1,250 research outputs found

    Deep learning models of biological visual information processing

    Get PDF
    Improved computational models of biological vision can shed light on key processes contributing to the high accuracy of the human visual system. Deep learning models, which extract multiple layers of increasingly complex features from data, achieved recent breakthroughs on visual tasks. This thesis proposes such flexible data-driven models of biological vision and also shows how insights regarding biological visual processing can lead to advances within deep learning. To harness the potential of deep learning for modelling the retina and early vision, this work introduces a new dataset and a task simulating an early visual processing function and evaluates deep belief networks (DBNs) and deep neural networks (DNNs) on this input. The models are shown to learn feature detectors similar to retinal ganglion and V1 simple cells and execute early vision tasks. To model high-level visual information processing, this thesis proposes novel deep learning architectures and training methods. Biologically inspired Gaussian receptive field constraints are imposed on restricted Boltzmann machines (RBMs) to improve the fidelity of the data representation to encodings extracted by visual processing neurons. Moreover, concurrently with learning local features, the proposed local receptive field constrained RBMs (LRF-RBMs) automatically discover advantageous non-uniform feature detector placements from data. Following the hierarchical organisation of the visual cortex, novel LRF-DBN and LRF-DNN models are constructed using LRF-RBMs with gradually increasing receptive field sizes to extract consecutive layers of features. On a challenging face dataset, unlike DBNs, LRF-DBNs learn a feature hierarchy exhibiting hierarchical part-based composition. Also, the proposed deep models outperform DBNs and DNNs on face completion and dimensionality reduction, thereby demonstrating the strength of methods inspired by biological visual processing

    Deep learning models of biological visual information processing

    Get PDF
    Improved computational models of biological vision can shed light on key processes contributing to the high accuracy of the human visual system. Deep learning models, which extract multiple layers of increasingly complex features from data, achieved recent breakthroughs on visual tasks. This thesis proposes such flexible data-driven models of biological vision and also shows how insights regarding biological visual processing can lead to advances within deep learning. To harness the potential of deep learning for modelling the retina and early vision, this work introduces a new dataset and a task simulating an early visual processing function and evaluates deep belief networks (DBNs) and deep neural networks (DNNs) on this input. The models are shown to learn feature detectors similar to retinal ganglion and V1 simple cells and execute early vision tasks. To model high-level visual information processing, this thesis proposes novel deep learning architectures and training methods. Biologically inspired Gaussian receptive field constraints are imposed on restricted Boltzmann machines (RBMs) to improve the fidelity of the data representation to encodings extracted by visual processing neurons. Moreover, concurrently with learning local features, the proposed local receptive field constrained RBMs (LRF-RBMs) automatically discover advantageous non-uniform feature detector placements from data. Following the hierarchical organisation of the visual cortex, novel LRF-DBN and LRF-DNN models are constructed using LRF-RBMs with gradually increasing receptive field sizes to extract consecutive layers of features. On a challenging face dataset, unlike DBNs, LRF-DBNs learn a feature hierarchy exhibiting hierarchical part-based composition. Also, the proposed deep models outperform DBNs and DNNs on face completion and dimensionality reduction, thereby demonstrating the strength of methods inspired by biological visual processing

    Automatic Tuning of a Retina Model for a Cortical Visual Neuroprosthesis Using a Multi-Objective Optimization Genetic Algorithm

    Get PDF
    The retina is a very complex neural structure, which contains many different types of neurons interconnected with great precision, enabling sophisticated conditioning and coding of the visual information before it is passed via the optic nerve to higher visual centers. The encoding of visual information is one of the basic questions in visual and computational neuroscience and is also of seminal importance in the field of visual prostheses. In this framework, it is essential to have artificial retina systems to be able to function in a way as similar as possible to the biological retinas. This paper proposes an automatic evolutionary multi-objective strategy based on the NSGA-II algorithm for tuning retina models. Four metrics were adopted for guiding the algorithm in the search of those parameters that best approximate a synthetic retinal model output with real electrophysiological recordings. Results show that this procedure exhibits a high flexibility when different trade-offs has to be considered during the design of customized neuro prostheses

    Active Inference in Simulated Cortical Circuits

    Get PDF

    Robotic navigation and inspection of bridge bearings

    Get PDF
    This thesis focuses on the development of a robotic platform for bridge bearing inspection. The existing literature on this topic highlights an aspiration for increased automation of bridge inspection, due to an increasing amount of ageing infrastructure and costly inspection. Furthermore, bridge bearings are highlighted as being one of the most costly components of the bridge to maintain. However, although autonomous robotic inspection is often stated as an aspiration, the existing literature for robotic bridge inspection often neglects to include the requirement of autonomous navigation. To achieve autonomous inspection, some methods for mapping and localising in the bridge structure are required. This thesis compares existing methods for simultaneous localisation and mapping (SLAM) with localisation-only methods. In addition, a method for using pre-existing data to create maps for localisation is proposed. A robotic platform was developed and these methods for localisation and mapping were then compared in a laboratory environment and then in a real bridge environment. The errors in the bridge environment are greater than in the laboratory environment, but remained within a defined error bound. A combined approach is suggested as an appropriate method for combining the lower errors of a SLAM approach with the advantages of a localisation approach for defining existing goals. Longer-term testing in a real bridge environment is still required. The use of existing inspection data is then extended to the creation of a simulation environment, with the goal of creating a methodology for testing different configurations of bridges or robots in a more realistic environment than laboratory testing, or other existing simulation environments. Finally, the inspection of the structure surrounding the bridge bearing is considered, with a particular focus on the detection and segmentation of cracks in concrete. A deep learning approach is used to segment cracks from an existing dataset and compared to an existing machine learning approach, with the deep-learning approach achieving a higher performance using a pixel-based evaluation. Other evaluation methods were also compared that take the structure of the crack, and other related datasets, into account. The generalisation of the approach for crack segmentation is evaluated by comparing the results of the trained on different datasets. Finally, recommendations for improving the datasets to allow better comparisons in future work is given

    Advancing models of the visual system using biologically plausible unsupervised spiking neural networks

    Get PDF
    Spikes are thought to provide a fundamental unit of computation in the nervous system. The retina is known to use the relative timing of spikes to encode visual input, whereas primary visual cortex (V1) exhibits sparse and irregular spiking activity – but what do these different spiking patterns represent about sensory stimuli? To address this question, I set out to model the retina and V1 using a biologically-realistic spiking neural network (SNN), exploring the idea that temporal prediction underlies the sensory transformation of natural inputs. Firstly, I trained a recurrently-connected SNN of excitatory and inhibitory units to predict the sensory future in natural movies under metabolic-like constraints. This network exhibited V1-like spike statistics, simple and complex cell-like tuning, and - advancing prior studies - key physiological and tuning differences between excitatory and inhibitory neurons. Secondly, I modified this spiking network to model the retina to explore its role in visual processing. I found the model optimized for efficient prediction to capture retina-like receptive fields and - in contrast to previous studies - various retinal phenomena, such as latency coding, response omissions, and motion-tuning properties. Notably, the temporal prediction model also more accurately predicts retinal ganglion cell responses to natural images and movies across various animal species. Lastly, I developed a new method to accelerate the simulation and training of SNNs, obtaining a 10-50 times speedup, with performance on a par with the standard training approach on supervised classification benchmarks and for fitting electrophysiological recordings of cortical neurons. The retina and V1 models lay the foundation for developing normative models of increasing biological realism and link sensory processing to spiking activity, suggesting that temporal prediction is an underlying function of visual processing. This is complemented by a new approach to drastically accelerate computational research using SNNs

    Proceedings of Abstracts Engineering and Computer Science Research Conference 2019

    Get PDF
    © 2019 The Author(s). This is an open-access work distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. For further details please see https://creativecommons.org/licenses/by/4.0/. Note: Keynote: Fluorescence visualisation to evaluate effectiveness of personal protective equipment for infection control is © 2019 Crown copyright and so is licensed under the Open Government Licence v3.0. Under this licence users are permitted to copy, publish, distribute and transmit the Information; adapt the Information; exploit the Information commercially and non-commercially for example, by combining it with other Information, or by including it in your own product or application. Where you do any of the above you must acknowledge the source of the Information in your product or application by including or linking to any attribution statement specified by the Information Provider(s) and, where possible, provide a link to this licence: http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/This book is the record of abstracts submitted and accepted for presentation at the Inaugural Engineering and Computer Science Research Conference held 17th April 2019 at the University of Hertfordshire, Hatfield, UK. This conference is a local event aiming at bringing together the research students, staff and eminent external guests to celebrate Engineering and Computer Science Research at the University of Hertfordshire. The ECS Research Conference aims to showcase the broad landscape of research taking place in the School of Engineering and Computer Science. The 2019 conference was articulated around three topical cross-disciplinary themes: Make and Preserve the Future; Connect the People and Cities; and Protect and Care

    Spiking neural networks for computer vision

    Get PDF
    State-of-the-art computer vision systems use frame-based cameras that sample the visual scene as a series of high-resolution images. These are then processed using convolutional neural networks using neurons with continuous outputs. Biological vision systems use a quite different approach, where the eyes (cameras) sample the visual scene continuously, often with a non-uniform resolution, and generate neural spike events in response to changes in the scene. The resulting spatio-temporal patterns of events are then processed through networks of spiking neurons. Such event-based processing offers advantages in terms of focusing constrained resources on the most salient features of the perceived scene, and those advantages should also accrue to engineered vision systems based upon similar principles. Event-based vision sensors, and event-based processing exemplified by the SpiNNaker (Spiking Neural Network Architecture) machine, can be used to model the biological vision pathway at various levels of detail. Here we use this approach to explore structural synaptic plasticity as a possible mechanism whereby biological vision systems may learn the statistics of their inputs without supervision, pointing the way to engineered vision systems with similar online learning capabilities
    corecore