research
Aeroservoelasticity
- Publication date
- Publisher
Abstract
Accomplishments and current research projects along four main thrusts in aeroservoelasticity at the NASA Langley Research Center are described. One activity focuses on enhancing the modelling and the analysis procedures to accurately predict aeroservoelastic interactions. In the area of modelling, improvements to the minimum-state method of approximating unsteady aerodynamics are shown to provide precise, low-order models for design and simulation tasks. Recent extensions in aerodynamic correction factor methodology are also described. With respect to analysis procedures, the paper reviews novel enhancements to Matched Filter Theory and Random Process Theory for predicting the critical gust profile and the associated time-correlated gust loads for structural design considerations. In another activity, two research projects leading towards improved design capability are summarized. The first program involves the development of an integrated structure/control design capability; the second provides procedures for obtaining low-order, robust digital control laws for aeroelastic applications. Experimental validation of new theoretical developments is the third activity. As such, a short description of the Active Flexible Wing Project is presented, and recent wind-tunnel test accomplishments are summarized. Finally within the area of application, a study performed to assess the state-of-the-art of aeroelastic and aeroservoelastic analysis and design technology with respect to hot, hypersonic flight vehicles is reviewed