2,004 research outputs found

    Interpreting Models of Social Group Interactions in Meetings with Probabilistic Model Checking

    Get PDF
    A major challenge in Computational Social Science consists in modelling and explaining the temporal dynamics of human communication. Understanding small group interactions can help shed light on sociological and social psychological questions relating to human communications. Previous work showed how Markov rewards models can be used to analyse group interaction in meeting. We explore further the potential of these models by formulating queries over interaction as probabilistic temporal logic properties and analysing them with probabilistic model checking. For this study, we analyse a dataset taken from a standard corpus of scenario and non-scenario meetings and demonstrate the expressiveness of our approach to validate expected interactions and identify patterns of interest

    Deep Reinforcement Learning Approaches for Technology Enhanced Learning

    Get PDF
    Artificial Intelligence (AI) has advanced significantly in recent years, transforming various industries and domains. Its ability to extract patterns and insights from large volumes of data has revolutionised areas such as image recognition, natural language processing, and autonomous systems. As AI systems become increasingly integrated into daily human life, there is a growing need for meaningful collaboration and mutual engagement between humans and AI, known as Human-AI Collaboration. This collaboration involves combining AI with human workflows to achieve shared objectives. In the current educational landscape, the integration of AI methods in Technology Enhanced Learning (TEL) has become crucial for providing high-quality education and facilitating lifelong learning. Human-AI Collaboration also plays a vital role in the field of Technology Enhanced Learning (TEL), particularly in Intelligent Tutoring Systems (ITS). The COVID-19 pandemic has further emphasised the need for effective educational technologies to support remote learning and bridge the gap between traditional classrooms and online platforms. To maximise the performance of ITS while minimising the input and interaction required from students, it is essential to design collaborative systems that effectively leverage the capabilities of AI and foster effective collaboration between students and ITS. However, there are several challenges that need to be addressed in this context. One challenge is the lack of clear guidance on designing and building user-friendly systems that facilitate collaboration between humans and AI. This challenge is relevant not only to education researchers but also to Human-Computer Interaction (HCI) researchers and developers. Another challenge is the scarcity of interaction data in the early stages of ITS development, which hampers the accurate modelling of students' knowledge states and learning trajectories, known as the cold start problem. Moreover, the effectiveness of Intelligent Tutoring Systems (ITS) in delivering personalised instruction is hindered by the limitations of existing Knowledge Tracing (KT) models, which often struggle to provide accurate predictions. Therefore, addressing these challenges is crucial for enhancing the collaborative process between humans and AI in the development of ITS. This thesis aims to address these challenges and improve the collaborative process between students and ITS in TEL. It proposes innovative approaches to generate simulated student behavioural data and enhance the performance of KT models. The thesis starts with a comprehensive survey of human-AI collaborative systems, identifying key challenges and opportunities. It then presents a structured framework for the student-ITS collaborative process, providing insights into designing user-friendly and efficient systems. To overcome the challenge of data scarcity in ITS development, the thesis proposes two student modelling approaches: Sim-GAIL and SimStu. SimStu leverages a deep learning method, the Decision Transformer, to simulate student interactions and enhance ITS training. Sim-GAIL utilises a reinforcement learning method, Generative Adversarial Imitation Learning (GAIL), to generate high-fidelity and diverse simulated student behavioural data, addressing the cold start problem in ITS training. Furthermore, the thesis focuses on improving the performance of KT models. It introduces the MLFBKT model, which integrates multiple features and mines latent relations in student interaction data, aiming to improve the accuracy and efficiency of KT models. Additionally, the thesis proposes the LBKT model, which combines the strengths of the BERT model and LSTM to process long sequence data in KT models effectively. Overall, this thesis contributes to the field of Human-AI collaboration in TEL by addressing key challenges and proposing innovative approaches to enhance ITS training and KT model performance. The findings have the potential to improve the learning experiences and outcomes of students in educational settings

    COMPUTATIONAL ANALYSIS OF KNOWLEDGE SHARING IN COLLABORATIVE DISTANCE LEARNING

    Get PDF
    The rapid advance of distance learning and networking technology has enabled universities and corporations to reach out and educate students across time and space barriers. This technology supports structured, on-line learning activities, and provides facilities for assessment and collaboration. Structured collaboration, in the classroom, has proven itself a successful and uniquely powerful learning method. Online collaborative learners, however, do not enjoy the same benefits as face-to-face learners because the technology provides no guidance or direction during online discussion sessions. Integrating intelligent facilitation agents into collaborative distance learning environments may help bring the benefits of the supportive classroom closer to distance learners.In this dissertation, I describe a new approach to analyzing and supporting online peer interaction. The approach applies Hidden Markov Models, and Multidimensional Scaling with a threshold-based clustering method, to analyze and assess sequences of coded on-line student interaction. These analysis techniques were used to train a system to dynamically recognize when and why students may be experiencing breakdowns while sharing knowledge and learning from each other. I focus on knowledge sharing interaction because students bring a great deal of specialized knowledge and experiences to the group, and how they share and assimilate this knowledge shapes the collaboration and learning processes. The results of this research could be used to dynamically inform and assist an intelligent instructional agent in facilitating knowledge sharing interaction, and helping to improve the quality of online learning interaction

    Sequence analysis: its past, present, and future

    Get PDF
    This article marks the occasion of Social Science Research’s 50th anniversary by reflecting on the progress of sequence analysis (SA) since its introduction into the social sciences four decades ago, with focuses on the developments of SA thus far in the social sciences and on its potential future directions. The application of SA in the social sciences, especially in life course research, has mushroomed in the last decade and a half. Using a life course analogy, we examined the birth of SA in the social sciences and its childhood (the first wave), its adolescence and young adulthood (the second wave), and its future mature adulthood in the paper. The paper provides a summary of (1) the important SA research and the historical contexts in which SA was developed by Andrew Abbott, (2) a thorough review of the many methodological developments in visualization, complexity measures, dissimilarity measures, group analysis of dissimilarities, cluster analysis of dissimilarities, multidomain/multichannel SA, dyadic/polyadic SA, Markov chain SA, sequence life course analysis, sequence network analysis, SA in other social science research, and software for SA, and (3) reflections on some future directions of SA including how SA can benefit and inform theory-making in the social sciences, the methods currently being developed, and some remaining challenges facing SA for which we do not yet have any solutions. It is our hope that the reader will take up the challenges and help us improve and grow SA into maturity

    Automating Software Customization via Crowdsourcing using Association Rule Mining and Markov Decision Processes

    Get PDF
    As systems grow in size and complexity so do their configuration possibilities. Users of modern systems are easy to be confused and overwhelmed by the amount of choices they need to make in order to fit their systems to their exact needs. In this thesis, we propose a technique to select what information to elicit from the user so that the system can recommend the maximum number of personalized configuration items. Our method is based on constructing configuration elicitation dialogs through utilizing crowd wisdom. A set of configuration preferences in form of association rules is first mined from a crowd configuration data set. Possible configuration elicitation dialogs are then modeled through a Markov Decision Processes (MDPs). Within the model, association rules are used to automatically infer configuration decisions based on knowledge already elicited earlier in the dialog. This way, an MDP solver can search for elicitation strategies which maximize the expected amount of automated decisions, reducing thereby elicitation effort and increasing user confidence of the result. We conclude by reporting results of a case study in which this method is applied to the privacy configuration of Facebook

    Use of automated coding methods to assess motivational behaviour in education

    Get PDF
    Teachers’ motivational behaviour is related to important student outcomes. Assessing teachers’ motivational behaviour has been helpful to improve teaching quality and enhance student outcomes. However, researchers in educational psychology have relied on self-report or observer ratings. These methods face limitations on accurately and reliably assessing teachers’ motivational behaviour; thus restricting the pace and scale of conducting research. One potential method to overcome these restrictions is automated coding methods. These methods are capable of analysing behaviour at a large scale with less time and at low costs. In this thesis, I conducted three studies to examine the applications of an automated coding method to assess teacher motivational behaviours. First, I systematically reviewed the applications of automated coding methods used to analyse helping professionals’ interpersonal interactions using their verbal behaviour. The findings showed that automated coding methods were used in psychotherapy to predict the codes of a well-developed behavioural coding measure, in medical settings to predict conversation patterns or topics, and in education to predict simple concepts, such as the number of open/closed questions or class activity type (e.g., group work or teacher lecturing). In certain circumstances, these models achieved near human level performance. However, few studies adhered to best-practice machine learning guidelines. Second, I developed a dictionary of teachers’ motivational phrases and used it to automatically assess teachers’ motivating and de-motivating behaviours. Results showed that the dictionary ratings of teacher need support achieved a strong correlation with observer ratings of need support (rfull dictionary = .73). Third, I developed a classification of teachers’ motivational behaviour that would enable more advanced automated coding of teacher behaviours at each utterance level. In this study, I created a classification that includes 57 teacher motivating and de-motivating behaviours that are consistent with self-determination theory. Automatically assessing teachers’ motivational behaviour with automatic coding methods can provide accurate, fast pace, and large scale analysis of teacher motivational behaviour. This could allow for immediate feedback and also development of theoretical frameworks. The findings in this thesis can lead to the improvement of student motivation and other consequent student outcomes

    Compositional approach to performance modelling

    Get PDF

    Investigating reward-based motor performance in volatile environments using computational modelling and electroencephalography

    Get PDF
    Motor improvements have been linked to reward magnitude in deterministic contexts. Nevertheless, it remains unclear whether individual inferences about reward probability dynamically influence motor vigour. Moreover, how factors such as age, Parkinson’s disease or anxiety affect the modulation of motor vigour by predictions of reward probability remains unexplored. This thesis, across four experiments, investigates how inferences about the volatile action-reward contingencies modulate motor performance on a trial-by-trial basis. We employed a reward-based motor decision-making task and modelled the behavioural data using the Hierarchical Gaussian Filter (HGF). In the final two studies, we also recorded the brain electrical activity through electroencephalography and used convolution models for oscillatory responses to delve into the neural underpinnings of motor decisions. The results revealed that stronger predictions about action-reward probabilities led to faster performance tempo on a trial-by-trial basis in healthy participants. This effect was preserved in older adults and medicated Parkinson’s disease patients. Furthermore, the invigoration of motor responses extended to explicit beliefs (confidence) about reward tendencies. Trait anxiety did not modulate the association between predictions and motor performance but affected practice effects over time. Analyses of the time-frequency representation of HGF computational quantities describing decision making unveiled increased alpha/beta correlates of different types of uncertainty among high trait anxiety individuals. Finally, we found that state anxiety dampened the invigoration effect previously discussed. This manifested as longer reaction time for actions that were highly anticipated to yield rewards. Moreover, state anxiety led to reduced theta oscillatory responses during processing win/lose outcomes. In conclusion, this thesis integrates computational modelling, Bayesian statistics, and electrophysiological approaches to explore motor decision-making behaviour under volatility. It provides novel evidence for an invigoration of motor performance by predictions about the action-reward contingency and sheds light on the modulation of this effect by age, Parkinson’s disease, trait and state anxiety
    • 

    corecore