64,146 research outputs found

    Hybrid performance modelling of opportunistic networks

    Get PDF
    We demonstrate the modelling of opportunistic networks using the process algebra stochastic HYPE. Network traffic is modelled as continuous flows, contact between nodes in the network is modelled stochastically, and instantaneous decisions are modelled as discrete events. Our model describes a network of stationary video sensors with a mobile ferry which collects data from the sensors and delivers it to the base station. We consider different mobility models and different buffer sizes for the ferries. This case study illustrates the flexibility and expressive power of stochastic HYPE. We also discuss the software that enables us to describe stochastic HYPE models and simulate them.Comment: In Proceedings QAPL 2012, arXiv:1207.055

    Comparison of CSMA based MAC protocols of wireless sensor networks

    Full text link
    Energy conservation has been an important area of interest in Wireless Sensor networks (WSNs). Medium Access Control (MAC) protocols play an important role in energy conservation. In this paper, we describe CSMA based MAC protocols for WSN and analyze the simulation results of these protocols. We implemented S-MAC, T-MAC, B-MAC, B-MAC+, X-MAC, DMAC and Wise-MAC in TOSSIM, a simulator which unlike other simulators simulates the same code running on real hardware. Previous surveys mainly focused on the classification of MAC protocols according to the techniques being used or problem dealt with and presented a theoretical evaluation of protocols. This paper presents the comparative study of CSMA based protocols for WSNs, showing which MAC protocol is suitable in a particular environment and supports the arguments with the simulation results. The comparative study can be used to find the best suited MAC protocol for wireless sensor networks in different environments.Comment: International Journal of AdHoc Network Systems, Volume 2, Number 2, April 201

    Using programmable network management techniques to establish experimental networking testbeds

    Get PDF

    Modelling Clock Synchronization in the Chess gMAC WSN Protocol

    Get PDF
    We present a detailled timed automata model of the clock synchronization algorithm that is currently being used in a wireless sensor network (WSN) that has been developed by the Dutch company Chess. Using the Uppaal model checker, we establish that in certain cases a static, fully synchronized network may eventually become unsynchronized if the current algorithm is used, even in a setting with infinitesimal clock drifts

    Social influence, negotiation and cognition

    No full text
    To understand how personal agreements can be generated within complexly differentiated social systems, we develop an agent-based computational model of negotiation in which social influence plays a key role in the attainment of social and cognitive integration. The model reflects a view of social influence that is predicated on the interactions among such factors as the agents' cognition, their abilities to initiate and maintain social behaviour, as well as the structural patterns of social relations in which influence unfolds. Findings from a set of computer simulations of the model show that the degree to which agents are influenced depends on the network of relations in which they are located, on the order in which interactions occur, and on the type of information that these interactions convey. We also find that a fundamental role in explaining influence is played by how inclined the agents are to be concilatory with each other, how accurate their beliefs are, and how self-confident they are in dealing with their social interactions. Moreover, the model provides insights into the trade-offs typically involved in the exercise of social influence

    Engine performance characteristics and evaluation of variation in the length of intake plenum

    Get PDF
    In the engine with multipoint fuel injection system using electronically controlled fuel injectors has an intake manifold in which only the air flows and, the fuel is injected into the intake valve. Since the intake manifolds transport mainly air, the supercharging effects of the variable length intake plenum will be different from carbureted engine. Engine tests have been carried out with the aim of constituting a base study to design a new variable length intake manifold plenum. The objective in this research is to study the engine performance characteristics and to evaluate the effects of the variation in the length of intake plenum. The engine test bed used for experimental work consists of a control panel, a hydraulic dynamometer and measurement instruments to measure the parameters of engine performance characteristics. The control panel is being used to perform administrative and management operating system. Besides that, the hydraulic dynamometer was used to measure the power of an engine by using a cell filled with liquid to increase its load. Thus, measurement instrument is provided in this test to measure the as brake torque, brake power, thermal efficiency and specific fuel consumption. The results showed that the variation in the plenum length causes an improvement on the engine performance characteristics especially on the fuel consumption at high load and low engine speeds which are put forward the system using for urban roads. From this experiment, it will show the behavior of engine performance

    The evaluation of an active networking approach for supporting the QOS requirements of distributed virtual environments

    Get PDF
    This paper describes work that is part of a more general investigation into how Active Network ideas might benefit large scale Distributed-Virtual-Environments (DVEs). Active Network approaches have been shown to offer improved solutions to the Scalable Reliable Multicast problem, and this is in a sense the lowest level at which Active Networks might benefit DVEs in supporting the peer-to-peer architectures considered most promising for large scale DVEs. To go further than this, the key benefit of Active Networking is the ability to take away from the application the need to understand the network topology and delegate the execution of certain actions, for example intelligent message pruning, to the network itself. The need to exchange geometrical information results in a type of traffic that can place occasional, short-lived, but heavy loads on the network. However, the Level of Detail (LoD) concept provides the potential to reduce this loading in certain circumstances. This paper introduces the performance modelling approach being used to evaluate the effectiveness of active network approaches for supporting DVEs and presents an evaluation of messages filtering mechanisms, which are based on the (LoD) concept. It describes the simulation experiment used to carry out the evaluation, presents its results and discusses plans for future work

    The Performance of a Second Generation Service Discovery Protocol In Response to Message Loss

    Get PDF
    We analyze the behavior of FRODO, a second generation service discovery protocol, in response to message loss in the network. Earlier protocols, like UPnP and Jini rely on underlying network layers to enhance their failure recovery. A comparison with UPnP and Jini shows that FRODO performs more efficiently in maintaining consistency, with shorter latency, not relying on lower network layers for robustness and therefore functions correctly on a simple lightweight protocol stack

    An analytical packet/flow-level modelling approach for wireless LANs with Quality-of-Service support

    Get PDF
    We present an analytical packet/flow-level modelling approach for the performance analysis of IEEE 802.11e WLAN, where we explicitly take into account QoS differentiation mechanisms based on minimum contention window size values and Arbitration InterFrame Space (AIFS) values, as included in the Enhanced Distributed Channel Access (EDCA) protocol of the 802.11e standard. We first enhance the packet-level approach previously used for best-effort WLANs to include traffic classes with different QoS requirements. The packet-level model approach yields service weights that discriminate among traffic classes. From these observations, the packet/flow-level model for 802.11e is the \textit{generalized} discriminatory processor-sharing (GDPS) queueing model where the state-dependent system capacity is distributed among active traffic classes according to state-dependent priority weights. Extensive simulations show that the discriminatory processor-sharing model closely represents the flow behavior of 802.11e
    corecore