
Towards the Automated Modelling and Formal
Verification of Analog Designs

William Denman

A Thesis

in

The Department

of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of Master of Applied Science at

Concordia University

Montreal, Quebec, Canada

April 2009

© William Denman, 2009

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Concordia University Research Repository

https://core.ac.uk/display/211515917?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1*1 Library and Archives
Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de P edition

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Voire reference
ISBN: 978-0-494-63248-2
Our file Notre reference
ISBN: 978-0-494-63248-2

NOTICE: AVIS:

The author has granted a non­
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non­
commercial purposes, in microform,
paper, electronic and/or any other
formats.

L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, electronique et/ou
autres formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these. Ni
la these ni des extraits substantiels de celle-ci
ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

Conformement a la loi canadienne sur la
protection de la vie privee, quelques
formulaires secondaires ont ete enleves de
cette these.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

• + •

Canada

ABSTRACT

Towards the Automated Modelling and Formal Verification of Analog Designs

William Denman

The verification of analog circuits remains a very time consuming and ex­

pensive part of the design process. Complete simulation of the state space is not

possible; a line is drawn by the designer when it is deemed that enough sets of inputs

and outputs have been covered and therefore the circuit is "verified". Unfortunately,

bugs could still exist and for safety critical applications this is not acceptable. As

well, a bug in the design could lead to costly recalls and a loss of revenue. Formal

methods, which use mathematical logic to prove correctness of a design have been

developed. However, available techniques for the formal verification of analog cir­

cuits are plagued by inaccuracies and a high level of user effort and interaction. We

propose in this thesis a complete methodology for the modelling and formal verifica­

tion of analog circuits. Bond graphs, which are based on the flow of power, are used

to automatically extract the circuit's system of Ordinary Differential Equations.

Subsequently, two formal verification methods, one based on automated theorem

proving with MetiTarski, the other on predicate abstraction based model checking

with HybridSal, are then used to verify functional properties on the extracted mod­

els. The methodology proposed is mechanical in nature and can be made completely

automated. We apply this modelling and verification methodology on a set of analog

designs that exhibit complex non-linear behaviour.

in

ACKNOWLEDGEMENTS

There are two people who I attribute my success at Concordia. Firstly, my

supervisor, Dr. Sofiene Tahar who gave me the chance of a lifetime to join his

research group even though I had no research experience. His continued support

goes above and beyond what is required by a thesis supervisor and has been critical

to my success and enjoyment at the post graduate level. Secondly, I would not be

at this point without the help of my colleague, Dr. Mohamed Zaki, who took me

under his wing when I entered into the program. Not even four months into my

research, he allowed me to collaborate with him as well as be first author on one of

our submitted work. I know now that this is not the norm in academia, and for his

trust and confidence in me I will forever be in debt.

I would like to thank Dr. Behzad Akbarpour for his great support of the

MetiTarski tool. Thank you Naeem Abbasi for taking the time to go over the thesis

multiple times.

I would like also thank the members of my thesis committee, Dr. Glenn Cowan,

Dr. Anjali Awasthi and Dr. Dongyu Qiu for their comments and feedback on the

thesis.

I would like to thank my girlfriend for her continued emotional support as well

as keeping me alive during the thesis writing.

Lastly but not least, I would like to thank my parents for putting me on the

path to success. Without them, I could have never made it this far.

IV

To Mom, Dad, Teresa,

and the memory of my grandparents

TABLE OF CONTENTS

LIST OF FIGURES ix

LIST OF TABLES xi

LIST OF ACRONYMS xii

1 Introduction 1

1.1 Motivation 1

1.2 Related Work 4

1.2.1 Formal Modelling of Analog Circuits 4

1.2.2 Formal Verification of Analog Designs 5

1.3 Proposed Methodology 8

1.4 Thesis Contribution 10

1.5 Thesis Outline 11

2 Bond Graph Modelling of Analog Circuits 13

2.1 Introduction 13

2.2 Related Work 14

2.3 Preliminaries 16

2.3.1 SPICE and Schematic Capture 16

2.3.2 Bond Graph Theory 17

2.3.3 Dymola Modelling Laboratory 21

2.3.4 Mathematica 23

2.4 Modelling Methodology 23

2.5 Illustrative Example 25

2.5.1 Spice to Bond Graph 25

2.5.2 Simplifications 26

2.5.3 Causality Assignment 27

2.5.4 Extracting the System of Equations 28

vi

2.6 Summary 30

3 Verification by Automated Theorem Proving 31

3.1 Introduction 31

3.2 Preliminaries 32

3.2.1 Theory Behind MetiTarski 32

3.2.2 MetiTarski Input Syntax 34

3.2.3 Piecewise Linear Approximations 36

3.2.4 Inverse Laplace Transform for Solving Linear Analog Circuits 37

3.2.5 Maple Computer Algebra System 38

3.3 Verification Methodology . 39

3.4 Applications 42

3.4.1 Tunnel Diode Oscillator 42

3.4.2 BJT Colpitts Oscillator 47

3.4.3 Chua's Oscillator 49

3.4.4 MOSFET Circuit 52

3.5 Summary 56

4 Verification by Predicate Abstraction 58

4.1 Introduction 58

4.2 Preliminaries 59

4.2.1 Property Definition 59

4.2.2 HybridSal Abstractor 60

4.2.3 SAL-Symbolic Model Checker 62

4.2.4 HSolver Constraint Solver 62

4.2.5 Predicate Abstraction 63

4.3 Verification Methodology 64

4.4 Applications 65

4.4.1 Tunnel Diode Oscillator 65

vii

4.4.2 Colpitts BJT Oscillator 70

4.5 Summary 73

5 Conclusion and Future Work 76

5.1 Conclusion 76

5.2 Future Work 78

Bibliography 81

v n i

LIST OF FIGURES

1.1 Modelling and Verification Methodology 9

2.1 A Basic SPICE Deck 16

2.2 Basic Bonds 18

2.3 Simplification Rules for Junctions [8] 19

2.4 Bond Graph Basics 20

2.5 Modelica Syntax 21

2.6 Mathematica Simplify Command 23

2.7 Bond Graph Modelling Methodology 24

2.8 Tunnel Diode Oscillator 26

2.9 Initial Bond Graph 26

2.10 Tunnel Diode Bong Graph Simplifications 27

2.11 Tunnel Diode Causal Simplified Bond Graph 28

2.12 System of ODEs generated by Dymola 29

3.1 MetiTarski Syntax 34

3.2 Tunnel Diode Current Linearization [15] 37

3.3 Overview of the Verification Methodology 39

3.4 Determining the Closed Form Solutions for Each Mode 40

3.5 Tunnel Diode Oscillator 42

3.6 The Hybrid Model of the Tunnel Diode Current 43

3.7 MetiTarski Input For the Verification of Mode 1 45

3.8 BJT Colpitts Oscillator 47

3.9 MetiTarski Input for the Verification of Mode 1 of the Colpitts Oscillator 49

3.10 Chua's Circuit 50

3.11 Basic MOSFET Circuit [56] 53

ix

3.12 MetiTarski Input for Verifying the Mode of Operation 55

3.13 Revised MOSFET Circuit MetiTarski Input 56

4.1 Example HybridSal Description 61

4.2 Example HSolver Description 63

4.3 Predicate Abstraction Based Verification 65

4.4 HybridSal Tunnel Diode Description 66

4.5 SAL Description for the Abstract Model of the Tunnel Diode Circuit 67

4.6 SAL-SMC Generated Counterexample from the SAL Code in Figure

4.5 68

4.7 HSolver Code for the Counterexample Validation of Figure 4.6 69

4.8 Partial Colpitts Oscillator HybridSal Description 71

4.9 Predicates from the abstract Model of the Colpitts Oscillator 72

4.10 SAL-SMC Generated Counterexample for the Colpitts Oscillator . . . 73

4.11 HSolver Counterexample Validation of the Colpitts Oscillator 75

x

LIST OF TABLES

2.1 Basic Objects of Bond Graphs 17

3.1 Formal Definitions [52] 33

3.2 TPTP Syntax Guide for Figure 3.1 35

3.3 Useful Maple Functions 38

3.4 Tunnel Diode Oscillator Verification Runtimes (in seconds) 46

3.5 Colpitts Oscillator Verification Runtimes (in seconds) 50

3.6 Chua's Oscillator Verification Runtimes (in seconds) 52

3.7 MOSFET Circuit Verification Runtimes (in seconds) 56

4.1 LTL temporal operators 60

5.1 Comparison of the Verification Methods 79

XI

LIST OF ACRONYMS

AMS Analog and Mixed-Signal

BJT Bipolar Junction Trasistor

CTL Computational Tree Logic

DAE Differential Algebraic Equation

DC Direct Current

EDA Electronic Design Automation

FSM Finite State Machine

IGBT Insulated Gate Bipolar Transistor

KCL Kirchoff Current Law

KVL Kirchoff Voltage Law

LTL Linear Temporal Logic

MOC Model Of Computation

MOSFET Metal Oxide Semiconductor Field Effect Transistor

ODE Ordinary Differential Equation

PVS Property Verification System

PWL Piecewise Linear

QEPCAD Quantifier Elimination Procedure

by Cylindrical Algebraic Decomposition

RCF Real Closed Fields

SAL Symbolic Analysis Laboratory

SAT Boolean Satisfiability

SCAP Sequential Causality Assignment Procedure

SMC Symbolic Model Checking

SPICE Simulation Program with Integrated Circuit Emphasis

SRI Stanford Research Institute

xn

TPTP Thousands of Problems for Theorem Provers

VHDL Very High Speed Integrated Circuits

Hardware Design Language

x i n

Chapter 1

Introduction

1.1 Motivation

Embedded systems have become an important part of many devices that we use

every day including mobile phones, television set-top boxes and digital cameras.

They are also responsible for controlling systems that protect us on a daily basis.

Devices such as traffic light, airplane landing gear and elevator break controllers are

all implemented using embedded systems. These devices are increasingly becoming

complex to design because of the necessary interaction with the physical world.

Because of the unpredictable nature of this outside influence, the devices are required

to operate over a high number of different modes that can be particularly difficult

to determine, isolate and verify. For safety critical systems, where verification is

required to ensure that an accident will not occur, this situation can be particularly

problematic.

Beyond the problems of verifying the combinations of user input to a device,

another critical problem facing the current generation of embedded systems are the

effects arising from the reduction in fabrication size. Parasitics, current leakage and

signal noise change the functionality of analog designs in unexpected ways. This can

cause major problems for the verification engineer because it is time consuming to

1

build an appropriate model that accounts for this additional behaviour. Addition­

ally, a great deal of expertise is required by the designer to extract and verify the

properties of interest from the newly defined models. It is therefore of great utility

to both the designer and the verifier to have models at their disposal that preserve

the required behaviour of a device, yet remain simple enough to be verified using

tools that are available.

The Electronic Design Automation (EDA) industry has developed sophisti­

cated tools to aid engineers in the design and verification of digital circuits. This

has allowed digital designs to grow in size and complexity without putting a larger

burden on the designers knowledge of the lower level functionality. For analog

designers, there has not been the same amount of progress on their tools or method­

ologies. The design flow has remained essentially the same for the past twenty years.

A schematic capture program is used to hand design abstract models, a netlist is

extracted and then a circuit simulator is used to verify the design. This is repeated

until the desired specifications are met [56]. For the moment, this methodology is

adequate since there is ongoing work to make simulators faster and more efficient.

Unfortunately, this cannot go on for ever. What happened with digital circuits in

the late 1990's is starting to occur again with analog circuits. The complexity of

some basic circuit elements is starting to overwhelm engineers and errors at the

initial design stage are increasing [14].

Traditionally, simulation has been used to verify analog designs. Unfortu­

nately, verification by simulation is inherently informal because the state space

search (set of inputs and expected outputs) is incomplete due to the continuous

range of parameter values. Even when using reduced-accuracy simulators, large cir­

cuit transistor-level simulations require days or even weeks to complete [14]. As a

consequence, simulation methods lack the rigor to ensure the complete correctness

of the design.

Before a circuit can be simulated, a test-bench must be constructed where a

2

set of input and expected outputs are chosen. In the best case scenario, the designer

will understand the design perfectly and will choose the test points that represent

the limit of operation of the design. But this is far from reality, the questions that

the verifier will have trouble answering are "How do we choose the test set?" and

"How do we know when we have covered enough of the state space?". One viable

option is to use random points for simulation, but again there is no absolute way to

know if enough test points have been analyzed to verify a design to a proper level

of conformity.

To address the incomplete verification of designs via simulation, formal meth­

ods have been developed to increase this confidence level. Formal methods [42] are

based around applying mathematical expressions and reasoning to prove correctness

of a design. A formal specification is constructed and is used to verify a model us­

ing mathematical logics and formal reasoning. There are two main areas of formal

verification: model checking and theorem proving. In model checking [18] there is

an exhaustive search of the state space. For large designs that contain many vari­

ables, most model checking techniques fail to produce an answer because of what

is commonly called a "State Space Explosion" [10]. This is where the amount of

computer memory required to hold the state information is too large. In theorem

proving [49], a complete proof is constructed by hand using a base set of axioms and

conjectures. Incredibly powerful, it can be theoretically used to solve any logical

problem. Unfortunately, great manual effort is required on part of the verifier to

construct the proofs since the method is interactive and thus labour intensive.

With all of its advantages, formal verification seems like the ideal method to

solve all possible verification problems. But in fact, they can only assure correctness

of a design with relation to a formal specification. The final circuit can still fail

because there is no guarantee that the formal specification is correct. As well,

errors can also be produced because of defects in fabrication. Notice though, that

these problems are also encountered with simulation. Therefore, formal verification

3

should ideally be combined with simulation methods to increase the confidence level

of design beyond of what is presently capable by simulation alone.

To take advantage of what formal methods offer to the verification of analog

circuits we address two broad goals:

• Appropriately model the analog circuit so that its continuous-time behaviour

can be easily extracted for verification.

• Simplify and automate the methodology for the formal verification of analog

designs. The limitations due to the state space explosion problem with model

checking and the high level of user interactivity required by theorem proving

must be addressed.

To address the first goal, we want to develop in this thesis a modelling method

for the automatic extraction of the system of equations from an analog circuit that

will aid the flow from the design to the verification stage. For the second goal, we

want to develop formal verification techniques that address the stated limitations. In

the next section, an overview of the related work in the domains of analog modelling

and formal verification will be presented and then our methodology will be outlined

in detail.

1.2 Related Work

1.2.1 Formal Modelling of Analog Circuits

One of the main challenges for the formal verification of analog designs, is the

development of models that preserve the behaviour of real devices. One precise way

to model analog behaviour is via mathematical systems of equations that are defined

over a continuous state space. Nodal analysis techniques have been developed to

extract equations from a circuit netlist. However, the resulting equations are in

4

general, very large and too complicated to be used for a behavioural analysis. For

example, the authors of [57] relied on the symbolic analysis toolbox Analog Insydes

[29] to obtain the system of equations necessary for verification. In their case, they

relied on several iterations of algebraic simplifications that introduce errors in the

final result.

Another approach used by Dastidar [22] generated a finite state machine

(FSM) from a set of simulation traces to define a formal model. A similar ap­

proach was proposed by Little et al. in [44], where they generated from simulation

data a hybrid petri net at the front-end to their verification program. The issue

of concern with their method is that the model cannot be automatically produced,

thresholds must still be defined making the specification only semi-formal in nature.

In this thesis we will use the Bond Graph [50] modelling framework to model

analog circuits. Bond graphs are domain independent and they can be used to

model any system that has flow of power. The primary benefit of using bond graphs

to model analog circuits for subsequent formal verification is that the connections

between components are related by the concept of energy conservation. By keep­

ing track of power, models can be easily specified at multiple levels of abstraction,

while preserving the topological organization of the design under consideration. In

comparison with conventional symbolic extraction methods [66] and the techniques

mentioned above, bond graph based modelling allows for a precise symbolic extrac­

tion of the system equations thus raising the confidence in verification.

1.2.2 Formal Verification of Analog Designs

Theorem Proving

In an early attempt at using theorem proving for the formal verification of syn­

thesized analog circuits, Ghosh and Vermuri [32] prove the equivalence of analog

designs that contain linear components and components with behaviour that can

5

be represented by piecewise linear (PWL) models. The PVS higher-order logic

theorem prover is then used to prove the implication between implementation and

behavioural specification built in VHDL-AMS [16].

In a similar work with theorem provers, Hanna [37] uses formal logic to define

the behaviour of predicates over voltage and current waveforms. The basic behaviour

of components such as resistors, power supplies and transistors are defined and then

used to verify the behaviour of a NOT gate.

These early attempts are mostly based around heuristics for constructing the

circuit component models and for determining the specification of the observed be­

haviour. They cannot be automated and are therefore not suited for larger applica­

tions. The methodology we present in this thesis uses a newly developed automated

theorem prover called MetiTarski [4] and therefore could be applied to more than

just basic academic problems.

Model Checking

Promising approaches for the formal verification of analog circuits consist of using

heuristics to subdivide the reachable state space and then using functions and com­

putational methods to represent the transitions between them. Since the continuous

state space is being transformed into a discrete representation, model checking tools

can be use to verify the resulting model.

For instance, in the early work in [43], Kurshan and McMillan extract finite

state models from an analog circuit using what they call homomorphic functions.

Their techniques attempt to reduce the computational complexity, yet at the same

time preserve the behaviour of the real circuit. However, their method is only appli­

cable to circuits with a conservative size because of the expensive space requirements.

In [38], Hartong, Klausen and Hedrich introduce an extension to Computational Tree

Logic (CTL) called CTL-A which defines additional operators that take into account

the continuous behaviour of analog circuits. They use a similar method to [43], by

6

using intervals to construct the abstract state space, while using heuristics to iden­

tify transition relations. They apply their methodology on a Schmitt trigger and

tunnel diode oscillator. Their techniques too are effected by a state space explosion.

In [35], Greenstreet and Mitchell proposed a solution to the space requirements of

[43] and [38], by reducing the dimension of the state space. Their methods are

sound, but at the cost of the precision of the verification results. Building on these

results, several model checking tools including d/dt [19], Checkmate [36] and PHaver

[28] have been developed. They have been used to verify several examples including

voltage controlled oscillators, a biquad low-pass filter [19], and a AE modulator

[36]. Methodologies using Petri nets have been developed [46] for modelling and

computing the transitions between abstract states, with promising results. In [67],

the authors proposed a non-linear approximation for the state space. Taylor approx­

imations are then used for the state space exploration algorithm to verify properties

of a voltage controlled oscillator. As with many of the formal analog verification

techniques, their methods are limited to circuits of minimal size and complexity.

The most recent research on analog formal verification work is concerned with

transforming the analog verification problem to one that can be solved with Boolean

satisfiability (SAT) solvers. In [64], the authors have developed a methodology for

formulating a SPICE style simulation into a format that can then be passed to a

SAT solver. In particular this technique can capture at the transistor level, the

non-linear behavior of the design under test.

Many of the formal methods mentioned above limit the verification of the

circuit to a set amount of time because of an explicit state exploration. In contrast,

we propose in this thesis to use a predicate abstraction and symbolic model checking

based method for the construction and verification of abstract models, which is

valid over all time. In addition we enhance the symbolic model checking with a

counterexample refinement procedure using constraint solving. Further details on

related work on analog and mixed signal designs can be found in [68].

7

1.3 Proposed Methodology

In this thesis we propose a framework for the automated modelling and formal ver­

ification of analog designs. As a general guideline, we use a syntax and semantic

that is familiar to the analog designer, so that the methodology could be adopted as

quickly and painlessly as possible. Therefore, the starting point of the methodology

(see Figure 1.1) is a circuit described using a SPICE deck [55]. This SPICE descrip­

tion is then systematically translated into a bond graph using the Dymola Modelling

Laboratory [21] and the BondLib library [12]. Simplification rules are applied to re­

duce the bond graphs into their most optimal form and causality is automatically

assigned. The system of equations can then be extracted from the bond graph using

Dymola. If a set of ordinary differential equations (ODEs) is obtained, then we can

move on to the verification step. Generally speaking, the equations representing the

continuous time behaviour of an analog circuit are differential algebraic equations

(DAEs). In this case, the DAEs must be transformed into their corresponding ODEs

using symbolic manipulation.

Next, the optimal ODE model that was extracted from the bond graph, is used

to determine the properties of interest to verify them. We propose two verification

methods in this thesis, one based on theorem proving the other on model checking.

Normally, proofs generated using theorem proving require a great deal of effort to

conduct a proof. MetiTarski, an automatic theorem prover for real-valued analytical

functions, can automatically use deduction to prove properties over inequalities in

terms of trigonometric and exponential functions.

We first convert any non-linear components into their piecewise linear approx­

imation. Using the piecewise linear (PWL) approximation, we can then generate

a closed form solution of each mode using an inverse Laplace transform. Then the

property of interest is turned into an inequality over the closed form solution. Meti­

Tarski [4] can then indicate whether the inequality is true and if so will generate a

full proof of its claim. In the case a closed form solution for the system cannot be

8

Chapter 3

Analog
Circuit

Bond Graph Chapter 2

PWL Model

Closed Form
Solution

MetiTarski

Property
Verified

Modelling

Verification

HybridSAL

1
Abstract
Model

S A L - Q l u r HSo'vpr

Chapter 4

Figure 1.1: Modelling and Verification Methodology

found we can consider models that are not defined in terms of ODEs but continuous

time equations. In this case, we can automate the paper-and-pencil analysis that is

usually done on such models. In the case that the proof does not complete because

of extreme values of the special functions, we must turn to the second method.

For the model checking method, we combine predicate abstraction and con­

straint solving. Using the HybridSAL [63] abstractor, the continuous analog state

space is turned into a discrete Boolean state space which is verified using the SAL

Symbolic model checker. This method is suitable for designs which fail normal model

checking techniques due to a state space explosion. This abstraction comes at the

9

cost of the precision of the verification that can lead to counterexamples that do not

exist in the real circuit. To eliminate the possible false negatives we use the HSolver

[54] constraint solver to perform a counter-example check verification.

Two methods are used in this thesis because neither technique is perfect for

all verification cases. The theorem proving method can successfully automate very

specific problems, such as the determination of the mode of operation of a transistor,

because it supports a large set of functions. In the case of our predicate abstraction

method, HybridSal can only support polynomial functions. Additionally, an auto­

mated theorem prover will provide a complete logical proof of its claims. On the

other hand, if our theorem proving methodology is not successful, then no further

information is returned thus making it impossible to say where the problem with the

model lies. As well, the MetiTarski tool is limited to specifying basic properties as

inequalities over closed form solutions. The HybridSAL tools allow for models de­

fined using differential equations that can be used directly after being extracted from

the bond graph model and we can define more complex properties using Linear Tem­

poral Logic (LTL). In the case of verification failure, a counterexample is returned

giving a direct way to determine the error in the design. The potential problem is

that the generated counterexample could be caused by the over approximation of

the abstracted model. Even with a counterexample and refinement strategy, this

methodology might still not terminate.

1.4 Thesis Contribution

In this thesis we have developed a complete methodology for the automated and for­

mal verification of analog designs. The contribution of the thesis can be summarized

as follows:

10

• A method that uses bond graphs to model analog circuits to aid in the extrac­

tion of formal specifications. We subsequently used it to generate automati­

cally the system of ODEs.

• An approach that uses the MetiTarski theorem prover to verify functional

properties.

• A technique that combines predicate abstraction, abstract model checking and

constraint solving to perform the verification and a counterexample refutation.

• Application of the developed modelling and verification methodology on sev­

eral analog circuits including a tunnel diode, Chua's circuit and Colpitts os­

cillators.

1.5 Thesis Outline

The rest of this thesis is organized as follows: Chapter 2 will present the bond graph­

ing methodology for automatically extracting the state equations from an analog

model. The basic concepts of bond graphs along with the background on the tools

that are used in their construction is presented. This initial chapter is wrapped up

with a complete illustrative example presented as further motivation behind bond

graphs for the modelling of analog circuits. In Chapter 3, the methodology for using

the MetiTarski theorem prover is developed and presented. We will discuss in detail

the internals of MetiTarski and its decision procedure for proving inequalities over

real functions. Furthermore, the results of several verification examples including

the Tunnel Diode, Chua's Circuit and Colpitts Oscillator will be summarized. In

Chapter 4, we will present the predicate abstraction methodology for the discretiza­

tion of the state space and subsequent formal verification using a symbolic model

checker. We will analyze in detail both the techniques employed by the HybridSAL

abstractor, the SAL Symbolic Model Checker and the HSolver constraint solver in

11

the verification methodology. An analysis of the same circuit examples from the

theorem proving chapter will be done for a comparison of the verification method­

ologies. Finally we present the conclusion and future work in Chapter 5.

12

Chapter 2

Bond Graph Modelling of Analog

Circuits

2.1 Introduction

In this chapter we will describe the theory behind bond graphs in detail as well

as the computer environments used to build, verify and simplify them. Continued

emphasis will be put on the motivation behind their role in our methodology. This

will be further supported with a detailed illustrative example that goes through the

steps of automatically extracting the ODEs from an analog circuit.

Bond graphs were introduced in 1961 by Paynter of MIT [50] who believed that

"energy and power alone are the fundamental dynamical variables, the ultimate

currency of all physical interaction and transaction." Multi-port elements, which

at the time were common in circuit diagrams, were combined with bi-directional

connectors (a precursor to the name "bond") to model the flow of energy between

abstract systems. His work was extended by Karnopp and Rosenberg [40] to develop

a standard reference on bond graph notation for the professional engineer. Their

motivation to use Paynter's energy notation was the ability to analyze multiple

domains concurrently using a single formalism.

13

Bond graphs define a set of primitives for the modelling of a wide range of

practical systems. They are a domain independent framework that allow for the

universal treatment of different physical domains. By using the concepts of energy

flow, effort and conservation models can be constructed at several levels of abstrac­

tion. Since the causal relationships of bond graphs can be algorithmically generated

[51], the model's system of equations can be automatically extracted. A further

causality analysis can also minimize the computational complexity of the properties

to be verified [47]. Moreover, since bond graphs are object oriented, larger models

can be built from simpler blocks reducing the need for a complex equation layer

[13]. The ability of bond graphs to preserve the computation as well as topological

organization of analog circuits makes them an attractive technique for verification.

2.2 Related Work

The main application of bond graphs for modelling has been in the area of systems

where two or more different physical domains interact. A wide range of examples are

available, including a hydraulic motor [12], an enclosed biosphere thermal dissipation

simulation [12], a siphon pump [58], and a car wheel suspension system [47] just to

name a few. The research on using bond graphs for modelling analog circuits has

not yet matured.

In [51], Perelson developed an algorithm for the automatic conversion of an

electrical circuit into a bond graph. It is shown that for certain complex series-

parallel networks, bond graphs represent a better and more efficient model than

circuit diagrams. Additionally, it is shown that when causality is assigned, the state

variables and state equation can be automatically determined.

To address accuracy problems encountered when dealing with power devices,

Besbes [7] successfully modelled an Insulated Gate-Bipolar Transistor (IGBT) using

14

bond graphs. The present day IGBT models were plagued by poor accuracy in repre­

senting switching behaviour. By isolating each doping region, the internal structures

were properly modelled by combining equivalent circuit models with semiconductor

equations. This was possible because of the modular and power flow based nature

of bond graphs. Characteristic properties, such as the stored charge in the base of

the BJT, were correctly handled by the bonds instead of equivalent circuits models

that added stray capacitances to account for the behaviour. The work demonstrates

the expressive power of bond graphs and the results indicate that bond graphs are

a suitable candidate for modelling analog devices for verification. This is because of

the precision obtained without introducing complex equations or relations.

In [47], Torsten and Vachoux propose to add a bond graphing model of com­

putation (MOC) to the SystemC-AMS [2], system level modelling language. Their

goal is to improve its modelling and simulation capabilities, using the domain inde­

pendent nature of bond graphs to avoid the setup of complex systems of equations.

Since the power bonds integrate easily with block diagrams a full formal specification

can be created for analog and mixed signal designs.

On the verification side, there has been limited but promising progress with

using bond graphs for verifying hybrid systems. In [58] Stromber et. al. use bond

graphs as a front-end to the formal verification of an airplane landing gear system.

By modelling the hydro-mechanically regulated pump that controls the wheel bay

doors using bond graphs, they were able extract precise DAE models. In one bond

graph they assume that the hydraulic power supply system behaves as an ideal

constant pressure source. In the other, they explicitly model the hydro-mechanic

regulator that keeps the pressure constant. The concepts of bond graphs allow for

this multi abstraction based description of physical systems. Depending on which

model was used, different parts of the system could be isolated and analyzed.

15

2.3 Preliminaries

2.3.1 SPICE and Schematic Capture

It has already been stated that the most common way to ensure that a designed

circuit works properly is through simulation. The tool of choice for the simula­

tion of analog circuits is the Simulation Program with Integrated Circuit Emphasis

(SPICE). The benefit of this software package is that it is open source and thus

there are several versions for both academic and industrial uses. The initial versions

were entirely text based, where a circuit was described using a text based netlist

description called a deck. For example, a single resistor connected in series with a

single DC voltage supply could be described using the deck file shown in Figure 2.1.

VI
Rl

1
1

0
0

DC
50

0 3

Figure 2.1: A Basic SPICE Deck

In this case, each node of the circuit is represented by a number. The DC voltage

supply has a value of 0.3 volts and the resistor has a resistance of 50 f2.

Since much effort is required to construct netlists by hand for complex designs,

graphical schematic capture programs have been developed for the automatic gen­

eration of netlists from abstract models. Schematic capture programs work in the

same way- as if the circuit was being drawn with paper and pencil. Circuit symbols

and external models called subcircuits can be connected with lines that represent

wires. The schematic capture programs save much time for the designer since the

circuit netlists can be automatically generated for input into a SPICE simulator.

16

2.3.2 Bond Graph Theory

There exists nine basic bond graph elements (as shown in Table 2.1) that can

be used to model any possible physical component. The storage group contains

the elements for capacitive storage (C type) and inductive storage (I type). The

supply group contains the sources of effort and flow. The reversible transformation

group contains a transducer and gyrator. The irreversible transformation group

contains the elements for thermal losses and entropy producing processes. While

the distribution group contains junctions that represent the generalized domain

independent Kirchoff Voltage Laws (KVL) and Kirchoff Current Laws (KCL).

Table 2.1: Basic Objects of Bond Graphs

Group
Storage
Supply

Reversible transformation
Irreversible transformation

Distribution

Components
Capacitive/Inertial

Source of effort/Source of flow
Transducer/Gyrator

Entropy producing process
0 and 1 junctions

Electrical Domain Example
Capacitance/Inductance

Voltage source/Current source
Transformer

Thermal Resistance
KVL, KCL

Connections

Bond graphs are based on the first principle of energy conservation. The most basic

element of a bond graph is the power bond (Figure 2.2(a)). It is the energy link

between two components. It is represented graphically by a harpoon (half arrow),

which points in the direction of positive power flow. The bond represents two

variables, effort and flow. In the electrical domain, the effort variable is represented

by voltage and the flow by current. It follows that the product of the effort and flow

variables represents the power flowing through the bond. Additional variables can

also be derived from the bonds. The displacement and momentum energy variables

are related to the energy and flow by their time derivatives.

17

A

A V 0 A A

V
(a) Power Bond (b) Junctions

Figure 2.2: Basic Bonds

V

The other basic component is the junction, which represents a circuit node

or mesh (Figure 2.2(b)). At the 0 or common-effort junction the efforts are equal,

which is analogous to a node in a circuit. At the 1 or common-flow junction, the

flows are equal, which is analogous to a mesh in a circuit.

Elements

Using the bonds and junctions, it is possible to connect discrete elements together

in a bond graph. There are different types of single and multi port interfaces that

can be used to represent many possible configurations. The first basic elements are

the sources of effort or flow. They are analogous to voltage and current sources in

circuit diagrams. Additional single port components are used to represent resistors,

capacitors and inductors. They are denoted using the letters R, L or C (see Figure

2.4(a)).

Simplifications

There exists two levels of simplification that can be performed on bond graphs.

Firstly, there are equivalence rules for the junction objects. These rules are used to

reduce the number of bonds in a circuit and are based on the simplification of the

underlying power equations. The equivalence rules can be performed automatically

to a bond graph (see Figure 2.3).

18

^ 0
^ 1

^ 1

/

^ 1

A
A

/

^ 1 A

V V

\ 0

A

^ 0 A = ± 0 ^

V V
Figure 2.3: Simplification Rules for Junctions [8]

The second level of simplification is analogous to the concept of combining

many resistances into one equivalent resistance. The similar idea can also be applied

in the physical domain to two rigidly connected bodies that can be combined into a

single mass [31]. By choosing to combine certain bond graph elements, it is possible

to reduce the complexity of the system without affecting the overall function. This

can result in simpler DAEs that are extracted from the reduced bond graph model.

By using a simpler model, the number of states can be reduced, allowing for a less

complex verification problem.

Causality

Causality is the determination and representation of the directional relationship

between an input and an output [8]. In fact, the causality concept is very important

as it allows to detect any inconsistency in the circuit settings such as trying to

19

connect two voltage sources with different voltage levels. By adding a causal bar to

the end of a bond, the system equations that represent the two variables of effort and

flow can be indicated explicitly. There are many rigorous explanations on how to

assign the causality of a bond and how it relates to the system as a whole [8, 27, 40].

Fortunately, a simple definition exists that can be used for the direct translation of

circuit diagrams. The causal stroke is attached to the side of the bond that computes

the flow variable [12] (Figure 2.4(b)). It is important for the modeler to know how

to assign causality manually because it can aid in the development of complex bond

graphs. However, in general causality is applied automatically using techniques like

sequential causality assignment procedures (SCAP) leading to the construction of

the causal bond graphs [47].

Sf ^ R S f l—^R
S e — ^ C S e — ^ C
(a) R and C Bonds (b) Causality Added

Figure 2.4: Bond Graph Basics

The causality stroke determines at which point the flow variable is to be cal­

culated. Causality can be computed automatically, but it is recommended to use

causal bonds since they can help in analyzing the model when designing larger sys­

tems. Certain bond graph elements only have a set number of causalities that can

be assigned. For instance, at 0 junctions the efforts are equal which indicates that

only one causality stroke is assigned because of the single flow equation defining the

junction. Similarly, at 1 junctions the flows are equal, which indicates that there

should be only one bond without a causality stroke because of the single effort equa­

tion defining the junction. For capacitors and inductors causality is chosen so that

differential equations are generated. The stroke is away from capacitors and towards

for inductors.

20

In summary, causality assignment is advantageous as it provides computational

information of the system like the number of state space variables which leads to

the automatic derivation of the system equations. It also aids in checking for the

presence of algebraic loops during the model execution, which results in complex

DAEs. Additionally, causality analysis is very useful in detecting ill posed models

and can give insight to the correctness and consistency of designs.

2.3.3 Dymola Modelling Laboratory

Dymola [21] is an advanced tool for the complete modelling and simulation of phys­

ical systems including electrical, thermal and mechanical domains. It comprises of

a graphical user interface (GUI) that allows connections between abstract models.

As well, it contains a simulator that employs advanced symbolic manipulation tech­

niques to produce a solution to the system equations. At its core is the open source

Modelica language [61] that defines the libraries and components. The automati­

cally generated symbolic solution to the system equations is also represented in the

Modelica syntax. A tunnel diode can be defined at the equation level using the

syntax in Figure 2.5.

model TunnelDiode

extends Modelica.

equation

i = v"3 - 1.5*v~2

end TunnelDiode;

Electrical

+ 0.6*v;

.Analog Interf aces OnePort;

Figure 2.5: Modelica Syntax

Since Modelica is object oriented, the TunnelDiode model must extend from a pre­

viously defined "OnePort" object that defines a generic input/output relation. The

21

tunnel diode in this example is modelled by a third order polynomial where i repre­

sents the current through the diode and v the voltage drop across it.

The Modelica language and consequently Dymola are object oriented. This

allows for component reuse as well as the ability for external libraries to be easily

built. The Dymola Bond Graphing Library (BondLib) is an example of one such

library. Developed by Cellier et al. [12], BondLib demonstrates the benefit of

object oriented modeling with bond graphs. The transistor models for BJTs and

MOSFETS contained in the library can be set to different levels of complexity [12].

At each level, parasitics, current leakages and non-ideal effects can be added to the

model by specifying the correct parameters in Dymola. The parameters are available

to the modeler to dynamically alter the bond graph. For example, the difference

between the MOSFET level 0 and 1 bond graphs is that the capacitances between

the source, drain, gate and body are set to zero. With the help of bond graphs and

BondLib the designer is able to maintain a deep understanding of the dynamics of

the design under verification.

The symbolic manipulation performed by Dymola is quite advanced. By cor­

rectly ordering the equations and determining the constraints of the model, the final

state calculation can be simplified. For example, in the physical domain Dymola

will determine that two rigidly connected bodies can be represented by a single

state variable [23]. Similarly, in the electric domain this is analogous to multiple

capacitors that are connected in parallel or series being lumped together into a sin­

gle effective capacitance. Function tearing [25] of non linear equations is also used

to "break" algebraic loops and reduce the dimension of sub-models. This further

decreases the number of state variables in the final solution. By combining the

domain independent properties of bond graphs as well as the advanced symbolic

manipulation of Dymola, the automatic extraction of ODEs from an analog circuit

is possible.

22

2.3.4 Mathematica

The tearing function described for reducing the dimension of the differential equa­

tions comes at a computational cost. The symbolic methods employed by Dymola

can potentially create quite a large number of "dummy" variables that are used

to effectively "break" the algebraic loops. The only problem is that for large sys­

tems, the resulting Modelica description can be very complicated. Since Dymola

does no internal simplification, the determination of the differential equations by

hand can be quite taxing. Therefore, it is necessary to use an algebraic system

such as Mathematica [3] to automatically simplify and remove the redundant equa­

tions. Mathematica, an advanced complete algebra system, contains functions such

as "Simplify" (see Figure 2.6) that can be used to perform algebraic transformations

on a set of generic expressions.

I n [l] := Simplify [Sin [x]"2+Cos[x]~2]
Out[l] := 1

Figure 2.6: Mathematica Simplify Command

MathModelica [39] is a software bridge between Modelica and Mathematica. It

enables the use of the Mathematica "Simplify" function directly onto the Modelica

description. By combining Dymola, Modelica, Mathematica and Mathmodelica the

path to the automated extraction of the system of differential equations is complete.

2.4 Modelling Methodology

In the following, we present the methodology for automatically extracting the system

of ODEs from an analog circuit. By using bond graphs we are able to conveniently

model the topology of an analog circuit, which can aid at both the design and

verification stages. The methodology is depicted in Figure 2.7.

23

Analog
Circuit

Schematic
Capture

Netlist

Dymola/
BondLib

Causality
Assignment

Bond
Graph

Dymola/
Model ica DAEs

Simplification
Rules

Simplify
Function

Function
Tearing

Dymola

ODEs

•IvIathModelica
Simplified

ODEs

Figure 2.7: Bond Graph Modelling Methodology

Based on what behaviour or functionality is required in the design, the ana­

log circuit is first constructed by hand with a Schematic Capture program that uses

common symbols to represent the necessary components. This high level abstraction

is then automatically transformed into a SPICE circuit model by macros contained

within the schematic capture program. Using the Dymola Modelling Laboratory

in conjunction with the BondLib library, a bond graph is created directly from the

SPICE model by using a one-to-one mapping between the nodes and components.

At this point, the bond graph is not in its simplified form. Using the rules described

before, the bond graph is reduced. With the bond graph in its reduced form we are

assured that the computational complexity is at a minimum. Next, the preferred

causality is assigned to the bonds to ensure that during the extraction stage, differ­

ential equations are produced instead of integrals. Once the simplified and causal

bond graph is formed, then Dymola is used again to automatically generate the

24

Modelica description that contains the differential equations. For smaller designs

the equations can be easily read directly from it. In other cases, when the design

is more complex, the Modelica description may contain redundant equations due to

the conversion process from DAEs to ODEs. In this case, the simplification rules in

the algebraic system Mathematica are employed to automate the ODE extraction.

2.5 Illustrative Example

The tunnel diode oscillator circuit in Figure 2.8.(a), which has been used by many

researchers (e.g.,[36, 38]) as a benchmark in formal verification research, will be used

as an illustrative example to demonstrate the modelling methodology.

The tunnel diode oscillator demonstrates the effect of resonant tunneling that

causes a negative resistance to appear at small forward bias voltages. Essentially,

for some range of voltages the current through the tunnel diode decreases with

increasing voltage. This negative resistance can be used to create a reliable oscillator

that functions under many different operating conditions.

2.5.1 Spice to Bond Graph

Figure 2.8. (b) is a SPICE representation of the tunnel diode oscillator. Each node

is represented by a number and each component is represent by an alphanumeric

name. As expected, the conversion is a one to one mapping of the circuit diagram to

the SPICE model. An external subcircuit model defines the behaviour of the tunnel

diode.

The transformation from a circuit diagram to bond graph is comparable to the

previous HSPICE example. Each circuit diagram component is transformed into its

bond graph counterpart. They are then interconnected by transforming nodes into

0 junctions and meshes into 1 junctions as shown in Figure 2.9. This is preformed

according to the bond graphs rules described in Section 2.3.2.

25

.MODEL T u n n e l D i o d e TD

1 R1 L1

•vw—rnr-
VIN -

X.
o

=1̂ 1 D1

(a) Circuit Diagram

Figure 2.8: Tunnel Diode Oscillator

Dl
A

VIN 1 0 DC 0.3
Rl 1 2 50
Ll 2 3 lu
CI 0 3 lp
Dl 0 3 TunnelDiode

. END
(b) HSPICE Code

VIN Rl
A

/

Ll 1
A

"h 0 ^ — 1 1 — ^ 1 0

(H"

i — ^ (H n

/

Cl

Figure 2.9: Initial Bond Graph

2.5.2 Simplifications

Simplifications of the bond graph in Figure 2.9 can be made. The removal of the

bonds that are connected to ground can be removed since the voltage at those nodes

is zero, indicating that the power flow is zero. Since the flows at 1 junctions are

equal, 1 junctions in series can be merged together. The resulting simplified bond

26

graph is given in Figure 2.10(a).

As a final step to the simplification process, any junction that has only two

bonds connected to it can be removed since no power that flows through a two port

junction can divert to another component as shown in Figure 2.10(b).

Dl
A

VIN

Rl
A

Rl
A

Dl

-̂ 1 ^ 0 VIN — ^ 1 — ^ 0

V
LI

V
1

V
LI CI

V
CI

(a) First Simplification Pass (b) Second Simplification Pass

Figure 2.10: Tunnel Diode Bong Graph Simplifications

2.5.3 Causality Assignment

The next step in the conversion process is to add a causality stroke to each bond.

The C and I components have a preferred causality that is assigned first with the

current being calculated at the inductor and away from the capacitor. The same

idea is used to determine the placement of the causal bars at the 0 and 1 junctions.

Since at the 1 junction there is a single effort equation since the flows are equal

there should be only one bond without a causal bar. For the 0 junction where there

is a single flow equation and the efforts are equal, there should be only one causal

27

bar. The causality of the resistor and the tunnel diode are arbitrary. The final bond

graph is defined as shown in Figure 2.11.

Rl Dl
A A

VIN ^ 0

V
LI

V
CI

Figure 2.11: Tunnel Diode Causal Simplified Bond Graph

2.5.4 Extracting the System of Equations

Once the bond graph is built, the set of system equations can be extracted and

simplified. To remove redundant equations we use the rewriting functions of Math-

ematica.

The analog design can then be described by the system of ODEs as follows:

Consider a set of variables Xk(t) e E, z G { 1 , . . . ,d}, t e R, an ODE is a

system consisting of a set of equations of the form:

Xk
dxk
dt

= x = Fk(x(t),u{t),t)

where x(£) are variables defining the voltage across the capacitances and the current

through the inductances. u(t) £ Mm are variables defining the input signals, with

the vector fields Fk.

Using the Dymola environment, the bond graph for the tunnel diode is con­

structed. The BondLib library contains graphical modules for bonds and nodes.

Dymola then converts the bond graph into a Modelica simulation description. In­

dex reduction, function tearing and further algorithms then automatically transform

28

the DAEs to ODEs from the Modelica description as shown in Figure 2.12. In par­

ticular, the symbolic solution to the system of equations can be read directly from

the Modelica description. There are cases where it is not as simple to determine

the equations. Since Dymola uses dummy variables to aid in the conversion from

DAEs to ODEs, many extra variables may be present in the final output. By using

rewriting rules in Mathematica, the system of DAEs can be simplified.

/ / Dummy Variables
r e s i s t o r . v := r e s i s t o r . R * i n d u c t o r . i ;
r e s i s t o r . n . v := cons tan tVol tage .V-res i s tor .v ;
inductor .v := r e s i s t o r . n . v - c a p a c i t o r . v ;
c a p a c i t o r . p . i := induc to r . i - t unne lDiode .p . i ;

tunnelDiode.p . i = capac i tor . v~3 - 1.5*capacitor.v~2 + 0 .6*capaci tor .v ;

/ / Symbolic so lu t ion
/* Original equations
induc tor .L*der (induc tor . i) = inductor .v ;
- c a p a c i t o r . O d e r (c a p a c i t o r . v) = - c a p a c i t o r . p . i ;
*/

d e r (i n d u c t o r . i) := induc tor .v / induc tor .L ;
de r (capac i to r .v) := c a p a c i t o r . p . i / c a p a c i t o r . C ;

Figure 2.12: System of ODEs generated by Dymola

With the simplified equations, we can now focus on the current II and the

voltage VQ across the tunnel diode in parallel with the capacitor of the serial RLC

circuit (Figure 2.8). The extracted simplified ODEs are given as Vc = ^(—IdiYc) +

IL) and IL = jr{—Vc — -£JIL + Vin), where Id{Yc) describes the non-linear tunnel

diode behaviour.

29

2.6 Summary

Bond graphs have been characterized as "the most basic graphical modeling paradigm

that is fully objected-oriented" [12]. It follows that the concept of encapsulation can

be applied to bond graphs to model systems at different levels of complexity. The

benefit being that there is no need for single complex equation layer to define a

system and thus the system of equations can be extracted from the model.

Now that a method for extracting the system of ODEs from a model has been

presented, the next chapter will describe in detail a method for formally verifying

properties on the extracted models. If during verification, the models need to be

changed to take into account different topologies, the bond graphs can be quickly

modified and the new system equations obtained.

30

Chapter 3

Verification by Automated

Theorem Proving

3.1 Introduction

In this chapter we will present the work on using the MetiTarski theorem prover

for the verification of properties on the system of ODEs that were extracted from

the analog circuit bond graph model. There is a great need for research in this area

since there has been limited advancement on this front. We strongly believe that

automated methods should be developed to take advantage of the high confidence

in results provided by theorem proving, where a complete proof with logical infer­

ence steps is generated. The main hurdle is the great deal of expertise needed to

interactively guide a proof to fruition.

MetiTarski [4] is an automatic theorem prover for real-valued analytical func­

tions, including trigonometric and exponential functions. It works by a combination

of resolution inference and algebraic simplification, invoking a decision procedure

(QEPCAD) [9] to prove polynomial inequalities. Since many of the circuit equa­

tions we deal with in the analog domain contain exponentials, it is a viable option

31

for formally verifying the properties of interest. The output of MetiTarski is a com­

plete proof that contains algebraic simplification and decision procedure calls that

can be verified using other tools.

In the last decade a new engineering field has emerged: hybrid system theory.

It encompasses techniques for the automatic design and analysis of systems with real­

time and continuous behavior. In [5], the authors use MetiTarski to solve various

hybrid system verification problems including collision avoidance, navigation and

biological mutant examples. In their methodology, they model the hybrid systems

over several modes of operation. In each mode, the variables of the system vary

according to a set of ODEs. By using the inverse laplace transform they solve

for closed form solutions of each mode of operation. Properties are then proven in

each mode using MetiTarski. By taking advantage of hybrid system theory, theorem

proving is now emerging as a serious candidate for the verification of analog systems.

This is because an analog circuit verification can be viewed as a hybrid system if it

is defined using a proper model.

3.2 Preliminaries

3.2.1 Theory Behind MetiTarski

There exists few methods to automatically prove statements involving elementary

functions such as In, exp, sin, cos and sqrt. In their MetiTarski tool, Akbarpour

and Paulson [4] use the decidability of real closed fields to automatically prove

inequalities over elementary functions. MetiTarski replaces the functions with upper

and lower bounds in an attempt to reduce the problem so that a decision procedure

can be used to automatically prove the property of interest. Before delving into its

internals, it is important to understand some basic formal method terminology (see

Table 3.1).

32

Table 3.1: Formal Definitions [52]

Quantifiers
Axioms
Theory
Model

Consistent Theory
Complete Theory
Decidable Theory

3, V (There exists and For All)
Logical Statements
Set of Axioms
Abstract Structure that satisfies a Theory
The theory has at least one model
Every model that is true can be proven
An algorithm exists for evaluating the truth of a model

An algebraic field is an abstract structure that contains the operators of ad­

dition, subtraction, multiplication and division. To be called real closed, the field

must satisfy a set of axioms defined by the operators as well as be able to represent

atomic polynomial formulas that contain inequalities. These formulas can also con­

tain conjunctions, disjunctions, negations and quantifiers. A real closed field must

also be ordered and thus meet following axioms [52]:

— 1 : is negative

Vx : x or —x is positive

Vx, y positive : x + y,x * y are positive

Alfred Tarski proved in 1930 that RCF was decidable by presenting quantifier

elimination procedure [11]. Given an RCF quantified formula, an equivalent formula

that has no V or 3 components can be produced. Take for instance,

a / O A (3x) : (ax2 + bx + c = 0)

from the rules governing the solution of the quadratic equation [33], we know that

for there to be a real solution the discriminant must be greater than or equal to zero

or

b2 - 4ac > 0

33

and by using this result, we can remove the quantifiers to produce the following

result

(a ^ 0 A b2 - 4ac > 0) V (a = 0 A b ^ 0) V (a = b = c = 0)

This example is trivial, but for more complex equations his method could not be

implemented in practice. There has been further work on the decision procedure of

RCF by McLaughlin, Harrison and Hormander [48]. Their implementations are more

efficient than Tarski's but fail to work on polynomials with a degree greater than six.

QEPCAD-B [9] is a recent and efficient decision procedure for the complete theory

of RCF. It uses cylindrical decomposition to extract polynomials from an input

formula and then uses abstraction techniques to generate an r-dimensional space,

where r is the number of variables in the input formula. The abstract regions are

then arranged in a cylindrical domain which allows an efficient removal of quantifiers

via linear algebraic methods.

3.2.2 MetiTarski Input Syntax

MetiTarksi operates on the first-order formula in the Thousands of Problems for

Theorem Provers (TPTP) format that includes the corresponding axioms. Take for

instance the following code.

fof (
Tunnel,conjecture, ! [X] :
(
(0 <= X & X <= 2.39*10"(-9)) =>
-0.0059 - 0.000016*exp(-2.55*10-8*X) + 0.031*exp(-5.49*10~7*X)
< 0.03

)
).

Figure 3.1: MetiTarski Syntax

''fof" indicates to MetiTarski that the logic language used is a first-order formula. It

34

is then followed by a label of the proof as well as the keyword "conjecture" indicating

that the following formula is to be proved with the included axioms. The conjecture

is read as follows: For all (!) X between 0 and 2.39 x 10~9 the formula is always less

than 0.03. For a complete syntax guide see Table 3.2.

Table 3.2: TPTP Syntax Guide for Figure 3.1

fof
I

X
&

exp
<

First order logic formula
Universal Quantifier (V)

Quantified Variable
Logical AND

e (exponential function)
Less Than

Axioms

In addition to the problem definition, axioms must be appended to tell MetiTarksi

what clauses to use when performing the special function to polynomial substitution.

Fortunately, this is automated using external scripts, but it is still necessary

to indicate what family of axioms is required. It is very important that only the

necessary axioms files are included in the TPTP description, since each set adds

computational complexity to the final proof. For example, there are two sets of

axiom declarations for the exponential function. One for regular bounds and one for

extended bounds. There are cases where including the extended bounds will make

the inequality under test unsolvable. In reality, removing the extra axioms will

enable MetiTarski to complete the proof. The converse is also true, if for instance

the TPTP description contains trigonometric functions and those axioms are not

included, then the proof will also be unsolvable.

35

Range Reduction

Since the elementary functions are being replaced by polynomials, it is necessary

that the bounds on the quantified variables vary closely around 0. If the quanti­

fied variables get too high or too low, the accuracy of the polynomials is greatly

diminished. Therefore, MetiTarski uses internal range reduction methods to prop­

erly scale the value of the variables to ensure that the polynomials are an accurate

approximation to the real function.

There are cases though when the internal range reduction is not enough. When

dealing with closed form solutions that contain trigonometric functions with bounds

that are very large (greater than 671"). Then manual range reduction is required.

Since the trigonometric functions are cyclical, it is possible to remove or add mul­

tiples of 2ir. By doing this, MetiTarski will be able to complete proofs that fail

otherwise.

3.2.3 Piecewise Linear Approximations

The first thing to note is that the input to MetiTarksi is a closed form solution that

can contain any number of analytical functions. To obtain closed form solutions we

have used the inverse Laplace Transform on the system of equations representing

the behaviour of the system. Therefore, it is necessary that the ODEs be linear and

thus we must use piecewise linear models for the analog component. PWL models

are adequate to be used to model the components for the following reasons [15]:

• Piecewise-linear circuits are the simplest class of nonlinear circuits.

• The behaviour of many op-amp and diodes and switch circuits can be reason­

ably approximated as piecewise-linear.

• Linear methods are substantially more tractable than non-linear ones, even

when they divide the problem into multiple modes.

36

Take for instance the behaviour of the tunnel diode. As shown in Figure

3.2, the behaviour can be correctly approximated by a piecewise linear model that

operates over three modes of operation.

Mode 1

-

. / / gl

Mode 2

A g2

l • 1 •

Mode 3 11

8 3 / /

1 • 1 1 1 ' - . 1 1 1 H 1 • 1

0 0.2 gl °-4 °-6 E2 0.8 1
VD

Figure 3.2: Tunnel Diode Current Linearization [15]

3.2.4 Inverse Laplace Transform for Solving Linear Analog

Circuits

A common way to solve the variables of a circuit is to perform nodal analysis, by

using KVL and KCL to work through the circuit solving for node voltages and

currents. The problem is that many equations must be solved for required several

computation steps. The inverse Laplace transform method is an another efficient

way to solve for the closed form solutions of an analog circuit. Any circuit can be

described by n first order differential equations [65]. By extracting the differential

equation for each energy storing element (capacitors and inductors) and then as­

sembling the "state model" matrix, an inverse Laplace transform can be used to

solve for the currents and voltages. The benefit of using this method is that it is a

37

one step process, to go from equations to solution instead of solving many equations

encountered when using the Kirchoff circuit laws. The standard circuit state model

[65] is

x = Ax + B

Where the x vector represents the state variables from the energy storing elements.

A is the circuit matrix because it contains the values of the circuit parameters. The

B matrix is called the distribution matrix because it contains values that depend on

the location of the power sources.

Let X denote the Laplace transform of x (X = Cx); then sX — xo = AX + —,

and solving for X we have X = (si — ^4)_1(a;o) + 7 . With the state model defined,

we can take the inverse Laplace Transform of X to solve for the closed form solution

of the circuit equations.

3.2.5 Maple Computer Algebra System

Maple [1] is a full computer algebra system that can be used to efficiently manipulate

many types of data. As well there are internal functions that are available to perform

many actions on matrices, solving equations and symbolically evaluating expressions.

The functions in Table 3.3 are used to solve the closed form solutions of the ODEs

that were obtained from the bond graphs.

Table 3.3: Useful Maple Functions

Function
fsolve()

eval()

invlaplaceQ

Description
Uses numerical approxima­
tion techniques to find a
decimal approximation to
the solution to the equation
Evaluates an expression

Takes the inverse laplace
transform of vector X

Example
fsolve(x=0.1,t)

eval(a;2,x=2)

invlaplace(X,s,t)

Result
Value of t where
x(t) = l

Will output the
value 4
Returns x(t)

38

3.3 Verification Methodology

In the following, we demonstrate a methodology for the automatic verification of

functional properties of analog designs using MetiTarski. An overview of the pro­

posed, methodology is given in Figure 3.3.

Property of
Interest

Transition
Relations

Initial
Conditions

MAPLE

Closed form
solutions for
each mode

Express as
Inequality MetiTarski

MN

Proof Generated
If True

Does not terminate

Add
Axioms

Does not terminate

Range
Reduction

Figure 3.3: Overview of the Verification Methodology

We first obtain the system of differential equations from the circuit of interest.

Any non-linear elements are transformed into their PWL models. The transition

39

relation between each mode of the PWL model is determined and differential equa­

tions (ODEs) are constructed over each mode of operation. Starting in any mode,

the ODEs and initial conditions are supplied to the computer algebra system Maple

and an inverse Laplace transform is performed to find a closed form solution for

each state variable as a function of time. Using the transition relations, Maple is

used to find the time instance where the system switches modes. At that time, the

initial conditions for the next mode are calculated and an inverse Laplace transform

is performed to again find a closed form solution. This is repeated until each mode

has been visited as shown in Figure 3.4.

Switching
Conditions

Figure 3.4: Determining the Closed Form Solutions for Each Mode

40

We then turn the verification property into an inequality over special functions.

A first-order formula in the Thousands of Problems for Theorem Provers (TPTP)

format (see Chapter 3.2.2), including the corresponding axioms, is then supplied

to MetiTarski. MetiTarski uses an extension of the TPTP format, including infix

notation for the arithmetic and relational symbols [59, 60].

If MetiTarski is successful, it delivers a proof and we are done. If unsuccessful,

it will run until terminated by the user. Additional axioms are then added or

removed to aid MetiTarski in formulating a proof. There are certain axioms that

are available for special functions that take on extreme values. Including them

unnecessarily in proofs will increase the computation time. If still unsuccessful,

range reduction is applied to the trigonometric functions to further eliminate any

extreme values that can cause problems for MetiTarski's decision procedure.

In cases when MetiTarksi still does not terminate, it could be because the

functions take on values that are beyond the limits of the deduction methods. There

are also cases when a closed form solution to the ODEs cannot be computed, due to

trigonometric or non-linear terms. As well, it is possible the loss of precision of the

PWL modelling could be affecting the results. In these cases a different approach

altogether must be taken.

Since MetiTarski can prove inequalities over many analytical functions, we pro­

pose instead of using linear methods to solve for the closed form solution of a system

of differential equations, and hence we will start directly with circuit model current

voltage relationships. Properties concerning the DC operating points (mode of op­

eration) could then be easily verified. Essentially, we are eliminating the laborious

paper- and-pencil analysis that is necessary.

41

3.4 Applications

The following section will present examples of analog circuits on which we applied

our methodology. At the end of each example, the results are summarized in order

of the property that was verified. The experiments were all performed on a 2.8 GHz

Dual Quad-Core Mac Pro.

3.4.1 Tunnel Diode Oscillator

The tunnel diode oscillator from Chapter 2 is shown again in Figure 3.5. Instead of

node numbers, we now show the current and voltage variables on the circuit diagram.

It demonstrates the effect of resonant tunneling that causes a negative resistance to

appear at small forward bias voltages as shown in Figure 3.2. Essentially, for some

range of voltages, the current through the tunnel diode decreases with increasing

voltage. This negative resistance can be used to create a reliable oscillator that

functions under many different operating conditions. We intend to verify that for

certain initial states and component values, the tunnel diode oscillator will not

oscillate. By verifying this property, we will be able to eliminate designs that do

not work.

•L R L

vin

T_
=I^r>D v.

o

Figure 3.5: Tunnel Diode Oscillator

The differential equations of the circuit are defined as:

1
VC=^(-ID(VC) + IL)

h = ji{-Vc-RIL + Vin)

42

ID(VC) is a PWL model that has three modes of operation. We can define the PWL

model [15] of the tunnel diode as

ID(VC) = -\(G1E1+G2E2) + (G0 + ̂ G1 + ̂ G2)VD + ̂ G1 \VC - £ i | + ^G2 \VC - E2\

Where gi, g2 and 53 represent the slope of the best fit curve in each mode. E\

and E2 represent the voltages where the model switches modes. Figure 3.2 shows the

real continuous behaviour of the tunnel diode as well as the PWL approximation.

In region 1, G0 = g\. In region 2, G0 + G\ = g2. In region 3, Go + Gi + G2 = g$. In

this example, gx = 0.2616, g2 = -0.0992, g3 = 0.2599, Ex = 0.276 and E2 = 0.723

giving

/ 0.2616Vc if Vc < 0.276

ID(VC) = { -0.0992\/c + 0.0997 if 0.276 <VC < 0.723

0.2599Vc - 0.1599 if Vc > 0.723.

The system is now completely specified. Each mode is defined by a set of

ODEs and switching constraints. The resulting time-deterministic hybrid model

can be illustrated as an FSM as shown in Figure 3.6. Each mode of operation is

represented by a state circle and the switching constraints are indicated above each

directional arrow.

VD > 0.276 VD > 0.723

VD < 0.276 V VD< 0.723 V

Figure 3.6: The Hybrid Model of the Tunnel Diode Current

Suppose the parameter values are R = 50f2, L = 10~6 H, C = 10"9 F, V = 0.3

V, the dynamics of mode 3 can be written as the first order linear differential system

x = Ax + B, where the A matrix represents the coefficients of the state variables

and the B matrix represents the constants.

43

X =
h
Vc

,A =
-3 x 105 -10 6

109 -2.621 x 108
,B

3 x 105

0

Let X denote the Laplace transform of x (X = Cx); then sX — XQ = AX + —,

and solving for X we have X — (si — A)~1(x0) + —. With the initial state as x0 =

(0.025, 0.74)T, chosen to lie in Mode 1. Using Maple we have

X =

, 0.300 x l 0 \
(s + 0.262 x 109)(0.55 x 10"2 +)

O

(s2 + 0.262 x 109s + 0.108 x 1016)

(0.550 x l Q 7 +
0 - 3 0 0 x l ° 1 5)

s

0.131 x 106

+

(s2 + 0.262 x 109s + 0.108 x 1016)

(0.131s + 0.393 x 105)
(s2 + 0.262 x 109s + 0.108 x 1016) (s2 + 0.262 x 109s + 0.108 x 1016))

The closed form solutions of the state variables are obtained by taking the

inverse Laplace transform d~xX and we obtain

Vc(t) = 0.116 e- 2- 5 8 x l° 8* + 0.278 - 0.262 e - 4 1 9 x l ° 6 *

IL(t) = 0.448 x 10"3
 e-

2-58><108i + 0.0727 - 0.0677 e-
4-19><lo6i

Now we have the state space representation of the system for the third mode

of operation. The next step is to determine the time when the tunnel diode switches

from mode 3 to mode 2. By using Maple, we determine that the condition Vc < 0.723

is true at t = 2.38 x 10~9 s. The values of both Vc and II are evaluated at this time.

We then use these values for XQ and again repeat the process of finding the matrix

X, and taking its inverse Laplace transform. This is repeated as shown in Figure

3.4 until we have visited each mode and have generated the closed form solutions

for the two state variables.

44

For mode 2, the closed form solutions are

Vc(t) = 0.278 + 0.0025 e
8-79*107* - 0.0045 e-

ll0xl°7t

IL(t) = 0.0727 + 0.00039 e-1-10*107* _ 0.000028 e
8 - 7 9 x l ° 7 t

For mode 1, the closed form solutions are

Vc(t) = 0.323 - 01.64 e"256*108 ' + 0.56 e - 4 - 2 1 x l ° 6 i

IL{t) = -0.076 - 0.00064 e'2^xloH + 0.144 e-4-2ixio«t

To demonstrate the power of MetiTarski, we seek to define an oscillation prop­

erty that can be proved over all modes of operation. One such property is "For a

set of initial conditions, the circuit will not oscillate". This property can be more

exactly defined as "The current through the inductor will never pass some upper or

lower bound". It can be described formally as :

[L/ < 0.03]

For example, to prove that in mode 1, Lj is always less than 0.03 we use the

syntax shown in Figure 3.7.

fof (
Tunnel,conjecture, ! [X] :
(

(0 <= X & X <= 2.39*10"(-9)) =>
-0.0059 - 0.000016*exp(-2.55*10~8*X) + 0.031*exp(-5.49*10~7*X)
< 0.03

)
) .

Figure 3.7: MetiTarski Input For the Verification of Mode 1

Now suppose we choose the component values R = 0.3 O, L = 10~6 H, C =

10~9 F and V = 0.3 V. Using the same inverse Laplace transform methodology we

45

get the closed form solutions of the state variables. The property of interest is now:

For a set of initial conditions the trajectory of the oscillation reaches a final set and

remains bounded [28]. This can be described formally as:

[Vc > 0 A Vc < 0.9 A Lj > 0 A Lj < 0.08]

MetiTarski proves both properties over the three modes of operation. For

property 1, it is proved that the circuit does not oscillate. For property 2, it is

proved that the oscillation present in the circuit is bounded. Complete runtime

results of this example can be found in Table 3.4. In the table, each row represents

a single inequality proved using MetiTarski. The number indicates which mode of

the PWL model the tunnel diode is in. The next field indicates which variable is

being checked (IL or VC) followed by whether it is an upper (U) or lower (L) bound.

Table 3.4: Tunnel Diode Oscillator Verification Runtimes (in seconds)

Non Oscillation
Tunnel-ML
Tunnel-2-IL
Tunnel-3-IL

0.1
4.0
0.3

Bounded Oscillation
Tunnel-1-VC-U
Tunnel-1-VC-L
Tunnel-2-VC-U
Tunnel-2-VC-L
Tunnel-3-VC-U
Tunnel-3-VC-L
Tunnel-ML-U
Tunnel-ML-L
Tunnel-2-IL-U
Tunnel-2-IL-L
Tunnel-3-IL-U
Tunnel-3-IL-L

0.2
0.4
2.7
0.6
0.3
0.5
0.5
0.3
0.6
3.9
0.3
0.6

The proofs all complete quite quickly, each under five seconds. For Tunnel-

2-IL, Tunnel-2-VC-U, and Tunnel-3-IL-U, the closed form solutions that were gen­

erated using Maple contained large bounds on the exponential and trigonometric

functions. Initially, MetiTarski was unable to prove these cases. By adding the

required extended axioms, MetiTarski was able to complete the proof.

46

3.4.2 BJT Colpitts Oscillator

The Bipolar Junction Transistor (BJT) Colpitts oscillator (Figure 3.8) is another

example of an oscillator circuit that has a complex behaviour, which can be properly

modeled with a PWL approximation consisting of two modes.

Figure 3.8: BJT Colpitts Oscillator

In order to fully understand the behaviour of the circuit it is necessary to

identify the different modes of operation of the BJT. The BJT is a semiconductor

device that can operate in four different regions or modes of operation. The mode

is determined by the voltage across its three terminals. For instance, Kennedy

[41] has shown that the BJT inside the Colpitts oscillator operates only in two

distinct regions: forward active and cutoff. We use MetiTarski to prove this result

formally. It is important to note that the method automates the formal analysis of

the operating point of the BJT. Currently, there exists no automated, formal way

47

to determine the modes of operation of a semi-conductor device. The differential

equations describing the behaviour of the BJT Colpitts oscillator are

C\VCE = II — Ic

n T> VEE + VBE T T
<^2VBE — n -«L — JB

t^EE

LIL = Vcc ~ VCE + VBE — ILRL

The BJT can be modeled as a two-segment piecewise-linear volt age-controlled resis­

tor with
f 0 if VBE < VTH

In= ,
| Yi

RON

VB*-V™ iiVBE>VTH

Consider the BJT Colpitts circuit with the following parameters: L = 98.5/u

H, Vcc = 5 V , RL = 35 ft , d = C2 = 54 nF, REE = 400 ft, VEE = - 5 V and

RON = 100 ft. We use the Laplace transform method described before to solve the

system of ODEs over the two modes of the PWL function.

For mode 1, the closed form solutions are

Vci = 0.001 - 2.67 e"1-93*106' + 2.67 e8-45*105' cos(1.71 x 106*)

+ 3.20e8-45xl°5tsin(1.71x 106£)

VC2 = -0.0011 +0.146 e-1 9 3 x l o 6 t +0.205 e8-45xl°5tcos(1.71 x 106)

- 0.039 e8'45xl°5tsin(1.71 x 106t)

For mode 2, the closed form solutions are

Vex = 0.005 + 25.6 e"1-86*106* - 23.2 e9-05*105' cos(1.71 x 106t)

+ 61.8e9 0 5 x l°5 isin(1.71xl06 i)

VC2 = -0.005 - 1.36 e - 1 8 6 x l ° 6 t + 2.12 e
905*lo5< cos(1.71 x 106t)

+ 2.62e905xl°5tsin(1.71 x 106t)

48

We then define the following property: "To remain in forward active and

cutoff, VBC must always be less than 0". From Figure 3.8 we can deduce that VBC

= VB-Vc = 0- (VCi + VC2) = -VCi - VC2. Thus -VCi - VC2 < 0 or VCi + VC2 > 0.

[Vci + VC2 > 0]

This property is turned into a first-order formula as before. The MetiTarski

input description for proving the property over mode 1 is shown in Figure 3.9.

fof (
Col]

(

)
) .

a i t t s ,

(0 <=
(0 .

+
+

(-0
+
-

> 0

c o n j e c t u r e , ! [X]

X & X <= 1.66*10"
001 - 2 . 6 7 * e x p (- l .

2 .67*exp(8 .45*10~
3 .20*exp(8 .45*10~

.0011 + 0 .146*exp(
0 .205*exp(8 .45*10
0 .039*exp(8 .45*10

-7) =>
93*10~6*X)
5*X)*cos (l .
5 * X) * s i n (l .
-1 .93*10~6*
"5*X)*cos (l
" 5 * X) * s i n (l

71*10"
71*10"
X)
.71*10
.71*10

6*X)
6*X)) +

~6*X)
~6*X))

Figure 3.9: MetiTarski Input for the Verification of Mode 1 of the Colpitts Oscillator

The two TPTP descriptions are provided to MetiTarski which subsequently

proves the property over both modes of operation. The two proofs complete quite

fast, in only a few seconds. See Table 3.5 for the example runtimes. In this case

the two closed form solutions for the VCI and VC2 were combined and then proved

over mode 1 and mode 2 of the PWL model of the BJT.

3.4.3 Chua's Oscillator

The Chua's circuit [17], shown in Figure 3.10, presents similar complexities to the

tunnel diode and Colpitts oscillators. This circuit demonstrates the behaviour of

49

Table 3.5: Colpitts Oscillator Verification Runtimes (in seconds)

Mode of Operation
Colpitts-l-VCl+VC2
Colpitts-2-VCl+VC2

1.0
5.7

chaos, which is caused by the non-linear resistance NR. If the value of the non-active

circuit components are chosen properly, instead of chaos, the circuit will demonstrate

a stable oscillation. Even though the non-linear resistor has three modes of oper­

ation, when the Chua's circuit exhibits stable oscillation, there is switching only

between two modes. We want to prove that the oscillation is bounded for a set of

parameters and initial conditions.

Figure 3.10: Chua's Circuit

The differential equations describing the behaviour of the circuit are

h

VC2

Vci

VC2 - Roh

G(VC2-Vci) + h
C

G(Vc2 - Vci) - INR(VCI)

C,

50

Here INR(VCI) represents the PWL model of the non-linear resistor. This PWL

model can be defined over three modes with Ga = —0.757576, G6 = —0.409091 and

Ve = 1 that are used to represent the slope of the non-linear curve over the three

modes of operation. The PWL model is further defined as,

' Gb{Vci + Ve) - GaVe if Vex < -Ve

INR(VCI) = 1 GaVCi \i-Ve<VCi<Ve

k Gb(VCi - Ve) + GaVe if VC1 > Ve.

As before, with the system of differential equations, the PWL model and the tran­

sition relations between each mode, the closed form solution of each state variable

over each mode is solved using Maple.

For the circuit with, R0 = 0.0125 ft, L = 18 H, G = 0.5355 S, Cx = 10 F and

C2 = 100 F, we once again use a Laplace transform to solve the system of ODEs.

For mode 1 the closed form solutions are

VCi(t) = 2.84 - 0.063 e"0019* - 1.77 eomo24t cos(0.019i) + 0.689 e000024t sin(0.0189t)

VC2(t) = 0.0189 + 0.0077e"0019* - 0.183 e000024t cos(0.019t) + 0.793 e
0000244 sin(0.0189t)

IL(t) = 1.51 - 0.023 e-0019t - 2.35 e000024i cos(0.019i) - 0.42 e000024t sin(0.019t)

For mode 2 the closed form solutions are

Va(t) = 0.198 e0028t + 0.8 e - ° 0 0 5 8 t cos(0.021t) - 0.882 e-°
m5st sin(0.021t)

VC2(t) = 0.02 e0028< - 0.76 e"00058* cos(0.0206t) + 0.15 e - ° 0 0 5 8 t
 sin(0.021t)

IL(t) = 0.039 eom77t + 0.0864 e"0005754 cos(0.02U) - 2.02 e - ° 0 0 5 7 5 t sin(0.0206t)

The formal property that the oscillation remains bounded is

[Vcl > 0 A Vcl < 5 A Vc2 > - 2 A Vc2 < 2 A L, > - 2 A Lj < 5]

51

We create a first-order formula for each bound and provide them to MetiTarski.

For half of them, a proof is returned in under 10 seconds. For the rest, it was

necessary to include the axioms for the extended solutions for the trigonometric and

exponential functions. Once the extra axioms were added, MetiTarski was able to

complete the proof, although requiring a minute or more. Runtime results of the

experiments can be found in Table 3.6.

Table 3.6: Chua's Oscillator Verification Runtimes (in seconds)

Chua's Circuit - P4
Chua-1-VCl-L
Chua-1-VCl-U
Chua-2-VCl-L
Chua-2-VCl-U
Chua-l-VC2-L
Chua-l-VC2-U
Chua-2-VC2-L
Chua-2-VC2-U

Chua-1-IL-L
Chua-1-IL-U
Chua-2-IL-L
Chua-2-IL-U

37.0
62.2
3.0
4.5
99.7
25.5
3.3
4.8
17.0
27.0
5.5
1.4

3.4.4 MOSFET Circuit

In this example we demonstrate the power of MetiTarksi in automatically solving

inequalities containing analytical functions. Take for instance the MOSFET circuit

Figure 3.11 [56].

One common verification question is "What mode of operation is the MOSEFT

operating?" or "For what widths (W) and lengths (L) will the transistor remain out

of cutoff?".

Consider the following circuit parameters: ID = 0.4 mA, nnC0X = 100yuA/V2,

L = 1 /um, W = 32 /jm and Vth = 0.7V. Where L is the legnth of the transistor, W

52

VDD=+2.5V

Rr

V
+

DS

GS -

Re

Vss = -2.5 V

Figure 3.11: Basic MOSFET Circuit [56]

is the width, ID is the current through the drain, nnCox is the process transconduc-

tance (determined by the technology used to fabricate the MOSFET) and Vth is the

threshold voltage. If we neglect the channel-length modulation [56] we can perform

the following hand DC analysis of the transistor.

First we assume that the transistor is operating in the saturation region, so

we can use the square-law equation for operation in the saturation region.

lD=\nnC0J^-{VGS-Vt)
2

Solving for VQS, which is the MOSFET gate to source voltage, we have

2LxID
VGS — \ / 77} 7=, ^ Vth

2 x 20-6 x 0.4 x 1Q-3

32 x 10-6 x 100 x 10-6

\.2V

+ 0.7

From the circuit diagram, we know that VQ is grounded. So therefore

53

VGS = VG-VS = -VS = 1.2 V

With the circuit voltages solved for, we can now determine if the MOSFET is

operating in the saturation region. The conditions are:

• VGS > Vth and

• VDS > VGS - Vth

The first condition is true, so we know that the MOSFET is not in cutoff.

Since we know that the ID is 0.4mA we can solve for the value of RD to ensure that

the MOSFET is in saturation.

VDS > VGS - Vth

VD-Vs>VG-Vs- Vth

VD>VG- Vth

p VDD - Vp
tip — J

Ip

VD = VDD — Rplp

VDD - RDIp >Vg- Vth

-RDIp > Vq - V^ - VDD

-Rp>
Vg - Vth - VDp

ID
0 - 0 . 7 - 2 . 5

RD~ 0.4mA

RD < 8000 Q

From the derivations we have deduced that for the MOSFET to remain in

saturation RD must be less than or equal to a resistance of 8 kQ,. Now this is for

a specific choice of W, L, ID, RS a n d Vth. If it is necessary to change any of the

parameters or even take into account a range of error in parameter values then the

54

analysis by hand must be redone. In the case of this trivial example, the time to

redo the calculations for multiple parameters is not that great. Consider though,

the re-derivations for a multi-transistor circuit.

We will now show how we can fully automate this procedure with MetiTarksi.

Starting from the same equation as before solving for VQS and considering the ratio

of the width and length of the transistor as W/L = r then we have,

_ 2LxID
VGS - \ 777 ^ 1" vth

2 x 0.4 x lO"3
 n „
+ 0.7

r x 100 x 10"6

To prove that the circuit above never enters into cutoff for a range of W/L

ratios between 10 and 40, we supply MetiTarski with the description shown in Figure

3.12.

fof(
Mosfet ,conjecture, ! [r] :

(
(10 <= r k r <= 40)

=> 2*sqr t (2*r~- l) + 0.7 > 0.7
)

)

Figure 3.12: MetiTarski Input for Verifying the Mode of Operation

In this case we are checking that for a range of W/L ratios will VQS always

be greater than Vt. MetiTarski returns a proof of this inequality. This example

55

displays the power of the tool, but we can do even better. Take for instance the

revised version (see Figure 3.13) of the MetiTarski description for the DC mode of

operation

fof (
Mosfet,conjecture, !

c
v.

)
)

(10 <= R & R <=
=> 2*sqrt(2*R'

[R.VTH]

40 & 0.65
-1) + 0.7

<=
>
= VTH
VTH

& VTH <= 0 85)

Figure 3.13: Revised MOSFET Circuit MetiTarski Input

Here we are using two variables to take into account process variations of

the threshold voltage between 0.65V and 0.85V. MetiTarksi returns a proof for the

inequality indicating that within the tolerances specified, the transistor will not enter

cutoff. The experimental results are located in Table 3.7, MOSDC1 is the experiment

with one quantifier and MOSDC2 is the experiment with two quantifiers. The

MOSDC2 proof takes a little bit longer to complete because of the extra quantified

variable.

Table 3.7: MOSFET Circuit Verification Runtimes (in seconds)

MOSFET Circuit
MOSDC1
MOSDC2

0.08
0.11

3.5 Summary

In this chapter we described in detail a method for using the MetiTarski theorem

prover to verify functional properties of analog circuits. The input to MetiTarski is

56

a closed form solution of the ODEs and therefore, a PWL model is employed to be

able to generate it. It is also possible to directly use a circuit level equation with the

tool, to prove properties about the DC bias point of transistors. One problem with

the MetiTarski tool and theorem proving in general is that in the case that the proof

cannot be validated, there is no way of knowing where the problem lies. It could be

in fact a correctly determined error in the design under verification, but also it could

potentially be a problem within MetiTarski concerning internal algorithms. As well,

we can only verify properties that always hold true. In the next chapter a verification

method based on predicate abstraction will be presented where properties can be

defined using Linear Temporal Logic. This allows more complex properties that

could be defined as eventually happening. As well, the ODEs can be used exactly

as extracted with no conversion to a closed form solution needed.

57

Chapter 4

Verification by Predicate

Abstraction

4.1 Introduction

In this chapter, we describe a verification methodology that combines predicate

abstraction, constraint solving and symbolic model checking to verify properties

on the ODEs extracted from the bond graph models. In contrast to the previous

chapter where we use inequalities to describe properties in MetiTarski, we now use

Linear Temporal Logic (LTL) to describe properties. This is particularly useful for

defining behaviour that could eventually happen instead of being constrained to

behaviour that is always occurring.

The problem with traditional model checking is that there is an explicit rep­

resentation of each possible state of the model under verification. This can lead to

a state space explosion, which we have mentioned earlier. Symbolic model check­

ing [10] addresses this problem by implicitly representing states, thus reducing the

complexity of the verification. Further optimization of the state space division is

possible by using abstractions. Predicate abstraction [34], is one of the most suc­

cessful abstraction approaches for the verification of systems with an infinite state

58

space. By dividing the state space into a finite number of regions and then defining

the transition relations between each discrete state, the verification problem can

then be solved using model checking methods and tools. Then, if a counter-example

is produced, further predicates can be generated to refine the abstract state space.

In [6], Alur, Dang and Ivancic extend predicate abstraction to the verification

of hybrid systems. In their work they developed algorithms and tools for the reacha­

bility analysis of hybrid systems by combining predicate abstraction with polyhedra

for approximating the reachable states of the system. This work is similar to that

of Tiwari [62], that led to the development of the HybridSal abstractor [63] which

automatically generates the discrete state space of hybrid models using abstraction

techniques.

4.2 Preliminaries

4.2.1 Property Definition

The big question in formal verification is how to properly define and choose the

properties to verify. Temporal logics [26], define a system for describing in a formal

manner the truth of some statement that varies over time. In this thesis we will use

LTL (Linear Temporal Logic) [42] that indicates that the events will all occur on the

same timeline. This is in contrast to branching temporal logics that indicate that

events can happen on many possible timelines, which is similar to a tree structure.

In most cases, we want to ensure that the system that has been designed is

dependable [42]. This only raises another question on how to measure the level

of dependability. The strongest form, where all catastrophic events are avoided is

called a "safe" state. A safety property will define a condition that ensures some

event (bad or otherwise) will never occur. This is formally defined by stating that

any member from the set of undesired states will never be reached [28]. For example

an analog oscillator safety property can be defined as "For the set of parameters L,R

59

and C the circuit will not oscillate" or "For a set of initial conditions, the circuit

will never stop oscillating".

LTL is a logic language that defines properties by qualitatively describing their

truth over time. There are four basic temporal operators available as described in

Table 4.1. Safety properties can be defined using any combination including the G

(always) operator.

Table 4.1: LTL temporal operators

Fp
Gp
Xp

pUq

"eventually p"
"always p"

"next time p"
"p until q"

4.2.2 HybridSal Abstractor

The variables of an analog circuit lie within a continuous state space and thus

pose a problem for the formal verification tools that prove properties over a finite

state space. To decrease the computational complexity of the verification problem,

HybridSal uses internal abstraction methods to encode the continuous state space

into a discrete one defined by a set of predicates that are either greater than, less

than or equal to zero. Ideally, the abstract model that is created should preserve

enough of the critical behaviour of the design to verify the safety property under

question [62]. An example HybridSAL description is shown in Figure 4.1.

This is one of the examples included in the HybridSal tutorial package [63]. It

represents a simple hybrid model of a thermostat. The continuous values are x and

its derivative xdot, that represent the current temperature and the change in temper­

ature. The discrete variable is called "state" and represents whether the thermostat

is on or off. The initial value of x is between 70 and 80 degrees Fahrenheit. The

formulas in the TRANSITION section describe the conditions for switching between

60

SimpleThermo3

BEGIN

CONTEXT =

control : MODULE =

BEGIN

LOCAL state BOOLEAN

LOCAL x : REAL

LOCAL xdot :

INVARIANT

TRUE

INITFORMULA

70 <=

TRANSITION

[

state

[]
state

[]
state

[]
state

END;

REAL

x AND x <= 80 AND state

= TRUE AND x >= 80 — >

state' = FALSE

= FALSE AND x <= 70 — >

state' = TRUE

= TRUE AND x < 80 — >

xdot' = (100 - x)

= FALSE AND x > 70 -->

xdot' = 0 - x]

G(ss:[control.STATE -> BOOLEAN])

correct: THEOREM

control |- G(70 <= x AND x <=

END

= TRUE

: [control.STATE

80);

-> BOOLEAN];

Figure 4.1: Example HybridSal Description

states as well as the differential equations defined over each mode of operation. The

second to last line contains the property to be verified, defined using LTL. In this

case, the condition is that the temperature will always be between 70 and 80.

61

4.2.3 SAL-Symbolic Model Checker

The model checking problem is defined as: given a finite state machine M and a

temporal logic formula p, does M define a model of p. [42]. More explicitly, do all

the transitions from some initial state to the next state of M satisfy the temporal

property p. By exhaustively checking all the paths of M, the property can be verified.

The problem is that if the number of states is too large, then the memory required to

check all the paths becomes large as well and the model checking algorithm can fail.

Symbolic model checking methods have been developed to address this problem.

Symbolic Model checking uses Reduced Ordered Binary Decision Diagrams

(ROBDDs), which are computational efficient structures that encode states and

transition relations. By explicitly representing the states using ROBDDs, the num­

ber of states that can be visited using model checking is increased from 108 to about

1020 [10]. The SAL-SMC uses a similar algorithm for the symbolic model checking

of properties, the algorithm can be found in [30].

4.2.4 HSolver Constraint Solver

Constraint solving is concerned with verifying properties based on relations between

the variables of a system. Problems are solved by forming constraints around a

problem definition and by consequently finding solutions satisfying them all. The

simplest example of a constraint solving problem can be stated as follows: Given a

fixed amount of money and a number of required items to purchase, maximize the

number of objects that can be acquired.

To solve the stated constraints the HSolver tool [54] first decomposes the state

space into hyper-boxes. Interval arithmetic is then used to check the flow on the

boundary between neighboring boxes. This is done via an abstraction refinement

procedure in order to achieve precise results [53]. An example input description to

Hsolver as shown in Figure 4.2.

62

VARIABLES [x , y
MODES [ml,m2]
STATESPACE

m l [[0 , 4] , [O,
m2[[0 , 4] , [0 ,

INITIAL
ml{x>=2.5/ \x<=

FLOW
ml-[x_d=x-y}{y_
m2{x_d=-2*y}{y

JUMP

]

4]]
4]]

3 / \ y = 0 }

d=x+y}
_d=x-y}

ml->m2{[x>=0. 03] A [i ' =
m 2 - > m l { [x < 0 . 0 3] / \ [i , = i

UNSAFE
ml{x<=2>

=i]>
]>

Figure 4.2: Example HSolver Description

In this case the model is defined over two modes of operation. The variables of the

system are x and y. The modes of the system are named ml and m2. In the state-

spaces of mode 1 and mode 2, the variables x and y both can vary between 0 and 4.

The initial value of x is within the range between 2.5 and 3 and the initial value of y

is defined as a constant value of zero. The differential equations are defined over the

discrete modes ml and m2 and they have a _d appended to their variable names.

The jump conditions define when the system switches modes and in this example

it depends on whether x is greater than or less than 0.03. The safety constraint on

the system is that the variable x must always be greater than 2.

4.2.5 Predicate Abstraction

Predicate abstraction has been developed for the efficient reduction of an infinite

state space to one that can be verified using model checking techniques [20]. The

first task in predicate abstraction is the generation of predicates and then the initial

generation of an abstract model. Several advanced methods exist [62], where the

63

derivative of the ODEs is repeatedly taken to generate new predicates. Once the

abstract model is created, model checking is used to attempt to prove the property

of interest. If a counter example is generated, then further predicates must be added

to refine the abstract model.

4.3 Verification Methodology

We propose using a predicate abstraction approach for the verification of LTL prop­

erties on the system of ODEs that were automatically extracted from a bond graph

model. HybridSal requires as an input the representation of the analog circuit as a

system of ODEs, the initial conditions and the temporal property of interest. The

state space is subsequently partitioned based on predicates that are extracted from

the model and from the property of interest by HybridSal's abstraction algorithm.

The SAL-SMC is then applied on the abstract state space to verify the property

of interest. When the property cannot be validated, it is possible that the over

approximation of the abstract model has led to a false negative counterexample. As

the generated counterexample is an abstract one it is essential to validate it using

the HSolver constraint solver. In case of this error, we iteratively remove regions

violating the property and refine the model for verification again. In the case that

HSolver does not prove a false negative counter example, extra predicates can be

added to generate a refined abstract model that can again be passed through the

steps of the methodology. The proposed verification methodology is illustrated in

Figure 4.3.

64

Initial
Constraints

System of
ODEs

HybridSal Temporal
Property

Abstract
State Space

^ f

SAL-SMC

' '
•

HSolver

1
Refinement /

Add Pre dicates

Remove
Counterexample

l \
Property
Verified
True

Figure 4.3: Predicate Abstraction Based Verification

4.4 Applications

4.4.1 Tunnel Diode Oscillator

Recall that the bond graph extracted simplified ODEs (Section 2.5.4) are given as

Vc = h(-U{Vc) + h) and IL = ±(-Vb - ±h + Vm)

Consider the tunnel diode circuit with the set of parameters C = 1 uF, L = 1

uH, G = 2000 mS, Vin = 0.3 V and the initial values Vc = 0.131 V, IL = 0.055 A.

We want to verify that these combinations of parameters and initial conditions do

not allow the circuit to oscillate. The behaviour in question is stated as the safety

property G (v < 0.6). The validation of the property ensures the non-existence of

65

oscillation.

Once the simplified system of ODEs has been extracted 2.5.4, they can be used

to form a hybrid system definition in the HybridSal modeling language, as in Figure

4.4. In general, the hybrid system definition has both discrete and continuous sec­

tions that allow the entire behaviour to be modeled. The system of ODEs that were

extracted from the bond graph model can be put directly into the TRANSITION

section of the HybridSal description.

TunnelDiode:CONTEXT =

BEGIN

control : MODULE =

BEGIN

LOCAL v : REAL

LOCAL vdot : REAL

LOCAL i : REAL

LOCAL idot : REAL

INVARIANT

TRUE

INITIALIZATION

v = 131/10001 <— Inital Values
i = 55/1000

TRANSITION <— System of ODEs
[

v > 0 — >

vdot' = 1000*(-l*(v*v*v-15/10*v*v+6/10*v) + i);

idot' = (-v - 50*i + 3/10)

]

END;

G(ss:[control.STATE -> BOOLEAN]) : [control.STATE -> BOOLEAN];

correct: THEOREM

control I- G(v < 6/10)1; <— Property to be Verified
END

Figure 4.4: HybridSal Tunnel Diode Description

We then use the HybridSal tool to generate the discrete abstract model illus­

trated in Figure 4.5. This abstract model is the model checked using SAL-SMC to

66

verify the non oscillation property.

Abstract variable to Polynomial Mapping:

g2 — > v

gl --> v - 3/5

gO — > -l*v~3 + 3/2*v~2 - 3/5*v + i

TunnelDiodeABS: CONTEXT =

BEGIN

SIGN: TYPE = {pos, neg, zero};

control: MODULE = BEGIN

GLOBAL

gO: SIGN

GLOBAL

gl: SIGN

GLOBAL

g2: SIGN

INITIALIZATION

g2 = pos; gl = neg; gO = neg

TRANSITION

[g2 = pos AND INV3(g2', gl', gO')
— >

g2' IN ASSVP(g2, gO); gl' IN ASSVP(gl,

gO' IN ASSVD123(gO, FALSE,

gl = zero AND gO = neg

gl = zero AND gO = neg

END;

correct: THEOREM control |- G(gl = neg);

END

gO);

OR gO =

OR gO =

= zero AND gl =

• zero AND gl =
= zero,

= zero)]

Figure 4.5: SAL Description for the Abstract Model of the Tunnel Diode Circuit

In this case, the SAL-SMC tool returns that the property is not proved and

gives a counterexample (see Figure 4.6). In the counterexample, the abstract val­

ues that the predicates take are shown. In this verification problem, the property

states that the predicate gl must always be negative. However, the generated coun­

terexample demonstrates a path to where the gl predicate is zero. The goal is to

check whether the counterexample is part of the real system or an artifact of the

67

abstraction process (spurious).

INVALID, building counterexample...

Counterexample:

PATH

Step 0:

System Variables (assignments)

gO = neg

gl = neg

g2 = neg

Step 1:

System Variables (assignments)

gO = zero

gl = neg

g2 = pos

Step 2:

System Variables (assignments)

gO = pos

gl = neg

g2 = pos

Step 3:

System Variables (assignments)

gO = pos

gl = zero

g2 = pos
<— Violates the abstract property G(gl=neg)

Figure 4.6: SAL-SMC Generated Counterexample from the SAL Code in Figure 4.5

The next step in the tunnel diode circuit verification is to validate the coun­

terexample produced by the SAL-SMC tool. By coding the predicates and transi­

tions specified in the counterexample into the HSolver tool, as shown in Figure 4.7,

we can perform a more precise examination of the reachable states. If it is deter­

mined that the counterexample is never reached, then the false transitions can be

68

removed from the abstract model.

VARIABLES [v , i]
MODES [1111,1112,1113,1114]

STATESPACE
ml [[- 0 . 5 , 1 . 2] , [- 0 . 5 , 0 . 2]]
m 2 [[- 0 . 5 , 1 . 2] , [- 0 . 5 , 0 . 2]]
m 3 [[- 0 . 5 , 1 . 2] , [- 0 . 5 , 0 . 2]]
m 4 [[- 0 . 5 , 1 . 2] , [- 0 . 5 , 0 . 2]]
INITIAL

m l { v = 0 . 1 3 1 / \ i = 0 . 0 5 5 }
FLOW
ml{v_d=1000*(- (v*v*v- l .5*v*v+0.6*v)
m2{v_d=1000*(-(v*v*v-l .5*v*v+0.6*v)
m3{v_d=1000*(-(v*v*v-l .5*v*v+0.6*v)
m4{v_d=1000*(-(v*v*v-l .5*v*v+0.6*v)
JUMP

ml->m2{
m2->m3{
m3->m4{
UNSAFE

v*v*v+l.5*v*v-0.6*v+i=0
v*v*v+l.5*v*v-0.6*v+i>0
v-0.6=0

m4{v>=0.6}

] / \ [i ' = i / \ v ' = v] }

ACi
ACi

- Possible spun ous

+ i) H i _ d = (- v
+ i)}{i_d=(-v
+ i)Mi_d=(-v
+ i)Mi_d=(-v

>=i / \v '=v]} *—
>=i/ \v '=v]}

transition

- 50*i
- 50*i
- 50*i
- 50*i

• Trans

+

+
+
+

it

0.3)}
0 .3)}
0 .3)}
0 .3)}

ion Predicates

Figure 4.7: HSolver Code for the Counterexample Validation of Figure 4.6

In this case, the path of the counterexample produced by the SAL-SMC tool

is never reached indicating that the counterexample is spurious. Therefore, we

remove from the SAL code in Figure 4.5 all transitions from states where predicate

g\ = neg holds to states where g\ = zero holds. This refinement is valid because

the g\ predicate depends only on <?0 and not g2 through the abstract function

ASSVP(gl, gO) in the HybridSal abstraction. This is the reason why the jump

conditions implemented in the HSolver code are based solely on the gO and gl

predicates. The verification on the refined SAL code using SAL-SMC in that case

succeeds, which means that no oscillation occurs which indicates that the model

parameters we have chosen are incorrect.

69

4.4.2 Colpitts BJT Oscillator

In order to fully understand the behaviour of a circuit, it is important to verify its

different modes of operation. In particular, transistors can be biased in different

regions depending on the required application. It is particularly important to know

the mode of operation when connected with other circuit components. This type

of circuit analysis is usually done by hand as simulation data cannot always be

used to conclusively determine the mode over all input values. We can apply the

verification methodology to ensure that the transistor will never go into an unsafe

mode of operation.

Consider the BJT based Colpitts oscillator shown in Figure 3.8. When oscil­

lating, the BJT will never go into its saturation region. In fact, the BJT will either

be in the cut-off mode or forward active modes [41]. The state space is subdivided

into four regions according to the BJT modes of operations (Cut-off, Reverse active,

Forward active and Saturation) with threshold voltage Vth = 0.75. For instance,

the property that no transition occurs from Forward active to Saturation, can be

validated by proving that G(Vc1 + Vc2) > 0 is True, where Vc1 and VC2 are voltages

across the capacitors C\ and C2 and G is the "alway" LTL operator.

Recall that the differential equations describing the behaviour of the BJT

Colpitts oscillator are

C\VCE = II — Ic

C -r'r * h/Jt/ ' ' DEJ J J

2VBE = TT~E< *L — *B
KE-CJ

LIL — Vcc — VCE + VBE — ILRL

Also recall that the BJT can be modeled as a two-segment piecewise-linear

voltage-controlled resistor with

. 0 iiVBE<VTH

" YM^JL *VBE>VTH

70

Consider the BJT Colpitts circuit with the following parameters, Vcc — 5

V, RL = 35 n, d = C2 = 54 nF, REE = 400 Q, , VEE = - 5 V, L = 98.5 uH,

Is = 1.43 x 10~14, RON = 100SI. With the ODEs and the circuit parameters we can

construct the HybridSal description containing the description of the system (see

Figure 4.8).

INITIALIZATION

vcl = 1;

vc2 = 35/100;

iL = 1

TRANSITION

[

vc2 >= 75/100 -

vcldot'

vc2dot;

iLdot'

[]
vc2 < 75/100 —

vcldot'

vc2dot'

iLdot'

]

END;

G(ss:[control.STATE

correct: THEOREM

control |- G(

—>

= (500000000/27*iL);

= (500000000/27*iL-1250000/27*vc2)

= (-35*iL-10200*vc2-10200*vcl)

• >

= (50000000/27*iL+1000000000/27);

= (50000000/27*iL-6250000/27);

= (-l*35*iL-10200*vc2-10200*vcl)

-> BOOLEAN]) : [control.STATE ->

o < (vc2+vcD) ; <— Property of

BOOLEAN];

Interest

Figure 4.8: Partial Colpitts Oscillator HybridSal Description

With the hybrid system described using the HybridSal syntax. We can run

the abstractor algorithm. The generated abstract state description contains the

predicates and abstract transition functions as shown in Figure 4.9.

Now we take the abstract description and pass it to the SAL-SMC. As ex­

pected a counter example is generated (see Figure 4.10). We then convert the

predicates from Figure 4.9 into constraints. As well we express the counterexample

71

Abstract variable to Polynomial Mapping:

glO — > vc2 - 3/4

g9 — > -l*vcl - vc2

g8 — > vc2 - 800*iL

g7 — > -l*vc2 + 400*iL

g6 — > -l*iL - 159/16

g5 — > iL - 1/8

g4 — > -l*vcl - vc2 - 7/2040*iL

g3 — > -l*vcl - 10891/11016*vc2 - 14717/3240*iL

g2 — > vcl + 21907/22032*vc2 + 125189/55080*iL

gl — > -l*vcl - vc2 - 25189/55080*iL + 625/11016

gO — > vcl + vc2 + 12689/55080*iL - 625/22032

correct: THEOREM control |- G(g9 = neg); <— Abstracted Property

Figure 4.9: Predicates from the abstract Model of the Colpitts Oscillator

path in terms of transitions in the HSolver format (see Figure 4.11). By removing

those predicates that do not change value, we can simplify the input into HSolver.

HSolver indicates that the constraints and the property are safe, meaning that the

counterexample path is spurious. The transitions to the counter example are then

removed from the abstract model and then model checking is applied again. A

second counter-example is produced. Following the same methodology described

before, the counterexample transitions are used to construct a HSolver description.

This time though, Hsolver returns "safety unknown".

At this point, we must apply the predicate abstraction step of the methodology.

Using HybridSal we generate three more predicates to refine the abstract model.

Then, we run SAL-SMC on the refined abstract model and the property is returned

true. This indicates that for all time the transistor will remain out of cutoff and

reverse-active, staying in the expected mode of operation.

72

4.5 Summary

In this chapter, a verification methodology based on predicate abstraction and a

counter-example verification using constraint solving was presented. One of its ben­

efits over the theorem proving method is that a full counterexample is generated.

This is of primary benefit when trying to discover bugs in a design. When the

theorem prover does not complete, it could either mean that the inequality is false,

or on the other hand that the bounds are too large to solve. The drawback of

the predicate abstraction methodology is the abstractions themselves that create

a loss of precision that sometimes is not negligible. There are cases when even

adding additional predicates to generate the abstract model accomplishes no gains

in verification. The amount of time to go through the abstraction refinement and

counterexample refinement is much greater than what is encountered in our theorem

Step 0:
gl = neg
g3 = neg
g5 = pos
g6 = neg
g7 = pos
g8 = neg
g9 = neg

Step 3:
gl = neg
g3 = neg
g5 = neg
g6 = pos
g7 = pos
g8 = pos
g9 = neg

Step

gl =
g3 =
g5 =
g6 =

g7 =
g8 =
g9 =

Step

gl =
g3 =
g5 =
g6 =
g7 =
g8 =

g9 =

1:
neg
neg
zero
neg
pos
neg
neg

4:
zero
zero
neg
pos
zero
pos
zero

Step 2:
gl = zero
g3 = zero
g5 = neg
g6 = zero
g7 = pos
g8 = zero
g9 = neg

<— Violates G(g9=neg)

Figure 4.10: SAL-SMC Generated Counterexample for the Colpitts Oscillator

73

proving methodology. Overall the predicate abstraction methodology is promising

since the steps are mechanical in nature and could be automated.

74

VARIABLES [vcl,vc2,iL]

MODES [ml,m2,m3,m4,m5]

STATESPACE

ml [[-1,2], [-1,2], [-1,2]]

m2[[-l,2],[-l,2],[-l,2]]

m3[[-l,2],[-l,2],[-l,2]]

m4[[-l,2],[-l,2],[-l,2]]

m5[[-l,2],[-l,2],[-l,2]]

INITIAL

m l { [v c l = l / \ v c 2 = 0 . 3 5 / \ i L = l] }
FLOW
ml{vcl_d=18518518*iL+37037037}{vc2_d=18518518*iL-23148}

{ iL_d=-35*iL-10200*vc2-10200*vcl}
m2{vcl_d=18518518*iL+37037037Hvc2_d=18518518*iL-23148}

{ iL_d=-35*iL-10200*vc2-10200*vcl}
m3{vcl_d=18518518*iL+37037037}{vc2_d=18518518*iL-23148}

{ iL_d=-35*iL-10200*vc2-10200*vcl}
m4{vcl_d=18518518*iL+37037037}{vc2_d=18518518*iL-23148}

{iL_d=-35*iL-10200*vc2-10200*vcl>

m5{vcl_d=18518518*iL+37037037}{vc2_d=18518518*iL-23148}
{ iL_d=-35*iL-10200*vc2-10200*vcl}

JUMP
m l - > m 2 { [- v c l - v c 2 - 0 . 4 6 * i L + 0 . 0 5 6 7 < 0] / \ [- v c l - 0 . 9 8 8 * v c 2 - 4 . 5 4 * i L < 0] / \

[i L - 0 . 1 2 5 = 0] / \ [- i L - 9 . 9 3 < 0] / \ [- v c 2 + 4 0 0 * i L > 0] A [v c 2 - 8 0 0 * i L < 0] / \
[- v c l - v c 2 < 0] / \ [i L ' = i L / \ v c l ' = v c l A v c 2 ' = v c 2] }

m 2 - > m 3 { [- v c l - v c 2 - 0 . 4 6 * i L + 0 . 0 5 6 7 = 0] A [- v c l - 0 . 9 8 8 * v c 2 - 4 . 5 4 * i L = 0] / \
[i L - 0 . 1 2 5 < 0] / \ [- i L - 9 . 9 3 = 0] A [- v c 2 + 4 0 0 * i L > 0] / \ [vc2-800* iL=0]A
[-vc l -vc2<0] / \ [i L ' = i L A v c l ' = v c l / \ v c 2 ' =vc2] }

m 3 - > m 4 { [- v c l - v c 2 - 0 . 4 6 * i L + 0 . 0 5 6 7 < 0] / \ [- v c l - 0 . 9 8 8 * v c 2 - 4 . 5 4 * i L < 0] / \
[i L - 0 . 1 2 5 < 0] A [- i L - 9 . 9 3 > 0] A [- v c 2 + 4 0 0 * i L > 0] / \ [v c 2 - 8 0 0 * i L > 0] / \
[- v c l - v c 2 < 0] / \ [i L ' = i L / \ v c l ' = v c l / \ v c 2 ' = v c 2] }

m4->m5{ [- v c l - v c 2 - 0 . 4 6 * i L + 0 . 0 5 6 7 = 0] / \ [- v c l - 0 . 9 8 8 * v c 2 - 4 . 5 4 * i L = 0] / \
[i L - 0 . 1 2 5 < 0] A [- i L - 9 . 9 3 > 0] / \ [- v c 2 + 4 0 0 * i L = 0] / \ [v c 2 - 8 0 0 * i L > 0] / \
[-vc l -vc2=0] A [i L ' = i L / \ v c l ' = v c l A v c 2 ' = v c 2] }

UNSAFE
m5{vcl+vc2<0>

Figure 4.11: HSolver Counterexample Validation of the Colpitts Oscillator

75

Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis the primary goal was to develop a complete automated methodology

for the modelling and formal verification of analog circuits. We decided to first

focus at the modelling stage, which is a source of many design problems. By using

bond graphs the automatic extraction of the system of equations was possible. As

well, bond graphs provide an explicit description of the system, which aids in the

design and specification of properties to verify. Next we presented two methods for

formally verifying properties over the extracted ODEs. One method was based on

predicate abstraction and symbolic model checking, the other on theorem proving.

Each method has its advantages and disadvantages and the choice of which one

to use lies in the specific application and the verification properties of interest.

Overall, we have shown that the methodologies require user involvement, but this

involvement is mechanical in nature and therefore could be automated under one

complete framework. The difficulty of the future work will be on interfacing the

different languages and tools together.

Bond graphs provide and efficient means for modelling analog circuits. We

76

have presented an example of a tunnel diode oscillator that was successfully trans­

lated into a bond graph, and had its ODEs automatically extracted. Since bond

graphs are domain independent and object oriented, models can be constructed at

several levels of abstraction. We found that this can reduce the complexity of the

system equations that are extracted by the Dymola Modelling Environment. As

more components are added to a model, as in the case of the bond graphs for BJTs

or MOSFETs, reliance on algebra systems such as Mathematica increases because

Dymola lacks the re-writing techniques to simplify the extracted system of equations.

This remains an open issue for future work.

The theorem proving methodology can be summarized as follows. Using a

system of ODEs that has been extracted from a circuit using bond graphs, they

are first converted into their PWL equivalent model. Then using the algebra sys­

tem Maple, the closed form solution of each mode of the PWL model is solved via

Laplace transforms. Then the verification property is turned into an inequality over

the closed form solution and formatted using the TPTP syntax. MetiTarski is then

used to automatically generate a proof from the TPTP description. The advantage

of using MetiTarski is that its verification algorithm is fully automated. As long as

a property can be described using an inequality, MetiTarski can process it. Another

advantage is that MetiTarski can solve inequalities that contain trigonometric func­

tions and exponentials. One major disadvantage is that if we are trying to solve

properties defined over ODEs, it is necessary that the system of equations be linear

or transformed into their linear form, so that a closed form solution can be com­

puted. This is a very constraining requirement that can have a severe effect on the

accuracy of the verification. As well, if MetiTarski does not terminate, the verifier is

left in the dark. It could mean that the inequality is false, but it could equally mean

that the function under test takes on a value that is out of range for the decision

procedure. Unfortunately, in both these cases, MetiTarski will run until manually

terminated. Although when successful, MetiTarski will produce a full blown proof of

77

its claims. We successfully verified functional properties of a tunnel diode, Chua's

Circuit and Colpitts oscillator using the MetiTarski theorem prover. As well, we

showed how the hand analysis of a MOSFET could be formally verified using the

tool.

The predicate abstraction methodology can be summarized as follows. Again,

using the system of ODEs that has been extracted from the circuit bond graphs,

the HybridSal abstractor successfully takes the continuous state space and splits it

up into an abstract one. Subsequently, it determines the transitions between the

abstract states. The SAL symbolic model checker is then used to verify the abstract

property. If a counterexample is generated then it is verified using constraint solving.

If the counterexample cannot be eliminated, then using HybridSal, we generate addi­

tional predicates to refine the abstract model and redo the symbolic model checking.

The generation of the counterexample is the main advantage to this method, since

the error in the model (the bug) is explicitly stated and can be easily isolated and

thus removed. Secondly, the HybridSal abstractor allows properties to be defined

using LTL, enabling more detailed properties to be defined. One downside, is that

HybridSal can only create abstractions from ODEs that are polynomial. It does

not understand any special functions such as sin, cos, In and exp, which limits the

type of problems that can be verified. We successfully verified properties of a tunnel

diode and Colpitts oscillator using the predicate abstraction and symbolic model

checking methodology. The summary of the two verification methods is shown in

Table 5.1.

5.2 Future Work

The main direction for any future work from this thesis will be to extend the meth­

ods to the analog and mixed signal domain. In particular, we have emphasized many

78

Table 5.1: Comparison of the Verification Methods

Method
Tool

Property Definition
Input
Type

Positive Aspects

Negative Aspects

Theorem Proving
MetiTarski

Inequalities
Closed Form Solution
Analytical (sqrt, sin, cos,
etc.)
Complete Proof Generated.
Supports a large set of ana­
lytical functions.

No information provided
when proof fails. Closed
form solutions difficult to
determine for non-linear
systems. Can only define
basic properties.

Predicate Abstraction
HybridSal + SAL-SMC +
HSolver
LTL
ODEs
Polynomials

More detailed property
specification. Counter­
example generated to
locate bugs.
Over-approximation leads
to invalid counterexamples
that cannot be validated.
No trigonometric or expo­
nential functions allowed.

times that bond graphs are domain independent, which allows the analog part de­

scribed in Chapter 2 to be connected to block diagrams representing the digital

part of an AMS circuit. As well, there has been recent development on a new bond

graph component called a "switched bond". This component could be combined

with our methodology for modelling circuits where switching occurs. This could be

particularly useful for verifying AMS designs.

When defining properties in HybridSal, we are limited to using Linear Tem­

poral Logic to define properties. It would add flexibility to the methodology if

properties could be defined using CTL (Computational Tree Logic). The Symbolic

Analysis Laboratory which HybridSal is build on top of, has a framework that could

be used to construct a CTL extension to HybridSal. The methodology could also be

improved by applying different abstraction algorithms to the state space. Currently,

there are several algorithmic methods that have not been implemented in a tool

such as HybridSal.

79

For the theorem proving methodology, it will be interesting to work on imple­

menting an automatic PWL model generator. It will also be beneficial to investi­

gate methods to obtain approximate closed form solutions to a system of non-linear

ODEs. The Singer-Prelle [24] method is one such technique that can solve certain

types of first order non-linear differential equations. This will eliminate the need for

a piecewise linear function. Since the development of MetiTarski is on going, it will

be necessary to continuously update the methodology to account for these changes.

In particular, the efficiency of the axioms will be increased, which will lead to a

quicker and more reliable verification.

One area that we did not cover in this thesis is concerning the quality of the

verification between the two methods. In both the model checking and theorem

proving methodologies, we make decisions in modelling to allow the verification to

complete. Future work should include research on quantifying the precision of the

formal methods. This would enable the designer to choose the best and most efficient

method for their needs.

Lastly, it will be necessary to expand the repertoire of applications under

consideration. For instance, more complicated circuits such as the feed forward ring

oscillator from RAMBUS [45] pose a challenge for the current formal verification

methodologies. As well, work will also need to be done to define formal properties

for the frequency domain. This is a realistic goal since many frequency transfer

functions can be used directly with the methodologies we have proposed.

80

Bibliography

[1] "Maple 12 : The essential tool for mathematics and modelling." [Online].

Available: h t t p : //www. maplesoft. com/

[2] "SystemC-AMS : Analog and mixed-signal exstension to SystemC." [Online].

Available: h t t p : //www. systemc-ams. org/

[3] "Wolfram Mathematica 7 : Core Language." [Online]. Available:

http:/ /reference.wolfram.com/

[4] B. Akbarpour and L. C. Paulson, "MetiTarski: An automatic prover for the

elementary functions," in Intelligent Computer Mathematics, vol. LNCS 5114.

Springer, 2008, pp. 217-231.

[5] , "Applications of MetiTarski in the verification of control and hybrid

systems," in Hybrid Systems: Computation and Control, vol. LNCS 3414.

Springer, 2009, in press.

[6] R. Alur, T. Dang, and F. Ivancic, "Reachability analysis via predicate abstrac­

tion," in Hybrid Systems: Computation and Control, vol. LNCS 2289. Springer,

2002, pp. 35-48.

[7] K. Besbes, "Modelling semiconductor devices using bond graph techniques,"

in Proc. IEEE International Symposium on Industrial Electronics, 1997, pp.

201-205.

81

http://reference.wolfram.com/

[8] F. Broenink, "Introduction to physical systems modelling with bond graphs,"

University of Twente, Tech. Rep., 1999.

[9] C. W. Brown, "QEPCAD B: a program for computing with semi-algebraic sets

using CADs," SIGSAM Bulletin, vol. 37, no. 4, pp. 97-108, 2003.

[10] J. Burch, E. Clarke, K. McMillan, D. Dill, and L. Hwang, "Symbolic model

checking: 1020 states and beyond," Information and Computation, vol. 98, no. 2,

1992.

[11] B. Caviness and J. Johnson, Quantifier Elimination and cylindrical Algebraic

Decomposition. Spinger, 1998.

[12] F. E. Cellier and A. Nebot, "The modelica bond graph library," Swiss Federal

Institute of Technology, Tech. Rep., 2007.

[13] F. Cellier, C. Clauss, and A. Urquia, "Electronic circuit modelling and simu­

lation in modelica," in Proc. Eurosim Congress on Modelling and Simuulation,

vol. 2, 2007, pp. 1-10.

[14] H. Chang and K. Kundert, "Verification of complex analog and RF IC designs,"

Proceedings of the IEEE, vol. 95, no. 3, pp. 622-639, 2007.

[15] W. K. Chen, The Circuits and Filters Handbook. CRC Press LLC, New York,

2006.

[16] E. Christen and K. Bakalar, "VHDL-AMS A hardware description language

for analog and mixed-signal applications," IEEE Transaction on Circuits and

Systems II: express Briefs, vol. 46, no. 10, pp. 1263-1272, 1999.

[17] L. O. Chua, "Chua's circuit : An overview ten years later," Journal of Circuits,

Systems and Computers, vol. 4, pp. 117-159, 1994.

82

[18] E. M. Clarke, O. Grumberg, and D. A. Peled, Model Checking. MIT Press,

1999.

[19] T. Dang, A. Donze, and 0. Maler, "Verification of analog and mixed-signal

circuits using hybrid system techniques," in Formal Methods in Computer-Aided

Design, vol. LNCS 3312. Springer, 2004, pp. 14-17.

[20] S. Das and D. L. Dill, "Counter-example based predicate discovery in predicate

abstraction," in In Formal Methods in Computer-Aided Design, 2002.

[21] Dassault Systemes, "The dymola modelling laboratory." [Online]. Available:

http://www.dymola.com/index.htm

[22] T. Dastidar and P. Chakrabarti, "Verification system for transient response of

analog circuits using model checking," in Proc. IEEE International Converence

on VLSI, 2005, pp. 195-200.

[23] M. Dempsey, "Dymola for multi-engineering modelling and simulations," in

Proc. IEEE Vehicle Power and Propulsion Conference, 2006, pp. 1-6.

[24] L. Duarte, L. Mota, and J. Skea, "Solving second order differential equations by

extending the ps methods," Journal of Physics A. Mathematical and General,

vol. 34, 2001.

[25] H. Elmqvist and M. Otter, "Methods for tearing systems of equations in object

oriented modelling," in Proc. European Simulation Multiconference, 1994, pp.

326-332.

[26] E. A. Emerson, Temporal Logics in Handbook of Theoretical Computer Science.

Elsevier, 1990.

[27] Y. E. Fattah, "Constraint logic programming for structure-based reasoning

about dynamic physical systems," Artificial Intelligence in Engineering, vol. 1,

pp. 253-264, 1996.

83

http://www.dymola.com/index.htm

[28] G. Frehse, B. Krogh, and R. Rutenbar, "Verifying analog oscillator circuits

using forward/backward abstraction refinement," in Proc. IEEE Design, Au­

tomation and Test in Europe, 2006, pp. 257-262.

[29] F.-I. fr Techno-und Wirtschaftsmathematik, "Analoginsydes : The in­

telligent symbolic design system for analog circuits." [Online]. Available:

http://www.analog-insydes.de/

[30] P. Gastin and D. Oddoux, "Fast ltl to biichi automata translation," in CAV

'01: Proceedings of the 13th International Conference on Computer Aided Ver­

ification. Springer-Verlag, 2001.

[31] P. Gawthrop and G. Bevan, "Bond-graph modelling," IEEE Constrol Systems

Magazine, vol. 27, no. 2, pp. 24-45, 2007.

[32] A. Ghosh, R. Vemuri, and D. R. Vemuri, "Formal verification of synthesized

analog designs," in Proc. IEEE International Conference on Computer Design.

IEEE Computer Society Press, 1999, pp. 40-45.

[33] T. Gowers, J. B. Green, and I. Leader, Princeton Companion To Mathematics.

Princeton University Press, 2008.

[34] S. Graf and H. Saidi, "Construction of abstract state graphs with PVS," in

Computer Aided Verification, vol. LNCS 1254. Springer, 1997, pp. 72-83.

[35] M. Greenstreet and I. Mitchell, "Reachability analysis using polygonal projec­

tions," in Hybrid System: Computation and Control, vol. LNCS 1569. Springer,

1999, pp. 103-116.

[36] S. Gupta, B. H. Krogh, and R. A. Rutenbar, "Towards formal verification of

analog designs," in Proc. IEEE/ACM International Conference on Computer

Aided Design, 2004, pp. 210-217.

84

http://www.analog-insydes.de/

[37] K. Hanna, "Reasoning about analog-level implementations of digital systems,"

Formal Methods in System Design, vol. 16, no. 2, pp. 127-158, 2000.

[38] W. Hartong, K. Klausen, and L. Hedrich, "Formal verification for nonlinear

analog systems: Approaches to model and equivalence checking," in Advanced

Formal Verification. Kluwer, 2004, pp. 205-245.

[39] M. Jirstrand, J. Gunnarsson, and P. Fritzson, "A new modeling and simula­

tion environment for mathematical in International Mathematica Symposium,

1999.

[40] D. Karnopp and R. C. Rosenberg, Analysis and Simulation of Multiport Sys­

tems: The Bond Graph Approach to Physical System Dynamics. The MIT

Press, 1968.

[41] M. Kennedy, "Chaos in the colpitts oscillator," IEEE Transactions on Circuits

and Systems, no. 41, pp. 771-774, 1994.

[42] T. Kropf, Introduction to Formal Hardware Verification. Springer, 1999.

[43] R. P. Kurshan and K. McMillan, "Analysis of digital circuits through symbolic

reduction," in IEEE Transactions on Computer-Aided Design, vol. 10, 1991,

pp. 1350-1371.

[44] S. Little, D. Walter, K. Jones, and C. Myers, "Analog/mixed-signal circuit ver­

ification using models generated from simulation traces," in Automated Tech­

nology for Verification and Analysis, vol. LNCS 4762. Springer, 2007, pp.

114-128.

[45] S. Little and C. Myers, "Abstract modeling and simulation aided verification

of analog/mixed-signal circuits," in Proc. Workshop on the Formal Verification

of Analog Circuits, 2008.

85

[46] S. Little, D. Walter, N. Seegmiller, C. Myers, and T. Yoneda, "Verification of

analog and mixed-signal circuits using time hybrid petri nets," in Automated

Technology for Verification and Analysis, Springer, Ed., 2004, pp. 426-440.

[47] T. Maehne and A. Vachoux, "Proposal for a bond graph based model of com­

putation in systemc-ams," in Proc. Languages for Formal Specification and

Verification, Forum on Specification and Design Languages, 2007.

[48] S. McLaughlin and J. Harrison, "A proof-producing decision procedure for real

arithmetic," in Automated Deduction, vol. LNCS 859. Springer, 2005, pp.

295-314.

[49] T. Melham and M. Gordon, Higher Order Logic and Hardware Verification.

Cambridge University Press, 1993.

[50] H. M. Paynter, Analysis and Design of Engineering Systems. The MIT Press,

1961.

[51] A. S. Perelson, "Description of electrical networks using bond graphs," Circuit

Theory and Applications, vol. 4, pp. 107-123, 1976.

[52] B. Poizat, D. Brandar, and M. Klein, Course of Models Theory. Springer,

2006.

[53] S. Ratschan and Z. She, "Safety verification of hybrid systems by constriaint

propagation based abstraction refinement." ACM Transactions in Embedded

Computing Systems, vol. 6, no. 1, 2007.

[54] , "HSolver : Verification of hybrid systems based on the constraint solver

RSolver." [Online]. Available: h t tp : / / h so lve r . sou rce fo rge .ne t /

[55] G. Roberts and A. S. Sedra, SPICE. Oxford University Press, 1996.

86

http://hsolver.sourceforge.net/

[56] A. S. Sedra and K. C. Smith, Microelectronic Circuits, 5th ed. Oxford Uni­

versity Press, 2004.

[57] R. Sommer, E. Hennig, M. Thole, T. Halfmann, and T. Wishmann, "Proc. sym­

bolic modeling and analysis of analog integrated circuits," in European Confer­

ence on Circuit Theory and Design, 1999.

[58] J.-E. Stromberg, S. Nadjm-Tehrani, and J. L. Top, "Switched bond graphs as

front-end to formal verification of hybrid systems," in Proc. of the DIM ACS

International Workshop on Verification and Conrol of Hybrid Systems, 1996.

[59] G. Sutcliffe and C. Suttner, "The TPTP Problem Library: CNF Release

vl.2.1," Journal of Automated Reasoning, vol. 21, no. 2, pp. 177-203, 1998.

[60] , "The TPTP problem library for automated theorem proving,"

http://www.cs.miami.edu/ tp tp / , 2009.

[61] M. Tiller, Introduction to Physical Modeling with Modelica. Kluwer Boston,

2001.

[62] A. Tiwari, "Series of abstractions for hybrid automata," in Hybrid Systems:

Computation and Control, vol. LNCS 2289. Springer, 2002, pp. 465-478.

[63] , "HybridSal: A tool for abstracting hybridsal specifications to SAL spec­

ifications," h t t p : / / s a l . c s l . s r i . c o m / h y b r i d s a l / .

[64] S. Tiwary, A. Gupta, J. Phillips, and et al., "fSpice: A boolean satisfiability

based approach for fromally verifying analog circuits," in Proc. Workshop on

Fromal Verification of Analog Circuits, 2008.

[65] V. D. Toro, Engineering Circuits. Prentice-Hall, 1987.

[66] J. Vlach and K. Singhal, Computer Methods for Circuit Analysis and Design.

Kluver, 1993.

87

http://www.cs.miami.edu/
http://sal.csl.sri.com/hybridsal/

[67] M. Zaki, G. A. Sammane, S. Tahar, and G. Bois, "Combining symbolic simula­

tion and interval arithmetic for the verification of AMS designs," in Proc. IEEE

International Conference on Formal Methods in Computer-Aided Design, 2007,

pp. 207-215.

[68] M. Zaki, S. Tahar, and G. Bois, "Formal verification of analog and mixed signal

designs: A survey," Microelectronics Journal, vol. 39, no. 12, pp. 1-10, 2008.

88

