25,410 research outputs found

    Reconfigurable Reflectarrays and Array Lenses for Dynamic Antenna Beam Control: A Review

    Full text link
    Advances in reflectarrays and array lenses with electronic beam-forming capabilities are enabling a host of new possibilities for these high-performance, low-cost antenna architectures. This paper reviews enabling technologies and topologies of reconfigurable reflectarray and array lens designs, and surveys a range of experimental implementations and achievements that have been made in this area in recent years. The paper describes the fundamental design approaches employed in realizing reconfigurable designs, and explores advanced capabilities of these nascent architectures, such as multi-band operation, polarization manipulation, frequency agility, and amplification. Finally, the paper concludes by discussing future challenges and possibilities for these antennas.Comment: 16 pages, 12 figure

    Understanding synthesis imaging dynamic range

    Full text link
    We develop a general framework for quantifying the many different contributions to the noise budget of an image made with an array of dishes or aperture array stations. Each noise contribution to the visibility data is associated with a relevant correlation timescale and frequency bandwidth so that the net impact on a complete observation can be assessed. All quantities are parameterised as function of observing frequency and the visibility baseline length. We apply the resulting noise budget analysis to a wide range of existing and planned telescope systems that will operate between about 100 MHz and 5 GHz to ascertain the magnitude of the calibration challenges that they must overcome to achieve thermal noise limited performance. We conclude that calibration challenges are increased in several respects by small dimensions of the dishes or aperture array stations. It will be more challenging to achieve thermal noise limited performance using 15 m class dishes rather than the 25 m dishes of current arrays. Some of the performance risks are mitigated by the deployment of phased array feeds and more with the choice of an (alt,az,pol) mount, although a larger dish diameter offers the best prospects for risk mitigation. Many improvements to imaging performance can be anticipated at the expense of greater complexity in calibration algorithms. However, a fundamental limitation is ultimately imposed by an insufficient number of data constraints relative to calibration variables. The upcoming aperture array systems will be operating in a regime that has never previously been addressed, where a wide range of effects are expected to exceed the thermal noise by two to three orders of magnitude. Achieving routine thermal noise limited imaging performance with these systems presents an extreme challenge. The magnitude of that challenge is inversely related to the aperture array station diameter.Comment: 27 pages, 24 figures, accepted in A&A, final versio

    Aeroservoelasticity

    Get PDF
    Accomplishments and current research projects along four main thrusts in aeroservoelasticity at the NASA Langley Research Center are described. One activity focuses on enhancing the modelling and the analysis procedures to accurately predict aeroservoelastic interactions. In the area of modelling, improvements to the minimum-state method of approximating unsteady aerodynamics are shown to provide precise, low-order models for design and simulation tasks. Recent extensions in aerodynamic correction factor methodology are also described. With respect to analysis procedures, the paper reviews novel enhancements to Matched Filter Theory and Random Process Theory for predicting the critical gust profile and the associated time-correlated gust loads for structural design considerations. In another activity, two research projects leading towards improved design capability are summarized. The first program involves the development of an integrated structure/control design capability; the second provides procedures for obtaining low-order, robust digital control laws for aeroelastic applications. Experimental validation of new theoretical developments is the third activity. As such, a short description of the Active Flexible Wing Project is presented, and recent wind-tunnel test accomplishments are summarized. Finally within the area of application, a study performed to assess the state-of-the-art of aeroelastic and aeroservoelastic analysis and design technology with respect to hot, hypersonic flight vehicles is reviewed
    • …
    corecore