

AUTOMATING SOFTWARE CUSTOMIZATION VIA
CROWDSOURCING USING ASSOCIATION RULE MINING AND

MARKOV DECISION PROCESSES

SAEIDEH HAMIDI

A THESIS SUBMITTED TO
THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

MASTER OF ARTS

GRADUATE PROGRAM IN MASTER OF INFORMATION
TECHNOLOGY

YORK UNIVERSITY
TORONTO, ONTARIO

JULY 2014

© Saeideh Hamidi, 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by YorkSpace

https://core.ac.uk/display/77103316?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 ii

Abstract

As systems grow in size and complexity so do their configuration possibilities. Users of

modern systems are easy to be confused and overwhelmed by the amount of choices they

need to make in order to fit their systems to their exact needs. In this thesis, we propose a

technique to select what information to elicit from the user so that the system can

recommend the maximum number of personalized configuration items. Our method is

based on constructing configuration elicitation dialogs through utilizing crowd wisdom.

A set of configuration preferences in form of association rules is first mined from a crowd

configuration data set. Possible configuration elicitation dialogs are then modeled through

a Markov Decision Processes (MDPs). Within the model, association rules are used to

automatically infer configuration decisions based on knowledge already elicited earlier in

the dialog. This way, an MDP solver can search for elicitation strategies which maximize

the expected amount of automated decisions, reducing thereby elicitation effort and

increasing user confidence of the result. We conclude by reporting results of a case study

in which this method is applied to the privacy configuration of Facebook.

 iii

Acknowledgements

This research concludes my Master studies in School of Information Technology at York

University and would have not been possible without the help and support of the people

whom I would like to thank.

First and foremost, I would like to express my profound gratitude towards Prof. Liaskos

for his enthusiasm in this topic and his vigilant guidance throughout my research. I am also

truly grateful for his kind supervision and constant support during my study at York

University.

I am also sincerely grateful to Dr. Andritsos from University of Toronto for his invaluable

assistance during this research. I take the opportunity to extend my sincere thanks to Dr.

Yang, Dr. Litoiu, Dr. Ali Asgary, and my committee members, who so kindly lent me their

precious time.

Last but not least, I would like to express my sincere thanks to my friends and staff

members at School of Information Technology for their support.

 iv

Table of Contents

Abstract ...ii

Acknowledgements .. iii

Table of Contents ...iv

List of Tables ... vii

List of Figures ... viii

CHAPTER 1: Introduction .. 1

1.1 Automating Software Customization .. 1

1.2 Problem Definition .. 4

1.3 Proposed Framework ... 7

1.4 Contributions .. 10

1.5 Structure of the thesis .. 11

CHAPTER 2: Background and Related Work .. 12

2.1 Background .. 12

2.1.1 Association Rule Data Mining ... 12

2.1.2 Markov Decision Processes ... 14

2.2 Related Work ... 17

2.2.1 Recommendation Techniques .. 17

2.2.2 MDP Based recommender ... 22

2.2.3 Recommendation systems in Requirements Engineering 23

2.3 Software Configuration ... 25

2.4 Summary .. 27

 v

CHAPTER 3: Solution .. 28

3.1 Association Rules as Configuration Preferences 28

3.2 Building the MDP ... 29

3.2.1 States ... 30

3.2.2 Actions .. 30

3.2.3 Transition Matrices ... 32

3.2.4 Rewards and Costs .. 35

3.3 Revising the Transition Matrices .. 37

3.4 Policies and Decision Sequences .. 41

3.5 Summary and Discussion ... 45

CHAPTER 4: Case Study .. 47

4.1 Case Study: Facebook ... 47

4.1.1 Configuration items in Facebook .. 49

4.2 Data Collection ... 51

4.3 Goals and Method .. 53

4.4 Results ... 55

4.4.1 Participants and Responses ... 55

4.4.2 Findings .. 56

4.5 Threats to Validity... 60

4.6 Summary .. 62

CHAPTER 5:Performance ... 63

5.1 State Space .. 63

5.2 Range of Associations .. 66

5.3 Threats to Validity... 67

5.4 Summary and Discussion ... 68

 vi

CHAPTER 6: Conclusion, Limitations and Opportunities 70

6.1 Contribution .. 70

6.2 Discussion .. 71

6.2.1 Assumptions ... 71

6.2.2 Choice of Recommendation System ... 72

6.2.3 Configuration Dialogues ... 73

6.2.4 Why MDPs .. 74

6.3 Challenges, Limitations and Opportunities ... 75

6.3.1 Dealing with rare requirements. .. 75

6.3.2 Evaluation Challenges .. 76

6.3.3 Performance ... 77

6.3.4 The role of the configuration items.. 79

References ... 81

 vii

List of Tables

Table 1 - Example of transactions in a store .. 13

Table 2 - Contingency Table of preferences in Email Client Example 34

Table 3 - Facebook Privacy Configuration Options .. 50

Table 4 - Performance vs. State number .. 65

Table 5 - Performance vs. Number of Rules .. 67

 viii

List of Figures

Figure 1 - Example of a simple MDP model ... 16

Figure 2 - The MDP model for email client ... 31

Figure 3 - Transition and reward matrices of Email client 36

Figure 4 - MDP construction algorithm ... 39

Figure 5 - Revised MDP graph ... 41

Figure 6 - A policy tree ... 42

Figure 7 - Updated policy tree .. 44

Figure 8 - Sample snapshots of Facebook configurations 52

Figure 9 - Facebook configuration of crowd in comparison with default option .. 59

Figure 10 - Performace vs. number of binary variables 66

file:///C:/Users/Saeideh/Downloads/Saeideh%20Hamidi%20Thesis%200714-Revised.docx%23_Toc392623083
file:///C:/Users/Saeideh/Downloads/Saeideh%20Hamidi%20Thesis%200714-Revised.docx%23_Toc392623084
file:///C:/Users/Saeideh/Downloads/Saeideh%20Hamidi%20Thesis%200714-Revised.docx%23_Toc392623085
file:///C:/Users/Saeideh/Downloads/Saeideh%20Hamidi%20Thesis%200714-Revised.docx%23_Toc392623086
file:///C:/Users/Saeideh/Downloads/Saeideh%20Hamidi%20Thesis%200714-Revised.docx%23_Toc392623087
file:///C:/Users/Saeideh/Downloads/Saeideh%20Hamidi%20Thesis%200714-Revised.docx%23_Toc392623088
file:///C:/Users/Saeideh/Downloads/Saeideh%20Hamidi%20Thesis%200714-Revised.docx%23_Toc392623089
file:///C:/Users/Saeideh/Downloads/Saeideh%20Hamidi%20Thesis%200714-Revised.docx%23_Toc392623091
file:///C:/Users/Saeideh/Downloads/Saeideh%20Hamidi%20Thesis%200714-Revised.docx%23_Toc392623092

 1

Chapter 1 : Introduction

1.1 Automating Software Customization

Modern software systems exhibit functionalities in amounts and complexities that have

never been seen before. As systems mature and new challenges and opportunities emerge,

more features are developed and added to an already large and complex set of existing

ones. Users interested to fully exploit the power of their software are invited to choose the

functions they need and configure them in a way that perfectly aligns with their goals,

preferences and capabilities [1]. But as the amount and complexity of functions grow, so

does the space of configuration possibilities. Thus, when attempting to fit the functionality

of their systems to their unique needs, users have to deal with an increasingly mystifying

and overwhelming task.

In handling and customizing the configuration of the system, users not only need to be

familiar with technical options, but they also need to be aware of the implications of each

alternative. Take an email client as an example and a setting, within such system, of

intervals for checking new emails with alternatives of short to long intervals. The concept

of this setting (i.e. the frequency of updates of email) may be well understood by the users,

but the implications of each option may not be realized; users may or may not be aware

that shorter intervals impose more traffic on the network or distractions for themselves,

while the longer intervals reduces their availability in exchange for lower network traffic

 2

[2]. This lack of technical knowledge among non-expert users calls for tools and facilities

to help users with customization of their systems.

The dominant practice for configuring software nowadays is through constructing and

using configuration screens either during installation of the application, or after the

application has been installed. Virtually every common desktop, mobile or web application

has one or more “Options” or “Preferences” screens presenting to the user lists of

configuration variables and allowing her to configure each by selecting the option of their

choice.

But in this way, users are left alone to go through all variables and somehow decide what

a good option is for each variable. Beside the huge number of variables that users have to

deal with, their difficulty to choose the best option which fits to their need is another

challenge. Not all users of software applications are professional users or feel comfortable

with handling the settings. Studies suggest that the extent to which users are able to

customize their settings to reflect their preferences depends on their computer skills and

level of technical understanding the relevant settings [3, 4]. Novice users in particular may

have no clue as to what choices are sensible with respect to their own needs and

preferences, as they have made limited or no use of the system before. To sum up, the

specific reasons why users may have difficulty coping with configuration screens seem to

be that: (a) the user has to painstakingly go through each and every variable (b) user will

 3

not be confident that she has chosen the right combination of values with respect to their

own needs and preferences.

As a remedy, the current practice is to offer a universal one-size-fits-all default

configuration to all users, apparently with hopes that for a majority of users it will be good

enough to delve into the configuration screens. Alas, research also shows that most people

rarely change the default [5]. This means that either the default options are suitable for

most people which obviates the need to further customize the software or, quite more

credibly, that customization is difficult for the majority. Again, the assumption of users

difficulty in customization is particularly true for the least skilled users, who are known to

be the least likely to be able to customize the settings on their own and change the default

[3].

But what if users could just consult each other? If a novice user had access to the

configurations that a community (“crowd”) of expert users have set for themselves, this

would be valuable advice for building her own configuration. Configuration could actually

be in part automated: all she would have to do is to provide a minimum of configuration

options and have the rest be automatically defined, based on how a like-minded group

(based on her limited input) within the expert crowd has configured their own system.

Consider for example in the email client, among other things, the user has to configure the

size of the font (small, medium, large etc.) and the size of the function icons. Assume

further that we know that those in the expert crowd who have large fonts also have large

 4

icons. If that is the case, it is fair to expect that once the user declares that she likes large

fonts, the system also knows without further asking that she probably prefers large icons –

at least from whichever arbitrary default. But how can we identify a minimum set of user-

provided configuration options in order to have his/her entire system configured with

minimum effort?

In this study, we propose a way by which users can reduce the effort to configure their

system by crowdsourcing the configuration preferences of a crowd. The exact problem set-

up is explained in the following section.

1.2 Problem Definition

Configuring modern software systems is a process of assigning values to a number of

parameters that the designers of the software system avail to users within various

configuration facilities, such as “Options", and “Preference" screens or configuration files.

In more abstract terms, a configuration problem consists of a set V of configuration

variables 𝑉𝑖 each drawing values 𝑜𝑗
𝑖 (options) from the set 𝑂𝑉𝑖

.

Let us return to the above configuration problem from our hypothetical email client

program. Among its many configuration variables (e.g. whether to use HTML, what

connection security to apply, whether to include a signature in each email, etc.), assume

that the email program allows the user to also adjust font size, icon size (for buttons such

as “New E-Mail” and “Reply”) and whether to also display text under the icons. Let us

 5

denote these variables as 𝑉𝑓𝑛𝑡, 𝑉𝑖𝑐𝑜 and 𝑉𝑑𝑖𝑠𝑝, respectively. The user can adjust the

variables to take values from the sets: {large, medium, small}, {large icon, small icon} and

{yes, no}, respectively. Thus, using the above formalization the domain of each variable is

as follows:

𝑂𝑉𝑓𝑛𝑡
= {𝑜𝑙𝑔

𝑓𝑛𝑡
 , 𝑜𝑚𝑒𝑑

𝑓𝑛𝑡
 , 𝑜𝑠𝑚

𝑓𝑛𝑡
}

𝑂𝑉𝑖𝑐𝑜
= {𝑜𝑙𝑔𝑖

𝑖𝑐𝑜 , 𝑜𝑠𝑚𝑖
𝑖𝑐𝑜 }

𝑂𝑉𝑑𝑖𝑠𝑝
= {𝑜𝑦𝑒𝑠

𝑑𝑖𝑠𝑝
 , 𝑜𝑛𝑜

𝑑𝑖𝑠𝑝
 }

A configuration decision is the (human/non-automated) act of thinking and deciding what

option is more suitable or preferred for a particular variable. In this case, in order to

completely solve the configuration problem, the email client user would need to make three

(3) configuration decisions, thinking and deciding about each variable separately.

Nevertheless, we may have some crowd configuration preferences in the form of rules (or

patterns) mined from e.g. a group of other users. Such rules would tell us that if the user

decides to adjust some of her configuration variables in a specific way, then she also wants

to adjust some other configuration variables in another, also specific, way. The extracted

rules from the crowd are in fact association rules, which are of the following general form:

(𝑉𝑙1
 = 𝑜.𝑙1) ˄ (𝑉𝑙2

 = 𝑜.𝑙2) ˄ … → (𝑉𝑟1
 = 𝑜.𝑟1) ˄ (𝑉𝑟2

 = 𝑜.𝑟2) ˄ …

 6

Where 𝑉𝑙𝑖
 and 𝑉𝑟𝑖

 are respectively variables on the left-hand and right-hand side of the

rule, and 𝑜.𝑖 and 𝑜.𝑟𝑖 are arbitrary values thereof, drawn, of course, from the corresponding

domains.

Back to the email client example, we may be aware that if a user prefers to have large font

size, she also likes to have large icon size. Furthermore we know that if she likes large icon

size then she also prefers text to not be displayed under the icon, apparently to save space.

Here is how we can write those rules more formally:

(𝑉𝑓𝑛𝑡 = 𝑜𝑙𝑔
𝑓𝑛𝑡

) → (𝑉𝑖𝑐𝑜 = 𝑜𝑙𝑔𝑖
𝑖𝑐𝑜)

(𝑉𝑖𝑐𝑜 = 𝑜𝑙𝑔𝑖
𝑖𝑐𝑜) → (𝑉𝑑𝑖𝑠𝑝 = 𝑜𝑛𝑜

𝑑𝑖𝑠𝑝
)

Notice now how this knowledge, whenever available, can help us reduce configuration

effort. Without the association rule, in order to have the complete set configured, the user

would need to make three separate decisions – about font size, about icon size and about

text display. However, if we assume presence of the association rules, we know that some

choices in some variables help us infer choices in other variables, saving us from making

the corresponding configuration decisions. In this example, it is obvious that if we know

that the user prefers to have large font, then we also know what font she wants for the icons

and, better yet, we also know if she wants text under the icons.

Given this, it is easy to see that there are more efficient and less efficient orderings by

which the configuration decisions can be made. Given the above two configuration rules,

 7

if the user decides about icon size first, then text display, and finally font size, she will

always have to make three decisions. If, on the contrary, she starts by deciding what font

size she wants, then, depending on her decision on that, there is a chance that the other two

decisions need not to be made, but are taken care of by the rules, instead.

More generally, given a set of configuration variables to be decided upon, and a set of

crowd preference rules among them, what is the optimal sequence in which potential

decisions can be ordered, so that the smallest number of decisions is eventually made on

average? Knowing how to compute such a sequence of decisions could be useful for

constructing intelligent configuration elicitation interfaces in which users are directed

towards making more influential decisions first, allowing thereby a larger subset of

variables to be configured automatically without the need for a human decision.

In the next subsection we outline how we address this problem in this thesis.

1.3 Proposed Framework

We propose a way by which the effort of users to configure their system is minimized and

the fitness of the result is improved by utilizing configuration preferences of a crowd. The

proposed framework is based on mining of association rules between configuration

preferences and solving the sequence of configuration items based on Markov Decision

Process.

 8

Configuration preferences in the proposed technique come in the form of association rules,

which are mined from the chosen configurations of a crowd of users. Given the

configuration options of the crowd, the goal is to model a recommender that minimizes the

effort of a new user in configuring the options. The proposed recommender will ask user

to explicitly configure a minimized number of parameters, and will recommend (or predict)

the rest of the options accordingly. The challenge therefore, is determining the sequence of

questions to be asked from the user that will yield the most gain in predicting the rest of

configurations. To solve this, a method based on combining association rule mining with

Markov Decision Processes (MDPs) is proposed as follows.

The first step is mining combinations of configuration options that frequently coincide. At

this stage, after acquiring (“crowdsourcing”) a dataset of users’ customized configurations,

the association rules are mined following standard a-priori algorithm [6]. To focus on

significant associations, a threshold for minimum support and confidence is decided. The

result is a set of association rules that are highly suggestive by our data. These rules tell us

that those of the crowd who make particular configuration choices with one or more of the

configuration parameters, also make certain choices with other parameters.

The next step is the construction of the MDP model. As we will see, MDP models consist

of states and actions that lead - with a certain probability - from one state to the other. In

our problem, states correspond to the state of our knowledge of the preferred configuration

for a particular user. Actions, on the other hand, are configuration questions posed to the

 9

users in order to learn their preferred option for a given variable, as in “how would you like

to configure this parameter?”. In such a question the user has different options to respond,

and she will pick either of those with a certain probability. As such the action of posing the

question comes with a probability distribution of possible outcomes. This distribution is

decided based on the frequency of configuration options in the crowd sourced dataset.

User response to the action naturally triggers transition from a less informed to a more

informed state, in which only one more variable is known; but the association rules help us

multiply the amount of knowledge we gain with each answer, effectively skipping

unnecessary questions. Using an MDP-solver we can solve the MDP and obtain a policy,

which describes sequences of actions that optimize expected utility - there are many such

because actions have different effects. In our application, by solving the MDP through

rewarding shorter paths towards more configuration knowledge, we are able to minimize

the length of the sequence of questions that are required for a user to have a complete

configuration. Thus the resulting policy will decide the best action to take (i.e. ask user to

set a configuration parameter) in each state of the knowledge of the configurations until all

the configurations are figured out.

This technique is able to reduce the amount of effort users need to dedicate in order to

configure their system in practical cases. In order to evaluate this, we apply the technique

using data collected from the popular social networking system, Facebook, where it is

shown that configuration effort is substantially reduced on average. Furthermore, in

 10

performance experimentation, the solver ability to handle a useful size of configuration

spaces within practical computation time is investigated.

1.4 Contributions

The following summarize the novel contributions of this thesis:

 We introduce a systematic method for developing adaptive configuration elicitation

dialogs that save overall configuration effort and offer expert guidance to novice

users.

 We utilize the wisdom of crowd of experts while keeping the proposal independent

of the configuration content or the application domain and without requiring prior

knowledge about the user.

 We propose a way to combine association rules and MDPs in order to globally

optimize the quality of elicitation dialogues.

 We conduct a case study using real Facebook privacy configuration data to assess

applicability of the approach.

 We study the performance of MDP reasoning in the configuration problem and

assess the number of variables that can be supported by our approach within

practical time.

 11

1.5 Structure of the thesis

The thesis is structured as follows. In Chapter 2, background on the techniques used in our

proposed framework and a review on the literature within the scope of our effort is

provided. Chapter 3 contains detailed description about how the MDP and Association

Rule mining can be applied in minimizing the effort of users in customizing the

configurations. In Chapter 4, we present the experimental study that was performed in order

to observe our proposal in practice and assess its feasibility. In Chapter 5 we evaluate the

performance of our proposed technique in the context of large domains. In final chapter,

Chapter 6, the thesis is concluded with a discussion on the techniques used; we also

elaborate on the limitations of this study and highlight the areas in which further research

is suggested.

 12

Chapter 2 : Background and Related Work

2.1 Background

In this section we provide an overview on the association rule mining technique and

Markov Decision Process (MPD) framework which are utilized in the proposed

framework.

2.1.1 Association Rule Data Mining

Association Rule Mining is one of the popular data mining techniques to discover patterns

between items in a dataset. In association mining, unlike other techniques of data mining

(e.g. classification and clustering [7]), we are not interested in detection of the category of

items, but in the relation between them. This technique was initially used for market basket

analysis to find how items purchased are related [8]; the detected buying patterns would be

used in marketing activities.

The input in association mining is a dataset consisting of categorical attributes. The

objective is to detect strong relations between the items and to find rules that will predict

the occurrence of a set of item, referred to as itemset, based on the occurrences of another

one [7]. For example, a grocery store with electronic check-out is able to keep track of the

combinations of items that customers bring in their baskets to the check-out. Table 1

depicts an example of such transactions in a hypothetical store. An association rule would

detect that the majority of the customers who shopped one set of items (e.g. sausages and

 13

buns), also had another specific set of items in their basket (e.g. beer and mustard). In this

example, this information may support the marketing and product placement/shelving

activities of the grocery.

Association rules are expressed in the form (X⟶Y) (c,s), where X and Y are itemsets that

often appear together (e.g. sausages, buns, mustard and pickles respectively) and c and s

denote the confidence and support of the rule respectively. The rule states when X occur,

Y occur with certain probability c. The level of support s shows the fraction of transactions

that have both X and Y. Since the amount of association rules between all items can be

huge, confidence and support are used as measures of significance and interestingness of a

rule.

Table 1 - Example of transactions in a store

transaction sausage buns beer mustard

1 1 0 0 1

2 1 0 1 0

3 1 1 0 1

4 0 1 0 0

5 1 1 1 1

At the heart of the association rule mining is the detection of frequent itemsets with

minimum support constraint. Subsequently, the minimum confidence constraint is used to

form rules X⟶Y between two frequent itemsets X and Y. The confidence of a rule is

simply the calculation of the conditional probability P(Y|X) which shows what percentage

of the instances that contain itemset X also contain itemset Y. For example, the rule

 14

{sausages, buns} ⟶{mustard} has a confidence of 2 2⁄ = 1.0 in the database of Table 1.

This means that for 100% of the transactions containing sausages and buns the rule is

correct; in other words 100% of the times a customer buys sausages and buns, mustard is

bought as well. This rule has a support of 2 5⁄ = 0.4 which means that in 40% of the

transactions, the three items of sausages, buns, and mustard are purchased together.

In large datasets, the detection of all frequent itemsets with various sizes is a difficult task

and efficient techniques have been proposed for mining association rules. This research

entails application of one of the most established techniques, Apriori [9]. Since the details

of the techniques are not the relevant to this research, the reader is referred to the literature

[6, 8, 10, and 11] in this regard if interested.

2.1.2 Markov Decision Processes

Markov decision processes (MDPs) is a mathematical framework for modeling and solving

sequential decision making and optimization problems under uncertainty [12]. MDPs are

used for optimization problems in a wide area of disciplines such as production and

inventory management [13-15]. In the proposed framework, MDPs are utilized in order to

calculate the optimal sequence of configuration questions, given uncertain user responses.

MDPs are used for analysing a discrete time stochastic process: a process in which the

system's state changes over stages (i.e. separate points in time) in response to actions and

whose outcome is not certain. In MDPs the decision making problem is described by a

http://en.wikipedia.org/wiki/Discrete_time
http://en.wikipedia.org/wiki/Stochastic

 15

finite or infinite set of states 𝑠 ∈ 𝑆. Each state is a description of the system at a particular

stage and holds all the necessary information to predict the next state. The information can

be described through a set of variables, each combination of values of whom uniquely

describes each state.

At any state, the decision-making agent chooses an action from a set of actions 𝑎 ∈ A.

Performance of an action has various possible outcomes, each with a different probability.

Such non-deterministic effects are described by a probability distribution: for each action,

p
α

ij is defined for every pair of states s
i
 and s

j
 as the probability of reaching state s

i
 from s

j

by taking an action α. Thus each action comes with a transition matrix containing p
α

ij in its

cells. In MDPs, the probability distribution of transitions possesses the Markov property:

i.e. the probability distribution of future states depends only upon the present state and the

taken action, and is independent of the history that preceded it.

In MDPs each state has a value and each action comes at a cost. Functions for reward

R: S×S ⟶R and cost C: A ⟶R are used to state the immediate reward of reaching the new

state and the costs associated with taking the action respectively. A reward matrix can be

used to represent R, and a table can be used to assign a cost to each action. The overall

 16

utility of the transition is calculated by subtracting the reward obtained by attaining the

transition minus the cost incurred by performing the action.

Figure 1 illustrates a simple example of MDP model with three states 𝑆1, 𝑆2 and 𝑆3. The

two actions 𝑎1and 𝑎2 are shown in solid and dashed lines. In this model, any action can be

taken at each state, and the system will transit to one or a number of destination states based

on the probability. Taking an action might not change state of the system, such as taking

action 𝑎1in states 𝑆3. Furthermore as shown in the model, there is a reward and cost

associated with transition from 𝑆3 to 𝑆2 via action α2 and with taking the action 𝑎1 in state

𝑆1 respectively.

The core problem of MDPs is to find the course of actions, called optimal policy π that

maximizes the cumulative expected utility of each state. This optimal policy is, roughly,

the result of progressively tallying up the product of probability and utility while traversing

Figure 1 - Example of a simple MDP model

𝑆3 𝑆1

𝑆2

𝑃(α1) = 0.7

𝑃(α2) = 1

𝑃(α1) = 0.3

𝑃(α1) = 1

𝑃(α1) = 0.5

𝑃(α1) = 0.5

𝑃(α2) = 0.1

𝑃(α2) = 0.3

𝑃(α2) = 0.6

𝑃(α2) = 1

+𝟑

−𝟏

 17

each sequence of actions and observing potential transitions actuated thereby. Optimal

means that there is no other policy that can give the agent a larger expected cumulative

utility. For an MDP with stationary dynamics (i.e. independent of time), with either infinite

or indefinite number of stages, there always exists an optimal stationary policy [16, 17].

This implies that although the system is non-deterministic, there is always a sequence of

actions that can be recommended. MDP solvers are tools that allow calculation of optimal

policies given a complete MDP formulation. MDP solvers adopt various algorithms,

primarily Value Iteration (VI), and Policy Iteration (PI); discussion on those algorithms are

beyond the scope of this work and readers are referred to the references for details [12].

2.2 Related Work

The system that we develop in this thesis for assisting configuration can be seen a

Recommendation System. Recommendation systems (RS) are a class of systems that help

users in decision making among an overload of choices by predicting the best items that

matches user needs. In this section first an overview on prominent techniques of

implementation of RS is provided. Subsequently, we proceed to the review the related

works of recommendation systems in the field of requirements engineering.

2.2.1 Recommendation Techniques

Recommendation system is a solution to help users in decision making in overload of

information: they elicit the preferences of individuals and match them with best items

 18

accordingly [18, 19]. There are different types of recommender systems that vary in terms

of the information used, and the algorithm that elicits the recommendations. In the simplest

form, RS can be non-personalized and can suggest users the most popular/common items

such as top seller items in E-commerce. In the realm of software configurations, the default

options are in fact such universal recommendations. In higher level, recommendation can

be a function of personalization in which users are offered items based on their preferences

and constraints.

In the simplest form of personalization, Demographic recommendation systems, socio-

demographic attributes such as age, gender, profession, and education, are used [18]. In

such a system for example, movies of different genres can be suggested to users based on

their age and gender.

Knowledge-Based (KB) systems are based on the heuristic rules and specific domain

knowledge of the experts. KB systems make recommendations by reasoning about what

products or features meet the user’s requirements and be useful to her. These systems are

mostly utilized in domains where items are complex and specialized, or in systems that do

not have many users to collect preferences [20]. An example of such recommender in

requirements engineering is the work of Romero-Mariona et al [21], in which they

developed a knowledge-based system to recommend the best fit model for security

requirements based on 10 fix criteria; the recommendation is based on the user rating of

these criteria in his/her system. KB systems therefore, are costly due to necessity of the

 19

knowledge acquisition from domain experts and translating this knowledge into a model

on which the recommender is based [18].

In Content-Based (CB) systems, the general principle is to identify the common features

of items that are favourable to each user, and then recommend to him/her the items that

share the same features. Since CB systems are based on the semantic features of items,

information describing the content of items is assumed available. These features might be

provided explicitly as in commercial items, or can be extracted and learned implicitly as in

textual contexts. An example of such work done is a recommender for reuse of software

requirements that matches a new software project description against the requirements

artifacts of already completed software projects from the repository for reuse [22].

Collaborative Filtering (CF) systems [23], probably the oldest and most popular kind of

RS [18, 19], are based on the rationale that users who shared similar tastes in the past, will

have similar choices in the future. Hence, CF takes advantage of wisdom of crowd and

recommends to the active user the items that other users with similar taste like. The

similarity in taste of two users is mostly calculated based on history of users (e.g. purchase

history in E-commerce). The case of software requirement recommender for reuse has been

proposed by collaborative Filtering implementation as well. Lim and Finkelstein [3]

introduced a system in which stakeholders will specify ratings on their initial (known)

requirements, using the ratings and matching it against the repository of previous projects,

the system can recommend additional potential requirements.

 20

Both CB and CF systems have their advantages and challenges. A major issue in content-

based systems is that structured information about items and/or the profile of users should

be available. Furthermore if the profile of each user needs to be constructed (in order to be

associated with features of items), it then requires repetitive updates since the user’s

attitude and preferences might change over time [24]. CF overcomes some of the

limitations of CB systems and is the most prominent approach adopted by large, established

e-commerce applications [18, 19]. Another advantage of CF recommendations is that they

are based on the perceived usefulness of items as evaluated by the crowd, instead of content

that may not be a true indicator of quality. However, CF suffers from the cold start problem

at the initial phase, where a user or an item are new in the system and there is not enough

information to compute the similarity and hence make the recommendations. In addition,

the recommendations might be biased towards popular items, and unlike CB, the system is

challenged to attend to users with unique taste [19].

Collaborative Filtering recommendation are separable into two classes: (a) Memory based

algorithms that require preferences of all users be stored in memory at run-time and (b)

Model-based algorithms that periodically create a predictive model offline. As a

representative of memory-based CF technique, neighbourhood-based systems [19] focus

on similarity between items or alternatively between users to recommend the items.

Neighbours are users whose history of choices are most correlated. Pearson correlation and

vector cosine similarity are commonly used similarity calculations and the weighted

average of neighbours is used to make predictions. The choice of neighbours can be based

 21

on top N similar ones, or the ones that show a similarity over a specified threshold.

Memory-based recommenders have long been a popular approach in huge commercial

systems (e.g. Amazon) [18]. This prevalence is due to their simplicity, efficiency, and

transparency of calculations, which makes them more interpretable [18, 19, 25, and 26].

In Model-based approaches, a predictive model is constructed at frequent intervals offline

and later at run time, the model is readily used to make recommendations. Therefore,

although the offline training phase is costly, the recommendation phase is fast [18, 19]. In

order to build the predictive model in Model-based RS, various mining techniques such as

Bayesian networks (e.g. in [27 - 30]), a linear regression (e.g. in [31]), and clustering (e.g.

in [32, 33]) can be practiced. Association rule mining has also been used in constructing

collaborative models. Fu et al. developed a system to recommend web pages by mining

association rules over users’ navigation histories [34]. In another study, Leung et al.

proposed a CF framework using fuzzy association rules that takes advantage of product

similarities in taxonomies to address data sparseness [35]. More recently, a significant

amount of research has been done to model the recommendation process using more

complex probabilistic models [36]. Markov Decision Processes (MDP) is one such model

that can be utilized. A brief review of the relevant literature in application of MDP in

recommendation systems follows.

 22

2.2.2 MDP Based recommender

Optimal policies solved by MDPs have a direct application to recommendation systems. In

such systems, the recommendation process is viewed as a sequential optimization problem

of recommending items, rather than a prediction problem. An example of such application

is the work of Shani et al. [37] in which Markov decision processes (MDPs) model is used

to maximize the profit of the sale of an Israeli online bookstore. In their model the state

space of the MDP corresponds to possible sequences of purchased items and the actions

correspond to a recommendation of an item to a user; the rewards in the MDP correspond

to the utility of selling an item, for example, the net profit. They show that the deployed

MDP-recommender system produces a much higher profit than the system without using

the recommender.

A critical challenge in the application of MDPs in practical recommenders is the rapid

growth of the size of the MDP with the complexity of the problem. As the computational

and representational complexity of MDPs is high, appropriate approaches and

approximations [37-40] must be developed. For instance, in the proposed RS by Shani et

al. [37], to control the size of MDP a few measures are taken: Firstly in definition of the

states, only sequences of relatively small number of items are tracked. Secondly, only

sequences that were observed in the training set are defined in the state space. This

approximation is supported by the fact that for unobserved combinations, the probability

of making a transition into such a state is very low.

 23

There is an important advantage to the application of MDPs in recommendation systems:

they promote the interactive process between the user and the system. In standard CF

recommenders, preference elicitation from users relies on a rather limited model of

interaction and users tend to collaborate only indirectly [41]. In newer generations of RS,

there is more encouragement to allow conversation between user and system in order to

effectively elicit explicit information from users. Such systems, referred to as

Conversational systems [42] assist users in decision making by incorporating a more

human-like interaction between the user and the system where both parties may query or

provide information to the other partner [18]. An MDP-based recommender (e.g. the one

proposed by Shani et al. [37]) is in fact implementation of a conversational

recommendation system. A benefit of such conversational systems is that preferences can

be elicited over the length of the working with the system, rather than upfront [42]. Since

the preferences of users shapes and evolves gradually in the process of working with the

system [43], taking a conversational approach is encouraged in recommendation system

[18].

2.2.3 Recommendation systems in Requirements Engineering

The literature in the area of RSs is mostly related to E-commerce, and recommendations

product- and service- configuration (e.g. 16, 45). Thus there is considerable research into

recommending simple products such as books in amazon.com, as well as complex and

configurable products and services such as computers [45]. The customization of complex

 24

products and the configuration technologies for mass production is in fact similar in

concept to the research at hand and has received a great attention in literature [46-50].

Configuration recommenders assist users in selecting attributes and features such as

customer requirements and product attributes of a complex product. Example domains of

application of such configurators so far are computers [45], cars, financial services, railway

stations, and complex telecommunication switches [46]. The motivation for product and

service configurators is the same as ours: customers (i.e. users) are overwhelmed with the

highly variant products, and get confused by the complexity of the offered options. In many

cases, users are reported to have problem understanding the set of offered options in detail

[46]. The other challenge that is recognized in literature is that users do not know their

preferences beforehand, but rather gain better understanding of the scope of options and

shape their preferences within the process of configuration [43]. In such cases, the need to

support users with recommendations that are, for example, derived from preferences of

similar users is realized [24].

In requirements engineering, the idea of application of RS is still young and rather

unexplored. Maalej and Thurimella [51] have outlined a research agenda for recommender

systems within the requirements engineering domain and proposed potential areas in which

recommender technologies can be utilized to help stakeholders create, analyze, specify,

and manage requirements. The body of the available studies for application of

recommendations in RE are in support of activities of system analysts, and not the end

 25

users. Activities such as requirements elicitation from different stakeholders [e.g. 52, 53],

enforcement of quality assurance scenarios [e.g. 54, 21], and negotiation and prioritization

of requirements of different stakeholders [e.g. 55] are the mainstream for which

recommendation systems have been investigated [56, 57].

In line with the idea of this work, researchers have recently emphasized the idea of

integration of recommendation systems to tailor the software configuration process [36].

Autonomic features incorporated into commercial RDBMS are prominent examples of

such systems which recommend database configurations (i.e., indexes, materialized views,

partitions) for a given workload [58]. However the literature on database configurators are

specific to this domain only and mostly centred around RDBMS’s own features (i.e. query

optimizers) [58]; to our knowledge, there is no generic framework or guidelines as how to

construct recommendation systems for customizing system configurations that is

applicable to various domains.

2.3 Software Configuration

The problem of configuring existing systems has been studied from a variety of angles.

Wendy E. Mackay [5] offers one of the earliest and most influential studies on the problem

from a Human Computer Interaction view point. In her study she observed a number of

users in order to understand when and how they configure the software applications they

use. Among other things, it was found that users often do not go into the trouble of

customizing their software, fearing that they will waste a lot of time without being able to

 26

actually find the configuration variable they need. Moreover, a substantial number of

participants simply did not know how to perform the customization. Similar results are

reported elsewhere [59], where it was also found that users are more likely to engage in

customization activities when doing so is easy. While the studies are quite old, there is no

evidence that customization of user applications has become better; the literature on

Facebook (Section 4.1.1) reveals that customization remains a difficult problem.

Furthermore, one of the interesting findings of the Mackay study is the social aspect of

configuration: according to the study, one of the factors that actually trigger customization

effort is observing other users achieving it. In the Internet era, 23 years later, this seems to

support a vision for crowdsourcing configuration.

Viewing software customization as a requirements problem has also been attempted. Goal

modeling has been proposed [60, 61] in order to connect high-level user goals with low

level software configurations [2]. Liaskos et al. have been exploring ways to access the

variation points of a software system that are alternative to lists of configuration variables

[62]. In that work users express their desires through a high-level goal-based preference

language [63], and a sequence of automated reasoning steps translate the result into an

appropriately behaving system. Nevertheless, for these goal-oriented approaches to be

applicable, both the goal models and their mapping to software variability must be pre-

established by experts. A recommender system such as the one proposed in this thesis, has

the benefit that it does not require any such requirements models.

 27

2.4 Summary

In this chapter the background knowledge necessary to understand this research was

provided. The approach introduced in this research applies two established techniques:

Association rules are used to mine the pattern of preferences in configuration options, and

Markov Decision Processes is utilized to decide the sequence of explicit questions that are

inquired from the user to predict the rest of the items.

We also explored the different recommendation techniques that apply to the case of

recommending customization of software configuration. We reviewed the proposed

approaches to automatic software configuration as well: exploration of the literature

revealed that application of recommendation systems in the realm of requirements

engineering is still in its infancy and approaches to construct a software configuration

recommender independent of the domain, as we propose here, are yet to be introduced.

 28

Chapter 3 : Solution

In this section, we describe in detail our method for calculating the minimum sequence of

configuration questions to be posed to the user that is necessary to have the entire system

configured, based on a crowd sourced predictions. As we saw, the proposed system can be

seen as a model-based Collaborative Filtering (CF) Recommendation System (RS). The

model of the proposed recommender is based on Markov Decision Processes (MDPs)

informed by Association Rules that are, in turn, mined from crowd data. Roughly, the

association rules allow us to skip configuration questions whose answer can be predicted;

the MDP is necessary in order to calculate the optimal sequence of such questions, given

stochastic user responses.

3.1 Association Rules as Configuration Preferences

The logic behind using association rules to capture common consumer preferences applies

directly to the problem of configuration. As mentioned before, in the context of

configuration, an association rule captures the fact that if a user selects a particular

combination of options for a group of variables, she is likely to also select a certain

configuration of options for a different group of variables. This knowledge comes from a

data set of configurations of individual users, which we will call the crowd data set. In

many systems, such as on-line social networking or web-based email systems, such data

sets are readily available to e.g. administrators and owners.

 29

In this case, to ensure the validity of the rules, it is assumed that the crowd data set comes

from a group of expert users. Then, when a new and novice user makes use of the

association rule X⟶Y, she is actually using the left-hand side of the rule to identify with a

subgroup of experts whose preference with respect to ‘X’ match. Then she can use the

right-hand side ‘Y’ as expert advice for configuring the corresponding variables.

Effectively, the result is a recommender system based on association rules.

To allow calculation of such sequences, MDPs modeling is used. We describe how in the

next section.

3.2 Building the MDP

Let us now focus on the details of modeling the explained problem as an MDP.

Summarizing the discussion in the previous chapter, a fully defined MDP includes: (a) a

set of variables describing the state of the domain, (b) a set of actions α ∈A which actuate

transitions from one state to the other, (c) a set of transition matrices, one per action α,

showing the probability of transition from one state to each of the others, after the action

has been performed, (d) a reward matrix representing the reward function R and (e) a cost

table representing the cost function C.

This section is dedicated to explanation of each of these components in our solution in

detail. Throughout this section the case configuration options of an email client is used to

better illustrate the concepts.

 30

3.2.1 States

In our solution, each state of the MDP model represents the state of our knowledge of what

options the user wants for configuration variables. Recall that a configuration problem is a

set of configuration variables V
i
∈V each drawing options 𝑜𝑗

𝑖 from a set 𝑂𝑉𝑖
. The MDP

states are exactly the same set V and each variable 𝑉𝑖 has the same domain 𝑂𝑉𝑖
but with one

important difference: for each domain 𝑂𝑖, containing options 𝑜1
𝑖 , 𝑜2

𝑖 , … an extra value 𝑜0
𝑖 is

added. This additional value, which we call the “unknown” value, denotes that we actually

do not know what option the user prefers for the configuration variable. Initially all

variables are set to that unknown value.

3.2.2 Actions

Each action represents a prompt to the user to make a configuration decision, i.e. a question.

This question is associated with a configuration variable we are interested in: The system

asks the user what option she prefers for that variable. Let us denote that action as V
i
? ,

where V
i
 is the variable in question. In response to this question, the user will answer with

his chosen option for that variable. In MDP terms, asking the user a question and obtaining

an answer is an action which causes the system to transition from one state to another state,

changing the value of the corresponding variable from o
i

0 (the “unknown” value) to some

other value, based on the user response. But this response (and, consequently, the resulting

 31

state) is not known with certainty. We instead have a probability distribution over possible

answers which we represent using the transition matrix.

Let us return to the email client problem. For the sake of the space in our illustration of the

graph, let us suppose we have only two configuration variables 𝑉𝑑𝑖𝑠𝑝, 𝑉𝑖𝑐𝑜. Figure 2 shows

the complete MDP model for this case with nine states (numbered in the states) and two

actions. In each state, our knowledge over the values of the variables is labeled inside each

state. The states in which all variables are known are the final desired states. In Figure 2

such states are emphasized by bolder border. In the initial state (the middle state

distinguished by dashed border in Figures 2), we do not know any of the user’s decisions,

so the state is {𝑜0
𝑑𝑖𝑠𝑝, 𝑜0

𝑖𝑐𝑜}. If we ask the user V
disp

? in Figure 2 (i.e. whether she wants to

𝑉𝑑𝑖𝑠𝑝?

𝑉𝑑𝑖𝑠𝑝?

𝑉𝑑𝑖𝑠𝑝?

𝑉𝑑𝑖𝑠𝑝?

𝑉𝑑𝑖𝑠𝑝?

𝑉𝑑𝑖𝑠𝑝?

𝑉𝑖𝑐𝑜? 𝑉𝑖𝑐𝑜? 𝑉𝑖𝑐𝑜?

𝑉𝑖𝑐𝑜? 𝑉𝑖𝑐𝑜? 𝑉𝑖𝑐𝑜?

𝑉𝑑𝑖𝑠𝑝?

𝑉𝑖𝑐𝑜?

𝑉𝑖𝑐𝑜?

𝑉𝑑𝑖𝑠𝑝?

𝑉𝑑𝑖𝑠𝑝?

𝑉𝑑𝑖𝑠𝑝?

𝑉𝑖𝑐𝑜?

𝑉𝑖𝑐𝑜?

𝑉𝑑𝑖𝑠𝑝?

𝑉𝑑𝑖𝑠𝑝?

𝑂0
𝑑𝑖𝑠𝑝

𝑂𝑠𝑚𝑖
𝑖𝑐𝑜

𝑂0
𝑑𝑖𝑠𝑝

𝑂0
𝑖𝑐𝑜

𝑉𝑖𝑐𝑜?

𝑉𝑖𝑐𝑜?

𝑂0
𝑑𝑖𝑠𝑝

𝑂𝑙𝑔𝑖
𝑖𝑐𝑜 𝑂𝑦𝑒𝑠

𝑑𝑖𝑠𝑝
𝑂𝑙𝑔𝑖

𝑖𝑐𝑜 𝑂𝑛𝑜
𝑑𝑖𝑠𝑝

𝑂𝑙𝑔𝑖
𝑐𝑜

𝑂𝑦𝑒𝑠
𝑑𝑖𝑠𝑝

𝑂𝑠𝑚𝑖
𝑖𝑐𝑜

𝑂𝑛𝑜
𝑑𝑖𝑠𝑝

𝑂𝑠𝑚𝑖
𝑖𝑐𝑜

𝑂𝑦𝑒𝑠
𝑑𝑖𝑠𝑝

𝑂0
𝑖𝑐𝑜 𝑂𝑛𝑜

𝑑𝑖𝑠𝑝
𝑂0

𝑖𝑐𝑜

1 2 3

4 5 6

7 8 9

Figure 2 - The MDP model for email client

 32

display text under the icons or not) the user will respond with one of o
disp

yes or o
disp

no . So the

next possible states are {𝑜𝑛𝑜
𝑑𝑖𝑠𝑝 , 𝑜0

𝑖𝑐𝑜} or {𝑜𝑦𝑒𝑠
𝑑𝑖𝑠𝑝, 𝑜0

𝑖𝑐𝑜} each with its own probability which

is calculated as described in the following section. If she said yes, then we can further ask

V
ico

? in Figure 2, which will lead us to one of {𝑜𝑦𝑒𝑠
𝑑𝑖𝑠𝑝 , 𝑜𝑙𝑔𝑖

𝑖𝑐𝑜} or {𝑜𝑦𝑒𝑠
𝑑𝑖𝑠𝑝, 𝑜𝑠𝑚𝑖

𝑖𝑐𝑜 }.

3.2.3 Transition Matrices

The transition matrix for each action V
i
? is an N×N table, where N is the number of all

possible option combinations of variables V
i
, i.e. all possible states. Each cell represents

the probability of transitioning from one state to the other as an outcome of performance

of V
i
? . In this case, the numbers are taken from the crowd data set. The idea is to measure

the frequency by which a certain answer occurs, given (if applicable) all previous answers

from the user.

More specifically, the probabilities for the transition matrices are calculated as follows:

Firstly, it can be observed that only single-step transitions are possible. In other words, for

now, only transitions from states of n unknown options to states of n−1 unknown options

have non-zero probability; all other transitions have a probability of zero so value 0 is set

to the appropriate cells. Note that this is bound to change once association rules are

considered.

 33

To see how the probability in the single step transition cases is calculated, let us consider

a configuration problem with m variables 𝑉1, … 𝑉𝑚 and an arbitrary single-step transition

within this problem from state

 {o
1

x
1
,o

2

x
2
,o

3

x
3
,…,o

n−1

x
n−1

,o
n

0,o
n+1

0 ,…,o
m

0 }

to a state

 {o
1

x
1
,o

2

x
2
,o

3

x
3
,…,o

n−1

x
n−1

,o
n

x
n
,o

n+1

0 ,…,o
m

0 }

where x
i
 are non-zero values.

The probability that this transition occurs can be calculated by counting how many times

crowd members select o
n

x
n
 when they have already selected 𝑜𝑥1

1 , 𝑜𝑥2
2 , … , 𝑜𝑥𝑛−1

𝑛−1 . In other

words, the frequencies that correspond to the conditional probability are calculated:

 P(V
n
=o

n

x
n
|V

1
=o

1

x
1
,V

2
=o

2

x
2
,…,V

n−1
=o

n−1

x
n−1

)

In cases where there are not any instances of the origin state in the sample dataset, simply

the frequency of o
n

x
n
 in the entire data set is used. The end result of this process is transition

matrices which have zero in all their cells except for those which signify a one-step

transition; in those cells the probability is calculated as above. Since some MDP solvers

require that any action can be attempted at any state, in the state with a known variable,

taking the action to ask that same variable will not change the state. The probability of such

 34

transition will be 1, since there is no other state to transfer to; the discussion on how the

solver avoids such transitions proceeds.

Regarding our Email client example with the two variables, let us imagine that the

distribution of the configuration options among the 1000 crowd members is as illustrated

in contingency Table 2.

Table 2 - Contingency Table of preferences in Email Client Example

𝑉𝑖𝑐𝑜

(Size of icon)

 𝑜𝑠𝑚𝑖
𝑖𝑐𝑜 𝑜𝑙𝑔𝑖

𝑖𝑐𝑜 Sum

𝑉𝑑𝑖𝑠𝑝

(Display text)

𝑜𝑦𝑒𝑠
𝑑𝑖𝑠𝑝

 320 40 360

𝑜𝑛𝑜
𝑑𝑖𝑠𝑝

 80 540 640

 Sum 400 600

Based on the figures in the Table 2, 60% of users prefer large icons. Hence in the MDP

graph, upon taking action 𝑉𝑖𝑐𝑜? from the initial state {𝑜0
𝑑𝑖𝑠𝑝, 𝑜0

𝑖𝑐𝑜}, the probability of

transition to state {𝑜0
𝑑𝑖𝑠𝑝, 𝑜𝑙𝑔𝑖

𝑖𝑐𝑜} equals 0.60. Similarly, out of the users who prefer large

icons, which equals to 600 instances of users, only 40 users prefer the text of icons to be

displayed. As mentioned before, the probability of transition between the source state and

the destination state is in fact the conditional probability between the two: the probability

of the latter happening given the knowledge that the former is already true. Hence the

 35

probability of transition from state {𝑜0
𝑑𝑖𝑠𝑝 , 𝑜𝑙𝑔𝑖

𝑖𝑐𝑜} to state {𝑜𝑦𝑒𝑠
𝑑𝑖𝑠𝑝, 𝑜𝑙𝑔𝑖

𝑖𝑐𝑜} upon taking action

𝑉𝑑𝑖𝑠𝑝? is calculated as follows:

𝑃 ({𝑜𝑦𝑒𝑠
𝑑𝑖𝑠𝑝 , 𝑜𝑙𝑔𝑖

𝑖𝑐𝑜} | {𝑜0
𝑑𝑖𝑠𝑝, 𝑜𝑙𝑔𝑖

𝑖𝑐𝑜}) =
40

600
 ≅ 0.07

The calculation of the rest of transitions concludes the 9 x 9 matrices of transitions between

9 states. The transition matrices for the two actions as shown in Fig3 (a). The number

associated with each state is shown inside each state in Figure 2, which correspond to the

number of rows and columns in the transition matrix. As it can be seen, the sum of the

probabilities of each row adds up to one, showing that every action can be taken in any

state. It is noteworthy that although the size of the resulting matrices are big, they are highly

sparse, which is an advantage in handling them for solving the policy.

3.2.4 Rewards and Costs

Recall now that in a completely defined MDP, each transition has its own reward while

each action comes with a cost for performing it. The utility of a transition is calculated by

subtracting the costs from the rewards. In the proposed formalization, each action comes

with one (1) unit of cost. This cost is a direct representation of the effort required for a

configuration decision, i.e. the effort for a human to think and decide about a configuration

variable. Each transition, on the other hand, comes with as many units of reward as the

number of variables whose preferred option becomes known. As such, the reward

 36

represents the added value that we get for performing each action. As mentioned earlier, in

case of a known variable V
i
 in any state, taking the action V

i
? will necessarily result in a

transition to the same state. Since such action has no reward and still bears a cost of 1, the

utility of such transitions will be -1. This negative reward actually ensures that the policy

does not consider this action and enquire about an already-known variable.

Back to the email client example, a transition from {𝑜0
𝑑𝑖𝑠𝑝, 𝑜0

𝑖𝑐𝑜}, to {𝑜0
𝑑𝑖𝑠𝑝, 𝑜𝑙𝑔𝑖

𝑖𝑐𝑜}as a result

of asking the question V
ico

? comes with a reward of 1.0, because we found out about one

variable, and a cost of 1.0 because one question was asked. Figure 3 (b) depicts the net

reward of the email client. Notice that due to the cost of each action, the net reward value

for actions that remain in the same state are -1 and the rest equal 0. If, however, we were

−1 0 0
0 0 0
0 0 −1

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

−1 0 0
0 0 0
0 0 −1

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

−1 0 0
0 0 0
0 0 −1

−1 0 0
 0 −1 0
 0 0 −1

0 0 0
0 0 0
0 0 0

 0 0 0
 0 0 0
 0 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

−1 0 0
 0 −1 0
 0 0 −1

1 0.0 0.0
0.8 0.0 0.2
0.0 0.0 1

0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0

0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0

0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0

 1 0.0 0.0
0.36 0.0 0.64
 0.0 0.0 1

0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0

0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0

0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0

1 0.0 0.0
0.07 0.0 0.93
0.0 0.0 1

1 0.0 0.0

0.0 1 0.0
0.0 0.0 1

0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0

0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0

0.89 0.0 0.0
 0.0 0.4 0.0
 0.0 0.0 0.13

0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0

0.11 0.0 0.0
0.0 0.6 0.0
0.0 0.0 0.87

 0.0 0.0 0.0
 0.0 0.0 0.0
 0.0 0.0 0.0

0.0 0.0 0.0
0.0 0.0 0.0
0.0 0.0 0.0

1 0.0 0.0
0.0 1 0.0
0.0 0.0 1

b) Reward Matrices: Action 𝑽𝒅𝒊𝒔𝒑on the Left; Action 𝑽𝒊𝒄𝒐 on the Right

a) Transition Probability Matrices: Action 𝑽𝒅𝒊𝒔𝒑on the Left; Action 𝑽𝒊𝒄𝒐 on the Right

Figure 3 - Transition and reward matrices of Email client

 37

somehow able to allow a transition from {𝑜0
𝑑𝑖𝑠𝑝, 𝑜0

𝑖𝑐𝑜}, to {𝑜𝑛𝑜
𝑑𝑖𝑠𝑝, 𝑜𝑙𝑔𝑖

𝑖𝑐𝑜} for the same one

question, then a reward of 2 is considered, because the options for two variables became

known, while the cost remains 1, as one question was asked. As such the net utility would

be 1 instead of 0. In the present initial state of the transition matrix, however, such

transitions are impossible; this will be changed in the next section, though.

3.3 Revising the Transition Matrices

In order to take advantage of the association rules and find decision sequences with better

utility, a second pass to the transition matrices is performed, which, if relevant association

rules exist, allows us to replace one step transitions (transitions in which just one option is

learnt) with multi step ones, i.e. transitions in which more than one options are learnt,

yielding, hence, higher rewards. More specifically the procedure is done as follows.

Firstly, the association rules are reviewed. Of all the rules that were discovered during the

mining phase, those that exceed certain high confidence c and support s threshold are

filtered. Then a pre-processing step is performed in which rules that have identical left-

hand side are merged. Such are rules of the form 𝑉𝑥 = 𝑜𝑥→ 𝑉𝑦 = 𝑜𝑦 and form 𝑉𝑥 = 𝑜𝑥→

𝑉𝑧 = 𝑜𝑧, which mean that if we observe that 𝑉𝑥 = 𝑜𝑥is a configuration decision then it can

be assumed that both 𝑉𝑦 = 𝑜𝑦and 𝑉𝑦 = 𝑜𝑦are likely configuration decisions too. So the

two rules are merged in one: 𝑉𝑥 = 𝑜𝑥→ 𝑉𝑦 = 𝑜𝑦 , 𝑉𝑧 = 𝑜𝑧.

 38

The complete algorithm is shown in Figure 4. The subsequent steps are best described

through reference to a directed graph. The set of nodes of the graph is the set of all possible

configurations of V; thus, each node is a state. Edges represent transitions. Initially, only

the edges are added to the graph that are one step transitions, i.e. transitions from states in

which n−1 variables are known to states in which n variables are known. Each edge from

state S to state S' is labeled with a reward value of 1, a cost value of 1, a probability and the

action it corresponds to.

Subsequently, the edges are updated based on association rules as follows. Firstly, the

states that correspond to the left and the right side of the association rule have to be found.

However there is not only one such pair, if the system involves more variables than the

ones emerging in the rule. If there are any variable(s) missing in the rule, that variable can

be unknown or hold any value and the association rule still applies. Hence, for each

association rule, all pairs of states S and S' are found such that: (a) the left hand side of the

rule satisfies both S and S', (b) each variable of the right hand side of the rule appears with

values exactly the same as in the rule in S, and with all values set to unknown in S' and (c)

all other variables that are not mentioned in the rule are set to the same values for both S

and S'.

 39

INPUT: a set of configuration variables, their domains, a set of association rules

OUTPUT: A Markov decision process for optimal configuration sequences

// Build a graph of possible transitions

// Each node represents a state of knowing the option of each variable

For each possible combination of options

 Create a node in the graph

// Pre-process rules

For each set 𝑚 of association rules of the form (𝐿 → 𝑟1, 𝐿 → 𝑟2 , … 𝐿 → 𝑟𝑚)

 Merge into one rule of the form (𝐿 → 𝑟1 … 𝑟𝑚)

// Add initial links

For each node 𝑆

Let 𝑁 be the number of cases in the crowd data set.

Let 𝑐(𝑆) be the num. of records in the crowd data set that satisfy 𝑆.

Let 𝑐(𝑜𝑥
𝑣) be the num. of records in the crowd data such that 𝑉 = 𝑜𝑥

𝑣.

For each variable 𝑉 such that 𝑉 = 𝑜𝑥
𝑣 in 𝑆

For each possible value 𝑜𝑥
𝑣 of 𝑉

Find node 𝑆′ that is the same as 𝑆 except for 𝑉 = 𝑜𝑥
𝑣 in 𝑆′

Add an edge 𝑒 from 𝑆′ to 𝑆

Weigh 𝑒 as follows

 𝑒. 𝑟𝑒𝑤𝑎𝑟𝑑 = 1

 If (𝑐(𝑆) > 0) then

 𝑒. 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑐(𝑆′) / 𝑐(𝑆)

 Else

 𝑒. 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑐(𝑜𝑥
𝑣) / N

 𝑒. 𝑎𝑐𝑡𝑖𝑜𝑛 = 𝑉∝?

//Update the graph based on association rules

For each association rule (𝑙1 … 𝑙𝑛 → 𝑟1 … 𝑟𝑚), 𝑟𝑖 and 𝑙𝑖 being of the form 𝑉𝑖 = 𝑜𝑥
𝑣.

For each pair of states 𝑆 and 𝑆′ such that:

(a) Variables of clauses 𝑙1 … 𝑙𝑛 have known and the same options in 𝑆 and 𝑆′
(b) Variable of clauses 𝑟1 … 𝑟𝑚 has unknown option in state 𝑆, known in 𝑆′
(c) Variables not mentioned have same values in both 𝑆 and 𝑆′
For each incoming edge e to 𝑆

Change the destination from 𝑆 to 𝑆′
 𝑒. 𝑟𝑒𝑤𝑎𝑟𝑑 = 𝑒. 𝑟𝑒𝑤𝑎𝑟𝑑 + m

// Transform graph into MDP components

For each action ∝∈ 𝐴

Create an empty transition matrix for ∝, 𝑇𝑎.

Create an empty reward matrix for ∝, 𝑅𝑎.

For each edge in the graph from 𝑆𝑖 to 𝑆𝑗 such that 𝑒. 𝑎𝑐𝑡𝑖𝑜𝑛 =∝

 𝑇∝[𝑖, 𝑗] = 𝑒. 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦

 𝑇∝[𝑖, 𝑗] = 𝑒. 𝑟𝑒𝑤𝑎𝑟𝑑

Figure 4 - MDP construction algorithm

 40

Secondly, for each such pair < S, S’> that is associated with the left and the right side of

the association rule, all edges that are targeting S will be moved so that they now target S'.

Moreover, the reward of each of those edges is increased by the difference in the number

of variables predicted by the association rule. Intuitively, the rule causes S to become

inaccessible: whenever we get a user response that leads us to S, thanks to the information

in the rule, we can actually "shortcut" to S', ignoring S. While the cost stays the same,

reward increases by the amount of unknowns that is discovered by taking the shortcut.

The resulting graph is ready to be transformed into transition and reward matrices. These

are constructed initially to be zero matrices. Then for each edge labeled with the action at

hand, the corresponding cell is set with the probability or the reward label of the edge, for

transition and reward matrices, respectively. In the email client example, where we have

one association rule of confidence 0.9, the graph can be revisited to shortcut the relevant

states. Since in this example only two variables are involved, there is only one such pair of

states <{𝑜0
𝑑𝑖𝑠𝑝𝑜𝑙𝑔𝑖

𝑖𝑐𝑜}, {𝑜𝑛𝑜
𝑑𝑖𝑠𝑝𝑜𝑙𝑔𝑖

𝑖𝑐𝑜}> that relate to the association rule. For this one pair, since

the transit between two states in the initial graph (Figure 2) corresponds to action 𝑉𝑑𝑖𝑠𝑝?,

only the transition matrix of this action will be modified and the transitions of action

𝑉𝑖𝑐𝑝? remain untouched. Figure 5 shows the revised graph after the incorporation of the

association rules. In Figure 5 for the sake of space and clarity only transitions and rewards

of action 𝑉𝑑𝑖𝑠𝑝? are displayed. Notice how the previous edge from state 5 to state 8, is now

 41

changed to target state 9. The reward of this edge is also increased by one (i.e. the number

of variables predicted in the association rule).

3.4 Policies and Decision Sequences

Given the above complete MDP formalization, an MDP solver is able to calculate a policy

which maximizes the expected utility. Such policy offers a recommendation of which

action should be performed when the system is at each of its possible states. In order to

illustrate the policies with our email editor example, let us again suppose the system

involves three (3) variables 𝑉𝑑𝑖𝑠𝑝, 𝑉𝑖𝑐𝑜, and 𝑉𝑓𝑛𝑡. In this case, policies can be represented

using a tree structure as in Figure 6, where a policy for presenting configuration decision

for the earlier email client problem is presented. The small circular elements represent

R = -1
R = -1

R = -1

𝑂𝑛𝑜
𝑑𝑖𝑠𝑝

𝑂𝑠𝑚𝑖
𝑖𝑐𝑜

𝑂𝑛𝑜
𝑑𝑖𝑠𝑝

𝑂𝑙𝑔𝑖
𝑐𝑜

𝑂0
𝑑𝑖𝑠𝑝

𝑂𝑠𝑚𝑖
𝑖𝑐𝑜 𝑂𝑦𝑒𝑠

𝑑𝑖𝑠𝑝
𝑂𝑠𝑚𝑖

𝑖𝑐𝑜

𝑂𝑛𝑜
𝑑𝑖𝑠𝑝

𝑂0
𝑖𝑐𝑜 𝑂0

𝑑𝑖𝑠𝑝
𝑂0

𝑖𝑐𝑜
𝑂𝑦𝑒𝑠

𝑑𝑖𝑠𝑝
𝑂0

𝑖𝑐𝑜

𝑂0
𝑑𝑖𝑠𝑝

𝑂𝑙𝑔𝑖
𝑖𝑐𝑜 𝑂𝑦𝑒𝑠

𝑑𝑖𝑠𝑝
𝑂𝑙𝑔𝑖

𝑖𝑐𝑜

R = -1 R=-1
R = -1

R=0 R=0 R=0

R=0 R=+1

R = 0

1 2 3

4
5 6

7 8 9

Figure 5 - Revised MDP graph

 42

states (labels are provided only for a few for the interest of space) and the boxes represent

actions, i.e. questions.

As it is obvious in the Figure 6, each state is connected with exactly one action, the one

that the policy recommends when the system is in that state. So in a case in which we only

know that the user prefers to display text {o
fnt

0 ,o
ico

0 ,o
disp

yes } the policy recommends that action

V
ico

 be performed, i.e. ask the user what icon size to use. This way each path from the root

of the tree structure (i.e. a state in which we do not know anything about the user’s preferred

configurations) to one of its leaves (i.e. a state in which we know the options for all

variables), represents a unique sequence of questions to be asked to the user. Which path

exactly is going to be followed depends on the answers the user will give to each question.

Figure 6 - A policy tree

Icon Size? Icon Size?

Display Text?

Large

No

Small Large

Yes

Small

{𝑂0
𝑑𝑖𝑠𝑝

𝑂0
𝑖𝑐𝑜𝑂0

𝑓𝑛𝑡
}

{𝑂𝑦𝑒𝑠
𝑑𝑖𝑠𝑝

𝑂0
𝑖𝑐𝑜𝑂0

𝑓𝑛𝑡
}

{𝑂𝑦𝑒𝑠
𝑑𝑖𝑠𝑝

𝑂𝑠𝑚𝑖
𝑖𝑐𝑜 𝑂0

𝑓𝑛𝑡
}

{𝑂𝑦𝑒𝑠
𝑑𝑖𝑠𝑝

𝑂𝑠𝑚𝑖
𝑖𝑐𝑜 𝑂𝐿𝑎𝑟𝑔𝑒

𝑓𝑛𝑡
}

Large

Med

Font Size ?
Small

Large

Med

Font Size ?

Small

Large

Med

Font Size ?
Small

Large

Med

Font Size ?
Small

U=0 U=0 U=0

U=0
U=0

U=0 U=0

U=0 U=0

U=0

U=0

U=0

 43

The policy comes with an expected utility, which recursively at each step results from

multiplying the utility of a transition and the probability of getting the transition and adding

it to a total sum. Recall that the utility aspect results from subtracting cost from reward and

is a representation of the configuration effort that is saved by running the configuration

wizard. As seen before, in the initial situation in which every action transfers to another

state where just one more variable is known, the total utility remains zero. As seen in Figure

6, where a policy coming out of the unprocessed MDP is presented, whatever benefit is

gained by learning the preferred option for a particular variable, is paid by bothering the

user with yet another decision task.

However after processing the MDP with the crowd configuration preferences the picture is

quite different. Suppose in case of the email client with three (3) variables 𝑉𝑓𝑛𝑡, 𝑉𝑖𝑐𝑜, and

𝑉𝑑𝑖𝑠𝑝, the following association rules emerge:

 (𝑉𝑓𝑛𝑡 = 𝑜𝑙𝑔
𝑓𝑛𝑡

) → (𝑉𝑖𝑐𝑜 = 𝑜𝑙𝑔𝑖
𝑖𝑐𝑜)

(𝑉𝑖𝑐𝑜 = 𝑜𝑙𝑔𝑖
𝑖𝑐𝑜) → (𝑉𝑑𝑖𝑠𝑝 = 𝑜𝑛𝑜

𝑑𝑖𝑠𝑝
)

Having updated the configuration matrices based on the association rules, the MDP solver

will return optimal policies with positive expected utility. One such policy can be seen in

Figure 7. Weighing the benefit of a specific answer in the font size question, the policy

 44

recommends V
fnt

? to be the first question. If the user answers o
fnt

lg , which happens with a

certain probability, the process is lead to a final state {o
fnt

lg ,o
ico

lgi ,o
disp

no } in which all variable

options are actually known. The reward for that transition in which three variables are

known equals three (3) and the cost of making a decision equals one (1). As such the utility

equals two (2). Thus, the difference between this policy and the one of Figure 6, which did

not consider association rules, is that now several branches can lead to a positive utility

value, depending on user behavior. The MDP solver moreover guarantees that the policy

tree it returns offers, on average, the highest utility, i.e. the most configuration knowledge

with the least decision effort.

Figure 7 - Updated policy tree

Icon Size? Icon Size?

Font Size?
small

large

Large

Medium

Small

{𝑂0
𝑑𝑖𝑠𝑝

𝑂0
𝑖𝑐𝑜𝑂0

𝑓𝑛𝑡
}

{𝑂𝑛𝑜
𝑑𝑖𝑠𝑝

𝑂𝑙𝑔𝑖
𝑖𝑐𝑜𝑂𝑙𝑔

𝑓𝑛𝑡
}

{𝑂𝑛𝑜
𝑑𝑖𝑠𝑝

𝑂𝑙𝑔𝑖
𝑖𝑐𝑜𝑂𝑚𝑒𝑑

𝑓𝑛𝑡
}

{𝑂𝑛𝑜
𝑑𝑖𝑠𝑝

𝑂𝑙𝑔𝑖
𝑖𝑐𝑜𝑂𝑠𝑚

𝑓𝑛𝑡
}

no

yes
Display Text ?

yes

no Display Text?

small

Large

U=1

U=0

U=2

U=1

U=0

U=0

U=0

 45

3.5 Summary and Discussion

In this chapter, the proposed method for construction of the model in collaborative

recommender was explained in detail. For the model of the recommender, we use MDPs

to solve the optimal configuration dialogue possibilities in our conversational system. In

the MDP model for our configuration problem, each action is a question that the elicitation

agent can ask the user. The content of each question is a configuration variable and its

answers are possible options for the variable. The user will respond with a preferred option

with a certain probability. The user’s response leads the system from a state in which the

elicitation agent knows the preferred options for a smaller subset of the configuration

variables, to a state in which it knows them for a larger subset.

We aim to decide the optimal sequence of dialogues with the criterion to minimize the

number of interactions between the user and the system and thereby minimize user effort.

To this end, association rules are used to bypass transitions that are inferred by the crow

data. The solver will find optimal policies for the elicitation agent, i.e. what question to ask

given the answers already provided by the user. The optimality of such policy is based on

the utility model for actions and states, which reward questions whose answers are likely

to help us perform more configurations automatically.

In order to propose a generic framework that is domain-independent, we assume that no

prior information about the users and their preferences is available beforehand. With the

absence of any user profile, preferences need to be elicited in the process of

 46

recommendation. Therefore we treated the problem of customization of configuration

items as a sequential decision making process through conversational process with the user:

the program inquires explicit user’s preference for a subset of item attributes in the course

of normal recommendation dialogues and the user responds.

To find the best sequence of questions to ask, MDPs are an appropriate choice due to many

reasons: MDPs solve the sequence of questions by incorporating the probabilities and

benefits of knowledge over the preference of already known items into consideration. The

optimal policy, for instance, might decide to inquire the user about a configuration variable,

which compared to another variable, is able to predict fewer (unknown) variables; this

decision is supported by the fact that the variable with less immediate reward can lead to

more likely or more predicted variables in subsequent steps. In other words, the MDP

solver will search for a global optimum.

Therefore in our proposed model, using the crowd preference for configuration variables,

the MDP model is constructed and the optimal policy is solved off-line to determine the

sequence of questions to inquire the user about the preference of variables. At the time of

making the recommendation, the already-solved policy is readily used to decide the

sequence of questions (i.e. in dialogues).

 47

Chapter 4 : Case Study

In order to evaluate the applicability of the proposed technique in a real-world system, we

applied the technique to a subset of configuration variables of the social networking tool

Facebook. The data set we used comes from a crowd of York University students who

shared their Facebook configuration options with us. The goals of this evaluation include

finding whether extraction of sensible rules is at all possible and whether the policies that

result from our MDP-based approach do really save configuration effort. This chapter

presents the results of this study in detail.

4.1 Case Study: Facebook

Facebook1, the biggest Social Network Site (SNS) today, is reported to accommodate more

than 1.28 billion monthly active users (April 2014). Its users spend substantial time

interacting with it and uploading large amount of sensitive information [64-65]. In an SNS

such as Facebook users can (1) construct profiles with customized visibility and degrees of

information sharing, (2) define the list of their connections as friends within the network,

(3) avail in the personal profile area a variety of material (photos, text, information etc.) to

be viewed and commented upon by other users who have been given access to, and (4)

1 www.Facebook.com

 48

interact with the network of friends and the users in the network (e.g. view their

information, or communicate) [66].

Facebook offers a set of configuration variables which the users can configure in order to

meet their privacy and other system use needs. To facilitate the management of information

sharing, Facebook allows each user to customize fine-grained access control of others to

one’s personal data: For instance, users can specify the exact connections who are entitled

to see their posts, pictures, events, etc. Moreover, to facilitate the access control, Facebook

allows users to group their friends in different lists in order to customize the access levels

of the shared information based on their differing relationships.

The aforementioned variables are mostly configured using the traditional approach: a set

of default options is chosen upon creation of a new account. At any time, users can adjust

them by going through a set of configuration screens, where the variables are presented

together with possible options. Given the personal material on Facebook is often of

sensitive nature, how each user can control the access levels of others to her data is crucial.

In fact, privacy in Facebook has been a subject for intense research [37, 64, 65-71] as well

as discussion in popular media. Many studies on Facebook have acknowledged the

difficulty that users face in configurations of the settings [64, 67-71]. Research studies

indicate that not all users are aware of the implications of the privacy settings [17, 71] and

that users tend to overestimate the strength of their chosen privacy in Facebook [72].

Moreover the default setting is mostly inclined to share information more broadly [3],

 49

which is alarming since a great percentage of users are reported to keep the default settings

[72]. Hence, the problem of privacy configuration options for Facebook offers us a good

example of why assisting users to configure their systems becomes more and more

important.

The current literature on supporting the customization of Facebook is mostly based on the

notion of automatic detection of friend lists to predict the friend list(s) that a connection

falls under [72, 73]. These approaches use clustering techniques and use information such

as similarities between two users (e.g. gender, location, and company), extent of interaction

between them, and their common connections to classify friends [74]. Such commonalities

form the basis for sharing configurations too. One of the aforementioned studies proposes

a wizard that requires the user to decide upon the access level of a subset of friends and

hence allocate the same access to the rest of the members of that cluster [72]. This proposal

can be the basis for extending this repertoire of Facebook configuration approaches with a

solution that does not depend on the attitudes of Facebook friends but of an arbitrary set of

expert users.

4.1.1 Configuration items in Facebook

In this case study, in order to demonstrate the application the proposed approach, a small

set of nine (9) items in Facebook configuration variables were chosen. These items with

their relevant domain values are shown in Table 3. It is noteworthy that the location of the

variables changes fairly often in Facebook interface, but in April 2014, the items for this

 50

study were located under the following three sections: Privacy, Timeline & Tagging, and

Friends. The domain of variables (i.e. the set of possible values) for these configurations

vary from static options to customized dynamic lists: The domain of settings for 1.c and

2.d consists of static options (such as “Yes” and “No”), while the rest refer to access levels

of different connections in the network and their domain consist of a subset of five possible

values (“Public”, “Friends of Friends”, “Friends”, “Custom”, “Only me”). Under

“Custom” settings, users can specify any subset of all their connections in one’s network;

in this study this option is treated as a coarse-grained category without looking at the form

of those lists.

Table 3 - Facebook Privacy Configuration Options

1. General Privacy

 a) Who can see future posts?

 b) Who can look you up using the email address or phone number you provided?

 c) Do you want other search engines to link to your timeline?

2. Timeline and Tagging

 a) Who can post on your timeline?

 b) Who can see what others post on your timeline?

 c) Who can see posts you’ve been tagged in on your timeline?

 d) Review posts friends tag you in before they appear on your timeline?

3. Friend List Related

 a) Who can send you friend requests?

 b) Who can see friend list?

 51

4.2 Data Collection

To test the feasibility of approach in real settings, the data regarding users’ preferences for

configuration items of Facebook was collected from undergraduate students of the School

of Information Technology during March and April of 2013. The participants in the

experiment were attending Prof. Liaskos’s class on Human Computer Interaction and they

were given bonus marks for participation.

Since the literature reports on a huge gap between users’ expectation (ideal setting) and

what they actually implement in their account [72], we decided to collect both actual and

self-reported configuration information. Users were initially invited to participate in an

online questionnaire, where they were asked about their preferred options for the nine

configuration items in Table 3. Only when the questionnaire was fully submitted, in order

to collect their real adopted customization, participants were asked to take screenshots of

the configuration screens that contain the variables in question and send them over to the

researchers – after erasing any personal information may exist in those screenshots. Figure

8 shows a sample screenshots of a user. The result is a data set of 45 users amenable to

association rule mining and application to this research framework.

 52

Figure 8 - Sample snapshots of Facebook configurations

 53

4.3 Goals and Method

The research questions we are looking to answer in this study are as follows:

A. Do any association rules of substantial significance emerge?

In order to answer this, using a popular data-mining software, we mine the association rules

with varying levels of confidence and support. Then we simply qualitatively examine the

results of association rule mining to see if any significant number of patterns is detected in

the preference crowd.

B. How much configuration effort on average does this technique result to?

To address this question, we investigate how many configurations on average a user has to

explicitly customize so that the rest of the configuration items can be automatically

configured. The recommended items are hence the effort that has been saved. To find the

number and sequence of items that needs to explicitly be questioned, the following steps

are performed:

i. Firstly, the MDP policy is solved for once given the 45 sample data. Then, with the

optimal policy at hand, for each user, we start from the initial state in which all

variables are unknown and do the subsequent step.

ii. At any given state, the solved policy of the MDP model in step (i) determines the

next question to ask the user. To simulate the user response to this question, his/her

 54

chosen option for this configuration variable is simply looked up from the collected

dataset. Hence, knowledge over the value of the latest item will transfer us to a new

state, in which one or more additional variables are now known.

iii. Step (ii) is repeated until a state is reached in which all variables are known. The

configuration at hand, thus, represents the recommended configuration and the

number of steps represents the total effort.

iv. Total effort in step (iii) is calculated and averaged over the 45 instances.

C. What is the average accuracy of the automated inference that this technique

implies? In other words, by automatically predicting a configuration option based

on another one, how accurate are the predictions?

i. To investigate the accuracy of the recommendations, K-fold cross validation (K=9)

technique is used on the sample dataset.

ii. In each fold, using the 40 instances as the training data, the optimal policy is once

solved.

iii. For each 5 instances of test data, the final state of the MDP (similar to step ii in

question B) is found. This final state captures the value of any predictions made, as

well as the values inquired from the user (i.e. looked up from the data set). For any

predicted variable, the predicted value is matched against the real user’s choice

from the available dataset. The accuracy of predictions for each test user is hence

 55

calculated as the ratio of the number of variables correctly predicted out of all

predictions made.

iv. The accuracy of each fold is calculated by averaging over the rates for 5 users.

v. The total accuracy equals the average over the accuracy rates of 9 folds as

calculated in step iv.

4.4 Results

4.4.1 Participants and Responses

The participants consisted of 35 male and 10 female undergraduate students of School of

Information Technology in York University. The majority of users (62%) were Facebook

members for at least 5 years. Only one participant was a member for a duration of less than

a year. Regarding the extent of use, about 9 percent of users declared to use Facebook less

frequent than once a month, while the majority of 62.2% use it for at least once a day.

Amongst all respondents, the most common responses for the time spent on the site each

day were less than 10 minutes (53%) and between 10 and 30 minutes (20%). The users on

average had more than 300 connections in their friend list (median=250); 3 users had less

than 50 connections and 2 users had more than 1000 friends in their network.

Our comparison between the questionnaires and the snapshots confirm the gap between

real configurations implemented, and what users think as reported by literature [72]. When

the users were inquired about the settings, out of 9 items, they believe on average they have

changed 70% of the settings, while the real implemented change from the defaults is 60%.

 56

The reasons underlying this cleavage and the decision on which one truly reflects the

preferences is debatable. As argued by Liu et al. [72], it can be assumed that the reported

settings reflect user’s ideal options and that they have failed to truly implement their

preference as expressed in the questionnaire in the real settings. On the other hand, self-

reporting always runs the risk of lesser reliability than direct observation of snapshots, as

it is unknown how mindfully participants have responded. For the rest of the analysis, we

take the data from snapshots into the account which we know are reliable. From here on,

we refer to the snapshots as preference of users.

4.4.2 Findings

Main Results

The association rules in the data at hand were mined using Weka2. Different thresholds for

significance as well as support were used for this experiment. By trying significance

threshold = 0.9 and support 1, 738 association rules were mined. The maximum

significance (1) yielded as many as 675 association rules. By increasing the support level

to 0.15, still as many as 165 rules were retrieved. The above means that, with regards to

question (A) of the research, association rules exist to a great extent in the collected sample

data set. It is worth noting that on average only 39% (median=34%) of the configuration

2 http://www.cs.waikato.ac.nz/ml/weka/index.html

 57

samples corresponds to the default, meaning that the presence of association rules are the

result of active configuration effort.

With respect to configuration effort – question (B) of research goals – if each of the users

had followed the proposed technique to configure their system they would take on average

6.6 steps (max 9, min 4); meaning that at least two configuration options on average

(27.7%) would be decided automatically. Although, in general, effort savings is bound to

depend on the amount and quality of correlations within the data set, we find that these

results constitute good evidence of the practicality of the proposed technique.

In terms of evaluation of results addressed in question (C), i.e. the precision of

configuration predictions, the experiment was conducted with confidence level of 0.1 and

support of 0.15. The K-fold cross validation (k=9) shows a precision of 75% in the

recommended items, calculated as explained above. The fact that this precision score is

away from values such as 50% or lower, tells us that the configuration agent preforms

sensible decisions based on the data and not e.g. randomly/arbitrarily.

Note that this accuracy measurement depends on the degree by which we believe that each

configuration in our data set accurately reflects the preference of the user and truly meets

his requirement. In this particular study, as there is no reliable criterion of “trueness” of

each configuration or of Facebook expertise, the accuracy measures only imply that the

resulting configuration policy generally reflects user’s selections, with a necessary margin

of error. However, other than an indication of basic sanity of the approach, we should not

 58

view this result as a measure of success of the recommendation. To see why this is so,

suppose a user in our test data is a novice one and has not made good choices in customizing

his system. Matching the user’s choice with the recommended one to measure the accuracy

would hence imply that we expect the recommendation system to still recommend the bad

options. Otherwise, especially if the association rules come from an expert data set,

configuration recommendations to a novice user are actually an indication of usefulness of

the method. A more comprehensive approach to measure the success of a recommendation

requires assessment of a few success criteria in recommendation systems; we discuss the

challenges of the evaluation of the RS in the last chapter.

Other Findings

Since we were given the opportunity to access real configuration data in this study, we

performed more data exploration in order to better understand relevant configuration

behaviors and detect possible influences to the result of our technique. Firstly, no

significant relation was detected between the extent of activity in Facebook and the

tendency to change the default settings. For this experiment, variables such as frequency

and duration of application usage, number of friends, and duration of membership were

assumed to imply extent of activity. We found that majority of users (median 66%) have

made the privacy stricter. On average, users kept 3 out of 9 default value of the

configuration items and customized the rest; in only 31% of user instances, a looser setting

for at least one configuration item was chosen, whereas all users have made at least one

 59

item tighter. Figure 9 illustrates the frequency of configuration preference of the crowd in

comparison with the default option. On the right number of configuration items left at the

default options is illustrated, whereas on the left the number of items customized to tighter

setting is shown. As the skewness of the histograms shows, greater number of items are

customized to tighter settings.

Deeper analysis suggests that users who have customized their configurations to tighter

measures (compared to the default options) may enjoy higher precision of predictions.

Kendall's tau_b Correlation test suggest that the (discretized) precision of predictions is

significantly correlated with the number of items that are tighter than the default (p<0.05,

τ =.27). The number of the items left as the default is also, although with less significance,

negatively correlated with the precision of recommendations (p<0.1, τ =-.24).

Figure 9 - Facebook configuration of crowd in comparison with default option

(a) number of items equal to default option on the left, (b) number of items tighter than default on the right

 60

In other words, in our experiment the accuracy of prediction is higher for people who have

changed the defaults to tighter measures. This can be due to the fact that the

recommendations of collaborative systems are biased towards the popular trend. As shown

by the earlier discussion, the majority of our crowd seem to be privacy-cautious and have

changed the defaults to tighter options; hence it is reasonable to see that users who diverge

from the popular pattern of the crowd and prefer looser settings will receive lower accuracy

in recommendations.

4.5 Threats to Validity

In this study, we aimed to measure the accuracy of predictions as one of the means to

evaluate our proposed recommendation system. In this section, we investigate the internal

and external validity of this study and explore potential threats to validity with regards to

the measurement of accuracy.

The dataset of our experiment was collected from the crowd through a questionnaire as

well as screenshots of current system configurations. By taking the screen shots of the

user’s system into the account instead of reported values that might be subject to error and

forgetfulness we avoid one major internal validity threat: what we measure as configuration

is actual. Since the screenshots are real customizations and of the active accounts, we

ensure the accuracy and reliability of the data and hence we did not need any data cleaning

process to exclude wrong or conflicting data entries.

 61

In our proposed approach, we aimed to recommend the configurations based on

customizations of reference expert crowd. In the absence of crowd of experts, in whose

selected settings we have faith, we had to dispense with a sample of invalidated users. Since

the degree of ability of sample users in handling their configurations is unknown, the

accuracy results are interpreted in a conservative way.

Regarding the external validity, although the approach to solving the research problem in

this study ensures the independency of the solution from the domain, future experiments

are needed to confirm the applicability of the solution in other kinds of systems and

configuration aspects. We nevertheless feel that the huge popularity of Facebook and the

fact that privacy is a common concern across user groups and domains, the configuration

set we used is fairly representative. With respect to the choice of subjects, there is,

obviously the threat of selection bias of non-random sampling since all participants were

recruited from one undergraduate class at the university. All users in the experiment were

IT students and shared similar biography (age, place of living) to a great extent, and hence

are likely to share similar requirements and goals in customizing their configuration. Thus,

although our study does not rely on inferential statistics, a more heterogeneous sample may

need to be sought in the future.

 62

4.6 Summary

In this chapter the proposed solution to personalization of configurations was applied in a

real life application setting. In order to put our idea into test, the preferences of a crowd of

45 users in customization of the configurations in Facebook was collected. The results

confirm that first and foremost, patterns of association with high significance would merge

in the crowd, which is a requirement in our proposed approach. Using the discovered rules,

on average users were able to skip 27.7% of the steps necessary to have their whole

configurations figured out. Furthermore the recommendations show a good rate of

precision, which we interpret as a good sanity indicator for our technique. As discussed

this measure alone should not be considered as a measure of success of the

recommendation. We discuss the limit to this measure in the last chapter.

 63

Chapter 5 : Performance

In the previous chapter, the proposed framework was evaluated in a case study to assess

the accuracy of the generated recommendations. In this chapter, we investigate the

scalability of the method and evaluate the performance of the recommender with regards

to larger sizes of configuration domains.

5.1 State Space

While the proposed MDP formulation allows for good quality and fine-grained analysis,

MDP solving is unfortunately a computationally hard problem [26, 75]. As such, it is

important to explore how the performance of the MDP solver varies as the number of

configuration items and hence state space increases.

One of the main factors that affect MDP solving performance is the number of included

variables and the sizes of their domain. In the absence of an actual configuration data set

of sufficient size for the performance experiments, and without visible loss of

generalizability, we chose to use a publicly available benchmark data-set for association

rules. In particular, UCI KDD’s archived Mushrooms dataset 3 was used, which has been

shown to generate long patterns with high confidence. In its full size, the Mushrooms

dataset is a multivariate dataset that contains 8416 instances with 23 categorical attributes

3 https://archive.ics.uci.edu/ml/datasets/Mushroom

 64

and domain size ranging from 2 to 12 categorical values. In the context of software

configuration, this data set was used as if it was a complete configuration data set: each

attribute is assumed to be one configuration variable and each value a configuration option.

Consecutively, each instance (i.e. each row of the dataset) hypothetically stands for the

configuration values chosen by a user.

The MDP solver we chose is the “Markov Decision Processes (MDP) Toolbox” offered by

MathWorks Inc4. The MDP toolbox was run in Matlab R2012b. The input to the MDP

solver is sparse matrices that are generated by a Java program and are based on the

extracted association rules from Weka. The java program prepares the input matrices of

the MDP solver and the algorithm is discussed in Chapter 3 (Figure 4). The experiment

was conducted on a Core(TM) i5 CPU M450 2.40 GHz with 4.00 GB RAM under

Windows 7.

To test the performance of the MDP solver for various numbers of configuration items, a

subset of varying numbers of attributes in the dataset was randomly chosen. For each subset

of attributes, the top 500 association rules of confidence 100% and minimum support of

10% were extracted. In Table 4, the time to solve the policy is depicted with respect to the

4 http://www.mathworks.com/matlabcentral/fileexchange/25786-markov-decision-processes–mdp–toolbox

 65

number of states. The number of states is the product of all domain sizes of all considered

variables.

To get a sense of configuration problems that can be solved if such numbers of states are

available, Table 4 also illustrates time in relation to the equivalent number of binary

configuration variables. Specifically, N binary variables generate a space of 3N states, and,

as such, if M is the number of states, the equivalent binary variables are log
3
(M). Note that

the base is 3 instead of 2, because one more value (the “unknown” value) is added in the

domain. Figure 10 repeats the figures of Table 4 for the time to solve the MDP versus the

number of dichotomous configuration items in a performance curve. As expected, the

complexity of solving the problem grows exponentially with the number of variables.

Table 4 - Performance vs. State number

Number of States Binary Equivalent Time (s)

625 5.9 0

3125 7.3 0

10000 8.4 8

12500 8.6 1

30000 9.4 1

49000 9.8 5

50000 9.8 10

90000 10.4 31

150000 10.8 64

270000 11.4 220

450000 11.8 645

2116800 13.3 14484

3300000 13.7 31161

4410000 13.9 55579

 66

5.2 Range of Associations

 Another question we explored is whether the number of the association rules would affect

the performance. To find this, a fixed subset of nine (9) attributes (equivalent to 97.2K

states) in the Mushroom dataset was experimented on. The number of generated rules can

be controlled via varying support levels; we hence experimented with support ranging from

0.3 to 0.6, while keeping a fixed significance level of 1.0. This way, the more the support

level threshold is increased, the less rules are mined that exceed the threshold. Table 5

illustrates the time to solve MDP with regards to the support level and number of extracted

association rules. The results do not seem to indicate any pattern; they instead show a rather

consistent performance regardless of the range rules.

0

10000

20000

30000

40000

50000

60000

0 5 10 15

time (s)

Binary configuration items

Figure 10 - Performace vs. number of binary variables

 67

Table 5 - Performance vs. Number of Rules

Support (%) # Rules Time (s)

0.30 318 28.7

0.35 157 28.6

0.40 97 29.1

0.45 85 29.5

0.50 76 28.3

0.55 33 28.3

0.60 10 30.5

5.3 Threats to Validity

In the absence of real configuration data for larger domain size, for the performance

experiment, we adopted Mushrooms Dataset, a benchmark dataset of gilled mushrooms.

The rationale is to use a dataset that demonstrably contains some amount of association

rules, which is the premise of our technique. Nevertheless, whether either the structure of

the data (e.g. sizes of attribute domains) or the structure of the resulting association rules

are not typical of configuration problems is currently unknown and poses a threat to our

internal validity. Obviously real configuration data sets (which are not easy to find) would

be more preferred. Nonetheless, it is not visible to us how exactly the structure of either

the domains or the resulting rules would impact performance, state space and action set

size being equal.

 68

5.4 Summary and Discussion

In this chapter, we explored the performance of the proposed approach by increasing the

number of the variables involved. We chose a publicly known dataset on gilled mushrooms

and used it as a dataset of configuration items to simulate this experiment. Our experiment

showed that the performance of the proposed approach is independent of the range of

associations in the dataset. This may also indicate that the performance is independent of

the nature of the domain; however this assumption needs future investigation. The increase

in the number and size of the variables however, proved to affect the performance

exponentially.

Our technique showed to be able to handle the equivalent of as many as 14 binary variables,

which seems to be applicable to smaller problems - such as the Facebook case.

Furthermore, the measured performance in this chapter addresses construction of the

model, which given that it is being done offline seems affordable. Otherwise, as other

model-based recommendation systems, the online performance in making the

recommendation is the fastest possible, since there is no calculation involved.

To improve scalability, simpler techniques can be conceptualized for addressing the

problem of saving configuration effort that should be expected to scale much better than

the one we presented. For example, one can traverse the association rules in order to rank

configuration options with respect to how influential they are, i.e. how long chains of

automatic configurations they trigger. The ranking of the corresponding variables can then

 69

be the sequence of questions to ask the user. Simple heuristic-based approaches like this,

although scalable and definitely a subject for future experimental research, do not

guarantee optimality. This is due to the fact that we e.g. do not take into account the

probability of other options being chosen. These approaches do not result in the advanced

adaptive conversational recommender we propose, either.

Thus, for our technique we opted for sophistication and good quality of result rather than

scalability using more trivial methods. Nevertheless, it is certainly desirable that our

approach supports larger numbers of configuration variables and options in the future,

while maintaining the same good quality of results (optimality). In the next chapter we

discuss an approximation to modeling the states in order to decrease the size of the space.

 70

Chapter 6 : Conclusion, Limitations and

Opportunities

6.1 Contribution

As modern software systems increase in size and complexity, the process of configuring

them becomes more cumbersome and difficult to organize. Users, especially novice ones,

have the additional trouble of not knowing which system configuration, among the

thousands possible, is more suitable for their unique needs. Hence, assisting users in

intelligent customization of software configurations can increase system usability and

allows non-expert users to fully benefit from the applications.

In this work, a method was presented to assist configuration of software systems by

consulting the configurations that a crowd of expert users has already in place. First the

expert data set is minded for crowd configuration preferences, which come in form of

association rules. Such rules indicate that users who make certain choices for a subset of

the available configuration variables are also likely to make specific choices for other

variables outside that subset. The resulting association rules allow us to automatically set

certain configuration variables given the available knowledge about other configuration

variables. The objective is then to configure the entire set of variables in a way that the

number of variables that are automatically set is maximum. This both reduces the

configuration effort and ensures that the system is more expertly configured. The highlight

 71

of the proposed method is the fact that it is generic; it is independent of the knowledge of

the domain and can be applied in any field.

Thus, our proposed framework has the following benefits. Firstly, it is a generic

recommendation system for assisting software configuration, a type of recommendation

system which, to our knowledge, has not been studied before. Secondly, it features an

interactive dialogue-based model for interwoven elicitation and construction of user

preferences when no information about the user is available beforehand. Thirdly, through

the use of MDPs we are able to globally optimize the length of the user-machine dialogues

and, as such, minimize configuration effort.

6.2 Discussion

6.2.1 Assumptions

Our approach adopts a certain stance with respect to what a configuration problem is and

how it is modeled. Firstly, we assume that the configuration of the software system is

represented through configuration variables with finite discrete domains. If this is not the

default format of configuration variables a transformation to a compatible format is

necessary. For example, continuous variables need to be brought to a discrete format.

Secondly, the proposal focuses on sequential configuration of a set of variables at the same

time, as it would happen when, for example, installing or using a system for the first time

or when the user or administrator decides to perform a general reconfiguration of the

system. Finally, the proposed approach was developed with the configuration of common

 72

personal software systems in mind. Such are systems of wide popularity among large

numbers of users who might be non-technical and not computer experts. Social networking

applications, blogs, email clients or calendar applications are examples of such systems.

Theoretically, as long as the previous conditions are met, our approach can be applied to

business and specialized software applications as well, though this needs to be further

validated.

6.2.2 Choice of Recommendation System

The recommendation system we proposed is based on mining association rules and using

MDPs. However, there exist different recommendation techniques, as discussed in the

related works. So why do we develop our own in this thesis? In choosing the approach to

the recommender, our aim is to propose a system that is independent of the domain.

Knowledge-based systems are hence not a good choice since they need deep knowledge

specific to the domain. In Content-based systems, information about the nature of the

configuration items and the user’s interests are required. In the problem definition of this

work, we choose to be content-agnostic and focus on the social aspect of configuration. As

such we propose a type of Collaborative Filtering system.

In the area of collaborative filtering systems, neighbourhood models are a popular choice,

which can be thought as potentially applicable to software configuration. Nonetheless,

Neighbourhood models need a measure of user similarity. Normally in Neighbourhood

models the history of the transaction of each user with the system is used as an indication

 73

of his/her interests. In the problem at hand, in order to propose a generic framework, we

assume no such information about users is available. In the absence of any information to

serve as a similarity measure between users, a model is required to be able to infer the

preferences based on minimum input from users. The literature does not seem to investigate

how finding this minimum is possible in a way that fits to our problem.

In the proposed solution instead, users are required to answer a smaller subset of the

configuration items; the explicit choice of the user would then be indicative of the user

preference and can be matched against the crowd. This way through complex probabilistic

models (i.e. MDPs), the model-based recommender will be able to predict as many items

as possible based on minimum input from users.

6.2.3 Configuration Dialogues

In our work, the problem of customization of configuration items is considered as a

sequential decision making process through a conversational process with the user. How

can such a conversational processes be implemented in practice; i.e. how would the

interface look like? While we prefer to leave interface design issues outside the scope of

this thesis it is easy to see some possibilities. The concept of the “wizard”, for example, is

commonplace nowadays for facilitating the configuration of software systems: in a

sequence of screens the user is guided from one variable to the other so that a baseline of

options is elicited from her. Although such wizards are used widely for a variety of tasks

(installations, configurations, etc.), their design seems to be based on developer intuition

 74

and domain expertise. The optimal policy that is generated in our technique could instead

offer a hint as to how the variables should be ordered, helping developers come up with

reasonable wizard designs. A systematic and generic way for designing wizards could not

be found in the literature and clearly more research needs to be done on conceptualizing,

organizing (in e.g. hierarchies) and communicating configuration options.

6.2.4 Why MDPs

In deciding the best sequence of configuration questions to ask, MDPs are very appropriate

for a number of reasons. MDPs not only help find the shortest path (of questions to ask

user), but also incorporate the probabilities and benefits of taking actions into

consideration. Most importantly, in MDPs the long-term effects of each recommendation,

and not only the immediate reward will be taken into account. The optimal policy for

instance, might recommend to enquire the user about a configuration variable, which

compared to another variable, will apply to fewer association rules and hence have lower

immediate predictions of unasked variables, but leads to more likely or more predicted

variables in subsequent steps. As we discussed above, techniques based on heuristics which

take into account either only probability or some form of utility may be easier to

conceptualize but may not always give the global optimum.

Furthermore, our proposed MDP model could easily incorporate information about users

such as age and gender to take advantage of any patterns of preference in customization of

software. In the Facebook case study for instance, biographic information such as the

 75

location, gender and age are reported to influence the trends of usage [76, 77] and hence

are suspected to affect the customization of the settings. If any of these variables appear in

the association rules, they can be added as extra variables in the definition of states without

any need for addition of the unknown value as in the system variables. Neither do we add

these in the actions variables, since for any user this information is readily available. In this

research since we aimed at proposing a generic work that can be applied in any application,

we restricted ourselves to the system variables only.

6.3 Challenges, Limitations and Opportunities

6.3.1 Dealing with rare requirements.

One possible drawback to collaborative systems is the potential bias of results towards the

popular items and inability to serve users with rare requirements [18]. We believe mining

of interesting rare patterns as well as frequent patterns is the solution that can rectify this

challenge. A rare pattern is an infrequent pattern with a support that is below (or far below)

minimum threshold. The high confidence, yet low support of such patterns may highlight

exceptional behavior in the data. Literature are galore that discuss the various measures

(e.g. All_confidence, Max_confidence, and Cosine [7]) that can be used for mining interesting

patterns. Using such measures, we can augment our support–confidence framework to

allow discovery of strong pattern relationships regardless of the frequency.

Without thorough mining of all interesting patterns of an expert crowd with diverse

requirements, the results of our method would be a collaborative recommender based on

 76

the social trails associated with the configuration: the user will be advised of the attributes

or complete configurations that are common. Provided further investigation is considered

to generate association rules of rare patterns that would embrace rare tastes as well, they

will be incorporated in the MDP model not any different than the popular rules. This way

our recommender is not at disadvantage from the point of view of serving different tastes.

6.3.2 Evaluation Challenges

The evaluation of the recommendation systems is not an easy task. Most recommender

systems are tested on historical data for accuracy measurement: The recommender is

trained using historical data, and tested to see whether the recommendations accurately

predict the user’s choices [37, 18]. However in our work, the accuracy depends on the

degree by which each configuration in the data set is believed to accurately predict the true

configuration desire of the user and the true fit to user requirements. Hence in training the

recommender model, the selection of the expert crowd in whose customizations we have

confidence is crucial.

Beside the challenge in truly measuring the accuracy, this measure is insufficient to

evaluate a good recommendation engine since users expect more of a recommendation

system than just an exact anticipation of their tastes [78]. In a handbook on evaluation of

recommendation systems, Shani and Gunawardana have explored a range of properties,

other than accuracy, that are decisive in success of an RS; instances of such measures

include: cold start, confidence, trust of users, novelty of the recommendations, and utility

 77

of recommendations to users or system. They have also emphasized that the subset of

properties on which the system should be assessed depend on the context and usage of the

RS and differs from system to system [78]. In the domain of configuration of software in

particular, our goal is to increase user awareness of the solutions/options which might have

been previously unknown. As such, similar to the work of Shani et al. [37], we believe that

the use of measures such as satisfaction or utility of user upon receiving the

recommendations is promising.

As the initial study to introduce a generic framework for configuration customization, in

this thesis we conducted an offline experiment to evaluate prediction accuracy only.

However more direct user studies can be performed in the future. In such studies, small

group of users could go through the MDP-based recommender dialogues that are generated

based on configurations of validated expert crowd. Upon receiving the customizations,

users can be enquired how they like the new configuration and how the new customization

has influenced their experience. We believe a true indicator of success of recommendations

in the context of configuration customization would be how the recommendations are

accepted by users and facilitates user interaction with the system.

6.3.3 Performance

While MDPs provide us with an optimal answer, they are known to be of high complexity

due to the nature of the computation they perform [26, 75]. It is, first, noteworthy that the

MDP solving is performed at design-time and offline, which means that longer

 78

computation times are affordable to some extent. The performance experimentation shows

that configuration problems of up to the equivalent of fourteen (14) binary variables can

be computed within practical time limits. While this is still useful – e.g. it gave us an answer

to the Facebook privacy configuration problem – it is fair to desire solutions to problems

with more variables.

To improve the scalability of the recommender model for larger problems, a departure from

MDPs towards a simplification that is less computationally hard could help improve

performance. For example, algorithms that compute rankings of variables based on the

degree by which they influence other variables can be explored. As we discussed, simple

heuristic-based approaches like this, although scalable and definitely a subject for future

experimental research, do not guarantee optimality; such an output would disregard the

probabilistic aspect and would be insensitive to user answers compared to MDP-based

advanced adaptive conversational recommender.

Regarding the improvement in MDP model, since the main challenge seems to be

unmanageable growth of the model, measures should be taken in order to control state

space. One possible solution is reducing the space size by exclusion of states whose

probability of occurrence is very low. In the explained process in Chapter 3, we consider

all the possible combinations of the configuration variables as a state of the MDP model.

However not all combinations are likely to happen. In our email client example, it would

be rare to see one using very large font size and very small icon sizes. Such approximation

 79

[37] can be considered to include only states that were observed in the crowd with a certain

threshold. In other words, we are ignoring the states whose probability of incoming edges

are low.

Another solution to handle larger number of variables in MDPs modelling is breaking a

large configuration problem into smaller ones based on configuration aspects, i.e. subsets

of configuration variables that are conceptually coherent. The privacy configurations of

Facebook offers a good example of such an aspect; it was indeed fairly easy for us to

separate it from other configuration variables of Facebook. This way we also achieve

another improvement in the process of eliciting user responses: in the current framework

the sequence of actions to be asked from user is only decided by the solution of MDP.

Provided the configuration items entail a variety of areas, the questions posed to the user

may be arbitrary, jumping from one subject to another. Dividing the configuration items to

groups that are close in topic, would prevent such irregular switch in the topics of questions.

More application attempts to other systems will hopefully reveal whether such division

into sub-problems has a practical merit.

6.3.4 The role of the configuration items

Moving on to another potential research topic, it would be interesting to explore

alternatives to avoid posing harder questions to users and to emphasize on the

customization of relatively more important items. Right now the importance of the settings,

or the difficulty they pose to the user are not taken into account and all configuration items

 80

are treated the same. It would be desirable if user’s difficulty of the handling the

configuration plays a role in the sequence; it would be more desirable if the recommender

can predict the rather difficult options than the easier one. This can perhaps be applied by

allocating heavier cost to questions that are deemed difficult for users and granting more

rewards to states in which the important configuration items are figured out.

As a final note, the proposed framework is concerned with configuration variables that are

finite (actually: of a small domain size) and discrete. Continuous variables can be

discretized to fit to this model. In that case, automatic configuration of a continuous

variable would imply setting a characteristic parameter of the interval that resulted from

discretization – so while values of the font size interval [15pt, 25pt] map to discrete value

large, when we, conversely, need to automatically set the discrete value large to the

continuous variable font size, e.g. the average of the interval (20pt) can be set. Whether

such discretization techniques are adequate, or whether continuous optimization techniques

need to be introduced, is a matter of empirical investigation with different kinds of systems

and configuration aspects and problems.

 81

References

[1] Hui, Bowen, Sotirios Liaskos, and John Mylopoulos. "Requirements analysis for

customizable software: A goals-skills-preferences framework." Requirements

Engineering Conference, 2003. Proceedings. 11th IEEE International, pp. 117-126.

IEEE, 2003.

[2] Liaskos, Sotirios, Alexei Lapouchnian, Yiqiao Wang, Yijun Yu, and Steve

Easterbrook. "Configuring common personal software: a requirements-driven

approach." In Requirements Engineering, 2005. Proceedings. 13th IEEE

International Conference on Requirements Engineering (RE’05), pp. 9-18. IEEE,

2005.

[3] Hargittai, Eszter. "Facebook privacy settings: Who cares?" First Monday 15, no. 8

(2010).

[4] Hargittai, Eszter. "Digital na (t) ives? Variation in internet skills and uses among

members of the “Net generation”*." Sociological Inquiry 80, no. 1 (2010): 92-113.

[5] Mackay, Wendy E. "Triggers and barriers to customizing software." In Proceedings

of the SIGCHI conference on Human factors in computing systems, pp. 153-160.

ACM, 1991.

[6] Agrawal, Rakesh, and Ramakrishnan Srikant. "Fast algorithms for mining

association rules." In Proc. 20th int. conf. very large data bases, VLDB, vol. 1215,

pp. 487-499. 1994.

[7] Jiawei Han, Micheline Kamber, Jian Pei. Data Mining: Concepts and Techniques,

Third Edition, Morgan Kaufmann. 2011.

 82

[8] Agrawal, Rakesh, Tomasz Imieliński, and Arun Swami. "Mining association rules

between sets of items in large databases." In ACM SIGMOD Record, vol. 22, no. 2,

pp. 207-216. ACM, 1993.

[9] Agrawal, Rakesh, and Ramakrishnan Srikant. "Fast algorithms for mining

association rules." In Proc. 20th int. conf. very large data bases, VLDB, vol. 1215,

pp. 487-499. 1994.

[10] Hipp, Jochen, Ulrich Güntzer, and Gholamreza Nakhaeizadeh. "Algorithms for

association rule mining—a general survey and comparison." ACM SIGKDD

Explorations Newsletter 2, no. 1 (2000): 58-64.

[11] Zaki, Mohammed Javeed. "Scalable algorithms for association mining." Knowledge

and Data Engineering, IEEE Transactions on Knowledge and Data Mining, vol 12,

no. 3 (2000): 372-390.

[12] Boutilier, Craig, Thomas Dean, and Steve Hanks. "Decision-theoretic planning:

Structural assumptions and computational leverage." arXiv preprint

arXiv:1105.5460 (2011).

[13] White, Douglas J. "Real applications of Markov decision processes." Interfaces15,

no. 6 (1985): 73-83.

[14] White, Douglas J. "A survey of applications of Markov decision processes."

Journal of the Operational Research Society (1993): 1073-1096.

[15] Altman, Eitan. "Applications of Markov decision processes in communication

networks." In Handbook of Markov decision processes, pp. 489-536. Springer US,

2002.

 83

[16] Choudhary, Alok K., Jennifer A. Harding, and Manoj K. Tiwari. "Data mining in

manufacturing: a review based on the kind of knowledge." Journal of Intelligent

Manufacturing 20, no. 5 (2009): 501-521.

[17] Debatin, Bernhard, Jennette P. Lovejoy, Ann‐Kathrin Horn, and Brittany N.

Hughes. "Facebook and online privacy: Attitudes, behaviors, and unintended

consequences." Journal of Computer‐Mediated Communication 15, no. 1 (2009):

83-108.

[18] Ricci, Francesco, Lior Rokach, and Bracha Shapira. "Introduction to recommender

systems handbook." In Recommender Systems Handbook, pp. 1-35. Springer US,

2011.

[19] Desrosiers, Christian, and George Karypis. "A comprehensive survey of

neighborhood-based recommendation methods." In Recommender systems

handbook, pp. 107-144. Springer US, 2011.

[20] Felfernig, Alexander, Gerhard Friedrich, Dietmar Jannach, and Markus Zanker.

"Developing constraint-based recommenders." In Recommender systems handbook,

pp.

[21] Romero-Mariona, Jose, Hadar Ziv, and Debra J. Richardson. "SRRS: a

recommendation system for security requirements." In Proceedings of the 2008

international workshop on Recommendation systems for software engineering, pp.

50-52. ACM, 2008.

[22] Dumitru, Horatiu, Marek Gibiec, Negar Hariri, Jane Cleland-Huang, Bamshad

Mobasher, Carlos Castro-Herrera, and Mehdi Mirakhorli. "On-demand feature

recommendations derived from mining public product descriptions." In Software

Engineering (ICSE), 2011 33rd International Conference, pp. 181-190. IEEE,

2011.

 84

[23] Schafer, J. Ben, Dan Frankowski, Jon Herlocker, and Shilad Sen. "Collaborative

filtering recommender systems." In The adaptive web, pp. 291-324. Springer Berlin

Heidelberg, 2007.

[24] Tiihonen, Juha, and Alexander Felfernig. "Towards recommending configurable

offerings." International Journal of Mass Customisation 3, no. 4 (2010): 389-406.

[25] Koren, Yehuda, and Robert Bell. "Advances in collaborative filtering." In

Recommender Systems Handbook, pp. 145-186. Springer US, 2011.

[26] Su, Xiaoyuan, and Taghi M. Khoshgoftaar. "A survey of collaborative filtering

techniques." Advances in artificial intelligence 2009 (2009): 4.

[27] Chien, Yung-Hsin, and Edward I. George. "A bayesian model for collaborative

filtering." In Proceedings of the 7th International Workshop on Artificial

Intelligence and Statistics. San Francisco: Morgan Kaufman

Publishers,[http://uncertainty99. microsoft.com/proceedings. htm], 1999.

[28] Blei, David M., Andrew Y. Ng, and Michael I. Jordan. "Latent dirichlet

allocation." Journal of machine Learning research 3 (2003): 993-1022.

[29] Breese, John S., David Heckerman, and Carl Kadie. "Empirical analysis of

predictive algorithms for collaborative filtering." In Proceedings of the Fourteenth

conference on Uncertainty in artificial intelligence, pp. 43-52. Morgan Kaufmann

Publishers Inc., 1998.

[30] Brin, Sergey, and Lawrence Page. "The anatomy of a large-scale hypertextual Web

search engine." Computer networks and ISDN systems 30, no. 1 (1998): 107-117.

[31] Sarwar, Badrul, George Karypis, Joseph Konstan, and John Riedl. "Item-based

collaborative filtering recommendation algorithms." In Proceedings of the 10th

international conference on World Wide Web, pp. 285-295. ACM, 2001.

 85

[32] Buckley, Chris, and Gerard Salton. "Optimization of relevance feedback weights."

In Proceedings of the 18th annual international ACM SIGIR conference on

Research and development in information retrieval, pp. 351-357. ACM, 1995.

[33] Cohen, William W., Robert E. Schapire, and Yoram Singer. "Learning to order

things." arXiv preprint arXiv:1105.5464 (2011).

[34] Fu, Xiaobin, Jay Budzik, and Kristian J. Hammond. "Mining navigation history for

recommendation." In Proceedings of the 5th international conference on Intelligent

user interfaces, pp. 106-112. ACM, 2000.

[35] Leung, Cane Wing-ki, Stephen Chi-fai Chan, and Fu-lai Chung. "A collaborative

filtering framework based on fuzzy association rules and multiple-level

similarity." Knowledge and Information Systems 10, no. 3 (2006): 357-381.

[36] Adomavicius, Gediminas, and Alexander Tuzhilin. "Toward the next generation of

recommender systems: A survey of the state-of-the-art and possible

extensions." Knowledge and Data Engineering, IEEE Transactions 17, no. 6

(2005): 734-749.

[37] Shani, Guy, Ronen I. Brafman, and David Heckerman. "An MDP-based

recommender system." In Proceedings of the Eighteenth conference on Uncertainty

in artificial intelligence, pp. 453-460. Morgan Kaufmann Publishers Inc., 2002.

[38] Hauskrecht, Milos. "Incremental methods for computing bounds in partially

observable Markov decision processes." In AAAI/IAAI, pp. 734-739. 1997.

[39] Poupart, Pascal, and Craig Boutilier. "VDCBPI: an Approximate Scalable

Algorithm for Large POMDPs." In NIPS. 2004.

 86

[40] Kearns, Michael, Yishay Mansour, and Andrew Y. Ng. "A sparse sampling

algorithm for near-optimal planning in large Markov decision processes." Machine

Learning 49, no. 2-3 (2002): 193-208.

[41] Carenini, Giuseppe, Jocelyin Smith, and David Poole. "Towards more

conversational and collaborative recommender systems." In Proceedings of the 8th

international conference on Intelligent user interfaces, pp. 12-18. ACM, 2003.

[42] Mahmood, Tariq, and Francesco Ricci. "Improving recommender systems with

adaptive conversational strategies." In Proceedings of the 20th ACM conference on

Hypertext and hypermedia, pp. 73-82. ACM, 2009.

[43] Häubl, Gerald, and Kyle B. Murray. "Preference construction and persistence in

digital marketplaces: The role of electronic recommendation agents." Journal of

Consumer Psychology 13, no. 1 (2003): 75-91.

[44] Hansen, Torben, Christian Scheer, Johannes Gutenberg, and Peter Loos. "Product

Configurators in Electronic Commerce–Extension of the Configurator Concept

towards Customer Recommendation." In Proceedings of the 2nd Interdisciplinary

World Congress on Mass Customization and Personalization (MCP). 2003.

[45] Cöster, Rickard, Andreas Gustavsson, Tomas Olsson, and Åsa Rudström.

"Enhancing web-based configuration with recommendations and cluster-based

help." In Proceedings of the AH’2002 Workshop on Recommendation and

Personalization in e-Commerce. 2002.

[46] Felfernig, Alexander, Monika Mandl, Juha Tiihonen, Monika Schubert, and

Gerhard Leitner. "Personalized user interfaces for product configuration." In

Proceedings of the 15th international conference on Intelligent user interfaces, pp.

317-320. ACM, 2010.

 87

[47] Mittal, Sanjay, and Felix Frayman. "Towards a Generic Model of Configuration

Tasks." In IJCAI, vol. 89, pp. 1395-1401. 1989.

[48] Fleischanderl, Gerhard, Gerhard E. Friedrich, Alois Haselböck, Herwig Schreiner,

and Markus Stumptner. "Configuring large systems using generative constraint

satisfaction." IEEE Intelligent Systems 13, no. 4 (1998): 59-68.

[49] Sabin, Daniel, and Rainer Weigel. "Product configuration frameworks-a survey."

IEEE intelligent systems 13, no. 4 (1998): 42-49.

[50] Stumptner, Markus. "An overview of knowledge-based configuration." AI

Communications 10, no. 2 (1997): 111-125.

[51] Maalej, Walid, and Anil Kumar Thurimella. "Towards a research agenda for

recommendation systems in requirements engineering." In Managing Requirements

Knowledge (MARK), 2009 Second International Workshop on, pp. 32-39. IEEE,

2009.

[52] Castro-Herrera, Carlos, Jane Cleland-Huang, and Bamshad Mobasher. "Enhancing

stakeholder profiles to improve recommendations in online requirements

elicitation." In Requirements Engineering Conference, 2009. RE'09. 17th IEEE

International, pp. 37-46. IEEE, 2009.

[53] Lim, Soo Ling, and Anthony Finkelstein. "StakeRare: using social networks and

collaborative filtering for large-scale requirements elicitation." Software

Engineering, IEEE Transactions on Software Engineering 38, no. 3 (2012): 707-

735.

[54] Lim, Soo Ling, Daniele Quercia, and Anthony Finkelstein. "StakeSource:

harnessing the power of crowdsourcing and social networks in stakeholder

 88

analysis." In Proceedings of the 32nd ACM/IEEE International Conference on

Software Engineering, vol 2, pp. 239-242. ACM, 2010.

[55] Duan, Chuan, Paula Laurent, Jane Cleland-Huang, and Charles Kwiatkowski.

"Towards automated requirements prioritization and triage." Requirements

Engineering 14, no. 2 (2009): 73-89.

[56] Felfernig, A., G. Ninaus, H. Grabner, F. Reinfrank, L. Weninger, D. Pagano, and

W. Maalej. "An Overview of Recommender Systems in Requirements Engineering

(preprint version)."

[57] Mobasher, Bamshad, and Jane Cleland-Huang. "Recommender systems in

requirements engineering." AI Magazine 32, no. 3 (2011): 81-89.

[58] Consens, Mariano P., Denilson Barbosa, Adrian Teisanu, and Laurent Mignet.

"Goals and benchmarks for autonomic configuration recommenders." In

Proceedings of the 2005 ACM SIGMOD international conference on Management

of data, pp. 239-250. ACM, 2005.

[59] Page, Stanley R., Todd J. Johnsgard, Uhl Albert, and C. Dennis Allen. "User

customization of a word processor." In Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems, pp. 340-346. ACM, 1996.

[60] Dardenne, Anne, Axel Van Lamsweerde, and Stephen Fickas. "Goal-directed

requirements acquisition." Science of computer programming 20, no. 1 (1993): 3-

50.

[61] Mylopoulos, John, Lawrence Chung, Stephen Liao, Huaiqing Wang, and Eric Yu.

"Exploring alternatives during requirements analysis." Software, IEEE 18, no. 1

(2001): 92-96.

 89

[62] Liaskos, Sotirios, Shakil M. Khan, Marin Litoiu, Marina Daoud Jungblut,

Vyacheslav Rogozhkin, and John Mylopoulos. "Behavioral adaptation of

information systems through goal models." Information Systems 37, no. 8 (2012):

767-783.

[63] Liaskos, Sotirios, Sheila A. McIlraith, Shirin Sohrabi, and John Mylopoulos.

"Representing and reasoning about preferences in requirements engineering."

Requirements Engineering 16, no. 3 (2011): 227-249.

[64] Gross, Ralph, and Alessandro Acquisti. "Information revelation and privacy in

online social networks." In Proceedings of the 2005 ACM workshop on Privacy in

the electronic society, pp. 71-80. ACM, 2005.

[65] Johnson, Maritza, Serge Egelman, and Steven M. Bellovin. "Facebook and privacy:

it's complicated." In Proceedings of the eighth symposium on usable privacy and

security, p. 9. ACM, 2012.

[66] Lampe, Cliff, Nicole B. Ellison, and Charles Steinfield. "Changes in use and

perception of Facebook." In Proceedings of the 2008 ACM conference on

Computer supported cooperative work, pp. 721-730. ACM, 2008.

[67] Fang, Lujun, and Kristen LeFevre. "Privacy wizards for social networking sites."

In Proceedings of the 19th international conference on World wide web, pp. 351-

360. ACM, 2010.

[68] Lipford, Heather Richter, Andrew Besmer, and Jason Watson. "Understanding

Privacy Settings in Facebook with an Audience View." UPSEC 8 (2008): 1-8.

[69] Strater, Katherine, and Heather Richter Lipford. "Strategies and struggles with

privacy in an online social networking community." In Proceedings of the 22nd

 90

British HCI Group Annual Conference on People and Computers: Culture,

Creativity, Interaction, vol 1, pp. 111-119. British Computer Society, 2008.

[70] Church, Luke, Jonathan Anderson, Joseph Bonneau, and Frank Stajano. "Privacy

stories: confidence in privacy behaviors through end user programming."

In SOUPS. 2009.

[71] Acquisti, Alessandro, and Ralph Gross. "Imagined communities: Awareness,

information sharing, and privacy on the Facebook." In Privacy enhancing

technologies, pp. 36-58. Springer Berlin Heidelberg, 2006.

[72] Liu, Yabing, Krishna P. Gummadi, Balachander Krishnamurthy, and Alan Mislove.

"Analyzing Facebook privacy settings: user expectations vs. reality." In

Proceedings of the 2011 ACM SIGCOMM conference on Internet measurement

conference, pp. 61-70. ACM, 2011.

[73] Jones, Simon, and Eamonn O'Neill. "Feasibility of structural network clustering for

group-based privacy control in social networks." In Proceedings of the Sixth

Symposium on Usable Privacy and Security, p. 9. ACM, 2010.

[74] McNee, Sean M., John Riedl, and Joseph A. Konstan. "Being accurate is not

enough: how accuracy metrics have hurt recommender systems." In CHI'06

extended abstracts on Human factors in computing systems, pp. 1097-1101. ACM,

2006.

[75] White III, Chelsea C. "A survey of solution techniques for the partially observed

Markov decision process." Annals of Operations Research 32, no. 1 (1991): 215-

230.

 91

[76] Joinson, Adam N. "Looking at, looking up or keeping up with people?: motives and

use of Facebook." In Proceedings of the SIGCHI conference on Human Factors in

Computing Systems, pp. 1027-1036. ACM, 2008.

[77] Pempek, Tiffany A., Yevdokiya A. Yermolayeva, and Sandra L. Calvert. "College

students' social networking experiences on Facebook." Journal of Applied

Developmental Psychology 30, no. 3 (2009): 227-238.

[78] Shani, Guy, and Asela Gunawardana. "Evaluating recommendation systems."

In Recommender systems handbook, pp. 257-297. Springer US, 2011

