8,445 research outputs found

    Proceedings of International Workshop "Global Computing: Programming Environments, Languages, Security and Analysis of Systems"

    Get PDF
    According to the IST/ FET proactive initiative on GLOBAL COMPUTING, the goal is to obtain techniques (models, frameworks, methods, algorithms) for constructing systems that are flexible, dependable, secure, robust and efficient. The dominant concerns are not those of representing and manipulating data efficiently but rather those of handling the co-ordination and interaction, security, reliability, robustness, failure modes, and control of risk of the entities in the system and the overall design, description and performance of the system itself. Completely different paradigms of computer science may have to be developed to tackle these issues effectively. The research should concentrate on systems having the following characteristics: ‱ The systems are composed of autonomous computational entities where activity is not centrally controlled, either because global control is impossible or impractical, or because the entities are created or controlled by different owners. ‱ The computational entities are mobile, due to the movement of the physical platforms or by movement of the entity from one platform to another. ‱ The configuration varies over time. For instance, the system is open to the introduction of new computational entities and likewise their deletion. The behaviour of the entities may vary over time. ‱ The systems operate with incomplete information about the environment. For instance, information becomes rapidly out of date and mobility requires information about the environment to be discovered. The ultimate goal of the research action is to provide a solid scientific foundation for the design of such systems, and to lay the groundwork for achieving effective principles for building and analysing such systems. This workshop covers the aspects related to languages and programming environments as well as analysis of systems and resources involving 9 projects (AGILE , DART, DEGAS , MIKADO, MRG, MYTHS, PEPITO, PROFUNDIS, SECURE) out of the 13 founded under the initiative. After an year from the start of the projects, the goal of the workshop is to fix the state of the art on the topics covered by the two clusters related to programming environments and analysis of systems as well as to devise strategies and new ideas to profitably continue the research effort towards the overall objective of the initiative. We acknowledge the Dipartimento di Informatica and Tlc of the University of Trento, the Comune di Rovereto, the project DEGAS for partially funding the event and the Events and Meetings Office of the University of Trento for the valuable collaboration

    Socionic Multi-Agent Systems Based on Reflexive Petri Nets and Theories of Social Self-Organisation

    Get PDF
    This contribution summarises the core results of the transdisciplinary ASKO project, part of the German DFG's programme Sozionik, which combines sociologists' and computer scientists' skills in order to create improved theories and models of artificial societies. Our research group has (a) formulated a social theory, which is able to explain fundamental mechanisms of self-organisation in both natural and artificial societies, (b) modelled this in a mathematical way using a visual formalism, and (c) developed a novel multi-agent system architecture which is conceptually coherent, recursively structured (hence non-eclectic) and based on our social theory. The article presents an outline of both a sociological middle-range theory of social self-organisation in educational institutions, its formal, Petri net based model, including a simulation of one of its main mechanisms, and the multi-agent system architecture SONAR. It describes how the theory was created by a re-analysis of some grand social theories, by grounding it empirically, and finally how the theory was evaluated by modelling its concepts and statements.Multi-Agents Systems, Petri Nets, Self-Organisation, Social Theories

    Analysis of Mobile Agents using Invariants of Object Nets

    Get PDF
    Mobility induces new challenges for dynamic systems, which need a new conceptional treatment: systems, that deal for example with mobile agents, need extended security concepts to handle the risks, induced by foreign, untrusted agents. In this contribution we use object nets to model mobile systems. Object nets are Petri nets which have Petri nets as tokens – an approach known as the nets-withinnets paradigm. Object nets are called elementary if the net system has a two levelled structure. In this work we apply structural analysis methods for object nets – namely place invariants – to a simple case study modelling mobile agents

    KLAIM: A Kernel Language for Agents Interaction and Mobility

    Get PDF
    We investigate the issue of designing a kernel programming language for mobile computing and describe KLAIM, a language that supports a programming paradigm where processes, like data, can be moved from one computing environment to another. The language consists of a core Linda with multiple tuple spaces and of a set of operators for building processes. KLAIM naturally supports programming with explicit localities. Localities are first-class data (they can be manipulated like any other data), but the language provides coordination mechanisms to control the interaction protocols among located processes. The formal operational semantics is useful for discussing the design of the language and provides guidelines for implementations. KLAIM is equipped with a type system that statically checks access rights violations of mobile agents. Types are used to describe the intentions (read, write, execute, etc.) of processes in relation to the various localities. The type system is used to determine the operations that processes want to perform at each locality, and to check whether they comply with the declared intentions and whether they have the necessary rights to perform the intended operations at the specific localities. Via a series of examples, we show that many mobile code programming paradigms can be naturally implemented in our kernel language. We also present a prototype implementaton of KLAIM in Java

    Workshop on Modelling of Objects, Components, and Agents, Aarhus, Denmark, August 27-28, 2001

    Get PDF
    This booklet contains the proceedings of the workshop Modelling of Objects, Components, and Agents (MOCA'01), August 27-28, 2001. The workshop is organised by the CPN group at the Department of Computer Science, University of Aarhus, Denmark and the "Theoretical Foundations of Computer Science" Group at the University of Hamburg, Germany. The papers are also available in electronic form via the web pages: http://www.daimi.au.dk/CPnets/workshop01

    Third Workshop on Modelling of Objects, Components, and Agents

    Get PDF
    This booklet contains the proceedings of the Third International Workshop on Modelling of Objects, Components, and Agents (MOCA'04), October 11-13, 2004. The workshop is organised by the CPN group at the Department of Computer Science, University of Aarhus, Denmark and the "Theoretical Foundations of Computer Science" group at the University of Hamburg. The home page of the workshop is: http://www.daimi.au.dk/CPnets/workshop0

    04241 Abstracts Collection -- Graph Transformations and Process Algebras for Modeling Distributed and Mobile Systems

    Get PDF
    Recently there has been a lot of research, combining concepts of process algebra with those of the theory of graph grammars and graph transformation systems. Both can be viewed as general frameworks in which one can specify and reason about concurrent and distributed systems. There are many areas where both theories overlap and this reaches much further than just using graphs to give a graphic representation to processes. Processes in a communication network can be seen in two different ways: as terms in an algebraic theory, emphasizing their behaviour and their interaction with the environment, and as nodes (or edges) in a graph, emphasizing their topology and their connectedness. Especially topology, mobility and dynamic reconfigurations at runtime can be modelled in a very intuitive way using graph transformation. On the other hand the definition and proof of behavioural equivalences is often easier in the process algebra setting. Also standard techniques of algebraic semantics for universal constructions, refinement and compositionality can take better advantage of the process algebra representation. An important example where the combined theory is more convenient than both alternatives is for defining the concurrent (noninterleaving), abstract semantics of distributed systems. Here graph transformations lack abstraction and process algebras lack expressiveness. Another important example is the work on bigraphical reactive systems with the aim of deriving a labelled transitions system from an unlabelled reactive system such that the resulting bisimilarity is a congruence. Here, graphs seem to be a convenient framework, in which this theory can be stated and developed. So, although it is the central aim of both frameworks to model and reason about concurrent systems, the semantics of processes can have a very different flavour in these theories. Research in this area aims at combining the advantages of both frameworks and translating concepts of one theory into the other. The Dagsuthl Seminar, which took place from 06.06. to 11.06.2004, was aimed at bringing together researchers of the two communities in order to share their ideas and develop new concepts. These proceedings4 of the do not only contain abstracts of the talks given at the seminar, but also summaries of topics of central interest. We would like to thank all participants of the seminar for coming and sharing their ideas and everybody who has contributed to the proceedings
    • 

    corecore