator is an Optically Programmable Logic Cell employed previously by us as a 

part of a possible optical computer6"10. Although this structure has been reported in several places, some of its principal 
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characteristics will be here presented again. Its main characteristic is the logic processing of two input binary signals, 
governed by two control signals. Two outputs give logical functions of these inputs. The type of processing is related to the 

Chaos 
generator 

Chaos, ch(t) 

Information 
signal, S(t) 

< * ) - S(t)+ch(t) 

Fig.l.- Proposed security communication system. 

eight main Boolean Functions, namely, AND, OR, XOR, NAND, NOR, XNOR, ON and OFF. The programmable ability of 
the two outputs, as it has been described, allows the generation of several data coding for optical transmission. Moreover, as it 
was shown, this circuit has the possibility to the generation of periodic and even chaotic solutions. A precise analysis of the 
output characteristic versus the main variable parameters, as control signal level and data signal level, has been reported [6]. 

With this configuration, the above mentioned digital character of the signal is directly obtained. Its main blocks are 
shown in Fig. 2. Two devices with a non-linear behaviour, P and Q, compose the circuit. The outputs of each one of them 
correspond to the two final outputs, 0[ and 02, of the cell. Four are the possible inputs to the circuit. Two of them are for 
input data, Ij e I2, and the other two, g and It, for control signals. The way these four inputs are arranged inside the circuit is 
also represented in Figure 2. A practical implementation we have carried out of the processing element has been based on an 
optoelectronical configuration. Lines in Fig. 2 represent optical multimode fibers. The indicated blocks, placed in order to 
combine the corresponding signals, are conventional optical couplers. In this way, optical inputs arriving to the individual 
devices are multilevel signals. The 
characteristics of the non-linear devices are 
also shown in Fig. 2. Device Q, corresponds to 
a thresholding or switching device, and device 
P is a multistate device, being the response of 
this non-linear optical device the one 
represented in Fig. 2. This response is similar 
to the behaviour of a SEED device. < 

3. CHAOS GENERATION FROM AN 
OPLC . 

A non-linear behaviour is expected if 
some kind of feedback is applied to this cell. 
The feedback we have applied to the system, 
among the different possibilities, is the one 
going from the output O] of P-device (see Fig. 
2) to the control input, g, of P-device. No other 
additional control signal has been used. A 

Fig.2.- OPLC main blocks 
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chaotic output is obtained when the internal response time is made equal to zero or is much smaller than the external one. Some 
results have been reported by us1 M2. 

In order to characterize the obtained chaotic signal, conventional methods are difficult to be applied here. The above 
results constitute a Time Series from where a chaos measure should be obtained. But the correct phase-space representation is 
not possible to be grasped from these results in a straightforward way. We do not even know what the adequate phase-space 
variables are and it is not even known how many variables are needed to fully describe the dynamics of this particular system. 
There is fortunately a partial answer to this problem that has been applied successfully in a large number of experimental 
investigations. The basic idea is that if the fundamental phase-space variables are x and x\ to study the evolution of the system 
numerically, x and x' have to be follow as functions oft. But since x' = [x(t+At)-x(t)]/At in the limit as At -> 0, a loiowledge of 
x(t+At) is equivalent to a loiowledge of x'. In other words, a loiowledge of a trajectory of points [x(t),x(t+At)J is equivalent to a 
loiowledge of the trajectory of points [x(t),x'(t)]. As a consequence, a phase-space trajectory 

x(0 = [xl(t),x2(t),...,X!l(t)] 
is replaced by a trajectory in an artificial phase space with points given by 

yif) = \y(t), y(t + At),...,y(t + mAt)] 
where y(t) is any one of the phase-space variables x¡(t). Thus from a set of measurements of a single quantity y(t) we can 
construct a sequence of points in an artificial phase space 

*(0 = b(t),y(t + At),...,y(t + mAt] 
x(t + At) = [y(t + At),...,y(t + (m + Y)At] 

With the data we have, the first problem to solve is how to operate with our digital signal where just two values, "0" and 
"1", are present. If we adopt just this output as possible values for y, the resulting plot at the phase space should be concentrated 
on just four points, namely, (0,0), (0,1), (1,0) and (1,1). Almost no information could be obtained from it. Hence a new technique 
has to be implemented. 

The method we have adopted is to group sets of four consecutive bits and to convert them to their corresponding 
hexadecimal values. Hence, a sequence of zeroes and ones is converted to a new string of hexadecimal values, namely, 0, 1,2, 
...... 15. For example, "0010" would be a "2", "1001" a "9" and "1110" a "14". Four divides the total number of data, but much 
more information can be obtained from them than with simple binary signals. A diagram, similar to the t¡+1 versus t¡ in analogue 
signals, can be drawn in this way. In the case of periodic signals, a closed configuration is obtained. But in the case of chaotic 
signals, no definite pattern would be obtained. 

Fig. 3.- Internal configuration of the communication system of fig. 1 
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A further point needs to be considered. It is the one concerning the justification that the preceding quantity, namely the 
hexadecimal sequence, represents the same behavior of the system than the previously obtained binary one. But this situation is 
equivalent to the reverse one: to convert a chaotic analog signal into a digital one. As it is well known from digital 
communications, any analog signal can be quantized and from this quantization to obtain a digital signal with the same main 
properties than the initial analog one. In our present case, we have accomplished the opposite operation, namely, to convert a 
digital signal into an analog quantized one with sixteen possible levels. And, according to digital communication signal 
processing theory, both representations are equivalent. 

4. SYNCHRONIZATION OF CHAOTIC OPLCs 
If two identical cells with feedback, as the above mentioned, are parallel connected and the same signal arrives to their 

inputs, an identical chaos is obtained at their outputs. This situation corresponds to two identical and ideal configurations 
working under identical conditions. 

The behaviour becomes critical when the simulation tries to be close to a real situation. In this case, if both systems 
are not feed by exactly the same signal, the obtained outputs, although chaotic, could be different. Hence, no possible relation 
between then should be feasible. In a general situation, both systems, emitter and receiver, are located at different places. As a 
consequence, there is no possibility to introduce exactly the same input signals at the same time to their corresponding input 
ports. This is because although a common signal generator could send the same train of pulses to both cells, the arriving times 
to them can be different. The time need to get the first cell is Icnown if this generator is at the receiver place. But the time when 
the signal arrives to the second cell may not be known. This is the most general case. Several solutions could be implemented 
to overcome this fact. We have reported a first approach to this problem in '2. The solution we have adopted in this work is 
presented in Fig. 3. 

The same input driving signal is sent to both cells. A periodic train of pulses of short duration composes this signal 
and its main objective is to determine the beginning of the control input signal for the OPLCs. If both are exactly the same one 
output signals from our OPLCs will have the same chaotic characteristics and will be able to be taken for the final signal 
processing. A new circuit, C in Fig. 3, will compare both signals. Although there is a time delay between the time the initial 
signals arrive to both circuits, this time is compensated at the receiver because the same time will need the signal from the 
emitter to reach the receptor. If the signals processed at C are different, a new signal is sent to I, generator of the initial pulses. 
A new train will start again as well as the whole process. 

When the received signals at C are the same, and so both circuits are synchronized, C sends an information signal to 
the emitter. At this moment, information signal is added to the chaotic one and both transmitted to the receiver. By a simple 
subtraction information is extracted. 

Two methods have been implemented in order to know if both 
chaotic signals are the same. The first one is shown in Fig. 4.a. Chaos 

Chi(t) signal from OPLC1 is represented at the x-axis and the one from OPLC2 
at the y-axis. A hexadecimal representation, as before, was taken. In each 

10 -^ " instant time, the value of A particular case is represented in Fig. 5. 
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Fig. 4.- Methods used to compare chaos 
signals, a) From hexadecimal real time 
data, b) Subtraction of chaos signals . 

Fig. 5.- Aplication of method of fig. 4.a) 
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The second method is just to represent the difference "Chaos from OPLCl - Chaos from OPLC2" versus time. An 
example is given at Fig. 4.b. A final result, for a particular case, is shown in Fig. 6. It shows "Chaos from OPLCl minus chaos 
from OPLC2" versus time. As it can be seen, after a certain number of steps, synchronization is obtained. 

1000 1500 2000 2500 3000 

Fig. 6.- Subtraction of chaos signal from emitter and receiver. 
After a time period it can be seen that syncronizing is achieved. 

Moreover, in order to characterise the obtained chaotic signals a Fourier transform was obtained in real time. Signals 
coming from emitter and receiver are compared at C. Some of the obtained results, corresponding to two different time 
intervals are shown in Fig. 7.a and 7.b. These signals are an information added to the above mentioned first method. 
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Fig. 7.- Fourier transform at two time intervals of the chaotic signal. 
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5. CONCLUSIONS 
A new method to synchronize chaotic circuits has been reported. The method is based on the use of Optically 

Programmable Logic Cells as chaos generators. Although these cells have been studied previously, some further studies are 
needed in order to determine the characteristics of the obtained chaos when the initial driving signal changes. The 
dependence with its parameters deserves also a deeper study. Moreover, the added delay time has been set to a certain value 
and if it is not the adequate one, the cell is reset to zero and the process start again. An study of how small and continuos 
changes affect the results are needed. 
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