
Towards the Automated Modelling and Formal 
Verification of Analog Designs 

William Denman 

A Thesis 

in 

The Department 

of 

Electrical and Computer Engineering 

Presented in Partial Fulfillment of the Requirements 

for the Degree of Master of Applied Science at 

Concordia University 

Montreal, Quebec, Canada 

April 2009 

© William Denman, 2009 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Concordia University Research Repository

https://core.ac.uk/display/211515917?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1*1 Library and Archives 
Canada 

Published Heritage 
Branch 

395 Wellington Street 
Ottawa ON K1A 0N4 
Canada 

Bibliotheque et 
Archives Canada 

Direction du 
Patrimoine de P edition 

395, rue Wellington 
Ottawa ON K1A 0N4 
Canada 

Your file Voire reference 
ISBN: 978-0-494-63248-2 
Our file Notre reference 
ISBN: 978-0-494-63248-2 

NOTICE: AVIS: 

The author has granted a non­
exclusive license allowing Library and 
Archives Canada to reproduce, 
publish, archive, preserve, conserve, 
communicate to the public by 
telecommunication or on the Internet, 
loan, distribute and sell theses 
worldwide, for commercial or non­
commercial purposes, in microform, 
paper, electronic and/or any other 
formats. 

L'auteur a accorde une licence non exclusive 
permettant a la Bibliotheque et Archives 
Canada de reproduire, publier, archiver, 
sauvegarder, conserver, transmettre au public 
par telecommunication ou par I'lnternet, preter, 
distribuer et vendre des theses partout dans le 
monde, a des fins commerciales ou autres, sur 
support microforme, papier, electronique et/ou 
autres formats. 

The author retains copyright 
ownership and moral rights in this 
thesis. Neither the thesis nor 
substantial extracts from it may be 
printed or otherwise reproduced 
without the author's permission. 

L'auteur conserve la propriete du droit d'auteur 
et des droits moraux qui protege cette these. Ni 
la these ni des extraits substantiels de celle-ci 
ne doivent etre imprimes ou autrement 
reproduits sans son autorisation. 

In compliance with the Canadian 
Privacy Act some supporting forms 
may have been removed from this 
thesis. 

Conformement a la loi canadienne sur la 
protection de la vie privee, quelques 
formulaires secondaires ont ete enleves de 
cette these. 

While these forms may be included 
in the document page count, their 
removal does not represent any loss 
of content from the thesis. 

Bien que ces formulaires aient inclus dans 
la pagination, il n'y aura aucun contenu 
manquant. 

• + • 

Canada 



ABSTRACT 

Towards the Automated Modelling and Formal Verification of Analog Designs 

William Denman 

The verification of analog circuits remains a very time consuming and ex­

pensive part of the design process. Complete simulation of the state space is not 

possible; a line is drawn by the designer when it is deemed that enough sets of inputs 

and outputs have been covered and therefore the circuit is "verified". Unfortunately, 

bugs could still exist and for safety critical applications this is not acceptable. As 

well, a bug in the design could lead to costly recalls and a loss of revenue. Formal 

methods, which use mathematical logic to prove correctness of a design have been 

developed. However, available techniques for the formal verification of analog cir­

cuits are plagued by inaccuracies and a high level of user effort and interaction. We 

propose in this thesis a complete methodology for the modelling and formal verifica­

tion of analog circuits. Bond graphs, which are based on the flow of power, are used 

to automatically extract the circuit's system of Ordinary Differential Equations. 

Subsequently, two formal verification methods, one based on automated theorem 

proving with MetiTarski, the other on predicate abstraction based model checking 

with HybridSal, are then used to verify functional properties on the extracted mod­

els. The methodology proposed is mechanical in nature and can be made completely 

automated. We apply this modelling and verification methodology on a set of analog 

designs that exhibit complex non-linear behaviour. 
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Chapter 1 

Introduction 

1.1 Motivation 

Embedded systems have become an important part of many devices that we use 

every day including mobile phones, television set-top boxes and digital cameras. 

They are also responsible for controlling systems that protect us on a daily basis. 

Devices such as traffic light, airplane landing gear and elevator break controllers are 

all implemented using embedded systems. These devices are increasingly becoming 

complex to design because of the necessary interaction with the physical world. 

Because of the unpredictable nature of this outside influence, the devices are required 

to operate over a high number of different modes that can be particularly difficult 

to determine, isolate and verify. For safety critical systems, where verification is 

required to ensure that an accident will not occur, this situation can be particularly 

problematic. 

Beyond the problems of verifying the combinations of user input to a device, 

another critical problem facing the current generation of embedded systems are the 

effects arising from the reduction in fabrication size. Parasitics, current leakage and 

signal noise change the functionality of analog designs in unexpected ways. This can 

cause major problems for the verification engineer because it is time consuming to 
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build an appropriate model that accounts for this additional behaviour. Addition­

ally, a great deal of expertise is required by the designer to extract and verify the 

properties of interest from the newly defined models. It is therefore of great utility 

to both the designer and the verifier to have models at their disposal that preserve 

the required behaviour of a device, yet remain simple enough to be verified using 

tools that are available. 

The Electronic Design Automation (EDA) industry has developed sophisti­

cated tools to aid engineers in the design and verification of digital circuits. This 

has allowed digital designs to grow in size and complexity without putting a larger 

burden on the designers knowledge of the lower level functionality. For analog 

designers, there has not been the same amount of progress on their tools or method­

ologies. The design flow has remained essentially the same for the past twenty years. 

A schematic capture program is used to hand design abstract models, a netlist is 

extracted and then a circuit simulator is used to verify the design. This is repeated 

until the desired specifications are met [56]. For the moment, this methodology is 

adequate since there is ongoing work to make simulators faster and more efficient. 

Unfortunately, this cannot go on for ever. What happened with digital circuits in 

the late 1990's is starting to occur again with analog circuits. The complexity of 

some basic circuit elements is starting to overwhelm engineers and errors at the 

initial design stage are increasing [14]. 

Traditionally, simulation has been used to verify analog designs. Unfortu­

nately, verification by simulation is inherently informal because the state space 

search (set of inputs and expected outputs) is incomplete due to the continuous 

range of parameter values. Even when using reduced-accuracy simulators, large cir­

cuit transistor-level simulations require days or even weeks to complete [14]. As a 

consequence, simulation methods lack the rigor to ensure the complete correctness 

of the design. 

Before a circuit can be simulated, a test-bench must be constructed where a 
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set of input and expected outputs are chosen. In the best case scenario, the designer 

will understand the design perfectly and will choose the test points that represent 

the limit of operation of the design. But this is far from reality, the questions that 

the verifier will have trouble answering are "How do we choose the test set?" and 

"How do we know when we have covered enough of the state space?". One viable 

option is to use random points for simulation, but again there is no absolute way to 

know if enough test points have been analyzed to verify a design to a proper level 

of conformity. 

To address the incomplete verification of designs via simulation, formal meth­

ods have been developed to increase this confidence level. Formal methods [42] are 

based around applying mathematical expressions and reasoning to prove correctness 

of a design. A formal specification is constructed and is used to verify a model us­

ing mathematical logics and formal reasoning. There are two main areas of formal 

verification: model checking and theorem proving. In model checking [18] there is 

an exhaustive search of the state space. For large designs that contain many vari­

ables, most model checking techniques fail to produce an answer because of what 

is commonly called a "State Space Explosion" [10]. This is where the amount of 

computer memory required to hold the state information is too large. In theorem 

proving [49], a complete proof is constructed by hand using a base set of axioms and 

conjectures. Incredibly powerful, it can be theoretically used to solve any logical 

problem. Unfortunately, great manual effort is required on part of the verifier to 

construct the proofs since the method is interactive and thus labour intensive. 

With all of its advantages, formal verification seems like the ideal method to 

solve all possible verification problems. But in fact, they can only assure correctness 

of a design with relation to a formal specification. The final circuit can still fail 

because there is no guarantee that the formal specification is correct. As well, 

errors can also be produced because of defects in fabrication. Notice though, that 

these problems are also encountered with simulation. Therefore, formal verification 
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should ideally be combined with simulation methods to increase the confidence level 

of design beyond of what is presently capable by simulation alone. 

To take advantage of what formal methods offer to the verification of analog 

circuits we address two broad goals: 

• Appropriately model the analog circuit so that its continuous-time behaviour 

can be easily extracted for verification. 

• Simplify and automate the methodology for the formal verification of analog 

designs. The limitations due to the state space explosion problem with model 

checking and the high level of user interactivity required by theorem proving 

must be addressed. 

To address the first goal, we want to develop in this thesis a modelling method 

for the automatic extraction of the system of equations from an analog circuit that 

will aid the flow from the design to the verification stage. For the second goal, we 

want to develop formal verification techniques that address the stated limitations. In 

the next section, an overview of the related work in the domains of analog modelling 

and formal verification will be presented and then our methodology will be outlined 

in detail. 

1.2 Related Work 

1.2.1 Formal Modelling of Analog Circuits 

One of the main challenges for the formal verification of analog designs, is the 

development of models that preserve the behaviour of real devices. One precise way 

to model analog behaviour is via mathematical systems of equations that are defined 

over a continuous state space. Nodal analysis techniques have been developed to 

extract equations from a circuit netlist. However, the resulting equations are in 
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general, very large and too complicated to be used for a behavioural analysis. For 

example, the authors of [57] relied on the symbolic analysis toolbox Analog Insydes 

[29] to obtain the system of equations necessary for verification. In their case, they 

relied on several iterations of algebraic simplifications that introduce errors in the 

final result. 

Another approach used by Dastidar [22] generated a finite state machine 

(FSM) from a set of simulation traces to define a formal model. A similar ap­

proach was proposed by Little et al. in [44], where they generated from simulation 

data a hybrid petri net at the front-end to their verification program. The issue 

of concern with their method is that the model cannot be automatically produced, 

thresholds must still be defined making the specification only semi-formal in nature. 

In this thesis we will use the Bond Graph [50] modelling framework to model 

analog circuits. Bond graphs are domain independent and they can be used to 

model any system that has flow of power. The primary benefit of using bond graphs 

to model analog circuits for subsequent formal verification is that the connections 

between components are related by the concept of energy conservation. By keep­

ing track of power, models can be easily specified at multiple levels of abstraction, 

while preserving the topological organization of the design under consideration. In 

comparison with conventional symbolic extraction methods [66] and the techniques 

mentioned above, bond graph based modelling allows for a precise symbolic extrac­

tion of the system equations thus raising the confidence in verification. 

1.2.2 Formal Verification of Analog Designs 

Theorem Proving 

In an early attempt at using theorem proving for the formal verification of syn­

thesized analog circuits, Ghosh and Vermuri [32] prove the equivalence of analog 

designs that contain linear components and components with behaviour that can 
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be represented by piecewise linear (PWL) models. The PVS higher-order logic 

theorem prover is then used to prove the implication between implementation and 

behavioural specification built in VHDL-AMS [16]. 

In a similar work with theorem provers, Hanna [37] uses formal logic to define 

the behaviour of predicates over voltage and current waveforms. The basic behaviour 

of components such as resistors, power supplies and transistors are defined and then 

used to verify the behaviour of a NOT gate. 

These early attempts are mostly based around heuristics for constructing the 

circuit component models and for determining the specification of the observed be­

haviour. They cannot be automated and are therefore not suited for larger applica­

tions. The methodology we present in this thesis uses a newly developed automated 

theorem prover called MetiTarski [4] and therefore could be applied to more than 

just basic academic problems. 

Model Checking 

Promising approaches for the formal verification of analog circuits consist of using 

heuristics to subdivide the reachable state space and then using functions and com­

putational methods to represent the transitions between them. Since the continuous 

state space is being transformed into a discrete representation, model checking tools 

can be use to verify the resulting model. 

For instance, in the early work in [43], Kurshan and McMillan extract finite 

state models from an analog circuit using what they call homomorphic functions. 

Their techniques attempt to reduce the computational complexity, yet at the same 

time preserve the behaviour of the real circuit. However, their method is only appli­

cable to circuits with a conservative size because of the expensive space requirements. 

In [38], Hartong, Klausen and Hedrich introduce an extension to Computational Tree 

Logic (CTL) called CTL-A which defines additional operators that take into account 

the continuous behaviour of analog circuits. They use a similar method to [43], by 
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using intervals to construct the abstract state space, while using heuristics to iden­

tify transition relations. They apply their methodology on a Schmitt trigger and 

tunnel diode oscillator. Their techniques too are effected by a state space explosion. 

In [35], Greenstreet and Mitchell proposed a solution to the space requirements of 

[43] and [38], by reducing the dimension of the state space. Their methods are 

sound, but at the cost of the precision of the verification results. Building on these 

results, several model checking tools including d/dt [19], Checkmate [36] and PHaver 

[28] have been developed. They have been used to verify several examples including 

voltage controlled oscillators, a biquad low-pass filter [19], and a AE modulator 

[36]. Methodologies using Petri nets have been developed [46] for modelling and 

computing the transitions between abstract states, with promising results. In [67], 

the authors proposed a non-linear approximation for the state space. Taylor approx­

imations are then used for the state space exploration algorithm to verify properties 

of a voltage controlled oscillator. As with many of the formal analog verification 

techniques, their methods are limited to circuits of minimal size and complexity. 

The most recent research on analog formal verification work is concerned with 

transforming the analog verification problem to one that can be solved with Boolean 

satisfiability (SAT) solvers. In [64], the authors have developed a methodology for 

formulating a SPICE style simulation into a format that can then be passed to a 

SAT solver. In particular this technique can capture at the transistor level, the 

non-linear behavior of the design under test. 

Many of the formal methods mentioned above limit the verification of the 

circuit to a set amount of time because of an explicit state exploration. In contrast, 

we propose in this thesis to use a predicate abstraction and symbolic model checking 

based method for the construction and verification of abstract models, which is 

valid over all time. In addition we enhance the symbolic model checking with a 

counterexample refinement procedure using constraint solving. Further details on 

related work on analog and mixed signal designs can be found in [68]. 
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1.3 Proposed Methodology 

In this thesis we propose a framework for the automated modelling and formal ver­

ification of analog designs. As a general guideline, we use a syntax and semantic 

that is familiar to the analog designer, so that the methodology could be adopted as 

quickly and painlessly as possible. Therefore, the starting point of the methodology 

(see Figure 1.1) is a circuit described using a SPICE deck [55]. This SPICE descrip­

tion is then systematically translated into a bond graph using the Dymola Modelling 

Laboratory [21] and the BondLib library [12]. Simplification rules are applied to re­

duce the bond graphs into their most optimal form and causality is automatically 

assigned. The system of equations can then be extracted from the bond graph using 

Dymola. If a set of ordinary differential equations (ODEs) is obtained, then we can 

move on to the verification step. Generally speaking, the equations representing the 

continuous time behaviour of an analog circuit are differential algebraic equations 

(DAEs). In this case, the DAEs must be transformed into their corresponding ODEs 

using symbolic manipulation. 

Next, the optimal ODE model that was extracted from the bond graph, is used 

to determine the properties of interest to verify them. We propose two verification 

methods in this thesis, one based on theorem proving the other on model checking. 

Normally, proofs generated using theorem proving require a great deal of effort to 

conduct a proof. MetiTarski, an automatic theorem prover for real-valued analytical 

functions, can automatically use deduction to prove properties over inequalities in 

terms of trigonometric and exponential functions. 

We first convert any non-linear components into their piecewise linear approx­

imation. Using the piecewise linear (PWL) approximation, we can then generate 

a closed form solution of each mode using an inverse Laplace transform. Then the 

property of interest is turned into an inequality over the closed form solution. Meti­

Tarski [4] can then indicate whether the inequality is true and if so will generate a 

full proof of its claim. In the case a closed form solution for the system cannot be 
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Figure 1.1: Modelling and Verification Methodology 

found we can consider models that are not defined in terms of ODEs but continuous 

time equations. In this case, we can automate the paper-and-pencil analysis that is 

usually done on such models. In the case that the proof does not complete because 

of extreme values of the special functions, we must turn to the second method. 

For the model checking method, we combine predicate abstraction and con­

straint solving. Using the HybridSAL [63] abstractor, the continuous analog state 

space is turned into a discrete Boolean state space which is verified using the SAL 

Symbolic model checker. This method is suitable for designs which fail normal model 

checking techniques due to a state space explosion. This abstraction comes at the 
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cost of the precision of the verification that can lead to counterexamples that do not 

exist in the real circuit. To eliminate the possible false negatives we use the HSolver 

[54] constraint solver to perform a counter-example check verification. 

Two methods are used in this thesis because neither technique is perfect for 

all verification cases. The theorem proving method can successfully automate very 

specific problems, such as the determination of the mode of operation of a transistor, 

because it supports a large set of functions. In the case of our predicate abstraction 

method, HybridSal can only support polynomial functions. Additionally, an auto­

mated theorem prover will provide a complete logical proof of its claims. On the 

other hand, if our theorem proving methodology is not successful, then no further 

information is returned thus making it impossible to say where the problem with the 

model lies. As well, the MetiTarski tool is limited to specifying basic properties as 

inequalities over closed form solutions. The HybridSAL tools allow for models de­

fined using differential equations that can be used directly after being extracted from 

the bond graph model and we can define more complex properties using Linear Tem­

poral Logic (LTL). In the case of verification failure, a counterexample is returned 

giving a direct way to determine the error in the design. The potential problem is 

that the generated counterexample could be caused by the over approximation of 

the abstracted model. Even with a counterexample and refinement strategy, this 

methodology might still not terminate. 

1.4 Thesis Contribution 

In this thesis we have developed a complete methodology for the automated and for­

mal verification of analog designs. The contribution of the thesis can be summarized 

as follows: 
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• A method that uses bond graphs to model analog circuits to aid in the extrac­

tion of formal specifications. We subsequently used it to generate automati­

cally the system of ODEs. 

• An approach that uses the MetiTarski theorem prover to verify functional 

properties. 

• A technique that combines predicate abstraction, abstract model checking and 

constraint solving to perform the verification and a counterexample refutation. 

• Application of the developed modelling and verification methodology on sev­

eral analog circuits including a tunnel diode, Chua's circuit and Colpitts os­

cillators. 

1.5 Thesis Outline 

The rest of this thesis is organized as follows: Chapter 2 will present the bond graph­

ing methodology for automatically extracting the state equations from an analog 

model. The basic concepts of bond graphs along with the background on the tools 

that are used in their construction is presented. This initial chapter is wrapped up 

with a complete illustrative example presented as further motivation behind bond 

graphs for the modelling of analog circuits. In Chapter 3, the methodology for using 

the MetiTarski theorem prover is developed and presented. We will discuss in detail 

the internals of MetiTarski and its decision procedure for proving inequalities over 

real functions. Furthermore, the results of several verification examples including 

the Tunnel Diode, Chua's Circuit and Colpitts Oscillator will be summarized. In 

Chapter 4, we will present the predicate abstraction methodology for the discretiza­

tion of the state space and subsequent formal verification using a symbolic model 

checker. We will analyze in detail both the techniques employed by the HybridSAL 

abstractor, the SAL Symbolic Model Checker and the HSolver constraint solver in 
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the verification methodology. An analysis of the same circuit examples from the 

theorem proving chapter will be done for a comparison of the verification method­

ologies. Finally we present the conclusion and future work in Chapter 5. 

12 



Chapter 2 

Bond Graph Modelling of Analog 

Circuits 

2.1 Introduction 

In this chapter we will describe the theory behind bond graphs in detail as well 

as the computer environments used to build, verify and simplify them. Continued 

emphasis will be put on the motivation behind their role in our methodology. This 

will be further supported with a detailed illustrative example that goes through the 

steps of automatically extracting the ODEs from an analog circuit. 

Bond graphs were introduced in 1961 by Paynter of MIT [50] who believed that 

"energy and power alone are the fundamental dynamical variables, the ultimate 

currency of all physical interaction and transaction." Multi-port elements, which 

at the time were common in circuit diagrams, were combined with bi-directional 

connectors (a precursor to the name "bond") to model the flow of energy between 

abstract systems. His work was extended by Karnopp and Rosenberg [40] to develop 

a standard reference on bond graph notation for the professional engineer. Their 

motivation to use Paynter's energy notation was the ability to analyze multiple 

domains concurrently using a single formalism. 
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Bond graphs define a set of primitives for the modelling of a wide range of 

practical systems. They are a domain independent framework that allow for the 

universal treatment of different physical domains. By using the concepts of energy 

flow, effort and conservation models can be constructed at several levels of abstrac­

tion. Since the causal relationships of bond graphs can be algorithmically generated 

[51], the model's system of equations can be automatically extracted. A further 

causality analysis can also minimize the computational complexity of the properties 

to be verified [47]. Moreover, since bond graphs are object oriented, larger models 

can be built from simpler blocks reducing the need for a complex equation layer 

[13]. The ability of bond graphs to preserve the computation as well as topological 

organization of analog circuits makes them an attractive technique for verification. 

2.2 Related Work 

The main application of bond graphs for modelling has been in the area of systems 

where two or more different physical domains interact. A wide range of examples are 

available, including a hydraulic motor [12], an enclosed biosphere thermal dissipation 

simulation [12], a siphon pump [58], and a car wheel suspension system [47] just to 

name a few. The research on using bond graphs for modelling analog circuits has 

not yet matured. 

In [51], Perelson developed an algorithm for the automatic conversion of an 

electrical circuit into a bond graph. It is shown that for certain complex series-

parallel networks, bond graphs represent a better and more efficient model than 

circuit diagrams. Additionally, it is shown that when causality is assigned, the state 

variables and state equation can be automatically determined. 

To address accuracy problems encountered when dealing with power devices, 

Besbes [7] successfully modelled an Insulated Gate-Bipolar Transistor (IGBT) using 
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bond graphs. The present day IGBT models were plagued by poor accuracy in repre­

senting switching behaviour. By isolating each doping region, the internal structures 

were properly modelled by combining equivalent circuit models with semiconductor 

equations. This was possible because of the modular and power flow based nature 

of bond graphs. Characteristic properties, such as the stored charge in the base of 

the BJT, were correctly handled by the bonds instead of equivalent circuits models 

that added stray capacitances to account for the behaviour. The work demonstrates 

the expressive power of bond graphs and the results indicate that bond graphs are 

a suitable candidate for modelling analog devices for verification. This is because of 

the precision obtained without introducing complex equations or relations. 

In [47], Torsten and Vachoux propose to add a bond graphing model of com­

putation (MOC) to the SystemC-AMS [2], system level modelling language. Their 

goal is to improve its modelling and simulation capabilities, using the domain inde­

pendent nature of bond graphs to avoid the setup of complex systems of equations. 

Since the power bonds integrate easily with block diagrams a full formal specification 

can be created for analog and mixed signal designs. 

On the verification side, there has been limited but promising progress with 

using bond graphs for verifying hybrid systems. In [58] Stromber et. al. use bond 

graphs as a front-end to the formal verification of an airplane landing gear system. 

By modelling the hydro-mechanically regulated pump that controls the wheel bay 

doors using bond graphs, they were able extract precise DAE models. In one bond 

graph they assume that the hydraulic power supply system behaves as an ideal 

constant pressure source. In the other, they explicitly model the hydro-mechanic 

regulator that keeps the pressure constant. The concepts of bond graphs allow for 

this multi abstraction based description of physical systems. Depending on which 

model was used, different parts of the system could be isolated and analyzed. 
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2.3 Preliminaries 

2.3.1 SPICE and Schematic Capture 

It has already been stated that the most common way to ensure that a designed 

circuit works properly is through simulation. The tool of choice for the simula­

tion of analog circuits is the Simulation Program with Integrated Circuit Emphasis 

(SPICE). The benefit of this software package is that it is open source and thus 

there are several versions for both academic and industrial uses. The initial versions 

were entirely text based, where a circuit was described using a text based netlist 

description called a deck. For example, a single resistor connected in series with a 

single DC voltage supply could be described using the deck file shown in Figure 2.1. 

VI 
Rl 

1 
1 

0 
0 

DC 
50 

0 3 

Figure 2.1: A Basic SPICE Deck 

In this case, each node of the circuit is represented by a number. The DC voltage 

supply has a value of 0.3 volts and the resistor has a resistance of 50 f2. 

Since much effort is required to construct netlists by hand for complex designs, 

graphical schematic capture programs have been developed for the automatic gen­

eration of netlists from abstract models. Schematic capture programs work in the 

same way- as if the circuit was being drawn with paper and pencil. Circuit symbols 

and external models called subcircuits can be connected with lines that represent 

wires. The schematic capture programs save much time for the designer since the 

circuit netlists can be automatically generated for input into a SPICE simulator. 
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2.3.2 Bond Graph Theory 

There exists nine basic bond graph elements (as shown in Table 2.1 ) that can 

be used to model any possible physical component. The storage group contains 

the elements for capacitive storage (C type) and inductive storage (I type). The 

supply group contains the sources of effort and flow. The reversible transformation 

group contains a transducer and gyrator. The irreversible transformation group 

contains the elements for thermal losses and entropy producing processes. While 

the distribution group contains junctions that represent the generalized domain 

independent Kirchoff Voltage Laws (KVL) and Kirchoff Current Laws (KCL). 

Table 2.1: Basic Objects of Bond Graphs 

Group 
Storage 
Supply 

Reversible transformation 
Irreversible transformation 

Distribution 

Components 
Capacitive/Inertial 

Source of effort/Source of flow 
Transducer/Gyrator 

Entropy producing process 
0 and 1 junctions 

Electrical Domain Example 
Capacitance/Inductance 

Voltage source/Current source 
Transformer 

Thermal Resistance 
KVL, KCL 

Connections 

Bond graphs are based on the first principle of energy conservation. The most basic 

element of a bond graph is the power bond (Figure 2.2(a)). It is the energy link 

between two components. It is represented graphically by a harpoon (half arrow), 

which points in the direction of positive power flow. The bond represents two 

variables, effort and flow. In the electrical domain, the effort variable is represented 

by voltage and the flow by current. It follows that the product of the effort and flow 

variables represents the power flowing through the bond. Additional variables can 

also be derived from the bonds. The displacement and momentum energy variables 

are related to the energy and flow by their time derivatives. 
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A V 0 A A 

V 
(a) Power Bond (b) Junctions 

Figure 2.2: Basic Bonds 

V 

The other basic component is the junction, which represents a circuit node 

or mesh (Figure 2.2(b)). At the 0 or common-effort junction the efforts are equal, 

which is analogous to a node in a circuit. At the 1 or common-flow junction, the 

flows are equal, which is analogous to a mesh in a circuit. 

Elements 

Using the bonds and junctions, it is possible to connect discrete elements together 

in a bond graph. There are different types of single and multi port interfaces that 

can be used to represent many possible configurations. The first basic elements are 

the sources of effort or flow. They are analogous to voltage and current sources in 

circuit diagrams. Additional single port components are used to represent resistors, 

capacitors and inductors. They are denoted using the letters R, L or C (see Figure 

2.4(a)). 

Simplifications 

There exists two levels of simplification that can be performed on bond graphs. 

Firstly, there are equivalence rules for the junction objects. These rules are used to 

reduce the number of bonds in a circuit and are based on the simplification of the 

underlying power equations. The equivalence rules can be performed automatically 

to a bond graph (see Figure 2.3). 
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Figure 2.3: Simplification Rules for Junctions [8] 

The second level of simplification is analogous to the concept of combining 

many resistances into one equivalent resistance. The similar idea can also be applied 

in the physical domain to two rigidly connected bodies that can be combined into a 

single mass [31]. By choosing to combine certain bond graph elements, it is possible 

to reduce the complexity of the system without affecting the overall function. This 

can result in simpler DAEs that are extracted from the reduced bond graph model. 

By using a simpler model, the number of states can be reduced, allowing for a less 

complex verification problem. 

Causality 

Causality is the determination and representation of the directional relationship 

between an input and an output [8]. In fact, the causality concept is very important 

as it allows to detect any inconsistency in the circuit settings such as trying to 
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connect two voltage sources with different voltage levels. By adding a causal bar to 

the end of a bond, the system equations that represent the two variables of effort and 

flow can be indicated explicitly. There are many rigorous explanations on how to 

assign the causality of a bond and how it relates to the system as a whole [8, 27, 40]. 

Fortunately, a simple definition exists that can be used for the direct translation of 

circuit diagrams. The causal stroke is attached to the side of the bond that computes 

the flow variable [12] (Figure 2.4(b)). It is important for the modeler to know how 

to assign causality manually because it can aid in the development of complex bond 

graphs. However, in general causality is applied automatically using techniques like 

sequential causality assignment procedures (SCAP) leading to the construction of 

the causal bond graphs [47]. 

Sf ^ R S f l—^R 
S e — ^ C S e — ^ C 
(a) R and C Bonds (b) Causality Added 

Figure 2.4: Bond Graph Basics 

The causality stroke determines at which point the flow variable is to be cal­

culated. Causality can be computed automatically, but it is recommended to use 

causal bonds since they can help in analyzing the model when designing larger sys­

tems. Certain bond graph elements only have a set number of causalities that can 

be assigned. For instance, at 0 junctions the efforts are equal which indicates that 

only one causality stroke is assigned because of the single flow equation defining the 

junction. Similarly, at 1 junctions the flows are equal, which indicates that there 

should be only one bond without a causality stroke because of the single effort equa­

tion defining the junction. For capacitors and inductors causality is chosen so that 

differential equations are generated. The stroke is away from capacitors and towards 

for inductors. 
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In summary, causality assignment is advantageous as it provides computational 

information of the system like the number of state space variables which leads to 

the automatic derivation of the system equations. It also aids in checking for the 

presence of algebraic loops during the model execution, which results in complex 

DAEs. Additionally, causality analysis is very useful in detecting ill posed models 

and can give insight to the correctness and consistency of designs. 

2.3.3 Dymola Modelling Laboratory 

Dymola [21] is an advanced tool for the complete modelling and simulation of phys­

ical systems including electrical, thermal and mechanical domains. It comprises of 

a graphical user interface (GUI) that allows connections between abstract models. 

As well, it contains a simulator that employs advanced symbolic manipulation tech­

niques to produce a solution to the system equations. At its core is the open source 

Modelica language [61] that defines the libraries and components. The automati­

cally generated symbolic solution to the system equations is also represented in the 

Modelica syntax. A tunnel diode can be defined at the equation level using the 

syntax in Figure 2.5. 

model TunnelDiode 

extends Modelica. 

equation 

i = v"3 - 1.5*v~2 

end TunnelDiode; 

Electrical 

+ 0.6*v; 

.Analog Interf aces OnePort; 

Figure 2.5: Modelica Syntax 

Since Modelica is object oriented, the TunnelDiode model must extend from a pre­

viously defined "OnePort" object that defines a generic input/output relation. The 
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tunnel diode in this example is modelled by a third order polynomial where i repre­

sents the current through the diode and v the voltage drop across it. 

The Modelica language and consequently Dymola are object oriented. This 

allows for component reuse as well as the ability for external libraries to be easily 

built. The Dymola Bond Graphing Library (BondLib) is an example of one such 

library. Developed by Cellier et al. [12], BondLib demonstrates the benefit of 

object oriented modeling with bond graphs. The transistor models for BJTs and 

MOSFETS contained in the library can be set to different levels of complexity [12]. 

At each level, parasitics, current leakages and non-ideal effects can be added to the 

model by specifying the correct parameters in Dymola. The parameters are available 

to the modeler to dynamically alter the bond graph. For example, the difference 

between the MOSFET level 0 and 1 bond graphs is that the capacitances between 

the source, drain, gate and body are set to zero. With the help of bond graphs and 

BondLib the designer is able to maintain a deep understanding of the dynamics of 

the design under verification. 

The symbolic manipulation performed by Dymola is quite advanced. By cor­

rectly ordering the equations and determining the constraints of the model, the final 

state calculation can be simplified. For example, in the physical domain Dymola 

will determine that two rigidly connected bodies can be represented by a single 

state variable [23]. Similarly, in the electric domain this is analogous to multiple 

capacitors that are connected in parallel or series being lumped together into a sin­

gle effective capacitance. Function tearing [25] of non linear equations is also used 

to "break" algebraic loops and reduce the dimension of sub-models. This further 

decreases the number of state variables in the final solution. By combining the 

domain independent properties of bond graphs as well as the advanced symbolic 

manipulation of Dymola, the automatic extraction of ODEs from an analog circuit 

is possible. 
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2.3.4 Mathematica 

The tearing function described for reducing the dimension of the differential equa­

tions comes at a computational cost. The symbolic methods employed by Dymola 

can potentially create quite a large number of "dummy" variables that are used 

to effectively "break" the algebraic loops. The only problem is that for large sys­

tems, the resulting Modelica description can be very complicated. Since Dymola 

does no internal simplification, the determination of the differential equations by 

hand can be quite taxing. Therefore, it is necessary to use an algebraic system 

such as Mathematica [3] to automatically simplify and remove the redundant equa­

tions. Mathematica, an advanced complete algebra system, contains functions such 

as "Simplify" (see Figure 2.6) that can be used to perform algebraic transformations 

on a set of generic expressions. 

I n [ l ] := Simplify [Sin [x]"2+Cos[x]~2] 
Out[l] := 1 

Figure 2.6: Mathematica Simplify Command 

MathModelica [39] is a software bridge between Modelica and Mathematica. It 

enables the use of the Mathematica "Simplify" function directly onto the Modelica 

description. By combining Dymola, Modelica, Mathematica and Mathmodelica the 

path to the automated extraction of the system of differential equations is complete. 

2.4 Modelling Methodology 

In the following, we present the methodology for automatically extracting the system 

of ODEs from an analog circuit. By using bond graphs we are able to conveniently 

model the topology of an analog circuit, which can aid at both the design and 

verification stages. The methodology is depicted in Figure 2.7. 
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Figure 2.7: Bond Graph Modelling Methodology 

Based on what behaviour or functionality is required in the design, the ana­

log circuit is first constructed by hand with a Schematic Capture program that uses 

common symbols to represent the necessary components. This high level abstraction 

is then automatically transformed into a SPICE circuit model by macros contained 

within the schematic capture program. Using the Dymola Modelling Laboratory 

in conjunction with the BondLib library, a bond graph is created directly from the 

SPICE model by using a one-to-one mapping between the nodes and components. 

At this point, the bond graph is not in its simplified form. Using the rules described 

before, the bond graph is reduced. With the bond graph in its reduced form we are 

assured that the computational complexity is at a minimum. Next, the preferred 

causality is assigned to the bonds to ensure that during the extraction stage, differ­

ential equations are produced instead of integrals. Once the simplified and causal 

bond graph is formed, then Dymola is used again to automatically generate the 
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Modelica description that contains the differential equations. For smaller designs 

the equations can be easily read directly from it. In other cases, when the design 

is more complex, the Modelica description may contain redundant equations due to 

the conversion process from DAEs to ODEs. In this case, the simplification rules in 

the algebraic system Mathematica are employed to automate the ODE extraction. 

2.5 Illustrative Example 

The tunnel diode oscillator circuit in Figure 2.8.(a), which has been used by many 

researchers (e.g.,[36, 38]) as a benchmark in formal verification research, will be used 

as an illustrative example to demonstrate the modelling methodology. 

The tunnel diode oscillator demonstrates the effect of resonant tunneling that 

causes a negative resistance to appear at small forward bias voltages. Essentially, 

for some range of voltages the current through the tunnel diode decreases with 

increasing voltage. This negative resistance can be used to create a reliable oscillator 

that functions under many different operating conditions. 

2.5.1 Spice to Bond Graph 

Figure 2.8. (b) is a SPICE representation of the tunnel diode oscillator. Each node 

is represented by a number and each component is represent by an alphanumeric 

name. As expected, the conversion is a one to one mapping of the circuit diagram to 

the SPICE model. An external subcircuit model defines the behaviour of the tunnel 

diode. 

The transformation from a circuit diagram to bond graph is comparable to the 

previous HSPICE example. Each circuit diagram component is transformed into its 

bond graph counterpart. They are then interconnected by transforming nodes into 

0 junctions and meshes into 1 junctions as shown in Figure 2.9. This is preformed 

according to the bond graphs rules described in Section 2.3.2. 
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(a) Circuit Diagram 

Figure 2.8: Tunnel Diode Oscillator 
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Rl 1 2 50 
Ll 2 3 lu 
CI 0 3 lp 
Dl 0 3 TunnelDiode 

. END 
(b) HSPICE Code 

VIN Rl 
A 

/ 

Ll 1 
A 

"h 0 ^ — 1 1 — ^ 1 0 

(H" 

i — ^ ( H n 

/ 

Cl 

Figure 2.9: Initial Bond Graph 

2.5.2 Simplifications 

Simplifications of the bond graph in Figure 2.9 can be made. The removal of the 

bonds that are connected to ground can be removed since the voltage at those nodes 

is zero, indicating that the power flow is zero. Since the flows at 1 junctions are 

equal, 1 junctions in series can be merged together. The resulting simplified bond 
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graph is given in Figure 2.10(a). 

As a final step to the simplification process, any junction that has only two 

bonds connected to it can be removed since no power that flows through a two port 

junction can divert to another component as shown in Figure 2.10(b). 

Dl 
A 

VIN 

Rl 
A 

Rl 
A 

Dl 

-̂  1 ^ 0 VIN — ^ 1 — ^ 0 

V 
LI 

V 
1 

V 
LI CI 

V 
CI 

(a) First Simplification Pass (b) Second Simplification Pass 

Figure 2.10: Tunnel Diode Bong Graph Simplifications 

2.5.3 Causality Assignment 

The next step in the conversion process is to add a causality stroke to each bond. 

The C and I components have a preferred causality that is assigned first with the 

current being calculated at the inductor and away from the capacitor. The same 

idea is used to determine the placement of the causal bars at the 0 and 1 junctions. 

Since at the 1 junction there is a single effort equation since the flows are equal 

there should be only one bond without a causal bar. For the 0 junction where there 

is a single flow equation and the efforts are equal, there should be only one causal 
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bar. The causality of the resistor and the tunnel diode are arbitrary. The final bond 

graph is defined as shown in Figure 2.11. 

Rl Dl 
A A 

VIN ^ 0 

V 
LI 

V 
CI 

Figure 2.11: Tunnel Diode Causal Simplified Bond Graph 

2.5.4 Extracting the System of Equations 

Once the bond graph is built, the set of system equations can be extracted and 

simplified. To remove redundant equations we use the rewriting functions of Math-

ematica. 

The analog design can then be described by the system of ODEs as follows: 

Consider a set of variables Xk(t) e E, z G { 1 , . . . ,d}, t e R, an ODE is a 

system consisting of a set of equations of the form: 

Xk 
dxk 
dt 

= x = Fk(x(t),u{t),t) 

where x(£) are variables defining the voltage across the capacitances and the current 

through the inductances. u(t) £ Mm are variables defining the input signals, with 

the vector fields Fk. 

Using the Dymola environment, the bond graph for the tunnel diode is con­

structed. The BondLib library contains graphical modules for bonds and nodes. 

Dymola then converts the bond graph into a Modelica simulation description. In­

dex reduction, function tearing and further algorithms then automatically transform 
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the DAEs to ODEs from the Modelica description as shown in Figure 2.12. In par­

ticular, the symbolic solution to the system of equations can be read directly from 

the Modelica description. There are cases where it is not as simple to determine 

the equations. Since Dymola uses dummy variables to aid in the conversion from 

DAEs to ODEs, many extra variables may be present in the final output. By using 

rewriting rules in Mathematica, the system of DAEs can be simplified. 

/ / Dummy Variables 
r e s i s t o r . v := r e s i s t o r . R * i n d u c t o r . i ; 
r e s i s t o r . n . v := cons tan tVol tage .V-res i s tor .v ; 
inductor .v := r e s i s t o r . n . v - c a p a c i t o r . v ; 
c a p a c i t o r . p . i := induc to r . i - t unne lDiode .p . i ; 

tunnelDiode.p . i = capac i tor . v~3 - 1.5*capacitor.v~2 + 0 .6*capaci tor .v ; 

/ / Symbolic so lu t ion 
/* Original equations 
induc tor .L*der ( induc tor . i ) = inductor .v ; 
- c a p a c i t o r . O d e r ( c a p a c i t o r . v ) = - c a p a c i t o r . p . i ; 
*/ 

d e r ( i n d u c t o r . i ) := induc tor .v / induc tor .L ; 
de r (capac i to r .v ) := c a p a c i t o r . p . i / c a p a c i t o r . C ; 

Figure 2.12: System of ODEs generated by Dymola 

With the simplified equations, we can now focus on the current II and the 

voltage VQ across the tunnel diode in parallel with the capacitor of the serial RLC 

circuit (Figure 2.8). The extracted simplified ODEs are given as Vc = ^(—IdiYc) + 

IL) and IL = jr{—Vc — -£JIL + Vin), where Id{Yc) describes the non-linear tunnel 

diode behaviour. 
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2.6 Summary 

Bond graphs have been characterized as "the most basic graphical modeling paradigm 

that is fully objected-oriented" [12]. It follows that the concept of encapsulation can 

be applied to bond graphs to model systems at different levels of complexity. The 

benefit being that there is no need for single complex equation layer to define a 

system and thus the system of equations can be extracted from the model. 

Now that a method for extracting the system of ODEs from a model has been 

presented, the next chapter will describe in detail a method for formally verifying 

properties on the extracted models. If during verification, the models need to be 

changed to take into account different topologies, the bond graphs can be quickly 

modified and the new system equations obtained. 
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Chapter 3 

Verification by Automated 

Theorem Proving 

3.1 Introduction 

In this chapter we will present the work on using the MetiTarski theorem prover 

for the verification of properties on the system of ODEs that were extracted from 

the analog circuit bond graph model. There is a great need for research in this area 

since there has been limited advancement on this front. We strongly believe that 

automated methods should be developed to take advantage of the high confidence 

in results provided by theorem proving, where a complete proof with logical infer­

ence steps is generated. The main hurdle is the great deal of expertise needed to 

interactively guide a proof to fruition. 

MetiTarski [4] is an automatic theorem prover for real-valued analytical func­

tions, including trigonometric and exponential functions. It works by a combination 

of resolution inference and algebraic simplification, invoking a decision procedure 

(QEPCAD) [9] to prove polynomial inequalities. Since many of the circuit equa­

tions we deal with in the analog domain contain exponentials, it is a viable option 
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for formally verifying the properties of interest. The output of MetiTarski is a com­

plete proof that contains algebraic simplification and decision procedure calls that 

can be verified using other tools. 

In the last decade a new engineering field has emerged: hybrid system theory. 

It encompasses techniques for the automatic design and analysis of systems with real­

time and continuous behavior. In [5], the authors use MetiTarski to solve various 

hybrid system verification problems including collision avoidance, navigation and 

biological mutant examples. In their methodology, they model the hybrid systems 

over several modes of operation. In each mode, the variables of the system vary 

according to a set of ODEs. By using the inverse laplace transform they solve 

for closed form solutions of each mode of operation. Properties are then proven in 

each mode using MetiTarski. By taking advantage of hybrid system theory, theorem 

proving is now emerging as a serious candidate for the verification of analog systems. 

This is because an analog circuit verification can be viewed as a hybrid system if it 

is defined using a proper model. 

3.2 Preliminaries 

3.2.1 Theory Behind MetiTarski 

There exists few methods to automatically prove statements involving elementary 

functions such as In, exp, sin, cos and sqrt. In their MetiTarski tool, Akbarpour 

and Paulson [4] use the decidability of real closed fields to automatically prove 

inequalities over elementary functions. MetiTarski replaces the functions with upper 

and lower bounds in an attempt to reduce the problem so that a decision procedure 

can be used to automatically prove the property of interest. Before delving into its 

internals, it is important to understand some basic formal method terminology (see 

Table 3.1). 
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Table 3.1: Formal Definitions [52] 

Quantifiers 
Axioms 
Theory 
Model 

Consistent Theory 
Complete Theory 
Decidable Theory 

3, V (There exists and For All) 
Logical Statements 
Set of Axioms 
Abstract Structure that satisfies a Theory 
The theory has at least one model 
Every model that is true can be proven 
An algorithm exists for evaluating the truth of a model 

An algebraic field is an abstract structure that contains the operators of ad­

dition, subtraction, multiplication and division. To be called real closed, the field 

must satisfy a set of axioms defined by the operators as well as be able to represent 

atomic polynomial formulas that contain inequalities. These formulas can also con­

tain conjunctions, disjunctions, negations and quantifiers. A real closed field must 

also be ordered and thus meet following axioms [52]: 

— 1 : is negative 

Vx : x or —x is positive 

Vx, y positive : x + y,x * y are positive 

Alfred Tarski proved in 1930 that RCF was decidable by presenting quantifier 

elimination procedure [11]. Given an RCF quantified formula, an equivalent formula 

that has no V or 3 components can be produced. Take for instance, 

a / O A (3x) : (ax2 + bx + c = 0) 

from the rules governing the solution of the quadratic equation [33], we know that 

for there to be a real solution the discriminant must be greater than or equal to zero 

or 

b2 - 4ac > 0 
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and by using this result, we can remove the quantifiers to produce the following 

result 

(a ^ 0 A b2 - 4ac > 0) V (a = 0 A b ^ 0) V (a = b = c = 0) 

This example is trivial, but for more complex equations his method could not be 

implemented in practice. There has been further work on the decision procedure of 

RCF by McLaughlin, Harrison and Hormander [48]. Their implementations are more 

efficient than Tarski's but fail to work on polynomials with a degree greater than six. 

QEPCAD-B [9] is a recent and efficient decision procedure for the complete theory 

of RCF. It uses cylindrical decomposition to extract polynomials from an input 

formula and then uses abstraction techniques to generate an r-dimensional space, 

where r is the number of variables in the input formula. The abstract regions are 

then arranged in a cylindrical domain which allows an efficient removal of quantifiers 

via linear algebraic methods. 

3.2.2 MetiTarski Input Syntax 

MetiTarksi operates on the first-order formula in the Thousands of Problems for 

Theorem Provers (TPTP) format that includes the corresponding axioms. Take for 

instance the following code. 

fof ( 
Tunnel,conjecture, ! [X] : 
( 
(0 <= X & X <= 2.39*10"(-9)) => 
-0.0059 - 0.000016*exp(-2.55*10-8*X) + 0.031*exp(-5.49*10~7*X) 
< 0.03 

) 
). 

Figure 3.1: MetiTarski Syntax 

''fof" indicates to MetiTarski that the logic language used is a first-order formula. It 
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is then followed by a label of the proof as well as the keyword "conjecture" indicating 

that the following formula is to be proved with the included axioms. The conjecture 

is read as follows: For all (!) X between 0 and 2.39 x 10~9 the formula is always less 

than 0.03. For a complete syntax guide see Table 3.2. 

Table 3.2: TPTP Syntax Guide for Figure 3.1 

fof 
I 

X 
& 

exp 
< 

First order logic formula 
Universal Quantifier (V) 

Quantified Variable 
Logical AND 

e (exponential function) 
Less Than 

Axioms 

In addition to the problem definition, axioms must be appended to tell MetiTarksi 

what clauses to use when performing the special function to polynomial substitution. 

Fortunately, this is automated using external scripts, but it is still necessary 

to indicate what family of axioms is required. It is very important that only the 

necessary axioms files are included in the TPTP description, since each set adds 

computational complexity to the final proof. For example, there are two sets of 

axiom declarations for the exponential function. One for regular bounds and one for 

extended bounds. There are cases where including the extended bounds will make 

the inequality under test unsolvable. In reality, removing the extra axioms will 

enable MetiTarski to complete the proof. The converse is also true, if for instance 

the TPTP description contains trigonometric functions and those axioms are not 

included, then the proof will also be unsolvable. 
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Range Reduction 

Since the elementary functions are being replaced by polynomials, it is necessary 

that the bounds on the quantified variables vary closely around 0. If the quanti­

fied variables get too high or too low, the accuracy of the polynomials is greatly 

diminished. Therefore, MetiTarski uses internal range reduction methods to prop­

erly scale the value of the variables to ensure that the polynomials are an accurate 

approximation to the real function. 

There are cases though when the internal range reduction is not enough. When 

dealing with closed form solutions that contain trigonometric functions with bounds 

that are very large (greater than 671"). Then manual range reduction is required. 

Since the trigonometric functions are cyclical, it is possible to remove or add mul­

tiples of 2ir. By doing this, MetiTarski will be able to complete proofs that fail 

otherwise. 

3.2.3 Piecewise Linear Approximations 

The first thing to note is that the input to MetiTarksi is a closed form solution that 

can contain any number of analytical functions. To obtain closed form solutions we 

have used the inverse Laplace Transform on the system of equations representing 

the behaviour of the system. Therefore, it is necessary that the ODEs be linear and 

thus we must use piecewise linear models for the analog component. PWL models 

are adequate to be used to model the components for the following reasons [15]: 

• Piecewise-linear circuits are the simplest class of nonlinear circuits. 

• The behaviour of many op-amp and diodes and switch circuits can be reason­

ably approximated as piecewise-linear. 

• Linear methods are substantially more tractable than non-linear ones, even 

when they divide the problem into multiple modes. 
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Take for instance the behaviour of the tunnel diode. As shown in Figure 

3.2, the behaviour can be correctly approximated by a piecewise linear model that 

operates over three modes of operation. 

Mode 1 

-

. / / gl 

Mode 2 

A g2 

l • 1 • 

Mode 3 11 

8 3 / / 

1 • 1 1 1 ' - . 1 1 1 H 1 • 1 

0 0.2 gl °-4 °-6 E2 0.8 1 
VD 

Figure 3.2: Tunnel Diode Current Linearization [15] 

3.2.4 Inverse Laplace Transform for Solving Linear Analog 

Circuits 

A common way to solve the variables of a circuit is to perform nodal analysis, by 

using KVL and KCL to work through the circuit solving for node voltages and 

currents. The problem is that many equations must be solved for required several 

computation steps. The inverse Laplace transform method is an another efficient 

way to solve for the closed form solutions of an analog circuit. Any circuit can be 

described by n first order differential equations [65]. By extracting the differential 

equation for each energy storing element (capacitors and inductors) and then as­

sembling the "state model" matrix, an inverse Laplace transform can be used to 

solve for the currents and voltages. The benefit of using this method is that it is a 
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one step process, to go from equations to solution instead of solving many equations 

encountered when using the Kirchoff circuit laws. The standard circuit state model 

[65] is 

x = Ax + B 

Where the x vector represents the state variables from the energy storing elements. 

A is the circuit matrix because it contains the values of the circuit parameters. The 

B matrix is called the distribution matrix because it contains values that depend on 

the location of the power sources. 

Let X denote the Laplace transform of x (X = Cx); then sX — xo = AX + —, 

and solving for X we have X = (si — ^4)_1(a;o) + 7 . With the state model defined, 

we can take the inverse Laplace Transform of X to solve for the closed form solution 

of the circuit equations. 

3.2.5 Maple Computer Algebra System 

Maple [1] is a full computer algebra system that can be used to efficiently manipulate 

many types of data. As well there are internal functions that are available to perform 

many actions on matrices, solving equations and symbolically evaluating expressions. 

The functions in Table 3.3 are used to solve the closed form solutions of the ODEs 

that were obtained from the bond graphs. 

Table 3.3: Useful Maple Functions 

Function 
fsolve() 

eval() 

invlaplaceQ 

Description 
Uses numerical approxima­
tion techniques to find a 
decimal approximation to 
the solution to the equation 
Evaluates an expression 

Takes the inverse laplace 
transform of vector X 

Example 
fsolve(x=0.1,t) 

eval(a;2,x=2) 

invlaplace(X,s,t) 

Result 
Value of t where 
x(t) = l 

Will output the 
value 4 
Returns x(t) 
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3.3 Verification Methodology 

In the following, we demonstrate a methodology for the automatic verification of 

functional properties of analog designs using MetiTarski. An overview of the pro­

posed, methodology is given in Figure 3.3. 

Property of 
Interest 

Transition 
Relations 

Initial 
Conditions 

MAPLE 

Closed form 
solutions for 
each mode 

Express as 
Inequality MetiTarski 

MN 

Proof Generated 
If True 

Does not terminate 

Add 
Axioms 

Does not terminate 

Range 
Reduction 

Figure 3.3: Overview of the Verification Methodology 

We first obtain the system of differential equations from the circuit of interest. 

Any non-linear elements are transformed into their PWL models. The transition 
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relation between each mode of the PWL model is determined and differential equa­

tions (ODEs) are constructed over each mode of operation. Starting in any mode, 

the ODEs and initial conditions are supplied to the computer algebra system Maple 

and an inverse Laplace transform is performed to find a closed form solution for 

each state variable as a function of time. Using the transition relations, Maple is 

used to find the time instance where the system switches modes. At that time, the 

initial conditions for the next mode are calculated and an inverse Laplace transform 

is performed to again find a closed form solution. This is repeated until each mode 

has been visited as shown in Figure 3.4. 

Switching 
Conditions 

Figure 3.4: Determining the Closed Form Solutions for Each Mode 
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We then turn the verification property into an inequality over special functions. 

A first-order formula in the Thousands of Problems for Theorem Provers (TPTP) 

format (see Chapter 3.2.2), including the corresponding axioms, is then supplied 

to MetiTarski. MetiTarski uses an extension of the TPTP format, including infix 

notation for the arithmetic and relational symbols [59, 60]. 

If MetiTarski is successful, it delivers a proof and we are done. If unsuccessful, 

it will run until terminated by the user. Additional axioms are then added or 

removed to aid MetiTarski in formulating a proof. There are certain axioms that 

are available for special functions that take on extreme values. Including them 

unnecessarily in proofs will increase the computation time. If still unsuccessful, 

range reduction is applied to the trigonometric functions to further eliminate any 

extreme values that can cause problems for MetiTarski's decision procedure. 

In cases when MetiTarksi still does not terminate, it could be because the 

functions take on values that are beyond the limits of the deduction methods. There 

are also cases when a closed form solution to the ODEs cannot be computed, due to 

trigonometric or non-linear terms. As well, it is possible the loss of precision of the 

PWL modelling could be affecting the results. In these cases a different approach 

altogether must be taken. 

Since MetiTarski can prove inequalities over many analytical functions, we pro­

pose instead of using linear methods to solve for the closed form solution of a system 

of differential equations, and hence we will start directly with circuit model current 

voltage relationships. Properties concerning the DC operating points (mode of op­

eration) could then be easily verified. Essentially, we are eliminating the laborious 

paper- and-pencil analysis that is necessary. 
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3.4 Applications 

The following section will present examples of analog circuits on which we applied 

our methodology. At the end of each example, the results are summarized in order 

of the property that was verified. The experiments were all performed on a 2.8 GHz 

Dual Quad-Core Mac Pro. 

3.4.1 Tunnel Diode Oscillator 

The tunnel diode oscillator from Chapter 2 is shown again in Figure 3.5. Instead of 

node numbers, we now show the current and voltage variables on the circuit diagram. 

It demonstrates the effect of resonant tunneling that causes a negative resistance to 

appear at small forward bias voltages as shown in Figure 3.2. Essentially, for some 

range of voltages, the current through the tunnel diode decreases with increasing 

voltage. This negative resistance can be used to create a reliable oscillator that 

functions under many different operating conditions. We intend to verify that for 

certain initial states and component values, the tunnel diode oscillator will not 

oscillate. By verifying this property, we will be able to eliminate designs that do 

not work. 

•L R L 

vin 

T_ 
=I^r>D v. 

o 

Figure 3.5: Tunnel Diode Oscillator 

The differential equations of the circuit are defined as: 

1 
VC=^(-ID(VC) + IL) 

h = ji{-Vc-RIL + Vin) 
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ID(VC) is a PWL model that has three modes of operation. We can define the PWL 

model [15] of the tunnel diode as 

ID(VC) = -\(G1E1+G2E2) + (G0 + ̂ G1 + ̂ G2)VD + ̂ G1 \VC - £ i | + ^G2 \VC - E2\ 

Where gi, g2 and 53 represent the slope of the best fit curve in each mode. E\ 

and E2 represent the voltages where the model switches modes. Figure 3.2 shows the 

real continuous behaviour of the tunnel diode as well as the PWL approximation. 

In region 1, G0 = g\. In region 2, G0 + G\ = g2. In region 3, Go + Gi + G2 = g$. In 

this example, gx = 0.2616, g2 = -0.0992, g3 = 0.2599, Ex = 0.276 and E2 = 0.723 

giving 

/ 0.2616Vc if Vc < 0.276 

ID(VC) = { -0.0992\/c + 0.0997 if 0.276 <VC < 0.723 

0.2599Vc - 0.1599 if Vc > 0.723. 

The system is now completely specified. Each mode is defined by a set of 

ODEs and switching constraints. The resulting time-deterministic hybrid model 

can be illustrated as an FSM as shown in Figure 3.6. Each mode of operation is 

represented by a state circle and the switching constraints are indicated above each 

directional arrow. 

VD > 0.276 VD > 0.723 

VD < 0.276 V VD< 0.723 V 

Figure 3.6: The Hybrid Model of the Tunnel Diode Current 

Suppose the parameter values are R = 50f2, L = 10~6 H, C = 10"9 F, V = 0.3 

V, the dynamics of mode 3 can be written as the first order linear differential system 

x = Ax + B, where the A matrix represents the coefficients of the state variables 

and the B matrix represents the constants. 
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X = 
h 
Vc 

,A = 
-3 x 105 -10 6 

109 -2.621 x 108 
,B 

3 x 105 

0 

Let X denote the Laplace transform of x (X = Cx); then sX — XQ = AX + —, 

and solving for X we have X — (si — A)~1(x0) + —. With the initial state as x0 = 

(0.025, 0.74)T, chosen to lie in Mode 1. Using Maple we have 

X = 

, 0.300 x l 0 \ 
(s + 0.262 x 109)(0.55 x 10"2 + ) 

O 

(s2 + 0.262 x 109s + 0.108 x 1016) 

(0.550 x l Q 7 +
0 - 3 0 0 x l ° 1 5 ) 

s 

0.131 x 106 

+ 

(s2 + 0.262 x 109s + 0.108 x 1016) 

(0.131s + 0.393 x 105) 
(s2 + 0.262 x 109s + 0.108 x 1016) (s2 + 0.262 x 109s + 0.108 x 1016)) 

The closed form solutions of the state variables are obtained by taking the 

inverse Laplace transform d~xX and we obtain 

Vc(t) = 0.116 e- 2- 5 8 x l° 8* + 0.278 - 0.262 e - 4 1 9 x l ° 6 * 

IL(t) = 0.448 x 10"3
 e-

2-58><108i + 0.0727 - 0.0677 e-
4-19><lo6i 

Now we have the state space representation of the system for the third mode 

of operation. The next step is to determine the time when the tunnel diode switches 

from mode 3 to mode 2. By using Maple, we determine that the condition Vc < 0.723 

is true at t = 2.38 x 10~9 s. The values of both Vc and II are evaluated at this time. 

We then use these values for XQ and again repeat the process of finding the matrix 

X, and taking its inverse Laplace transform. This is repeated as shown in Figure 

3.4 until we have visited each mode and have generated the closed form solutions 

for the two state variables. 
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For mode 2, the closed form solutions are 

Vc(t) = 0.278 + 0.0025 e
8-79*107* - 0.0045 e-

ll0xl°7t 

IL(t) = 0.0727 + 0.00039 e-1-10*107* _ 0.000028 e
8 - 7 9 x l ° 7 t 

For mode 1, the closed form solutions are 

Vc(t) = 0.323 - 01.64 e"256*108 ' + 0.56 e - 4 - 2 1 x l ° 6 i 

IL{t) = -0.076 - 0.00064 e'2^xloH + 0.144 e-4-2ixio«t 

To demonstrate the power of MetiTarski, we seek to define an oscillation prop­

erty that can be proved over all modes of operation. One such property is "For a 

set of initial conditions, the circuit will not oscillate". This property can be more 

exactly defined as "The current through the inductor will never pass some upper or 

lower bound". It can be described formally as : 

[L/ < 0.03] 

For example, to prove that in mode 1, Lj is always less than 0.03 we use the 

syntax shown in Figure 3.7. 

fof ( 
Tunnel,conjecture, ! [X] : 
( 

(0 <= X & X <= 2.39*10"(-9)) => 
-0.0059 - 0.000016*exp(-2.55*10~8*X) + 0.031*exp(-5.49*10~7*X) 
< 0.03 

) 
) . 

Figure 3.7: MetiTarski Input For the Verification of Mode 1 

Now suppose we choose the component values R = 0.3 O, L = 10~6 H, C = 

10~9 F and V = 0.3 V. Using the same inverse Laplace transform methodology we 
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get the closed form solutions of the state variables. The property of interest is now: 

For a set of initial conditions the trajectory of the oscillation reaches a final set and 

remains bounded [28]. This can be described formally as: 

[Vc > 0 A Vc < 0.9 A Lj > 0 A Lj < 0.08] 

MetiTarski proves both properties over the three modes of operation. For 

property 1, it is proved that the circuit does not oscillate. For property 2, it is 

proved that the oscillation present in the circuit is bounded. Complete runtime 

results of this example can be found in Table 3.4. In the table, each row represents 

a single inequality proved using MetiTarski. The number indicates which mode of 

the PWL model the tunnel diode is in. The next field indicates which variable is 

being checked (IL or VC) followed by whether it is an upper (U) or lower (L) bound. 

Table 3.4: Tunnel Diode Oscillator Verification Runtimes (in seconds) 

Non Oscillation 
Tunnel-ML 
Tunnel-2-IL 
Tunnel-3-IL 

0.1 
4.0 
0.3 

Bounded Oscillation 
Tunnel-1-VC-U 
Tunnel-1-VC-L 
Tunnel-2-VC-U 
Tunnel-2-VC-L 
Tunnel-3-VC-U 
Tunnel-3-VC-L 
Tunnel-ML-U 
Tunnel-ML-L 
Tunnel-2-IL-U 
Tunnel-2-IL-L 
Tunnel-3-IL-U 
Tunnel-3-IL-L 

0.2 
0.4 
2.7 
0.6 
0.3 
0.5 
0.5 
0.3 
0.6 
3.9 
0.3 
0.6 

The proofs all complete quite quickly, each under five seconds. For Tunnel-

2-IL, Tunnel-2-VC-U, and Tunnel-3-IL-U, the closed form solutions that were gen­

erated using Maple contained large bounds on the exponential and trigonometric 

functions. Initially, MetiTarski was unable to prove these cases. By adding the 

required extended axioms, MetiTarski was able to complete the proof. 
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3.4.2 BJT Colpitts Oscillator 

The Bipolar Junction Transistor (BJT) Colpitts oscillator (Figure 3.8) is another 

example of an oscillator circuit that has a complex behaviour, which can be properly 

modeled with a PWL approximation consisting of two modes. 

Figure 3.8: BJT Colpitts Oscillator 

In order to fully understand the behaviour of the circuit it is necessary to 

identify the different modes of operation of the BJT. The BJT is a semiconductor 

device that can operate in four different regions or modes of operation. The mode 

is determined by the voltage across its three terminals. For instance, Kennedy 

[41] has shown that the BJT inside the Colpitts oscillator operates only in two 

distinct regions: forward active and cutoff. We use MetiTarski to prove this result 

formally. It is important to note that the method automates the formal analysis of 

the operating point of the BJT. Currently, there exists no automated, formal way 
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to determine the modes of operation of a semi-conductor device. The differential 

equations describing the behaviour of the BJT Colpitts oscillator are 

C\VCE = II — Ic 

n T> VEE + VBE T T 
<^2VBE — n -«L — JB 

t^EE 

LIL = Vcc ~ VCE + VBE — ILRL 

The BJT can be modeled as a two-segment piecewise-linear volt age-controlled resis­

tor with 
f 0 if VBE < VTH 

In= , 
| Yi 

RON 

VB*-V™ iiVBE>VTH 

Consider the BJT Colpitts circuit with the following parameters: L = 98.5/u 

H, Vcc = 5 V , RL = 35 ft , d = C2 = 54 nF, REE = 400 ft, VEE = - 5 V and 

RON = 100 ft. We use the Laplace transform method described before to solve the 

system of ODEs over the two modes of the PWL function. 

For mode 1, the closed form solutions are 

Vci = 0.001 - 2.67 e"1-93*106' + 2.67 e8-45*105' cos(1.71 x 106*) 

+ 3.20e8-45xl°5tsin(1.71x 106£) 

VC2 = -0.0011 +0.146 e-1 9 3 x l o 6 t +0.205 e8-45xl°5tcos(1.71 x 106) 

- 0.039 e8'45xl°5tsin(1.71 x 106t) 

For mode 2, the closed form solutions are 

Vex = 0.005 + 25.6 e"1-86*106* - 23.2 e9-05*105' cos(1.71 x 106t) 

+ 61.8e9 0 5 x l°5 isin(1.71xl06 i) 

VC2 = -0.005 - 1.36 e - 1 8 6 x l ° 6 t + 2.12 e
905*lo5< cos(1.71 x 106t) 

+ 2.62e905xl°5tsin(1.71 x 106t) 
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We then define the following property: "To remain in forward active and 

cutoff, VBC must always be less than 0". From Figure 3.8 we can deduce that VBC 

= VB-Vc = 0- (VCi + VC2) = -VCi - VC2. Thus -VCi - VC2 < 0 or VCi + VC2 > 0. 

[Vci + VC2 > 0] 

This property is turned into a first-order formula as before. The MetiTarski 

input description for proving the property over mode 1 is shown in Figure 3.9. 

fof ( 
Col] 

( 

) 
) . 

a i t t s , 

(0 <= 
(0 . 

+ 
+ 

(-0 
+ 
-

> 0 

c o n j e c t u r e , ! [X] 

X & X <= 1.66*10" 
001 - 2 . 6 7 * e x p ( - l . 

2 .67*exp(8 .45*10~ 
3 .20*exp(8 .45*10~ 

.0011 + 0 .146*exp( 
0 .205*exp(8 .45*10 
0 .039*exp(8 .45*10 

-7) => 
93*10~6*X) 
5*X)*cos ( l . 
5 * X ) * s i n ( l . 
-1 .93*10~6* 
"5*X)*cos ( l 
" 5 * X ) * s i n ( l 

71*10" 
71*10" 
X) 
.71*10 
.71*10 

6*X) 
6*X)) + 

~6*X) 
~6*X)) 

Figure 3.9: MetiTarski Input for the Verification of Mode 1 of the Colpitts Oscillator 

The two TPTP descriptions are provided to MetiTarski which subsequently 

proves the property over both modes of operation. The two proofs complete quite 

fast, in only a few seconds. See Table 3.5 for the example runtimes. In this case 

the two closed form solutions for the VCI and VC2 were combined and then proved 

over mode 1 and mode 2 of the PWL model of the BJT. 

3.4.3 Chua's Oscillator 

The Chua's circuit [17], shown in Figure 3.10, presents similar complexities to the 

tunnel diode and Colpitts oscillators. This circuit demonstrates the behaviour of 
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Table 3.5: Colpitts Oscillator Verification Runtimes (in seconds) 

Mode of Operation 
Colpitts-l-VCl+VC2 
Colpitts-2-VCl+VC2 

1.0 
5.7 

chaos, which is caused by the non-linear resistance NR. If the value of the non-active 

circuit components are chosen properly, instead of chaos, the circuit will demonstrate 

a stable oscillation. Even though the non-linear resistor has three modes of oper­

ation, when the Chua's circuit exhibits stable oscillation, there is switching only 

between two modes. We want to prove that the oscillation is bounded for a set of 

parameters and initial conditions. 

Figure 3.10: Chua's Circuit 

The differential equations describing the behaviour of the circuit are 

h 

VC2 

Vci 

VC2 - Roh 

G(VC2-Vci) + h 
C 

G(Vc2 - Vci) - INR(VCI) 

C, 
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Here INR(VCI) represents the PWL model of the non-linear resistor. This PWL 

model can be defined over three modes with Ga = —0.757576, G6 = —0.409091 and 

Ve = 1 that are used to represent the slope of the non-linear curve over the three 

modes of operation. The PWL model is further defined as, 

' Gb{Vci + Ve) - GaVe if Vex < -Ve 

INR(VCI) = 1 GaVCi \i-Ve<VCi<Ve 

k Gb(VCi - Ve) + GaVe if VC1 > Ve. 

As before, with the system of differential equations, the PWL model and the tran­

sition relations between each mode, the closed form solution of each state variable 

over each mode is solved using Maple. 

For the circuit with, R0 = 0.0125 ft, L = 18 H, G = 0.5355 S, Cx = 10 F and 

C2 = 100 F, we once again use a Laplace transform to solve the system of ODEs. 

For mode 1 the closed form solutions are 

VCi(t) = 2.84 - 0.063 e"0019* - 1.77 eomo24t cos(0.019i) + 0.689 e000024t sin(0.0189t) 

VC2(t) = 0.0189 + 0.0077e"0019* - 0.183 e000024t cos(0.019t) + 0.793 e
0000244 sin(0.0189t) 

IL(t) = 1.51 - 0.023 e-0019t - 2.35 e000024i cos(0.019i) - 0.42 e000024t sin(0.019t) 

For mode 2 the closed form solutions are 

Va(t) = 0.198 e0028t + 0.8 e - ° 0 0 5 8 t cos(0.021t) - 0.882 e-°
m5st sin(0.021t) 

VC2(t) = 0.02 e0028< - 0.76 e"00058* cos(0.0206t) + 0.15 e - ° 0 0 5 8 t
 sin(0.021t) 

IL(t) = 0.039 eom77t + 0.0864 e"0005754 cos(0.02U) - 2.02 e - ° 0 0 5 7 5 t sin(0.0206t) 

The formal property that the oscillation remains bounded is 

[Vcl > 0 A Vcl < 5 A Vc2 > - 2 A Vc2 < 2 A L, > - 2 A Lj < 5] 
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We create a first-order formula for each bound and provide them to MetiTarski. 

For half of them, a proof is returned in under 10 seconds. For the rest, it was 

necessary to include the axioms for the extended solutions for the trigonometric and 

exponential functions. Once the extra axioms were added, MetiTarski was able to 

complete the proof, although requiring a minute or more. Runtime results of the 

experiments can be found in Table 3.6. 

Table 3.6: Chua's Oscillator Verification Runtimes (in seconds) 

Chua's Circuit - P4 
Chua-1-VCl-L 
Chua-1-VCl-U 
Chua-2-VCl-L 
Chua-2-VCl-U 
Chua-l-VC2-L 
Chua-l-VC2-U 
Chua-2-VC2-L 
Chua-2-VC2-U 

Chua-1-IL-L 
Chua-1-IL-U 
Chua-2-IL-L 
Chua-2-IL-U 

37.0 
62.2 
3.0 
4.5 
99.7 
25.5 
3.3 
4.8 
17.0 
27.0 
5.5 
1.4 

3.4.4 MOSFET Circuit 

In this example we demonstrate the power of MetiTarksi in automatically solving 

inequalities containing analytical functions. Take for instance the MOSFET circuit 

Figure 3.11 [56]. 

One common verification question is "What mode of operation is the MOSEFT 

operating?" or "For what widths (W) and lengths (L) will the transistor remain out 

of cutoff?". 

Consider the following circuit parameters: ID = 0.4 mA, nnC0X = 100yuA/V2, 

L = 1 /um, W = 32 /jm and Vth = 0.7V. Where L is the legnth of the transistor, W 
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VDD=+2.5V 

Rr 

V 
+ 

DS 

GS -

Re 

Vss = -2.5 V 

Figure 3.11: Basic MOSFET Circuit [56] 

is the width, ID is the current through the drain, nnCox is the process transconduc-

tance (determined by the technology used to fabricate the MOSFET) and Vth is the 

threshold voltage. If we neglect the channel-length modulation [56] we can perform 

the following hand DC analysis of the transistor. 

First we assume that the transistor is operating in the saturation region, so 

we can use the square-law equation for operation in the saturation region. 

lD=\nnC0J^-{VGS-Vt)
2 

Solving for VQS, which is the MOSFET gate to source voltage, we have 

2LxID 
VGS — \ / 77} 7=, ^ Vth 

2 x 20-6 x 0.4 x 1Q-3 

32 x 10-6 x 100 x 10-6 

\.2V 

+ 0.7 

From the circuit diagram, we know that VQ is grounded. So therefore 
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VGS = VG-VS = -VS = 1.2 V 

With the circuit voltages solved for, we can now determine if the MOSFET is 

operating in the saturation region. The conditions are: 

• VGS > Vth and 

• VDS > VGS - Vth 

The first condition is true, so we know that the MOSFET is not in cutoff. 

Since we know that the ID is 0.4mA we can solve for the value of RD to ensure that 

the MOSFET is in saturation. 

VDS > VGS - Vth 

VD-Vs>VG-Vs- Vth 

VD>VG- Vth 

p VDD - Vp 
tip — J 

Ip 

VD = VDD — Rplp 

VDD - RDIp >Vg- Vth 

-RDIp > Vq - V^ - VDD 

-Rp> 
Vg - Vth - VDp 

ID 
0 - 0 . 7 - 2 . 5 

RD~ 0.4mA 

RD < 8000 Q 

From the derivations we have deduced that for the MOSFET to remain in 

saturation RD must be less than or equal to a resistance of 8 kQ,. Now this is for 

a specific choice of W, L, ID, RS a n d Vth. If it is necessary to change any of the 

parameters or even take into account a range of error in parameter values then the 
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analysis by hand must be redone. In the case of this trivial example, the time to 

redo the calculations for multiple parameters is not that great. Consider though, 

the re-derivations for a multi-transistor circuit. 

We will now show how we can fully automate this procedure with MetiTarksi. 

Starting from the same equation as before solving for VQS and considering the ratio 

of the width and length of the transistor as W/L = r then we have, 

_ 2LxID 
VGS - \ 777 ^ 1" vth 

2 x 0.4 x lO"3
 n „ 
+ 0.7 

r x 100 x 10"6 

To prove that the circuit above never enters into cutoff for a range of W/L 

ratios between 10 and 40, we supply MetiTarski with the description shown in Figure 

3.12. 

fof( 
Mosfet ,conjecture, ! [r] : 

( 
(10 <= r k r <= 40) 

=> 2*sqr t (2*r~- l ) + 0.7 > 0.7 
) 

) 

Figure 3.12: MetiTarski Input for Verifying the Mode of Operation 

In this case we are checking that for a range of W/L ratios will VQS always 

be greater than Vt. MetiTarski returns a proof of this inequality. This example 
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displays the power of the tool, but we can do even better. Take for instance the 

revised version (see Figure 3.13) of the MetiTarski description for the DC mode of 

operation 

fof ( 
Mosfet,conjecture, ! 

c 
v. 

) 
) 

(10 <= R & R <= 
=> 2*sqrt(2*R' 

[R.VTH] 

40 & 0.65 
-1) + 0.7 

<= 
> 
= VTH 
VTH 

& VTH <= 0 85) 

Figure 3.13: Revised MOSFET Circuit MetiTarski Input 

Here we are using two variables to take into account process variations of 

the threshold voltage between 0.65V and 0.85V. MetiTarksi returns a proof for the 

inequality indicating that within the tolerances specified, the transistor will not enter 

cutoff. The experimental results are located in Table 3.7, MOSDC1 is the experiment 

with one quantifier and MOSDC2 is the experiment with two quantifiers. The 

MOSDC2 proof takes a little bit longer to complete because of the extra quantified 

variable. 

Table 3.7: MOSFET Circuit Verification Runtimes (in seconds) 

MOSFET Circuit 
MOSDC1 
MOSDC2 

0.08 
0.11 

3.5 Summary 

In this chapter we described in detail a method for using the MetiTarski theorem 

prover to verify functional properties of analog circuits. The input to MetiTarski is 
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a closed form solution of the ODEs and therefore, a PWL model is employed to be 

able to generate it. It is also possible to directly use a circuit level equation with the 

tool, to prove properties about the DC bias point of transistors. One problem with 

the MetiTarski tool and theorem proving in general is that in the case that the proof 

cannot be validated, there is no way of knowing where the problem lies. It could be 

in fact a correctly determined error in the design under verification, but also it could 

potentially be a problem within MetiTarski concerning internal algorithms. As well, 

we can only verify properties that always hold true. In the next chapter a verification 

method based on predicate abstraction will be presented where properties can be 

defined using Linear Temporal Logic. This allows more complex properties that 

could be defined as eventually happening. As well, the ODEs can be used exactly 

as extracted with no conversion to a closed form solution needed. 
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Chapter 4 

Verification by Predicate 

Abstraction 

4.1 Introduction 

In this chapter, we describe a verification methodology that combines predicate 

abstraction, constraint solving and symbolic model checking to verify properties 

on the ODEs extracted from the bond graph models. In contrast to the previous 

chapter where we use inequalities to describe properties in MetiTarski, we now use 

Linear Temporal Logic (LTL) to describe properties. This is particularly useful for 

defining behaviour that could eventually happen instead of being constrained to 

behaviour that is always occurring. 

The problem with traditional model checking is that there is an explicit rep­

resentation of each possible state of the model under verification. This can lead to 

a state space explosion, which we have mentioned earlier. Symbolic model check­

ing [10] addresses this problem by implicitly representing states, thus reducing the 

complexity of the verification. Further optimization of the state space division is 

possible by using abstractions. Predicate abstraction [34], is one of the most suc­

cessful abstraction approaches for the verification of systems with an infinite state 
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space. By dividing the state space into a finite number of regions and then defining 

the transition relations between each discrete state, the verification problem can 

then be solved using model checking methods and tools. Then, if a counter-example 

is produced, further predicates can be generated to refine the abstract state space. 

In [6], Alur, Dang and Ivancic extend predicate abstraction to the verification 

of hybrid systems. In their work they developed algorithms and tools for the reacha­

bility analysis of hybrid systems by combining predicate abstraction with polyhedra 

for approximating the reachable states of the system. This work is similar to that 

of Tiwari [62], that led to the development of the HybridSal abstractor [63] which 

automatically generates the discrete state space of hybrid models using abstraction 

techniques. 

4.2 Preliminaries 

4.2.1 Property Definition 

The big question in formal verification is how to properly define and choose the 

properties to verify. Temporal logics [26], define a system for describing in a formal 

manner the truth of some statement that varies over time. In this thesis we will use 

LTL (Linear Temporal Logic) [42] that indicates that the events will all occur on the 

same timeline. This is in contrast to branching temporal logics that indicate that 

events can happen on many possible timelines, which is similar to a tree structure. 

In most cases, we want to ensure that the system that has been designed is 

dependable [42]. This only raises another question on how to measure the level 

of dependability. The strongest form, where all catastrophic events are avoided is 

called a "safe" state. A safety property will define a condition that ensures some 

event (bad or otherwise) will never occur. This is formally defined by stating that 

any member from the set of undesired states will never be reached [28]. For example 

an analog oscillator safety property can be defined as "For the set of parameters L,R 
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and C the circuit will not oscillate" or "For a set of initial conditions, the circuit 

will never stop oscillating". 

LTL is a logic language that defines properties by qualitatively describing their 

truth over time. There are four basic temporal operators available as described in 

Table 4.1. Safety properties can be defined using any combination including the G 

(always) operator. 

Table 4.1: LTL temporal operators 

Fp 
Gp 
Xp 

pUq 

"eventually p" 
"always p" 

"next time p" 
"p until q" 

4.2.2 HybridSal Abstractor 

The variables of an analog circuit lie within a continuous state space and thus 

pose a problem for the formal verification tools that prove properties over a finite 

state space. To decrease the computational complexity of the verification problem, 

HybridSal uses internal abstraction methods to encode the continuous state space 

into a discrete one defined by a set of predicates that are either greater than, less 

than or equal to zero. Ideally, the abstract model that is created should preserve 

enough of the critical behaviour of the design to verify the safety property under 

question [62]. An example HybridSAL description is shown in Figure 4.1. 

This is one of the examples included in the HybridSal tutorial package [63]. It 

represents a simple hybrid model of a thermostat. The continuous values are x and 

its derivative xdot, that represent the current temperature and the change in temper­

ature. The discrete variable is called "state" and represents whether the thermostat 

is on or off. The initial value of x is between 70 and 80 degrees Fahrenheit. The 

formulas in the TRANSITION section describe the conditions for switching between 
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SimpleThermo3 

BEGIN 

CONTEXT = 

control : MODULE = 

BEGIN 

LOCAL state BOOLEAN 

LOCAL x : REAL 

LOCAL xdot : 

INVARIANT 

TRUE 

INITFORMULA 

70 <= 

TRANSITION 

[ 

state 

[] 
state 

[] 
state 

[] 
state 

END; 

REAL 

x AND x <= 80 AND state 

= TRUE AND x >= 80 — > 

state' = FALSE 

= FALSE AND x <= 70 — > 

state' = TRUE 

= TRUE AND x < 80 — > 

xdot' = (100 - x) 

= FALSE AND x > 70 --> 

xdot' = 0 - x] 

G( ss:[ control.STATE -> BOOLEAN ] ) 

correct: THEOREM 

control |- G( 70 <= x AND x <= 

END 

= TRUE 

: [ control.STATE 

80 ); 

-> BOOLEAN ]; 

Figure 4.1: Example HybridSal Description 

states as well as the differential equations defined over each mode of operation. The 

second to last line contains the property to be verified, defined using LTL. In this 

case, the condition is that the temperature will always be between 70 and 80. 
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4.2.3 SAL-Symbolic Model Checker 

The model checking problem is defined as: given a finite state machine M and a 

temporal logic formula p, does M define a model of p. [42]. More explicitly, do all 

the transitions from some initial state to the next state of M satisfy the temporal 

property p. By exhaustively checking all the paths of M, the property can be verified. 

The problem is that if the number of states is too large, then the memory required to 

check all the paths becomes large as well and the model checking algorithm can fail. 

Symbolic model checking methods have been developed to address this problem. 

Symbolic Model checking uses Reduced Ordered Binary Decision Diagrams 

(ROBDDs), which are computational efficient structures that encode states and 

transition relations. By explicitly representing the states using ROBDDs, the num­

ber of states that can be visited using model checking is increased from 108 to about 

1020 [10]. The SAL-SMC uses a similar algorithm for the symbolic model checking 

of properties, the algorithm can be found in [30]. 

4.2.4 HSolver Constraint Solver 

Constraint solving is concerned with verifying properties based on relations between 

the variables of a system. Problems are solved by forming constraints around a 

problem definition and by consequently finding solutions satisfying them all. The 

simplest example of a constraint solving problem can be stated as follows: Given a 

fixed amount of money and a number of required items to purchase, maximize the 

number of objects that can be acquired. 

To solve the stated constraints the HSolver tool [54] first decomposes the state 

space into hyper-boxes. Interval arithmetic is then used to check the flow on the 

boundary between neighboring boxes. This is done via an abstraction refinement 

procedure in order to achieve precise results [53]. An example input description to 

Hsolver as shown in Figure 4.2. 
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VARIABLES [ x , y 
MODES [ ml,m2 ] 
STATESPACE 

m l [ [ 0 , 4 ] , [O, 
m2[[0 , 4 ] , [0 , 

INITIAL 
ml{x>=2.5/ \x<= 

FLOW 
ml-[x_d=x-y}{y_ 
m2{x_d=-2*y}{y 

JUMP 

] 

4 ] ] 
4 ] ] 

3 / \ y = 0 } 

d=x+y} 
_d=x-y} 

ml->m2{[x>=0. 03] A [ i ' = 
m 2 - > m l { [ x < 0 . 0 3 ] / \ [ i , = i 

UNSAFE 
ml{x<=2> 

=i]> 
]> 

Figure 4.2: Example HSolver Description 

In this case the model is defined over two modes of operation. The variables of the 

system are x and y. The modes of the system are named ml and m2. In the state-

spaces of mode 1 and mode 2, the variables x and y both can vary between 0 and 4. 

The initial value of x is within the range between 2.5 and 3 and the initial value of y 

is defined as a constant value of zero. The differential equations are defined over the 

discrete modes ml and m2 and they have a _d appended to their variable names. 

The jump conditions define when the system switches modes and in this example 

it depends on whether x is greater than or less than 0.03. The safety constraint on 

the system is that the variable x must always be greater than 2. 

4.2.5 Predicate Abstraction 

Predicate abstraction has been developed for the efficient reduction of an infinite 

state space to one that can be verified using model checking techniques [20]. The 

first task in predicate abstraction is the generation of predicates and then the initial 

generation of an abstract model. Several advanced methods exist [62], where the 
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derivative of the ODEs is repeatedly taken to generate new predicates. Once the 

abstract model is created, model checking is used to attempt to prove the property 

of interest. If a counter example is generated, then further predicates must be added 

to refine the abstract model. 

4.3 Verification Methodology 

We propose using a predicate abstraction approach for the verification of LTL prop­

erties on the system of ODEs that were automatically extracted from a bond graph 

model. HybridSal requires as an input the representation of the analog circuit as a 

system of ODEs, the initial conditions and the temporal property of interest. The 

state space is subsequently partitioned based on predicates that are extracted from 

the model and from the property of interest by HybridSal's abstraction algorithm. 

The SAL-SMC is then applied on the abstract state space to verify the property 

of interest. When the property cannot be validated, it is possible that the over 

approximation of the abstract model has led to a false negative counterexample. As 

the generated counterexample is an abstract one it is essential to validate it using 

the HSolver constraint solver. In case of this error, we iteratively remove regions 

violating the property and refine the model for verification again. In the case that 

HSolver does not prove a false negative counter example, extra predicates can be 

added to generate a refined abstract model that can again be passed through the 

steps of the methodology. The proposed verification methodology is illustrated in 

Figure 4.3. 
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Initial 
Constraints 

System of 
ODEs 

HybridSal Temporal 
Property 

Abstract 
State Space 

^ f 

SAL-SMC 

' ' 
• 

HSolver 

1 
Refinement / 

Add Pre dicates 

Remove 
Counterexample 

l \ 
Property 
Verified 
True 

Figure 4.3: Predicate Abstraction Based Verification 

4.4 Applications 

4.4.1 Tunnel Diode Oscillator 

Recall that the bond graph extracted simplified ODEs (Section 2.5.4) are given as 

Vc = h(-U{Vc) + h) and IL = ±(-Vb - ±h + Vm) 

Consider the tunnel diode circuit with the set of parameters C = 1 uF, L = 1 

uH, G = 2000 mS, Vin = 0.3 V and the initial values Vc = 0.131 V, IL = 0.055 A. 

We want to verify that these combinations of parameters and initial conditions do 

not allow the circuit to oscillate. The behaviour in question is stated as the safety 

property G (v < 0.6). The validation of the property ensures the non-existence of 
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oscillation. 

Once the simplified system of ODEs has been extracted 2.5.4, they can be used 

to form a hybrid system definition in the HybridSal modeling language, as in Figure 

4.4. In general, the hybrid system definition has both discrete and continuous sec­

tions that allow the entire behaviour to be modeled. The system of ODEs that were 

extracted from the bond graph model can be put directly into the TRANSITION 

section of the HybridSal description. 

TunnelDiode:CONTEXT = 

BEGIN 

control : MODULE = 

BEGIN 

LOCAL v : REAL 

LOCAL vdot : REAL 

LOCAL i : REAL 

LOCAL idot : REAL 

INVARIANT 

TRUE 

INITIALIZATION 

v = 131/10001 <— Inital Values 
i = 55/1000 

TRANSITION <— System of ODEs 
[ 

v > 0 — > 

vdot' = 1000*(-l*(v*v*v-15/10*v*v+6/10*v) + i); 

idot' = (-v - 50*i + 3/10) 

] 

END; 

G( ss:[ control.STATE -> BOOLEAN ] ) : [ control.STATE -> BOOLEAN ]; 

correct: THEOREM 

control I- G( v < 6/10)1; <— Property to be Verified 
END 

Figure 4.4: HybridSal Tunnel Diode Description 

We then use the HybridSal tool to generate the discrete abstract model illus­

trated in Figure 4.5. This abstract model is the model checked using SAL-SMC to 
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verify the non oscillation property. 

Abstract variable to Polynomial Mapping: 

g2 — > v 

gl --> v - 3/5 

gO — > -l*v~3 + 3/2*v~2 - 3/5*v + i 

TunnelDiodeABS: CONTEXT = 

BEGIN 

SIGN: TYPE = {pos, neg, zero}; 

control: MODULE = BEGIN 

GLOBAL 

gO: SIGN 

GLOBAL 

gl: SIGN 

GLOBAL 

g2: SIGN 

INITIALIZATION 

g2 = pos; gl = neg; gO = neg 

TRANSITION 

[g2 = pos AND INV3(g2', gl', gO') 
— > 

g2' IN ASSVP(g2, gO); gl' IN ASSVP(gl, 

gO' IN ASSVD123(gO, FALSE, 

gl = zero AND gO = neg 

gl = zero AND gO = neg 

END; 

correct: THEOREM control |- G(gl = neg); 

END 

gO); 

OR gO = 

OR gO = 

= zero AND gl = 

• zero AND gl = 
= zero, 

= zero)] 

Figure 4.5: SAL Description for the Abstract Model of the Tunnel Diode Circuit 

In this case, the SAL-SMC tool returns that the property is not proved and 

gives a counterexample (see Figure 4.6). In the counterexample, the abstract val­

ues that the predicates take are shown. In this verification problem, the property 

states that the predicate gl must always be negative. However, the generated coun­

terexample demonstrates a path to where the gl predicate is zero. The goal is to 

check whether the counterexample is part of the real system or an artifact of the 
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abstraction process (spurious). 

INVALID, building counterexample... 

Counterexample: 

PATH 

Step 0: 

System Variables (assignments) 

gO = neg 

gl = neg 

g2 = neg 

Step 1: 

System Variables (assignments) 

gO = zero 

gl = neg 

g2 = pos 

Step 2: 

System Variables (assignments) 

gO = pos 

gl = neg 

g2 = pos 

Step 3: 

System Variables (assignments) 

gO = pos 

gl = zero 

g2 = pos 
<— Violates the abstract property G(gl=neg) 

Figure 4.6: SAL-SMC Generated Counterexample from the SAL Code in Figure 4.5 

The next step in the tunnel diode circuit verification is to validate the coun­

terexample produced by the SAL-SMC tool. By coding the predicates and transi­

tions specified in the counterexample into the HSolver tool, as shown in Figure 4.7, 

we can perform a more precise examination of the reachable states. If it is deter­

mined that the counterexample is never reached, then the false transitions can be 
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removed from the abstract model. 

VARIABLES [ v , i ] 
MODES [1111,1112,1113,1114] 

STATESPACE 
ml [ [ - 0 . 5 , 1 . 2 ] , [ - 0 . 5 , 0 . 2 ] ] 
m 2 [ [ - 0 . 5 , 1 . 2 ] , [ - 0 . 5 , 0 . 2 ] ] 
m 3 [ [ - 0 . 5 , 1 . 2 ] , [ - 0 . 5 , 0 . 2 ] ] 
m 4 [ [ - 0 . 5 , 1 . 2 ] , [ - 0 . 5 , 0 . 2 ] ] 
INITIAL 

m l { v = 0 . 1 3 1 / \ i = 0 . 0 5 5 } 
FLOW 
ml{v_d=1000*(- (v*v*v- l .5*v*v+0.6*v) 
m2{v_d=1000*(-(v*v*v-l .5*v*v+0.6*v) 
m3{v_d=1000*(-(v*v*v-l .5*v*v+0.6*v) 
m4{v_d=1000*(-(v*v*v-l .5*v*v+0.6*v) 
JUMP 

ml->m2{ 
m2->m3{ 
m3->m4{ 
UNSAFE 

v*v*v+l.5*v*v-0.6*v+i=0 
v*v*v+l.5*v*v-0.6*v+i>0 
v-0.6=0 

m4{v>=0.6} 

] / \ [ i ' = i / \ v ' = v ] } 

ACi 
ACi 

- Possible spun ous 

+ i ) H i _ d = ( - v 
+ i)}{i_d=(-v 
+ i )Mi_d=(-v 
+ i )Mi_d=(-v 

>=i / \v '=v]} *— 
>=i/ \v '=v]} 

transition 

- 50*i 
- 50*i 
- 50*i 
- 50*i 

• Trans 

+ 

+ 
+ 
+ 

it 

0.3)} 
0 .3)} 
0 .3)} 
0 .3)} 

ion Predicates 

Figure 4.7: HSolver Code for the Counterexample Validation of Figure 4.6 

In this case, the path of the counterexample produced by the SAL-SMC tool 

is never reached indicating that the counterexample is spurious. Therefore, we 

remove from the SAL code in Figure 4.5 all transitions from states where predicate 

g\ = neg holds to states where g\ = zero holds. This refinement is valid because 

the g\ predicate depends only on <?0 and not g2 through the abstract function 

ASSVP(gl, gO) in the HybridSal abstraction. This is the reason why the jump 

conditions implemented in the HSolver code are based solely on the gO and gl 

predicates. The verification on the refined SAL code using SAL-SMC in that case 

succeeds, which means that no oscillation occurs which indicates that the model 

parameters we have chosen are incorrect. 
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4.4.2 Colpitts BJT Oscillator 

In order to fully understand the behaviour of a circuit, it is important to verify its 

different modes of operation. In particular, transistors can be biased in different 

regions depending on the required application. It is particularly important to know 

the mode of operation when connected with other circuit components. This type 

of circuit analysis is usually done by hand as simulation data cannot always be 

used to conclusively determine the mode over all input values. We can apply the 

verification methodology to ensure that the transistor will never go into an unsafe 

mode of operation. 

Consider the BJT based Colpitts oscillator shown in Figure 3.8. When oscil­

lating, the BJT will never go into its saturation region. In fact, the BJT will either 

be in the cut-off mode or forward active modes [41]. The state space is subdivided 

into four regions according to the BJT modes of operations (Cut-off, Reverse active, 

Forward active and Saturation) with threshold voltage Vth = 0.75. For instance, 

the property that no transition occurs from Forward active to Saturation, can be 

validated by proving that G(Vc1 + Vc2) > 0 is True, where Vc1 and VC2 are voltages 

across the capacitors C\ and C2 and G is the "alway" LTL operator. 

Recall that the differential equations describing the behaviour of the BJT 

Colpitts oscillator are 

C\VCE = II — Ic 

C -r'r * h/Jt/ ' ' DEJ J J 

2VBE = TT~E< *L — *B 
KE-CJ 

LIL — Vcc — VCE + VBE — ILRL 

Also recall that the BJT can be modeled as a two-segment piecewise-linear 

voltage-controlled resistor with 

. 0 iiVBE<VTH 

" YM^JL *VBE>VTH 
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Consider the BJT Colpitts circuit with the following parameters, Vcc — 5 

V, RL = 35 n, d = C2 = 54 nF, REE = 400 Q, , VEE = - 5 V, L = 98.5 uH, 

Is = 1.43 x 10~14, RON = 100SI. With the ODEs and the circuit parameters we can 

construct the HybridSal description containing the description of the system (see 

Figure 4.8). 

INITIALIZATION 

vcl = 1; 

vc2 = 35/100; 

iL = 1 

TRANSITION 

[ 

vc2 >= 75/100 -

vcldot' 

vc2dot; 

iLdot' 

[] 
vc2 < 75/100 — 

vcldot' 

vc2dot' 

iLdot' 

] 

END; 

G( ss:[ control.STATE 

correct: THEOREM 

control |- G( 

—> 

= (500000000/27*iL); 

= (500000000/27*iL-1250000/27*vc2) 

= (-35*iL-10200*vc2-10200*vcl) 

• > 

= (50000000/27*iL+1000000000/27); 

= (50000000/27*iL-6250000/27); 

= (-l*35*iL-10200*vc2-10200*vcl) 

-> BOOLEAN ] ) : [ control.STATE -> 

o < (vc2+vcD) ; <— Property of 

BOOLEAN ]; 

Interest 

Figure 4.8: Partial Colpitts Oscillator HybridSal Description 

With the hybrid system described using the HybridSal syntax. We can run 

the abstractor algorithm. The generated abstract state description contains the 

predicates and abstract transition functions as shown in Figure 4.9. 

Now we take the abstract description and pass it to the SAL-SMC. As ex­

pected a counter example is generated (see Figure 4.10). We then convert the 

predicates from Figure 4.9 into constraints. As well we express the counterexample 
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Abstract variable to Polynomial Mapping: 

glO — > vc2 - 3/4 

g9 — > -l*vcl - vc2 

g8 — > vc2 - 800*iL 

g7 — > -l*vc2 + 400*iL 

g6 — > -l*iL - 159/16 

g5 — > iL - 1/8 

g4 — > -l*vcl - vc2 - 7/2040*iL 

g3 — > -l*vcl - 10891/11016*vc2 - 14717/3240*iL 

g2 — > vcl + 21907/22032*vc2 + 125189/55080*iL 

gl — > -l*vcl - vc2 - 25189/55080*iL + 625/11016 

gO — > vcl + vc2 + 12689/55080*iL - 625/22032 

correct: THEOREM control |- G(g9 = neg); <— Abstracted Property 

Figure 4.9: Predicates from the abstract Model of the Colpitts Oscillator 

path in terms of transitions in the HSolver format (see Figure 4.11). By removing 

those predicates that do not change value, we can simplify the input into HSolver. 

HSolver indicates that the constraints and the property are safe, meaning that the 

counterexample path is spurious. The transitions to the counter example are then 

removed from the abstract model and then model checking is applied again. A 

second counter-example is produced. Following the same methodology described 

before, the counterexample transitions are used to construct a HSolver description. 

This time though, Hsolver returns "safety unknown". 

At this point, we must apply the predicate abstraction step of the methodology. 

Using HybridSal we generate three more predicates to refine the abstract model. 

Then, we run SAL-SMC on the refined abstract model and the property is returned 

true. This indicates that for all time the transistor will remain out of cutoff and 

reverse-active, staying in the expected mode of operation. 
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4.5 Summary 

In this chapter, a verification methodology based on predicate abstraction and a 

counter-example verification using constraint solving was presented. One of its ben­

efits over the theorem proving method is that a full counterexample is generated. 

This is of primary benefit when trying to discover bugs in a design. When the 

theorem prover does not complete, it could either mean that the inequality is false, 

or on the other hand that the bounds are too large to solve. The drawback of 

the predicate abstraction methodology is the abstractions themselves that create 

a loss of precision that sometimes is not negligible. There are cases when even 

adding additional predicates to generate the abstract model accomplishes no gains 

in verification. The amount of time to go through the abstraction refinement and 

counterexample refinement is much greater than what is encountered in our theorem 

Step 0: 
gl = neg 
g3 = neg 
g5 = pos 
g6 = neg 
g7 = pos 
g8 = neg 
g9 = neg 

Step 3: 
gl = neg 
g3 = neg 
g5 = neg 
g6 = pos 
g7 = pos 
g8 = pos 
g9 = neg 

Step 

gl = 
g3 = 
g5 = 
g6 = 

g7 = 
g8 = 
g9 = 

Step 

gl = 
g3 = 
g5 = 
g6 = 
g7 = 
g8 = 

g9 = 

1: 
neg 
neg 
zero 
neg 
pos 
neg 
neg 

4: 
zero 
zero 
neg 
pos 
zero 
pos 
zero 

Step 2: 
gl = zero 
g3 = zero 
g5 = neg 
g6 = zero 
g7 = pos 
g8 = zero 
g9 = neg 

<— Violates G(g9=neg) 

Figure 4.10: SAL-SMC Generated Counterexample for the Colpitts Oscillator 
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proving methodology. Overall the predicate abstraction methodology is promising 

since the steps are mechanical in nature and could be automated. 
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VARIABLES [vcl,vc2,iL] 

MODES [ml,m2,m3,m4,m5] 

STATESPACE 

ml [[-1,2], [-1,2], [-1,2]] 

m2[[-l,2],[-l,2],[-l,2]] 

m3[[-l,2],[-l,2],[-l,2]] 

m4[[-l,2],[-l,2],[-l,2]] 

m5[[-l,2],[-l,2],[-l,2]] 

INITIAL 

m l { [ v c l = l / \ v c 2 = 0 . 3 5 / \ i L = l ] } 
FLOW 
ml{vcl_d=18518518*iL+37037037}{vc2_d=18518518*iL-23148} 

{ iL_d=-35*iL-10200*vc2-10200*vcl} 
m2{vcl_d=18518518*iL+37037037Hvc2_d=18518518*iL-23148} 

{ iL_d=-35*iL-10200*vc2-10200*vcl} 
m3{vcl_d=18518518*iL+37037037}{vc2_d=18518518*iL-23148} 

{ iL_d=-35*iL-10200*vc2-10200*vcl} 
m4{vcl_d=18518518*iL+37037037}{vc2_d=18518518*iL-23148} 

{iL_d=-35*iL-10200*vc2-10200*vcl> 

m5{vcl_d=18518518*iL+37037037}{vc2_d=18518518*iL-23148} 
{ iL_d=-35*iL-10200*vc2-10200*vcl} 

JUMP 
m l - > m 2 { [ - v c l - v c 2 - 0 . 4 6 * i L + 0 . 0 5 6 7 < 0 ] / \ [ - v c l - 0 . 9 8 8 * v c 2 - 4 . 5 4 * i L < 0 ] / \ 

[ i L - 0 . 1 2 5 = 0 ] / \ [ - i L - 9 . 9 3 < 0 ] / \ [ - v c 2 + 4 0 0 * i L > 0 ] A [ v c 2 - 8 0 0 * i L < 0 ] / \ 
[ - v c l - v c 2 < 0 ] / \ [ i L ' = i L / \ v c l ' = v c l A v c 2 ' = v c 2 ] } 

m 2 - > m 3 { [ - v c l - v c 2 - 0 . 4 6 * i L + 0 . 0 5 6 7 = 0 ] A [ - v c l - 0 . 9 8 8 * v c 2 - 4 . 5 4 * i L = 0 ] / \ 
[ i L - 0 . 1 2 5 < 0 ] / \ [ - i L - 9 . 9 3 = 0 ] A [ - v c 2 + 4 0 0 * i L > 0 ] / \ [vc2-800* iL=0]A 
[ -vc l -vc2<0] / \ [ i L ' = i L A v c l ' = v c l / \ v c 2 ' =vc2] } 

m 3 - > m 4 { [ - v c l - v c 2 - 0 . 4 6 * i L + 0 . 0 5 6 7 < 0 ] / \ [ - v c l - 0 . 9 8 8 * v c 2 - 4 . 5 4 * i L < 0 ] / \ 
[ i L - 0 . 1 2 5 < 0 ] A [ - i L - 9 . 9 3 > 0 ] A [ - v c 2 + 4 0 0 * i L > 0 ] / \ [ v c 2 - 8 0 0 * i L > 0 ] / \ 
[ - v c l - v c 2 < 0 ] / \ [ i L ' = i L / \ v c l ' = v c l / \ v c 2 ' = v c 2 ] } 

m4->m5{ [ - v c l - v c 2 - 0 . 4 6 * i L + 0 . 0 5 6 7 = 0 ] / \ [ - v c l - 0 . 9 8 8 * v c 2 - 4 . 5 4 * i L = 0 ] / \ 
[ i L - 0 . 1 2 5 < 0 ] A [ - i L - 9 . 9 3 > 0 ] / \ [ - v c 2 + 4 0 0 * i L = 0 ] / \ [ v c 2 - 8 0 0 * i L > 0 ] / \ 
[ -vc l -vc2=0] A [ i L ' = i L / \ v c l ' = v c l A v c 2 ' = v c 2 ] } 

UNSAFE 
m5{vcl+vc2<0> 

Figure 4.11: HSolver Counterexample Validation of the Colpitts Oscillator 
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Chapter 5 

Conclusion and Future Work 

5.1 Conclusion 

In this thesis the primary goal was to develop a complete automated methodology 

for the modelling and formal verification of analog circuits. We decided to first 

focus at the modelling stage, which is a source of many design problems. By using 

bond graphs the automatic extraction of the system of equations was possible. As 

well, bond graphs provide an explicit description of the system, which aids in the 

design and specification of properties to verify. Next we presented two methods for 

formally verifying properties over the extracted ODEs. One method was based on 

predicate abstraction and symbolic model checking, the other on theorem proving. 

Each method has its advantages and disadvantages and the choice of which one 

to use lies in the specific application and the verification properties of interest. 

Overall, we have shown that the methodologies require user involvement, but this 

involvement is mechanical in nature and therefore could be automated under one 

complete framework. The difficulty of the future work will be on interfacing the 

different languages and tools together. 

Bond graphs provide and efficient means for modelling analog circuits. We 
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have presented an example of a tunnel diode oscillator that was successfully trans­

lated into a bond graph, and had its ODEs automatically extracted. Since bond 

graphs are domain independent and object oriented, models can be constructed at 

several levels of abstraction. We found that this can reduce the complexity of the 

system equations that are extracted by the Dymola Modelling Environment. As 

more components are added to a model, as in the case of the bond graphs for BJTs 

or MOSFETs, reliance on algebra systems such as Mathematica increases because 

Dymola lacks the re-writing techniques to simplify the extracted system of equations. 

This remains an open issue for future work. 

The theorem proving methodology can be summarized as follows. Using a 

system of ODEs that has been extracted from a circuit using bond graphs, they 

are first converted into their PWL equivalent model. Then using the algebra sys­

tem Maple, the closed form solution of each mode of the PWL model is solved via 

Laplace transforms. Then the verification property is turned into an inequality over 

the closed form solution and formatted using the TPTP syntax. MetiTarski is then 

used to automatically generate a proof from the TPTP description. The advantage 

of using MetiTarski is that its verification algorithm is fully automated. As long as 

a property can be described using an inequality, MetiTarski can process it. Another 

advantage is that MetiTarski can solve inequalities that contain trigonometric func­

tions and exponentials. One major disadvantage is that if we are trying to solve 

properties defined over ODEs, it is necessary that the system of equations be linear 

or transformed into their linear form, so that a closed form solution can be com­

puted. This is a very constraining requirement that can have a severe effect on the 

accuracy of the verification. As well, if MetiTarski does not terminate, the verifier is 

left in the dark. It could mean that the inequality is false, but it could equally mean 

that the function under test takes on a value that is out of range for the decision 

procedure. Unfortunately, in both these cases, MetiTarski will run until manually 

terminated. Although when successful, MetiTarski will produce a full blown proof of 
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its claims. We successfully verified functional properties of a tunnel diode, Chua's 

Circuit and Colpitts oscillator using the MetiTarski theorem prover. As well, we 

showed how the hand analysis of a MOSFET could be formally verified using the 

tool. 

The predicate abstraction methodology can be summarized as follows. Again, 

using the system of ODEs that has been extracted from the circuit bond graphs, 

the HybridSal abstractor successfully takes the continuous state space and splits it 

up into an abstract one. Subsequently, it determines the transitions between the 

abstract states. The SAL symbolic model checker is then used to verify the abstract 

property. If a counterexample is generated then it is verified using constraint solving. 

If the counterexample cannot be eliminated, then using HybridSal, we generate addi­

tional predicates to refine the abstract model and redo the symbolic model checking. 

The generation of the counterexample is the main advantage to this method, since 

the error in the model (the bug) is explicitly stated and can be easily isolated and 

thus removed. Secondly, the HybridSal abstractor allows properties to be defined 

using LTL, enabling more detailed properties to be defined. One downside, is that 

HybridSal can only create abstractions from ODEs that are polynomial. It does 

not understand any special functions such as sin, cos, In and exp, which limits the 

type of problems that can be verified. We successfully verified properties of a tunnel 

diode and Colpitts oscillator using the predicate abstraction and symbolic model 

checking methodology. The summary of the two verification methods is shown in 

Table 5.1. 

5.2 Future Work 

The main direction for any future work from this thesis will be to extend the meth­

ods to the analog and mixed signal domain. In particular, we have emphasized many 
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Table 5.1: Comparison of the Verification Methods 

Method 
Tool 

Property Definition 
Input 
Type 

Positive Aspects 

Negative Aspects 

Theorem Proving 
MetiTarski 

Inequalities 
Closed Form Solution 
Analytical (sqrt, sin, cos, 
etc.) 
Complete Proof Generated. 
Supports a large set of ana­
lytical functions. 

No information provided 
when proof fails. Closed 
form solutions difficult to 
determine for non-linear 
systems. Can only define 
basic properties. 

Predicate Abstraction 
HybridSal + SAL-SMC + 
HSolver 
LTL 
ODEs 
Polynomials 

More detailed property 
specification. Counter­
example generated to 
locate bugs. 
Over-approximation leads 
to invalid counterexamples 
that cannot be validated. 
No trigonometric or expo­
nential functions allowed. 

times that bond graphs are domain independent, which allows the analog part de­

scribed in Chapter 2 to be connected to block diagrams representing the digital 

part of an AMS circuit. As well, there has been recent development on a new bond 

graph component called a "switched bond". This component could be combined 

with our methodology for modelling circuits where switching occurs. This could be 

particularly useful for verifying AMS designs. 

When defining properties in HybridSal, we are limited to using Linear Tem­

poral Logic to define properties. It would add flexibility to the methodology if 

properties could be defined using CTL (Computational Tree Logic). The Symbolic 

Analysis Laboratory which HybridSal is build on top of, has a framework that could 

be used to construct a CTL extension to HybridSal. The methodology could also be 

improved by applying different abstraction algorithms to the state space. Currently, 

there are several algorithmic methods that have not been implemented in a tool 

such as HybridSal. 
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For the theorem proving methodology, it will be interesting to work on imple­

menting an automatic PWL model generator. It will also be beneficial to investi­

gate methods to obtain approximate closed form solutions to a system of non-linear 

ODEs. The Singer-Prelle [24] method is one such technique that can solve certain 

types of first order non-linear differential equations. This will eliminate the need for 

a piecewise linear function. Since the development of MetiTarski is on going, it will 

be necessary to continuously update the methodology to account for these changes. 

In particular, the efficiency of the axioms will be increased, which will lead to a 

quicker and more reliable verification. 

One area that we did not cover in this thesis is concerning the quality of the 

verification between the two methods. In both the model checking and theorem 

proving methodologies, we make decisions in modelling to allow the verification to 

complete. Future work should include research on quantifying the precision of the 

formal methods. This would enable the designer to choose the best and most efficient 

method for their needs. 

Lastly, it will be necessary to expand the repertoire of applications under 

consideration. For instance, more complicated circuits such as the feed forward ring 

oscillator from RAMBUS [45] pose a challenge for the current formal verification 

methodologies. As well, work will also need to be done to define formal properties 

for the frequency domain. This is a realistic goal since many frequency transfer 

functions can be used directly with the methodologies we have proposed. 
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