
Using Programmable Network Management
Techniques to Establish Experimental Networking

Testbeds

Andrew Hughes
PP2 Ross Building

UCL@Adastral Park
Ipswich, IP5 3RE

England
E-mail: a.hughes@cs.ucl.ac.uk

Wolfgang Emmerich
Department of Computing Science

University College London
London, WC1E 6BT

England
E-mail: w.emmerich@cs.ucl.ac.uk

Abstract— The way in which research groups evalu-
ate router software (QoS and routing components, for
example) seems to be restricted to methodologies using
mathematical modelling and simulation techniques. We
believe that an experimental methodology is rarely used
as the deployment of custom routing software to a testbed
comprising multiple routers is a non-trivial task that
is beyond the scope of most network research projects.
This project intends to make experimental methodologies
more accessible to researchers by using programmable
networking techniques and by building a management
system for a network testbeds.

I. I NTRODUCTION

Over the last three decades, a great deal of research
has been done relating to computer networks. This has
led to the birth of the Internet which enables millions
of devices to efficiently communicate. Router devices
are used to provide a communications framework to
transport data between the computers connected to it.
ARPANET [1], the Internet’s predecessor, was originally
designed to be a fault tolerant network that would enable
military computers to communicate despite the occur-
rence of router or link failures. However the Internet’s
usage has evolved principally into a communications
platform that is exploited by businesses.

The Internet Protocol (IP) [2], [3] is the core con-
cept that allows data to be transferred between nodes.
Routers, which operate at layer three of the OSI network
model [4], direct data through the Internet towards the
intended destination. In addition, routers are often used
to control network congestion using Quality-of-Service
(QoS) mechanisms.

There are three methodologies that can be used to in-
vestigate the behaviour of the mechanisms implemented
in routing software: analytical, empirical and exper-
imental. The analytical methodology, which includes
mathematical modelling and simulation techniques, and
experimental approaches to network research are dis-
cussed below. Empirical research methods are not of
interest to this project, and are therefore not discussed.

It seems that the engineering of router software is
done primarily using an analytical methodology: proba-
bilistic modelling techniques can be used to assess the
performance of an algorithm before implementations of
the mechanisms are simulated; this means that behaviour
of the potential software components can be evaluated
quickly.

It is rarely sufficient for research groups to use
mathematical modelling to show that their work will
perform well when deployed on a live real-world system.
Although this approach serves well as an indication
of how algorithms will behave in live systems, more
realistic results can be achieved using simulations in
addition to mathematical techniques.

It is often the case that simulations are applied to
software that is shown to behave well by the analytical
investigation in order to obtain more realistic results.
In the case of router software, the simulation of a
network comprised of devices with prototype software
components will give a fairly accurate view of the way
in which router software will behave in a live real-world
systems. Simulation usually requires that the new router
algorithms are implemented into software components
that can be incorporated into simulation package such as
NS-2. It is highly unlikely that network simulators will

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/1669439?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


be capable of modelling every aspect of a live system,
therefore a simulation methodology is not sufficient to
categorically show that the proposed router software will
behave as expected. Rather, an experimental methodol-
ogy should be used.

For the evaluation of router components using an
experimental methodology, like the simulation approach,
algorithms must be implemented into software compo-
nents. Rather than incorporating these components into
a simulated system, they are deployed over a testbed.
A testbed is a real network built using real devices
(i.e. routers) linked using real physical connections (e.g.
twisted pair network cables). By deploying the prototype
software over the testbed and configuring it appropri-
ately, the behaviour of the prototype software—and
therefore the new algorithms—can be evaluated fairly
accurately. This approach has been taken in numerous
network projects: for example, the work described in [5]
uses a testbed to evaluate a Diffserv [6] implementation.
Although it is unlikely that a real network’s behaviour
will be fully captured by a testbed, we believe that
the experimental methodology is as close to real-world
behaviour as a research group can get.

In order to use an experimental methodology, research
groups are usually forced to build a packet routing fabric
around the router software components. The main reason
why this is an unacceptable strategy is because the
construction of a routing engine is a nontrivial endeavour
that is unlikely to be within the scope of the research
project. The effort of a research group is better spent on
the project in-hand rather than building a system that can
be used to test it. It is the opinion of many researchers
that the engineering of router software should not be
limited to mathematical modelling and analysis using
simulations. Evaluation using an experimental methodol-
ogy is likely to yield more realistic results than analytical
or modelling methodologies and should therefore be
made more accessible to researchers.

Although programmable and active router technolo-
gies can be used for experimental network research,
due to the lack of management infrastructure required
to carry out large scale investigations, these technolo-
gies are rarely utilized. The XORP [7] project com-
bines programmable network paradigms with manage-
ment mechanisms to allow large programmable networks
to be managed; however the system allows only indi-
vidual nodes to be managed (the reason why this is
a problem is discussed later). To our knowledge, the
work proposed in this paper is the only project that
combines a programmable network technology with a

testbed management system with sufficient functionality
to allow network researchers to easily use an experimen-
tal methodology to investigate router software.

Section II describes the work done in the pro-
grammable network community and the value its relevant
to this project. Section III discusses issues relating to
network management. The way in which our proposed
system extends the work done in the Promile project and
a description of our system’s architecture is described
fully in Section IV; the way in which the proposed
system will be evaluated is then discussed in Section V.
Before we draw conclusions in Section VII, related work
is outlined in Section VI.

II. ROUTERS

A. Programmable routers

At the most fundamental level, the behaviour of a
commercial off-the-shelf (COTS) router is wholly de-
pendent on the algorithms implemented in its software:
the way in which data packets are processed is therefore
dependent on software provided by the vendor. This
software can be configured. However, it is not possible
to change the routers embedded mechanisms.

Programmable routers, the devices used to build pro-
grammable networks, differ from COTS routers in that
the way in which packets are processed is not limited to
the mechanisms provided by the router’s vendor. Custom
router software can be installed and configured allowing
a programmable router to behave in a customized man-
ner.

There are two main approaches to creating a highly
customisable testbed: application level programmable
networks (herein termed ‘programmable networks’) and
active networks. The behaviour of active networks is con-
trolled by capsules. A capsule is a packet that contains
both data and fine-grained processing instructions that
describe active router behaviour. This light-weight code
can instruct the router how that individual capsule should
be processed or configure the active router to influence
how other capsules are processed. The behaviour of the
router therefore is dependent on management instruc-
tions interpreted by the capsule processing engine.

There are a number of active network projects, for
example the ANTS [8] and Active Packets [9] projects.
Active network projects usually define both the active
router architecture and the language syntax to which
processing instructions must comply. It is often the case
that, due to the fact that capsules are rarely interoperable
with standard transport protocols, active networks require



an overlay network such as ABone [10] to transport
capsules.

Unlike in the active router paradigm, overlay net-
works are not usually needed in programmable networks.
These networks generally process ordinary data packets
(IP packets for example) that do not carry processing
instructions. Network management instructions are not
embedded into individual capsules; rather, the router
configuration is determined in a system separate from
the packet processing engine. This allows programmable
networks to be managed using heavier weight mech-
anisms then active networks. In comparison to active
networks, programmable networks are more suited for
the deployment of end-to-end QoS mechanisms.

Programmable and active networks differ from net-
works constructed using Commercial Off The Shelf
(COTS) routers in that they are far more customisable.
COTS networks are limited to the functionality provided
by the router vendor whereas programmable routers’
functionality is not limited to a specific set of mecha-
nisms

There are a set of research projects that are sometimes
referred to as programmable but do not comply with
our definition of programmable networks. These projects
either extend the functionality of routers as in projects
such as Genesis [11] and Swichlets [12], or attempt to
standardise the interface to the switching fabric as in
the case of Xbind [13]. We use the term ‘programmable
router’ to refer to a device that can act as an execution
environment for software components that are used in
the packet processing procedure. By installing custom
software components, the capability of a programmable
router can be extended beyond the vendor’s specification.
We believe that, e.g. Click [14] and Promile [15] meet
this definition of programmable networks.

B. Uses of programmable networks

There are numerous reasons why the functionality
provided by programmable networks does not usu-
ally add value to corporate networks: these relate to
performance, complexity and functionality of the pro-
grammable routers.

Most programmable routers are significantly slower
than COTS routers at performing the most common
packet processing tasks. There seem to be two rea-
sons for this: the COTS router software is highly op-
timised industrial strength whereas most programmable
router software is non-optimised research-grade; and
programmable networks usually run on Unix systems
whereas COTS routers make use of specialised hardware.

However it is likely that this performance issue would be
overcome if the programmable networks added sufficient
value to a corporate network.

By the nature of programmable networks, the com-
plexity of the routers visible to the network adminis-
trators is far greater compared to networks constructed
using COTS routers. A programmable network adminis-
trator defines the workings of the router software com-
ponents used to process packets whereas COTS router
administrators specify which vendor defined processing
procedures are used. Clearly, the programmable router
management process is far more complex compared to
the management of COTS routers; administrators are
therefore significantly more likely to incorrectly config-
ure programmable routers. A corporation can overcome
this problem by using modules provided by a reputable
module vendor, however due to the issue described
below, it is unlikely that such a vendor will ever exist.

The final issue impeding the acceptance of pro-
grammable networks by industry is due to the network
behaviour that corporations require. It seems that, for
the vast majority of networks, the functionality provided
by COTS routers is sufficient. Few companies require
packet processing mechanisms that are not provided by
the router vendor. For this reason there is little or no
advantage of programmable routers over COTS routers.

It is apparent that programmable networks do not
provide sufficient value to be used in the construction
of corporate networks, however their use can prove
beneficial in network research projects. It seems that
most network research projects, specifically those on
new protocols and congestion control mechanisms: i.e.
functionality intended to be incorporated into router
software.

It is clear that programmable network technology
is rarely useful in corporate networks, it is however
invaluable to network researchers. By making use of
programmable routers, investigators can rapidly incor-
porate software derived from new algorithms into net-
work routers that can be deployed to form a testbed.
Researchers are therefore not required to build router
software in order to examine its performance using
an experimental methodology. Clearly, programmable
network technology is ideal for the use in the software
system described in this paper which is designed to
make experimental methodologies more acceptable to
researchers.



Fig. 1. Example router component graph

C. Router software

Router software can be organized into three categories:
the forwarding plane, the control plane and the man-
agement plane. The forwarding plane contains queue
processing mechanisms that quickly process packets
and transmit them on the appropriate output port. The
control plane contains functionality that affects the way
in which packets are processed at the forwarding plane.
Management plane software is used to configure the
device: which routing information protocol is used for
example.

The functionality of Promile [15] and Click [14]
is described by router software components that are
associated in order to form a module graph. Figure 1
shows an example module graph. Since the three cate-
gories of router software are not apparent in this router
configuration model, the programmable routers function-
ality can easily be controlled. The module graph allows
administrators to control the forwarding plane: control
and management plane functionality is embedded in
the router software modules. The fact that the software
components do not have any dependency on other router
functionality, enables the programmable router to be
configured and extended with few dependency problems.

III. N ETWORK MANAGEMENT

In order for a programmable network testbed to be
accepted by researchers as a valuable tool for the investi-
gation of router software using an experimental method-
ology, the testbed should be easy to manage. By using a
testbed management system that simplifies the task of
installing and configuring router software, we believe
that we can increase the productivity of a researcher
generating result data from the network. In this section, a
number of existing management paradigms are outlined
and their relevance to our system are discussed.

A. Management of individual routers

Individual COTS routers are usually managed us-
ing Command Line Instructions (CLI) or using stan-
dards such as Simple Network Management Protocol
(SNMP) [16] and the Common Open Policy Service
(COPS) [17]. The syntax of CLIs are usually vendor

specific: Cisco CLIs are syntactically dissimilar to those
of Nortel products, for example. Also, it is often the
case that CLI vary from product to product: for ex-
ample the CLI set of the Cisco 12000 Series Internet
Router’s is not identical to that of the Cisco 2600
Series Multiservice Platform. SNMP was designed to
address the heterogeneity problem of vendor specific CLI
and has been adopted by most COTS routers allowing
administrators to manage networks without being aware
of the architectural differences between routers.

It seems that there are two main approaches taken to
manage individual programmable routers. Some projects,
Promile [15] and Click [14] for example, define their
own configuration languages. These languages are of-
ten specific to programmable router architecture, it is
therefore rare that a configuration language can be used
to manage programmable routers of a different design.
The alternate approach, taken by the Alpine [18] and
Android [19] projects for example, is to use an ex-
isting management system such as DARWIN [20] and
CIM [21]. These management systems usually define a
set of schemas that can be used to describe software
and hardware systems. Administrators configure the pro-
grammable routers using a standardised language, allow-
ing heterogeneous issues caused by differing software
platforms to be transparently resolved by the manage-
ment system.

B. Management of multiple routers

In a network consisting of multiple routers, it is
unlikely that the router configurations will be homoge-
nous. Routers are configured according to their role, for
example the configuration of edge routers may be geared
more towards security whereas core routers may be more
QoS focused.

From our associations with network providers whose
customers include many of the major European banks,
we have discovered that corporate networks are usually
configured manually using protocol such as SNMP. How-
ever it is often the case that networks are monitored by
automated systems, and that management instructions
are generated by graphical tools operated by network
administrators. Using a combination of software, such as
Cisco Whatsup and in-house software, network admin-
istrators can be notified when erroneous events occur—
specifically router failures and software configuration
problems. Acting on these notifications, network admin-
istrators interact with individual routers to solve router
problems.

Since it is the case that routers are usually managed



Fig. 2. System architecture

individually, the configuration of a large number of
routers is often a laborious error-prone chore in which
each router must be individually configured by an ad-
ministrator. To address this problem, Cisco have released
the 2100 Series Intelligent Engine [22], derived form the
work done on Directory Enabled Networks [23] by the
Distributed Management Task Force. This device can be
utilised by administrators to manage either individual or
groups of Cisco routers through a graphical interface.
Although the way that routers are grouped seems to be
fairly limited, the use of this system in a network would
significantly reduce the time required to configure a large
network, and would reduce the occurrences of problems
caused by human errors.

Few corporate networks seem to be configured using
automated management systems. This is mainly because
there is generally more confidence in the ability of
human administrators to configure a network to reflect
a company’s management decisions compared to an au-
tomated network management system. This is especially
apparent in telecommunications networks where the way
in which telephone calls are routed is specified by human
administrators. There are a number of automated network
management systems (produced by companies such as
Ericsson, BTIgnite and Intelliden, but it seems that these
automated client-server management systems generate
little interest in the academic research community.

Unlike the server approaches to network management
previously discussed, distributed network management
poses issues that are of interest to academic researchers.

Rather than relying on a centralized management system,
projects such as ALAN [24] take a peer-to-peer ap-
proach to network monitoring and configuration. Using
self-management techniques, an Android network is an
autonomous entity that is capable of maximizing its
performance and the revenue generates.

Although there are numerous network management
systems available, none are appropriate for the manage-
ment of a testbed comprised of programmable routers.
We accept that the above discussed techniques can be
used to configure the programmable routers, however
these management paradigms are not expressive enough
to extend the functionality of programmable routers by
installing custom router software modules. It is clear
that, in order to provide a software system to allow
researchers to evaluate their work using an experimental
methodology, a management system capable of config-
uring programmable routers is required. This project
addresses these issues.

IV. SYSTEM ARCHITECTURE

As stated in Section I, the aim of this project is to
create a software system that enables router software
research to be evaluated using an experimental method-
ology. In this section the software system illustrated in
Figure 2 is described. It is our belief that this system
will make the experimental evaluation of router soft-
ware more accessible to researchers. The first subsection
discusses the language in which testbed administrators
specify programmable network configurations. The sub-
sequent subsection outlines the system that translates



Fig. 3. Example Network

these network scoped configuration policies into config-
urations that are distributed to individual programmable
routers. The final subsection outlines the programmable
router architecture.

A. The Network Configuration Policy language

In the proposed system, network administrators con-
trol the testbed by specifying the desired network be-
haviour in a Network Configuration Policy (NCP). The
language in which NCPs are written will be defined
such that there is a balance between expressiveness
and abstraction. The NCP language will be designed
specifically for a network administrator to configure the
testbed. The language will be abstract enough to disallow
the configuration of individual routers to be modified
directly, thus forcing network administrators to perform
management duties on the network as a complete entity.
It is unlikely that a configuration modification of a single
router will be sufficient to influence the behaviour of
the network, so the language prevents it. The following
example illustrated how the configuration of a single
router may not result in the network reflecting the desired
behaviour.

Consider the network shown in Figure 3. Three Local
Area Networks (LANs) A, B and C are connected by
three routers which are labelled with respect to the
LAN they provide connectivity to. In this example,
the initial network configuration allows traffic to travel
between all LANs via either two or three routers. It
is decided that traffic originating form LAN A must
not be permitted to propagate to LAN B: so a network
administrator—capable of managing individual routers—
configures Router B to drop packets from the Router A.
It is likely that—using protocols such as RIP [25],
BGP [26] and OSPF [27]—the routers will quickly
discover that in order for traffic to travel between LAN A
and LAN B, Router C must be used as an intermediary.
The behaviour or the network will therefore not reflect

the network administrator’s desires. By abstracting man-
agement instructions so that the behaviour of the network
as a whole is described, the network can be made to
behaviour as required.

Although it is important for the language in which
NCPs are written to have a fairly high level of abstrac-
tion, it must be expressive enough to allow custom router
software components to be installed onto the testbed. For
example, if the testbed used to investigate the behaviour
of some Quality-of-Service (QoS) algorithm, the QoS
software component must be specified in an NCP. The
proposed system will prevent network administrators
from modifying the configuration of individual routers,
however it is necessary for the NCP language to provide
a means of indicating the intended location that some
router software components must be installed. It is likely
that in our system, rather than using node identifiers,
locations will be expressed in terms of a router’s role.

An example of the semantic content of an NCP is
shown in Figure 4. For the sake of clarity we have
formatted the policy in XML. This NCP defines two
rules. The first rule will configure the testbed’s core
routers to process all received IP packets using the ‘RED’
module available from moduleserver.com via the HTTP
protocol. The second rule instructs all of the edge routers
in the testbed to process IP packets originating from
evil.com with the ‘Dropper’ module.

B. The NCP Transcoder

In order for an NCP to modify the configuration of
the entire testbed, an NCP Transcoder (NT) is used.
The NT translates NCPs into Platform Specific Policies
(PSPs) that comply with the Promile configuration lan-
guage [15]. We are confident that the use of this pro-
grammable router configuration language will simplify
this research project.

The Promile configuration language is an XML [28]
based policy language derived from the work done in
the Xmile project [29]. Programmable router configura-

<NCP>
<Rule>

<Target>All core routers</Target>
<TrafficType>All IP packets</TrafficType>
<PacketProcessor>RED</PacketProcessor>
<Repository>http://moduleserver.com/</Repository>

</Rule>
<Rule>

<Target>All edge routers</Target>
<TrafficType>All incoming IP packets from evil.com</TrafficType>
<PacketProcessor>Dropper</PacketProcessor>

</Rule>
</NCP>

Fig. 4. Example NCP



tions are described according to an architectural schema,
which is in-turn compliant with the Promile schema.
Configurations expressed in the Promile language al-
low network administrators to manage a network in
a syntactically homogenous manner, thus transparently
bridging issues arising from a network that consists of
heterogeneous router architectures. The language does
not however conceal semantic architectural difference
from the network administrator. The architectural schema
is defined by the router vendor: it is used to declared
router capabilities. The Promile schema, to which the ar-
chitectural schema complies, describes that router func-
tionality is implemented as discrete software components
(such as packet shapers) that are associated to form a
module graph which determines the packet processing
procedure.

Given an NCP, the NT will produce one or more
PSPs. These PSPs are then deployed to the testbed’s pro-
grammable routers to control the network’s behaviour.
The number of PSPs produced by the NT, and their
content, will depend as much on the existing behaviour
of the network as it does the desired behaviour outlined
in the NCP. To illustrate this, consider as an example
an NCP that installs some Diffserv component onto a
testbed’s core routers that affects only packets with the
set of propertiesp. A subseta of the core routers have
previously been configured to drop packets with proper-
ties p, whereas the remaining routersb do not process
packets according top. Sincea must be instructed to
process packets with propertiesp with Diffserv rather
than a dropper andb need only be instructed to process
packets with propertiesp with Diffserv, the PSP mes-
sages generated by the NT for the routers in seta will
be different from those inb.

As we have outlined above, for an NCP to be trans-
lated into PSPs, the NT must profile the network to
become aware of the current testbed behaviour. The net-
work profile is obtained through analysis of the testbed’s
router configurations. It will therefore not be necessary
to probe the testbed with investigative packets produced
by network analysers.

Once the NT has completed the translation of an NCP,
the generated PSPs are deployed to routers that constitute
the testbed. The NT will deliver the PSPs by utilizing a
message oriented middleware (MOM)—such as the Java
Message Service (JMS) and Tibco Rendezvous.

During the translation process, problems may occur
due to syntactic or semantic errors. If the NT cannot
resolve the issues, then the errors will be reported
to the network administrator. We assume that if the

NT completes the translation and deployment of PSPs,
further errors will not occur: i.e. we have full confidence
that Promile configuration policies and the architectural
schema to which they comply are representative of the
routers capabilities and that no unforeseen errors will
occur. It is worth noting that this would not be a correct
assumption if the management system were being used to
manage a corporate network as the occurrence of errors
is likely to result in major problems such as loss of
revenue.

C. Programmable router

As described in the previous subsection, the system
proposed in this paper uses the Promile configuration
system to modify the configuration of programmable
routers. Although the configuration system can be used
to control routing engines from numerous vendors, we
intend to use the one developed in the Promile project.
To simplify the deployment of new router software
components, the testbed will comprise only Promile
programmable routers running on a common platform.

Upon receipt of a PSP, the router configuration system
processes the policy and makes the appropriate changes
to the packet processing engine’s software configuration
and architecture. Since custom modules can be installed
into the router, the architecture of the packet process-
ing engine is dynamic. Software components containing
router software are associated to form a module connec-
tion graph that controls the way in which programmable
routers handle packets.

V. EVALUATING THE SYSTEM

To evaluate the research being done in this project,
the software system outlined in this paper will be im-
plemented. The complete system will be deployed to
form a testbed network which will then be used to show
that this system functions as predicted. In order to show
that our system can be used to experimentally evaluate
forwarding, control and management plane software (as
described in Section II-C), components that fall within
the scope of these software classifications will be imple-
mented. We will use the RED [30] QoS mechanism to
show that forwarding plane software can be investigated
using our system. A routing module that implements
BGP [26] will be implemented to show that control
plane mechanisms can be investigated. Finally, to show
the value of the system for experimental research of
management plane software, the SNMP [16] manage-
ment protocol will be implemented into router software
components. The deployment of these three investigative



scenarios will be done such that our results clearly show
that our testbed system is highly reusable due to the
powerful configuration management system.

To show that the testbed framework described in this
paper is capable of producing more realistic results than
simulation techniques, results obtained from simulations
and analysis of real world deployment of RED will be
compared with results obtained using our system. We
are confident that this will show that our system, when
used by researchers using an experimental methodology,
produces results closer to real world behaviour than
analytical approaches to router software investigations.

Existing research that uses testbeds to experimentally
investigate router software seems to be very labour
intensive: it is certainly the case that the implemen-
tation of network mechanisms over a testbed involves
the configuration/modification of kernel modules. It will
be shown that our system removes the need for an
investigator to modify testbed nodes’ operating system
functionality, resulting in experimental research that is
more time efficient and prone to fewer problems pro-
duced by human error.

VI. RELATED WORK

It seems to be generally accepted that experimental
methodologies are better than analytical approaches to
network research. For example, the MBone [31] testbed
was designed and implemented in order for researchers
to use an experimental methodology to investigate IP
multicast techniques. Similarly, the 6Bone [32] testbed
was designed for IPv6 research. Since these testbeds
were created to perform a specific task, the scope of
the research that can be done these testbeds is fairly
limited. This limitation was reduced with the creation
of the CAIRN [33] testbed which was intended for
use by researchers looking at router software. Since the
CARIN testbed consists of programmable routers, its
functionality can easily be extended. We think that there
are two main reasons why this testbed is not suitable for
widespread use by network researchers. Firstly, routers
are individually configured manually by administrators.
Secondly, since most CARIN testbed routers are con-
nected over the Internet, it is not possible for researchers
to strictly control the router connections, specifically:
network topology, bandwidth, latency and jitter.

The programmable/active network community seems
to have begun life when testbeds were not extensible
enough to provide a suitable framework capable of
supporting diverse network research projects. There are
still some research groups focused on active network

projects, ANTS [8] and Active Services [34] for ex-
ample; however, relatively few researchers use active
networks to investigate router software. For a survey
on various programmable network projects refer to [35]
and [36]; these papers contain extensive descriptions and
similar works are contrasted.

Programmable routers are generally more flexibility
than active networks and are therefore more suited for
network research. The key projects in this area are
Promile [15], Android [19] and Click [14]. In order
to provide a realistic framework for researchers to use
to investigate router software using an experimental
methodology, the XORP [7] combines the Click router
architecture with a management system. The XORP
project aims to create a programmable router that will
be deployed over corporate networks. These XORP edge
routers will allow researchers to investigate the behaviour
of router software in a real live network. However, given
that the XORP router management system is fairly basic,
we believe our system to be superior.

There are a number of projects concerned with
the management of programmable routers—most no-
tably NESTOR [37], DARWIN [20], SENCOMM [38],
ABLE [39] and ANCORS [40]—however there does
not seem to be any management systems designed for
networks consisting of multiple programmable routers.
PONDER [41], a policy language that can be used to
manage a wide variety of computing systems (includ-
ing networks), is well suited for the management of
programmable networks. However, at this stage in our
research it is unclear whether or not our system will
require such an expressive policy language.

VII. C ONCLUSION

This paper has outlined an area of research that seems
to have value in both industry and academia. We intend
to build a software system that can be used to manage
a testbed comprising multiple programmable routers.
By using this software system, researchers investigating
forwarding plane, control plane or management plane
routing software will be able to efficiently evaluate their
work using an experimental methodology. It is believed
that this work is novel and that the system outlined in
this paper is well suited for the intended task.

ACKNOWLEDGMENT

The authors would like to thank the EPSRC and
BTExact for providing funding for this project. Thanks
also go to the Promile research group at the Department



of Computing Science, University College London, for
many stimulating discussions.

REFERENCES

[1] D. Clark, “The design philosophy of the darpa internet proto-
cols,” in ACM SIGCOMM ’88, December 1998.

[2] J. Postel, “Rfc 791: Internet protocol,” Sepetember 1981.
[3] S. Deering and R. Hinden, “Rfc 2460: Internet protocol, version

6 (ipv6) specification,” December 1988.
[4] I. T. Union, “X.200: Open systems interconnection - basic

reference model: The basic model,” July 1994.
[5] A. Mohammed, E. Jones, H. Ogier, M. Vouk, and Z. Dwekat,

“Diffserv experiments: analysis of the premium service over
the alcatel-ncsu internet2 testbed,” in2nd European Conference
on Universal Multiservice Networks (ECUMN), France, April
2002.

[6] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and
W. Weiss, “Rfc 2475: An architecture for differentiated ser-
vices,” April 1998.

[7] M. Handley, O. Hodson, and E. Kohler, “Xorp: An open
platform for network research,” in1st Workshop on Hot Topics
in Networks (HotNets-I), Princton, New Jersey, October 2002.

[8] D. Wetherall, J. Guttag, and D. Tennenhouse, “Ants: A toolkit
for building and dynamically deploying network protocols,”
Ph.D. dissertation, University of Washington, 1998.

[9] A. Kulkarni, G. Minden, R. Hill, Y. Wijata, A. Gopinath,
S. Sheth, F. Wahhab, H. Pindi, and A. Nagarajan, “Implemen-
tation of a prototype active network,” inFirst International
Conference on Open Architectures and Network Programming
(OPENARCH), San Fransisco, 1998.

[10] S. Berson, “A gentle introduction to the abone,” inOPENSIG
Workshop 2000, October 2000.

[11] A. Campbell, G. D. Meer, M. Kounavis, K. Miki, J. Vicente,
and D. Villela, “The genesis kernel: A virtual network oper-
ating system for spawning network architectures,” inSecond
International Conference on Open Architectures and Network
Programming (OPENARCH), New York, 1999.

[12] D. Alexander, W. Arbaugh, M. Hicks, P. Kakkar, A. Keromytis,
J. Moore, C. Gunder, S. Nettles, and J. Smith, “The switchware
active network architecture,”IEEE Network, May/June 1998.

[13] M. Chan, J. Huard, A. Lazar, and K. Lim, “On realizing
a broadband kernel for multimedia networks,” inWorksop
on Multimedia Telecommunications and Applications, Spain,
November 1996.

[14] E. Kohler, “The click modular router,”ACM Transactions on
Computer Systems, vol. 18, no. 3, August 2000.

[15] M. Rio, N. Pezzi, H. D. Meer, W. Emmerich, L. Zanolin,
and C. Mascolo, “Promile: A management architecture for
programmable modular routers,” inOpenSIG 2001, 2001.

[16] J. Case, M. Fedor, M. Schoffstall, and J. Davin, “Rfc1157: A
simple network management protocol (snmp),” May 1990.

[17] D. Durham, K.Boyle, R. Cohen, S. Herzog, R. Rajan, and
A. Sastry, “Rfc2748: The cops (common open policy service)
protocol,” January 2000.

[18] I. Marshall, J. Cowan, J. Crowcroft, M. Fry, A. Ghosh,
D. Hutchinson, D. Parrish, I. Phillips, M. Sloman, and
D. Waddington, “Alpine - application level programmable inter-
network environment,”BT Technology Journal, vol. 15, no. 2,
April 1997.

[19] I. Liabotis, O. Prnjat, and L. Sacks, “Policy-based resource
management for application level active networks,” in2nd
IEEE Latin American Network Operations and Management
Symposium (LANOMS), Brazil, August 2001.

[20] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer, “Specifying
distributed software architectures,” in5th European Software
Engineering Conf. (ESEC 95), vol. 989. Sitges, Spain:
Springer-Verlag, Berlin, 1995.

[21] “The common information model (cim) standard,” distributed
Managment Task Force.

[22] “The cisco 2100 intelligent engine,” www.cisco.com.
[23] “The directory enabled network (den) standard,” distributed

Managment Task Force.
[24] M. Fry and A. Ghosh, “Application layer active networking,”

in International Workshop on High Performance Protocol Ar-
chitectures (HIPPPARCH), June 1998.

[25] C. Hedrick, “Rfc 1058: Routing information protocol,” June
1988.

[26] K. Lougheed and Y. Rekhter, “Rfc 1267: A border gateway
protocol 3 (bgp-3),” October 1991.

[27] J. Moy, “Rfc 2328: Ospf version 2,” April 1998.
[28] T. Bray, J. Paoli, C. Sperberg-McQueen, and E. Maler, “Ex-

tensible markup language (xml) 1.0 (second edition),” October
2000.

[29] C. Mascolo, L. Zanolin, and W. Emmerich, “Xmile: an xml
based approach for incremental code mobility and update,”
Automated Software Engineering Journal (Special Issue on
Mobility), vol. 9, no. 2, April 2002.

[30] S. Floyd and V. Jacobson, “Random early detection gateways
for congestion avoidance,”IEEE/ACM Transactions on Net-
working, vol. 1, no. 4, August 1993.

[31] H. Eriksson, “The multicast backbone,”Communications of the
ACM, vol. 37, no. 8, August 1994.

[32] “6bone,” www.6bone.net.
[33] ITO, “Collaborative advanced interagency research network

(cairn),” in DARPA ITO Nets PI Meeting, March 1997.
[34] E. Amir, S. McCanne, and R. Katz, “An active service frame-

work and its application to real-time multimedia transcoding,”
in ACM SIGCOMM ’98, Canada, 1998.

[35] D. L. Tennenhouse, J. M. Smith, W. D. Sincoskie, D. J.
Wetherall, and G. J. Minden, “A survey of active network
research,”IEEE Communications Magazine, vol. 35, no. 1,
1997.

[36] A. Campbell, H. D. Meer, M. Kounavis, K. Miki, J. Vicente, and
D. Villela, “A survey of programmable networks,”SIGCOMM
Computer Communications Review, vol. 29, no. 2, April 1999.

[37] A. V. Konstantinou, Y. Yemini, and D. Florissi, “Towards self-
managing systems,” San Francisco, May 2002.

[38] A. J. et al, “Active network monitoring and control: The
sencomm architecture and implementation,” inDARPA Active
Networks Conference and Exposition (DANCE), San Francisco,
May 2002.

[39] D. Raz and havitt, “An active network approach for efficient
network management,” inInternational Working Conference on
Active Networks, Germany, 1999.

[40] L. R. et al, “An adaptable network control and reporting
system (ancors),” inDARPA Active Networks Conference and
Exposition (DANCE), San Francisco, May 2002.

[41] E. Lupu, M. Sloman, N. Dulay, and N. Damianou, “Ponder: Re-
alising enterprise viewpoint concepts,” inInternational Enter-
prise Distributed Object Computing Conference (EDOC2000),
Japan, September 2000.


