
Klaim:

a Kernel Language for Agents Interaction and Mobility

Rocco De Nicola1 GianLuigi Ferrari2 Rosario Pugliese1

1Dipartimento di Sistemi e Informatica, Università di Firenze
e-mail: {denicola,pugliese}@dsi2.dsi.unifi.it

2Dipartimento di Informatica, Università di Pisa
e-mail: giangi@di.unipi.it

Abstract

We investigate the issue of designing a kernel programming language for Mobile
Computing and describe Klaim, a language that supports a programming paradigm
where processes, like data, can be moved from one computing environment to an-
other. The language consists of a core Linda with multiple tuple spaces and of a
set of operators for building processes. Klaim naturally supports programming with
explicit localities. Localities are first-class data (they can be manipulated like any
other data), but the language provides coordination mechanisms to control the inter-
action protocols among located processes. The formal operational semantics is useful
for discussing the design of the language and provides guidelines for implementations.
Klaim is equipped with a type system that statically checks access rights violations of
mobile agents. Types are used to describe the intentions (read, write, execute, etc.) of
processes in relation to the various localities. The type system is used to determine the
operations that processes want to perform at each locality, and to check whether they
comply with the declared intentions and whether they have the necessary rights to
perform the intended operations at the specific localities. Via a series of examples, we
show that many mobile code programming paradigms can be naturally implemented
in our kernel language. We also present a prototype implementation of Klaim in Java.

Keywords: Programming Languages, Mobile Code Languages, Semantics of Program-
ming Languages, Language Design, Coordination Models.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IMT Institutional Repository

https://core.ac.uk/display/12096312?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Introduction

Networking has changed computers from isolated data processors into powerful commu-
nication and elaboration devices. The terms global computers and global information
structures have recently been used to identify architectures of this kind and applications
over them [8]. The World–Wide Web (WWW) is the best known example of an appli-
cation geographically distributed over a collection of processors and networks. Global
structures/computers are rapidly evolving towards programmability; again, an illustra-
tive example is the WWW. One could easily imagine applications with programs running
at different sites and needing continuous interactions or applications that have to take
decisions according to information retrieved from the global environment.

This new scenario has called for new programming languages and paradigms that
support migratory (mobile) applications. For example, Java [3] permits local executions
of self–contained programs downloaded from other sites. Similarly, Facile [23] supports
mobility of programs by allowing processes to be transmitted in communications. Obliq
[7] is a programming language with a static scoping discipline where mobile processes
maintain their connections when they move from one site to the other. Other examples
of languages supporting forms of mobility are CML [38] and Telescript [41].

From a theoretical perspective, much research has addressed mobility starting from the
definition of π–calculus [32], which has been used as the basis for designing the concurrent,
object oriented, programming language PICT [33]. Indeed, an abstract semantic frame-
work that would allow one to formalize and understand global programming languages is
clearly required. Such a semantic framework may be the formal basis to discuss contro-
versial design/implementation issues (e.g. the scoping discipline of mobile processes) and
provide support for mechanical reasoning about global programs.

A key issue when designing a language for network programming is security, e.g. pri-
vacy and integrity of data. It is important to prevent malicious agents from accessing
private information or modifying private data. Tools are thus needed that enable sites
receiving mobile agents for execution to set demands and limitations to ensure that the
agents will not violate privacy or jeopardize the integrity of the information. Similarly,
mobile agents need tools to ensure that their execution at other sites will not disrupt
them or compromise their security. Languages for mobile agents often rely on policies
(both at compilation and run–time) that over-restrict privileges and capabilities of mobile
agents (e.g. Java [3]). This unnecessarily reduces the expressive power and capabilities of
the agents. Moreover, there is no guarantee that certain desired security properties are
enforced by the language implementation.

This paper presents a kernel programming language, Klaim (Kernel Language for
Agents Interaction and Mobility), for describing mobile agents and their interaction strate-
gies. We introduce basic concepts and linguistic primitives together with a formal opera-

2

tional semantics. This is followed by a discussion of the pragmatics of the language and
of a prototype implementation.

The distinguishing features of our approach are the explicit use of localities for accessing
data or computational resources and the presence of a simple type system to control access
rights.

The choice of Klaim’s primitives was heavily influenced by Process Algebras [25, 30]
and Linda [20, 10]. Indeed, our language can be seen as an asynchronous higher–order
process calculus whose basic actions are the original Linda primitives enriched with explicit
information about the location of the nodes where processes and tuples are allocated.

Explicit localities enable the programmer to distribute and retrieve data and processes
to and from the sites of a net and to structure the tuple space as multiple, located spaces.
Moreover, localities, considered as first–order data, can be dynamically created and com-
municated over the network. The overall outcome is a powerful programming formalism
that, for example, can easily be used to model encapsulation. In fact, an encapsulated
module can be implemented as a tuple space at a private locality, and this ensures con-
trolled accesses to data.

The separation of the logical distribution of processes and their physical mappings over
the net leads to the sharing of the control between programmers and a net coordinator.
The actual coordination language is designed to handle all issues related to the physical
distribution of processes. Coordinators have complete control over changes of configuration
of the network that may be due to addition/deletion of software components and sites, or
to transmission of programs and of sites references.

The actual structuring in terms of processes and coordinators provides a clean abstrac-
tion device for global programming languages and is instrumental for studying migratory
applications and for understanding the extent of configuration decisions before carrying
out the actual implementation. This will be illustrated by analyzing the effects of choosing
specific scoping disciplines for accessing tuple spaces.

To take security issues into account, we extend Klaim processes and coordinators
with a simple type system that can be used to statically enforce security properties. More
precisely, the type system permits one to check whether the operations Klaim processes
intend to perform over the sites of a net really do comply with their access rights.

We illustrate the pragmatics of the language by means of a number of programming
examples which demonstrate how well established programming paradigms for mobile
applications can be naturally programmed in Klaim. The untyped version of Klaim has
been implemented as a set of Java packages.

The rest of the paper is organized as follows. Sections 2 and 3 introduce the syntax and
the operational semantics of Klaim, respectively. In Section 4 we present a type system
for inferring process types and a methodology for controlling their access rights. This is
followed by a discussion of the language pragmatics in Section 5, and by the description of

3

the prototype implementation in Section 6. In the last section, future research is discussed.
Comments about the relationships of Klaim with other languages and about alternative
design choices are scattered along the paper as remarks.

Preliminary presentations of the Klaim language can be found in [15, 16].

2 Klaim: Syntax and Informal Semantics

Klaim consists of a core Linda with multiple tuple spaces and of a set of operators,
borrowed from Milner’s CCS [30], for building processes. The distinguishing feature is
that tuples and operations over them are located at specific sites of a net. We start this
section by summarizing the main features of Linda (the interested reader is referred to,
e.g., [22, 11, 10] for more details). Then, we present the syntax of Klaim. The process
algebraic operators will be briefly presented in the subsection that contains the syntax of
Klaim processes.

2.1 An overview of Linda

Linda is a coordination language that relies on an asynchronous and associative commu-
nication mechanism based on a shared global environment called Tuple Space (TS). A
tuple space is a collection (formally a multiset) of tuples, where a tuple is a sequence of
actual fields, i.e. expressions or values, and formal fields, i.e. variables. Pattern–matching
is used to select tuples in a TS. Two tuples match if they have the same number of fields
and corresponding fields have matching values or variables. Variables match any value of
the same type, and two values match only if they are identical.

Linda provides just four primitives for manipulating tuples. Two (non–blocking) oper-
ations, out(t) and eval(t), permit tuples to be added to a TS. The operation out(t) adds
the tuple resulting from the evaluation of t to a TS. The operation eval(t) differs from
out(t) because t is first added to the TS and then a new concurrent process is created
for evaluating the tuple; this is not available for matching until its evaluation has been
completed. Two (possibly blocking) operations, in(t) and read(t), permit tuples to be
accessed in the TS. The operation in(t) evaluates t and looks for a matching tuple t′ in
the TS. Whenever t′ is found, it is removed from the TS. The corresponding values of t′

are then assigned to the variables of t and the operation terminates. If no matching tuple
is found, the operation is suspended until one is available. The operation read(t) differs
from in(t) because the tuple t′ selected by pattern–matching is not removed from the TS.

Nondeterminism is inherent in the definition of Linda primitives. It arises when more
in/read operations are suspended while waiting for a tuple. When such a tuple becomes
available, only one of the suspended operations is nondeterministically selected to proceed.
Similarly, when an in/read operation has more than one matching tuple one is arbitrarily
chosen.

4

The Linda programming paradigm is known as Generative Communication [20]. In-
deed, once a tuple is added to a TS (generated), its life–time is independent of the producer
process’s life–time.

In the original proposal [20] two predicative (non–blocking) forms, inp and readp, were
also part of the language. They yield true or false depending on whether the TS contains
a tuple matching their argument. When returning true they retrieve/remove the matching
tuple. We did not consider these predicates because they are functional duplicates of their
non–predicative counterparts and are difficult to implement in a distributed environment.
They may require expensive checks and synchronizations over entire tuple spaces [29].

The Linda asynchronous communication model allows programmers to explicitly con-
trol interactions among processes via shared data and to use the same set of primitives
both for data manipulation and for process synchronization. This has the advantage of ren-
dering explicit all the interactions of a program with its environment. The original Linda
primitives are, however, not completely adequate for programming distributed systems.
For example, data protection and security, which are key features of mobile applications,
are problematic because the Linda communication model cannot guarantee data privacy.
Also, modular programming disciplines are awkward to follow in practice as there is no
way to guarantee that tuples coming from different contexts are not mixed up when two
modules are put together. Multiple tuple spaces [21] are a first step toward the solution of
these problems. In this paper we perform a further step by adding structure to multiple
tuple spaces and allowing explicit manipulation of localities and locality names.

2.2 Klaim Processes

Hereafter, we shall exploit the syntactic categories listed below; all of them are followed
by the symbols we will use (sometimes with indices) to refer to their elements.

• S (s) is a set of sites (or physical localities). A site can be considered as the address
of a node where processes and tuple spaces are allocated.

• Loc (l) is a set of (logical) localities. A locality may be thought of as the symbolic
name for a site. Localities permit structuring programs over distributed environ-
ments while ignoring their precise allocations. A distinguished locality self (∈ Loc)
is assumed. Programs can use self to refer to their execution site.

• VLoc (u) is a set of locality variables.

• Val (v) is a set of basic values.

• Var (x) is a set of value variables.

• Exp (e) is the category of value expressions. These are built up from values and
value variables, by using a set of operators (not specified here).

5

• Ψ (A) is a set of parameterized process identifiers. Parameters can be of three
different types: process, locality and value; for the sake of simplicity, we fix this
ordering for the formal parameters of any process identifier.

• χ (X) is a set of process variables.

For simplicity, we will use ` to denote both localities and locality variables. Moreover,˜̀ will indicate sequences of localities and {˜̀} the set of localities in ˜̀. A similar notation
will also be used for other kinds of sequences.

We will use the standard notation e[e′/x] to indicate the substitution of the value
expression e′ for the variable x in e; e[ẽ′/x̃] will denote the simultaneous substitution of
each x ∈ x̃ with the corresponding e′ ∈ ẽ′ in e.

Tuples are sequences of actual fields (i.e. expressions, processes, localities or locality
variables) and formal fields; these are denoted by “! var”, where var is a generic variable.
We shall use fields(t) to denote the set of fields of t.

The Linda operations to generate tuples (out), to spawn a new process (eval), to read
tuples (read), and to remove tuples (in) are located, e.g. the operation out(t)@` is used to
place the tuple t in the tuple space located at `. Our primitives generalize Linda’s original
ones. We have a modified eval primitive; it has processes as arguments rather than tuples,
and thus permits mobile agents to be programmed. As will be clarified later (Section 3),
action eval(out(t)@`.nil)@` can be used to simulate the “expected” behaviour of action
eval(t)@`. New sites are created through the prefix newloc(u). This operation creates a
“fresh” site that can be accessed via the locality variable u.

The operators for building processes are borrowed from Milner’s CCS [30]. They are
commonly used in Process Algebras and correspond to basic notions. Namely, nil stands
for the process that cannot perform any action, a.P stands for the process that first
executes action a and then behaves like P , P1|P2 stands for the parallel composition of P1

and P2, and P1+P2 stands for the nondeterministic composition of P1 and P2.
Klaim terms are given by the abstract syntax in Table 1. As a matter of notation, in

the following we often shall write a instead of a.nil.
Variables occurring in Klaim process terms can be bound by prefixes. More precisely,

prefixes in(t)@`. and read(t)@`. act as binders for variables in the formal fields of t.
Prefix newloc(u). binds the locality variable u.

Process identifiers are used in recursive process definitions. It is assumed that each
process identifier A has a single defining equation A(X̃, ũ, x̃)

def
= P . All free (value, process

and locality) variables in P are contained in {X̃, ũ, x̃} and all occurrences of process
identifiers in P are guarded (i.e. each process identifier occurs within the scope of a
blocking in/read prefix).

A process is a term without free variables; localities occurring in processes are consid-
ered as constants. In the next section, we will see that they are names whose meaning

6

P ::= nil (null process)∣∣∣ a.P (action prefixing)∣∣∣ P1 | P2 (parallel composition)∣∣∣ P1+P2 (choice)∣∣∣ X (process variable)∣∣∣ A〈P̃ , ˜̀, ẽ〉 (process invocation)

a ::= out(t)@`
∣∣∣ in(t)@`

∣∣∣ read(t)@`
∣∣∣ eval(P)@`

∣∣∣ newloc(u)

t ::= e
∣∣∣ P

∣∣∣ `
∣∣∣ !x

∣∣∣ !X
∣∣∣ !u

∣∣∣ t1, t2

Table 1: Processes Syntax

is defined (i.e. mapped onto sites) by coordinators. Both processes and localities are
first–class data and can be manipulated and generated like any other data occurring in
tuples. Processes have higher–order capabilities, in that they can be exchanged in com-
munications.

2.3 Klaim Nets

Coordination appears to be a key concept for modelling and designing heterogeneous, dis-
tributed, open ended systems. It applies typically to systems consisting of a large number
of software components, programmed independently, possibly with different programming
languages, which may change their configuration during execution. Coordination lan-
guages provide the primitive for defining configurations and interaction protocols of sets
of software agents. Systems are designed and developed in a structured way, starting
from the basic computational components and adding suitable software modules called
coordinators. This approach increases the potential reuse of both software agents and
coordinators at the cost of acceptable overheads.

In this section we introduce the Klaim coordination language. It is designed to han-
dle all the issues related to the physical distribution of processes. Moreover, it controls
changes of network configuration. Changes may be due to the addition/deletion of software
components and sites, or to the transmission of programs and resources.

Given a finite set of sites, a Klaim net is a set of nodes. A Klaim node is a triple
(s, P, ρ) where s is a site and ρ is the allocation environment, i.e. a (partial) function from
Loc to S. Hereafter E will denote the set of environments, φ the empty environment, and
[s/l] the environment that maps the locality l to the site s. Processes at each site can
potentially access any other site of the net; however, site visibility is (locally) controllable
via the allocation environment: a site s′ is visible at the node (s, P, ρ) only if s′ belongs to

7

N ::= s ::ρ P (node)∣∣∣ N1 ‖ N2 (net composition)

Table 2: Nets Syntax

the image of ρ. Finally, we introduce an operation to stratify environments. If ρ1, ρ2 ∈ E ,
then ρ1 • ρ2 is the environment defined by:

ρ1 • ρ2 (l) =

{
ρ1(l) if ρ(l) is defined
ρ2(l) otherwise

In ρ1 • ρ2 , ρ1 is the inner environment and ρ2 is the outer environment.
The abstract syntax for Klaim nets is given by the grammar in Table 2.
Given a net N , we assume the existence of a function st which returns the sites of N .

The composition N1 ‖ N2 is defined only if st(N1) ∩ st(N2) = ∅, thus we can consider a
net just as a set of nodes. We say that a net N is well–formed if whenever s ::ρ P is a node
of N then ρ(self) = s and the image of ρ is included in st(N). We will only consider
well–formed nets. To lighten notations, the allocation environments will not report the
binding for self.

Remark 2.1 In the present formulation of Klaim, located tuple spaces have no hierar-
chical structure, i.e. located tuple spaces are not nested. However, the nesting of located
tuple spaces can easily be modelled. It suffices to extend Klaim coordination language
with a combinator to allocate a complete net. Hence, a hierarchical net would be written:

s ::ρ [N]

where ρ is the allocation environment that now returns either localities or sequences of
sites. The idea is that s is the site where the net N is allocated. Site s and its environment
ρ can then be used to control all interactions between N and other nets.

Allocated nets are very similar in spirit to the multiple ambients of Cardelli and Gordon
[9]. A complete investigation of allocated nets is beyond the scope of the present paper
and will be the subject of a further work.

3 Operational Semantics

The two syntactic levels of Klaim are reflected at the semantic level. The operational
semantics of Klaim is given in the SOS style [35] and proceeds in two steps. The first
step defines the symbolic semantics that specifies parts of process commitments, i.e. the
control on localities and the effects of the actions on the tuple spaces. The full description
of process behaviours is given in the second step, which packages processes and data into
a net.

8

out(t)@`.P
s(t)@`−−−→

φ
P eval(Q)@`.P

e(Q)@`−−−→
φ

P

in(t)@`.P
i(t)@`−−→

φ
P read(t)@`.P

r(t)@`−−−→
φ

P

newloc(u).P
n(u)@self−−−−−→

φ
P

P
µ−→
ρ

P ′

P+Q
µ−→
ρ

P ′

P
µ−→
ρ

P ′

Q+P
µ−→
ρ

P ′

P
µ−→
ρ

P ′

P | Q µ−→
ρ

P ′ | Q

P
µ−→
ρ

P ′

Q | P µ−→
ρ

Q | P ′

P
µ−→
ρ′

P ′

P{ρ} µ−−−→
ρ′ • ρ

P ′{ρ}

P [P̃ /X̃, ˜̀/ũ, ẽ/x̃]
µ−→
ρ

P ′

A〈P̃ , ˜̀, ẽ〉 µ−→
ρ

P ′
A(X̃, ũ, x̃)

def
= P

Table 3: The Structural Rules of Symbolic Semantics

3.1 Process Semantics

The labelled transition system for processes describes the possible evolutions of Klaim

processes without providing the actual allocation of processes and tuple spaces. For this
reason, the corresponding operational semantics is called symbolic in that neither value
and locality expressions nor tuples are evaluated.

To describe the effects of the evaluation of processes which are placed within tuples
fields, we introduce the auxiliary term P{ρ} which indicates the process P packaged with
the allocation of localities specified by ρ; the mapping ρ is an evaluation environment and
P{ρ} is a closure. For the sake of simplicity, we will use P to range over closures as well.

The structural rules of the symbolic semantics are reported in Table 3. The transition

P
µ−→
ρ

P ′

describes the evolution to P ′ of the process P . The label of the transition 〈µ, ρ〉 provides an
abstract description of the activities performed in the evolution. For instance, µ = s(t)@`

describes the output (sending) of tuple t in the tuple space specified by `. Similarly,
µ = n(u)@self can be thought of as the request for binding a fresh site to the variable u.
The environment ρ records the local bindings that must be taken into account to evaluate
µ. Our use of allocation environments in the transition labels is similar to the use of
Boolean expressions in the operational framework of [24].

9

T [[e]]ρ = E [[e]]
T [[P]]ρ = P{ρ}
T [[`]]ρ = ρ(`)

T [[t1, t2]]ρ = T [[t1]]ρ, T [[t2]]ρ

T [[! x]]ρ = !x
T [[! X]]ρ = !X
T [[! u]]ρ = !u

Table 4: Tuple Evaluation Function

match(v, v) match(P, P) match(s, s)

match(!x, v) match(!X, P) match(!u, s)

match(et1, et2)

match(et2, et1)

match(et1, et2) match(et3, et4)

match((et1, et3), (et2, et4))

Table 5: The Matching Rules

3.2 Net Semantics

Following [4, 31] the operational semantics of Klaim coordination language is defined
by a structural congruence and a reduction relation. The structural congruence incorpo-
rates the basic semantics of net parallel composition, while reduction describes the basic
computational paradigm of interactions among processes inside a net.

Nets are defined up to a structural congruence ≡. This is the smallest congruence such
that ‖ is associative and commutative.

To avoid cumbersome notations, we use ` to denote localities, locality variables and
sites, and assume that allocation environments are extended to sites but for these they
act as the identity function. The operational semantics of nets exploits an evaluation
mechanism for tuples, and a pattern–matching to select tuples in a tuple space. The
evaluation function for tuples, T [[]], exploits the allocation environment to resolve locality
names and relies on an evaluation mechanism, E [[]], for closed expressions (i.e. expressions
without free variables). T [[]] is inductively defined over the syntax of tuples by the rules in
Table 4, where we use E [[e]] to denote the value of the closed expression e; the evaluation
of a process, say T [[P]]ρ, yields a process closure, i.e. P{ρ}.

The rules defining the pattern–matching predicate are reported in Table 5.
As in [18, 37], we model tuples as processes and we introduce auxiliary processes to

denote evaluated tuples, referred to as et. Thus Klaim syntax is extended with the process
out(et) whose symbolic semantics is expressed by the following structural rule

out(et)
o(et)@self−−−−−→

φ
nil.

Moreover, we use sites alike localities and locality variables.
The reduction rules of nets (rules in Table 6, and rules (11) and (12)) clearly distinguish

10

between local and remote operations performed by located processes and provide a formal
model to guide the implementation.

The evaluation of an out operation modifies a tuple space. Rule (1) adds a new tuple
to the local tuple space of the process. Rule (2), on the other hand, adds a new tuple
to the remote tuple space located at `2. In the latter rule, the evaluation of the tuple t

depends on the allocation environment ρ•ρ1 . This corresponds to having a static scoping
discipline for the remote generation of tuples. Moreover, if the tuple t contains a field
with a process, the corresponding field of the evaluated tuple et contains a closure. Hence,
processes in a tuple are transmitted together with their local allocation environment.

A dynamic scoping strategy is adopted for the eval operation, described by rules (3)
and (4). In this case the process spawned in the remote node is transmitted without
the local allocation environment, and its execution is influenced by the remote allocation
environment ρ2.

For the communication operations in and read note that in modifies the tuple space
(see rules (5) and (6)) while read does not (in the conclusions of rules (7) and (8) the tuple
space encompassed within process P2 is left unchanged by process evolution). Obviously,
we have to distinguish between local rules ((5) and (7)) and remote rules ((6) and (8)).

Let us consider rule (5) (rules (6), (7) and (8) can be interpreted similarly). It says
that a process can perform an in action at the local tuple space by synchronizing with
a process which represents a matching tuple. The result of this synchronization is that
the tuple is consumed, i.e. the corresponding process becomes nil, and its values are used
to replace the corresponding (free) variables of the process which has performed the in
operation.

Finally, rule (9) describes the asynchronous evolution of subcomponents of a node.
Rules (1)–(9) may modify the structure of the nodes of the net but they cannot intro-

duce new localities. The creation of a new node is described by rule (10). The environment
of a new node is obtained from that of the creating one (with the obvious update for the
self locality). The underlying idea is that the new node inherits all the knowledge about
localities of the creating node.

Remark 3.1 Obviously, other design choices could have been made. An alternative for-
mulation of the rule for the creation of a new node is

P
n(u)@self−−−−−→

ρ′
P ′ s′ ∈ S, s′ fresh

s ::ρ P �→ s ::ρ P ′[s′/u] ‖ s′ :: [s′/self]•φ nil

The rationale behind this choice (adopted in [39]) is that any new node has no knowledge
of the rest of the net.

11

P
s(t)@`−−−→

ρ′
P ′ s = ρ′ • ρ (`) et = T [[t]] ρ′•ρ

s ::ρ P �→ s ::ρ P ′ | out(et)

(1)

P1
s(t)@`−−−→

ρ
P ′

1 s2 = ρ • ρ1 (`) et = T [[t]] ρ•ρ1

s1 ::ρ1 P1 ‖ s2 ::ρ2 P2 �→ s1 ::ρ1 P ′
1 ‖ s2 ::ρ2 P2 | out(et)

(2)

P
e(Q)@`−−−→

ρ′
P ′ s = ρ′ • ρ (`)

s ::ρ P �→ s ::ρ Q | P ′

(3)

P1
e(Q)@`−−−→

ρ
P ′

1 s2 = ρ • ρ1 (`)

s1 ::ρ1 P1 ‖ s2 ::ρ2 P2 �→ s1 ::ρ1 P ′
1 ‖ s2 ::ρ2 Q | P2

(4)

P1
i(t)@`−−→

ρ′
P ′

1 s = ρ′ • ρ (`) P2
o(et)@self−−−−−→

φ
P ′

2 match(T [[t]] ρ′•ρ , et)

s ::ρ P1|P2 �→ s ::ρ P ′
1[et/T [[t]] ρ′•ρ]|P ′

2

(5)

P1
i(t)@`−−→

ρ
P ′

1 s2 = ρ • ρ1 (`) P2
o(et)@self−−−−−→

φ
P ′

2 match(T [[t]] ρ•ρ1
, et)

s1 ::ρ1 P1 ‖ s2 ::ρ2 P2 �→ s1 ::ρ1 P ′
1[et/T [[t]] ρ•ρ1

] ‖ s2 ::ρ2 P ′
2

(6)

P1
r(t)@`−−−→

ρ′
P ′

1 s = ρ′ • ρ (`) P2
o(et)@self−−−−−→

φ
P ′

2 match(T [[t]] ρ′•ρ , et)

s ::ρ P1|P2 �→ s ::ρ P ′
1[et/T [[t]] ρ′•ρ]|P2

(7)

P1
r(t)@`−−−→

ρ
P ′

1 s2 = ρ • ρ1 (`) P2
o(et)@self−−−−−→

φ
P ′

2 match(T [[t]] ρ•ρ1
, et)

s1 ::ρ1 P1 ‖ s2 ::ρ2 P2 �→ s1 ::ρ1 P ′
1[et/T [[t]] ρ•ρ1

] ‖ s2 ::ρ2 P2

(8)

s ::ρ P1 �→ s ::ρ P ′
1

s ::ρ P1|P2 �→ s ::ρ P ′
1|P2

(9)

P
n(u)@self−−−−−→

ρ′
P ′ s′ ∈ S : s′ 6= s

s ::ρ P �→ s ::ρ P ′[s′/u] ‖ s′ :: [s′/self]•ρ nil

(10)

Table 6: The Reduction Relation: Process Interactions

12

To conclude the description of the reduction relation, we have to say how reduction
behaves in presence of the operator of parallel composition of nets. Since the composition
N1 ‖ N2 is defined only if st(N1) ∩ st(N2) = ∅, we have:

N1 �→ N ′
1 st(N ′

1) ∩ st(N2) = ∅

N1 ‖ N2 �→ N ′
1 ‖ N2

(11)

Finally, we have to say how reduction behaves with respect to structural congruence.
We have:

N ≡ N1 N1 �→ N2 N2 ≡ N ′

N �→ N ′
(12)

Remark 3.2 Despite the different programming paradigms, there are interesting similar-
ities between Telescript and Klaim. General Magic Telescript [41] is an object oriented
language designed for network programming. A central concept in Telescript is the con-
cept of place, which corresponds to our sites. A place can be thought of as the stationary
process that can accept mobile agents. Agents travel from one place to another by invok-
ing the go operation. This operation requires the agent’s destination place (the ticket)
and the route of the trip. The main advantage of Klaim’s approach is that the “possi-
ble stationary processes” can be programmed via the notion of locality without requiring
the precise physical distribution of places. In other words, localities provide a powerful
abstraction mechanism over sites. There are also some analogies between our eval/out
operations and Telescript go operation: both allow mobile agents to be programmed.

Remark 3.3 Several theoretical works in non–interleaving semantics of process calculi
have adopted the notion of locality to capture logical distribution of processes (e.g. [6],
[13] and the references therein). The basic idea of these approaches is to allow the obser-
vation of actions together with the locations (access paths) where they take place. In our
approach, localities are not used as a tool for observing the distribution of processes but
rather as a programming device to structure and control the distribution of processes and
data. The formal models presented in [2, 19] are closely related to the work presented here.
These approaches deal with mobility much like π–calculus (channel and locality names can
be passed in interactions). Significantly, localities in Klaim can be used to simulate the
private name passing and the scope extrusion mechanisms of π–calculus, so that a natural
encoding of (asynchronous) π–calculus in Klaim can be easily programmed.

3.3 Scoping and Mobility

The role of a net is to allocate and coordinate a set of processes. Hence, beyond formally
describing all the issues related to physical distribution, net semantics is essential to study

13

migratory applications and for understanding design decisions before carrying out an im-
plementation. This can be better understood by analyzing the effects of choosing specific
scoping disciplines on mobile agents when accessing tuple spaces.

The operational semantics of nets adopts a static scoping discipline for the evaluation
of out operations. On the other hand, a dynamic scope discipline is adopted for remote
eval operations: the meaning of localities used by a process spawned at a remote site
depends on the remote allocation environment.

Indeed, whenever a process P located at the site s1 wishes to insert a tuple t into
the remote tuple space located at s2, the local environment of P , namely ρ1, is used for
evaluating t. A dynamic scoping discipline for out can be obtained by replacing rule (2)
in Table 6 with the following:

P1
s(t)@`−−→

ρ
P ′

1 s2 = ρ • ρ1 (`) et = T [[t]]ρ2

s1 ::ρ1 P1 ‖ s2 ::ρ2 P2 �→ s1 ::ρ1 P ′
1 ‖ s2 ::ρ2 P2 | out(et)

where the remote environment ρ2 is used for evaluating t.

Remark 3.4 Alternatively, we could also use the rule:

P1
s(t)@`−−→

ρ
P ′

1 s2 = ρ • ρ1 (`)

s1 ::ρ1 P1 ‖ s2 ::ρ2 P2 �→ s1 ::ρ1 P ′
1 ‖ s2 ::ρ2 P2 | out(t)@self.nil

Namely, a process is placed in s2 which will eventually take care of the local evaluation of
the tuple t.

Dynamic scoping for out can be also simulated (without any modification to the op-
erational rules for nets) by writing eval(out(t)@self)@`.P instead of out(t)@`.P . The
execution of eval spawns process out(t)@self at site s2 (resulting from the evaluation of
`) and, therefore, t is evaluated by using the local environment at s2.

When process P located at s1 wants to spawn a process Q at the remote site s2, a
dynamic scoping discipline is followed. The local environment ρ2 is used for giving meaning
to the localities which may be referred in Q. A static scoping discipline for eval can be
obtained by spawning Q{ρ1} rather than Q. More precisely, rule (4) in Table 6 could be
replaced by the following:

P1
e(Q)@`−−−→

ρ
P ′

1 s2 = ρ • ρ1 (`) Q′ = Q{ρ1}

s1 ::ρ1 P1 ‖ s2 ::ρ2 P2 �→ s1 ::ρ1 P ′
1 ‖ s2 ::ρ2 Q′ | P2

14

In this case the remote spawning of process Q consists in transmitting Q packaged with
its allocation environment ρ1.

Again, eval with static scoping can be simulated via the primitives of the lan-
guage, in particular, by passing processes (and then closures) as fields of tuples and
using private localities to store intermediate results. With this in mind, we can write
newloc(u).out(Q)@u.in(!X)@u.eval(X)@`.P instead of eval(Q)@`.P . When eval(X)
is executed at site s2, X is bound to the process Q packaged with ρ1. Hence, a closure
rather than a plain process is activated at site s2, which is different from the case of
eval(Q).

4 Typing and Security

Security, e.g. privacy and integrity of data, is a key issue in the development of mobile
applications. One can easily imagine malicious mobile agents attempting to access private
information. A server receiving a mobile agent for execution thus needs to impose strong
requirements to ensure that the agent will not violate privacy and jeopardize the integrity
of the information. Similarly, mobile agents must ensure that their execution at the server
site will not damage them or compromise their security.

In this section we introduce a type system for Klaim and show how it can be used
to statically enforce security properties. More precisely, the type system permits one to
check whether the operations Klaim processes intend to perform over the sites of a net
really do comply with their access rights.

The typing analysis of Klaim programs is structured into two phases reflecting the
two–level syntax of Klaim. The first phase deduces process intentions (read, write, with-
draw, execute, . . .) in relation to the various localities they are willing to interact with
or they want to migrate to. This is done by an inference system which assigns types to
processes, and also, partially, checks whether these behave in accordance with their de-
clared intentions. The second phase of the typing analysis checks whether each process
has the necessary rights to perform the intended operations, i.e. it does not violate the
access rights as granted by the net coordinator.

4.1 Types

We will use {r, i, o, e, n} to indicate the set of process capabilities; r denotes the capability
to execute a read operation, i the capability to execute an in operation, and so on.

Polarities are non–empty subsets of {r, i, o, e, n}. We use Π, ranged over by π (which
may be indexed), to denote the set of all polarities. Polarities are used differently by
processes and nets. The polarity of a locality or of a locality variable, say `, within a
process contains information about the operations the process intends to perform at `.
In a net, on the other hand, polarities are used to fix access rights. Type checking will

15

guarantee that only intentions that match access rights, as granted by the coordinator,
are allowed.

Orderings between polarities can be used to model hierarchies of access rights. Obvi-
ously, if a process is able to perform an in operation at ` then it is also able to perform
a read at `. Also, type checking should ensure that, if a process has capabilities π, then
it can execute all operations that require capabilities smaller (greater, in the ordering vΠ

defined below) than π. These intuitions lead to the subpolarity relation, obtained as the
least reflexive and transitive relation induced by the following rules:

{i} vΠ {r}
π1 ⊆ π2

π2 vΠ π1

π1 vΠ π′
1 π2 vΠ π′

2

(π1 ∪ π2) vΠ (π′
1 ∪ π′

2)

One could think of associating a polarity with each process or with each locality to
completely characterize the intentions of processes and the rights of localities. It is clear
that this would not be enough to take into account process migrations and the different
access rights of the different localities.

An obvious choice, for assigning types to a process, would be to associate with it a single
polarity that describes all the operations the process intends to perform, while ignoring
the specific localities it refers to. However, in this way, we would not characterize different
intentions relative to different localities. Associating polarities with each of the localities
referred to within a process would also be unsatisfactory. It hinders the possibility of
keeping track of the capabilities of remotely executed processes, which might be different
from those of sender processes. For example, consider a process that does not have the
right to access a remote tuple space (e.g. a database), but does have the right to send a
process for remote execution at a (server) node that is willing to grant the necessary right.

To take into account remote executions (migrations) of processes, we need to further
structure our types and to associate with each locality not just a polarity but also the
type that is required for the processes executed at that locality.

A type is a finite map that assigns pairs consisting of polarities and types to both
localities and locality variables. The first component of the pair associated with ` describes
the polarity of `, while the second describes the types of the processes executed at `.

Klaim types, ranged over by δ, are elements of a universe which is defined by the
following domain equation

∆ = Fin((Loc ∪ VLoc) 7−→ (Π×∆))⊥ .

The construction of ∆ rests on a standard construction over complete partial orders
(cpo). Let 〈D,vD〉 be a cpo; then H(D) is the set of partial functions with finite domain
from Loc ∪ VLoc to the cpo Π×D defined by

H(D) = Fin((Loc ∪ VLoc) 7−→ (Π×D))⊥.

16

This set of functions can be ordered via the relation v
H(D)

stating that the more defined
the partial function the smaller it is.

1. ⊥ v
H(D)

f , for all f ∈ H(D)

2. f v
H(D)

g when

• dom(g) ⊆ dom(f), and

• ∀` ∈ dom(g) : f(`) vΠ×D g(`), where vΠ×D is the obvious ordering on Π×D.

It is not difficult to show that if 〈D,vD〉 is a (ω–algebraic) cpo then also 〈H(D),v
H(D)

〉
is a (ω–algebraic) cpo.

Let 〈∆,�〉 be the initial solution1 of the recursive domain equation for ∆; � is called the
subtype relation. As usual, u shall denote the greatest lower bound, and φ shall denote the
element of ∆ with empty domain. If δ ∈ ∆, then δi(`) is used to denote the i–th component
of the pair δ(`), if it is defined; otherwise, δ1(`) yields ∅ and δ2(`) yields φ. Moreover, δ−−↓`
denotes the greatest lower bound of the set {δ2(`)}∪ {δ(`′)−−↓` | δ(`′) is defined}. Notation
δ[δ1/(`) := π] denotes a type δ1 such that δ1

1(`) = π, δ2
1(`) = φ if δ(`) is undefined,

δ2
1(`) = δ2(`) otherwise, and δ1(`′) = δ(`′) for `′ 6= `. Notation δ[δ1/δ2(`)] has the same

effect as a substitution (thus δ[δ1/δ2(`)] denotes δ itself if δ(`) is undefined).
The typed version of Klaim is obtained by associating a type with locality variables

and with process variables whenever they are bound. Hereafter, for the sake of simplicity,
we will also call the typed version of the language Klaim.

The abstract syntax of terms (processes, as usual, are closed terms) is reported in
Table 7. Recall that ` stands for a generic locality or locality variable. To avoid name
clashing and thus overloading of types, we will assume that Vloc, the set of locality vari-
ables, is partitioned into two subsets: NVloc, used as arguments of newloc, and TVloc,
used as formals of tuples.

A type is associated with process and locality parameters of process identifiers and,
as usual, it is assumed that each process identifier A has a single defining equation
A(X̃ : δ̃, ũ : δ̃, x̃)

def
= P .

We are now ready to introduce the formal syntax of typed nets, whose role is to allocate
and coordinate processes, and to assign access rights. The type of sites is similar to that
of processes: it associates pairs 〈polarity, type〉 with localities and locality variables. This

1The construction H on cpos may be straightforwardly turned into a functor H in the category CPOE,

the category of cpos with embeddings as morphisms. The action of the functor H on cpos is defined as for

H. If i : D � D′ is an embedding, H(i) : H(D) −→ H(D′) (the action of the functor on embeddings) is

obtained as:
(H(i))(⊥) = ⊥ (H(i))(f) = i ◦ f.

By using standard techniques, we can prove that H is a continuous and covariant functor in CPOE which

preserves ω–algebraicity [27]. Therefore, the theory in [36] ensures the existence and uniqueness in CPOE

of the initial fixed point of the functor H, i.e. the initial solution of the recursive domain equation for ∆.

17

P ::= nil
∣∣∣ a.P

∣∣∣ P1 | P2

∣∣∣ P1+P2

∣∣∣ X
∣∣∣ A〈P̃ , ˜̀, ẽ〉

a ::= out(t)@`
∣∣∣ in(t)@`

∣∣∣ read(t)@`
∣∣∣ eval(P)@`

∣∣∣ newloc(u : δ)

t ::= e
∣∣∣ P

∣∣∣ `
∣∣∣ !x

∣∣∣ !X : δ
∣∣∣ !u : δ

∣∣∣ t1, t2

Table 7: Typed Klaim Syntax

is declared by means of two functions, Λ and Υ. For each site s of the net, Λ describes
the access rights of processes located at s on the other sites of the net, while Υ describes
the locality variables that processes located at s may use.

A net is a triple N : 〈Λ,Υ〉 where N is as defined in Section 2.3, and Λ and Υ have
the following structure: Λ : st(N) −→ (st(N) −→ Π) and Υ : st(N) −→ V Loc.

4.2 Deriving Processes Types

This section presents an inference system that assigns types to processes. The type system
records the operations that processes are willing to perform at specific localities and checks
whether process operations comply with the declared types of the variables.

Type contexts Γ are functions mapping process variables and identifiers into types.
Hereafter, φ will denote the empty context. The auxiliary function update, defined struc-
turally over tuples syntax, will be used to update type contexts; it behaves like the identity
function for all fields but !X : δ. Formally, it is defined by:

update(Γ, t) =

update(update(Γ, t1), t2) if t = t1, t2

Γ[δ/X] if t = !X : δ

Γ otherwise

The type judgments for processes take the form Γ | P : δ where Γ is a type context
providing the type of process variables and identifiers of P . A statement such as Γ | P : δ

asserts that the capabilities of P are those in δ, within the context Γ.
The type of a process variable or identifier is always determined by the type context, Γ,

that has been set up by the other inference rules. Definedness of Γ(X) (Γ(A)) is guaranteed
by the fact that processes are closed terms.

Γ | X : Γ(X) Γ | A : Γ(A)

The simplest process (the null process) has no capability.

Γ | nil : φ

18

The process out(t)@`.P puts the tuple t in the tuple space whose address is specified
by ` and then behaves like P . The typing rule of the out operation

Γ | P : δ

Γ | out(t)@`.P : δ[δ1(`) := δ1(`) ∪ {o}]

states that the type of out(t)@`.P (possibly) extends that of P at ` with capability o.
Since out is not a binder, P is typed within the same context (Γ) as out(t)@`.P .

The typing rules for read and in update the context with the types of the process
variables they bind. The second half of their premises checks whether process P does not
misuse the locality variables bound by read and in. Thus, for each locality variable u

with type δu one checks that the remote operations of P at u (δ−−↓u) really do respect δu.
The resulting type is obtained by extending the type of P at ` with the corresponding
capability (r or i).

update(Γ, t) | P : δ δu � δ−−↓u for all (! u : δu) ∈ fields(t)

Γ | read(t)@`.P : δ[δ1(`) := δ1(`) ∪ {r}]

update(Γ, t) | P : δ δu � δ−−↓u for all (! u : δu) ∈ fields(t)

Γ | in(t)@`.P : δ[δ1(`) := δ1(`) ∪ {i}]

where {ũ} are all the locality variables bound by read and in.
The typing rule of eval extends the type of P at ` with e and records that the remote

operations of P have to be extended with those (δ′) of the spawned process Q.

Γ | P : δ Γ | Q : δ′

Γ | eval(Q)@`.P : δ[δ1(`) := δ1(`) ∪ {e}][(δ2(`) u δ′)/δ2(`)]

The typing rule for newloc extends the type of P at self with n and at u with the
type δ′ declared for u, while it checks whether the operations that P is willing to perform
at u (δ2(u)) comply with δ′.

Γ | P : δ δ′ � δ−−↓u

Γ | newloc(!u : δ′).P : δ[δ1(self) := δ1(self) ∪ {n}][δ′/δ2(u)]

The typing rules for parallel composition and choice state that the intentions of the
composed processes are in both cases the union, formally the greatest lower bound, of
those of the components. The binding context is left unchanged.

Γ | P : δ1 Γ | Q : δ2

Γ | P+Q : δ1 u δ2

Γ | P : δ1 Γ | Q : δ2

Γ | P | Q : δ1 u δ2

The typing rule for process definition, first updates the type context with the types
of the process variables that occur as parameters of A and with a candidate type δ for

19

A. The resulting context is exploited to infer the type δ for P . Secondly, for each formal
locality variable ui, one checks that the operations of P at ui (i.e. δ2(ui)) match the type
declaration δui . Finally, the inferred type is assigned to A.

Γ[δ̃X/X̃][δ/A] | P : δ δui � δ2(ui) for all ui ∈ {ũ}

Γ | A : δ

where A(X̃ : δ̃X , ũ : δ̃u, x̃)
def
= P is the defining equation for the process identifier A.

The typing rule for process invocation, first determines the type of the process identifier
and those of the process arguments. It then, checks whether each of the types inferred
for the process arguments agree with the one of the corresponding formal parameter. No
requirement is imposed on the other arguments. The type of locality variables is controlled
when one of the rules for in, read and newloc is applied. Localities are controlled when
well–typedness of nets is checked.

Γ | A : δ Γ | Pi : δi and δXi � δi for all Pi ∈ {P̃}

Γ | A〈P̃ , ˜̀, ẽ〉 : δ{˜̀/ũ}

where δ{˜̀/ũ} is such that δ{˜̀/ũ}(`i) = 〈δ1(ui) ∪ δ1(`i), (δ2(ui) u δ2(`i)){˜̀/ũ}〉, for `i ∈
{˜̀}, and δ{˜̀/ũ}(`′) = 〈δ1(`′), δ2(`′){˜̀/ũ}〉, for `′ 6∈ {˜̀} such that δ(`′) is defined. The
inferred type states that A〈P̃ , ˜̀, ẽ〉 intends to perform at ˜̀and ũ the same operations that
A〈X̃, ũ, x̃〉 intends to perform at ũ. Indeed, statically we are unable to establish which
occurrences of ui ∈ {ũ} in δ must be replaced by `i.

4.3 Typing Nets

This section presents the criteria for establishing whether a net is well–typed. The types
of the processes in a net will be required to agree with those of the sites where they are
located. More specifically, the types of the processes, as determined by the type inference
system, are checked against those fixed by the net coordinator, taking into account where
each process has been located.

The pair of functions, Λ and Υ associate a type with each site of a net. This is the
type that is compared with the one for located processes (which expresses their expected
behaviour) to check whether the net is well–typed.

Given a net N : 〈Λ,Υ〉, the type δs of each site s ∈ st(N) is obtained as:
∀` ∈ (dom(ρs) ∪ dom(Υ(s))) :

δs(`) =

〈Λ(s)(ρs(`)), δρs(`)〉 if ` ∈ dom(ρs)
〈{i, o, e, n}, δs〉 if ` ∈ dom(Υ(s)) ∩NVloc

〈{i, o, e, n},⊥〉 if ` ∈ dom(Υ(s)) ∩ TVloc

Notice that, for any site s, δs is well–defined since, by definition of net, if ` ∈ dom(ρs)
then Λ(s)(ρs(`)) is a polarity. Namely, the first item of the definition of δs uses the

20

allocation environment ρs of s to determine the site associated to `, hence its polarity and
type. The last two items deal with locality variables; the only restriction we statically put
on them is that a fresh node inherits the rights of the creating one.

In [17] a soundness theorem is proved, namely well–typed Klaim nets (and processes)
never lead to run–time errors due to misuse of access rights. For a net be well–typed, it
will be required that the types of the processes in the net agree with the access rights of the
sites where they are located. More specifically, the types of the processes, as derived by the
type inference system, are checked against those fixed by the net coordinator, while taking
into account where each process has been located. The soundness theorem establishes that
well–typedness is an invariant of the operational semantics. This result is essentially a
variant of standard subject reduction, that takes into account the fact that new sites can
be dynamically created. The soundness theorem and the related technicalities are not
presented here since they are not needed to appreciate the primitives and the pragmatics
of Klaim.

To highlight the utility of Klaim types, let us consider a system composed of a process
Server, which makes available in its local space a tuple containing locality l, and two
identical processes Client1 and Client2, which access the tuple space at lS to read an
address u and then send process P for execution at u.

Server
def
= out(l)@self.nil Clienti

def
= read(!u)@lS .eval(P)@u.nil

If P has type δ, each process Clienti, i = 1, 2, has type

δc = lS 7−→ 〈{r}, φ〉, u 7−→ 〈{e}, δ〉

Suppose now that only Client1 has the right to send processes for evaluation at the
location denoted by u. The net coordinator can thus allocate Server on site s and the
two processes Client on sites s1 and s2, and can give the following access rights to s1 and
s2

δs1 = s 7−→ 〈{r}, φ〉, u 7−→ 〈{e}, δ〉 δs2 = s 7−→ 〈{r}, φ〉

Remark 4.1 There are some similarities between types in Klaim and Telescript [41]
permit and authority. The latter are used to limit the access rights of mobile agents2.
The advantage of our approach is that the use of the type system makes mechanical static
verifications of access rights possible.

Type systems have already been proposed for calculi of mobile processes, though not
addressing security issues. Here, we mention the type system proposed by Pierce and
Sangiorgi [34] and refined by Kobayashi, Pierce and Turner [28]. In [34], a type system
is developed for π-calculus [32] which uses types of channels to record information on

2In Telescript an agent permit can also specify allowances of a mobile agent, e.g. the maximum lifetime

in seconds, the maximum size in bytes and so on.

21

whether channels are used to read or to write. This type system was extended in [28] by
associating multiplicities with types in order to describe how many times each channel can
be used. The main difference with our approach lies in the treatment of localities and,
more importantly, in the role played by type information at the level of the net coordinator
to check and enforce access rights of processes.

The present work shares parts of its underlying rationale with the work by Volpano
and Smith [40], though those authors only consider a sequential procedural language and
the type system is used to control a specific non interference security property.

5 Programming Mobile Code Applications

In this section we illustrate how to use Klaim to program Mobile Code Applications
(MCAs). In the programming examples, we assume that natural numbers and identifiers
are basic values.

MCAs are distributed applications whose distinctive feature is the exploitation of
“code mobility”. According to the classification proposed in [14], we can single out three
paradigms, apart from the traditional client–server paradigm (CS), which are largely used
to build MCAs:

• Remote Evaluation (RE). Any component of a distributed application can invoke
services from other components by transmitting both the data needed to perform
the service and the code that describes how to perform the service.

• Mobile Agent (MA). A process (i.e. a program and an associated state of execution)
on a given node of a network can migrate to a different node where it continues its
execution from the current state.

• Code On–Demand (COD). A component of a distributed application running on a
given node, can dynamically download from a different component and link the code
to perform a given task.

Suitable programming constructs are needed to support these approaches. Indeed,
several programming languages, such as Java [3], Facile [23], Obliq [7] and Telescript [41]
were designed to provide facilities for process mobility and distribution; see [14] for a
detailed survey.

Our aim here is to show, by means of simple programming examples, that the Klaim

programming constructs are powerful enough to implement the programming paradigms
of MCAs.

Both the CS and RE paradigms can be programmed by exploiting the flexibility of
Klaim data structures, i.e. tuples. Indeed, tuple fields may contain both data values and
processes (i.e. program codes). Let us now show how to program RE (which is basically

22

a CS in a language with higher order facilities like Klaim). Suppose we want to require
that server located at location l executes (evaluates) code P where the values v1, . . . , vn

must be assigned to variables x1, . . . , xn. To this end, we can use the instruction

out(in(!y1, . . . , !yn)@l.A〈y1, . . . , yn〉, v1, . . . , vn)@l

where we assume that A(x1, . . . , xn)
def
= P and that the server performs

in(!X, !x1, . . . , !xn)@self.out(x1, . . . , xn)@self.X

or a similar activity.
Suppose now that we want to execute process P at a (perhaps remote) location l, the

paradigm MA can be implemented by means of

- the instruction eval(P)@l, if a dynamic scoping discipline for resolving location
names is adopted,

- the sequence newloc(!u).out(P)@u.in(!X)@u.eval(X)@l, otherwise.

Since P is a closed term, i.e. P does not contain free variables, we can think of P as
a closure 〈process,data〉. Thus we have that processes migrate while taking their states
with them.

Finally, if we want to download a program code P stored in a tuple with one field
only (which contains P) from a (perhaps remote) location l, the COD paradigm is simply
programmed by means of an instruction of the form read(!X)@l.

In the next three subsections we discuss three specific examples that take advantage
of the above described facilities.

5.1 Remote Procedure Call

A caller process, caller, sends a request to the callee, callee, and waits for a response. The
request, together with the name of the procedure and its actual parameters, contains the
caller’s private locality where the response has to be delivered.

caller = newloc(u). out(procid, e1, . . . , en, u)@`callee.

in(! y1, . . . , ! yk)@u. 〈next behaviour 〉.

Process callee waits for an invocation, executes the related procedure and sends back the
results using the locality, passed together with the service request.

callee = in(! pid, !x1, . . . , !xn, !u)@self.(callee |
〈 pid(x1, . . . , xn)〉.out(r1, . . . , rk)@u.nil).

23

When processes are allocated in a net, the local environment of caller assigns to the
locality `callee the site where callee is located. Hence, we have:

N = s1 ::{s1/self,s2/lcallee} caller ‖ s2 ::{s2/self} callee

A crucial role in this example is played by newloc(u) which permits a private data space
to be created and accessed only via the variable u.

5.2 Dynamic Newsgatherer

We now consider remote programming. This programming discipline permits writing
agents which can dynamically move over the network and can interact locally with other
agents. An agent placed by a user at the server’s location can thus be decoupled from the
user and interact with the server without using the net.

Consider the following scenario. User P needs additional information on a piece of data
represented by item (item could be, for example, the title of a book whose price P wants to
know). Part of the behaviour of P depends on this information. However, there are some
activities which are independent of it. P can look for the required information in a database
distributed over the network. We assume that at each node of the database reachable from
`item contains either a tuple of the form (item, v), with the desired information, or a tuple
of the form (item, `next), with the information about the next node to search for the
additional information.

The user process P asks for the execution at `item (the starting point of the search,
which can be chosen according to the search key item) of the agent gatherer, which
dynamically travels between nodes looking for a tuple that contains information on item.
This agent takes as its parameters the research key item and a fresh locality u, which
provides the address of the user’s private tuple space where the result of the search has
to be placed. Once gatherer has been spawned, P splits its behaviour into two parallel
components: one waits for the additional information and the other proceeds. Thus,
those activities that do not need the additional information are decoupled from the search
activity, which might be complex and expensive.

P = newloc(u).eval(gatherer(item, u))@`item.((in(!x)@u.P1)|P2)

Process gatherer can match two alternative tuples. The first one captures the addi-
tional information on item (e.g. the price). If this is found then it is placed at locality
u and gatherer terminates. The second tuple is used to obtain the address of the node
where the search has to be repeated.

gatherer(item, u) = read(item, !x)@self.out(x)@u.nil
+ read(item, !u′)@self.eval(gatherer(item, u))@u′.nil

24

Our assumption about the structure of the distributed database guarantees that
gatherer never deadlocks (because either the associated information or a location where
the search can be repeated certainly found), but it does not ensure that the search activ-
ity will terminate successfully: gatherer might loop indefinitely. This could happen if its
second tuple, the one with location information, always finds a match in the tuple spaces.

5.3 An Electronic Marketplace

By means of an example borrowed from [41], we illustrate now how to use Klaim to
program mobile agents.

Assume that a client (process) P wants to buy a specific camera, c. To decide where to
purchase the camera, P activates a migrating agent A and passes the following information
to it:

1. c, the make and the model of the camera chosen,

2. locD, the locality of the directory of the electronic marketplace, and

3. a length measure, which will be used to identify the geographical area of interest.

P expects A to return the name, address and telephone number of the closest (within the
chosen area) camera shop with the lowest price for c. The following could be part of the
behaviour of P

P
def
= . . . eval(A〈c, locD, length〉)@self.in(c, !x, ! y)@self. . . .

where x will retain the name, address and telephone number of the camera shop from
where to buy c at cost y.

The agent A behaves as follows:

1. It obtains the site where P is located, which will be used both to return the outcome
of the query and to identify the geographical area which is of interest for pricing
information. This is done by putting a tuple containing self into a new tuple space
u′, in order to force the evaluation of self within the local tuple space, and by
withdrawing the tuple.

2. It migrates to the site of the marketplace directory and asks for (and obtains) the
list of all camera shops whose location is close to the site of P . Each item in the list
contains the name, address and telephone number of a camera shop. A function l

will return the locality information within an item.

3. It visits each camera shop in turn and obtains the local price for c. The agent retains
information about the shop only if a lower price than that currently stored is offered.

4. After visiting all the camera shops on the list, it sends back to the site of P the
information about the shop that offers the lowest price for c. It then terminates.

25

For the sake of simplicity, in defining agents we use a conditional construct (which can be
programmed by exploiting the dynamic creation of new sites and the choice operator) and
a data type list (with the usual operators hd, tl and empty).

A(x, u, y)
def
= newloc(u′).out(self)@u′.in(!u′′)@u′.

eval(B〈x, u′′, y〉)@u.nil

B(x, u, y)
def
= out(cshop, u, y)@self.in(cshop, ! list)@self.

if empty(list) then out(x, nocloseshop,−1)@u.nil
else I〈x, list, u, l(hd(list))〉

I(x, y, u, u′′′)
def
= eval(read(x, ! cost)@self.

R〈x, y, cost, hd(y), u〉)@u′′′.nil

R(x, y, w, z, u)
def
= if empty(y) then out(x, z, w)@u.nil

else C〈x, tl(y), w, z, u, l(hd(tl(y)))〉

C(x, y, w, z, u, u′′′)
def
= eval(read(x, ! cost)@self.if cost < w

then R〈x, y, cost, hd(y), u〉
else R〈x, y, w, z, u〉)@u′′′.nil

The following will be part of the behaviour of each camera shop Si

Si
def
= . . . |out(c, price(c))@self.nil| . . .

Let D denote the marketplace directory process. The net could be initially structured
as follows:

sP ::{sD/locD} P ‖ sD ::{s1/cs1,...,sn/csn} D ‖ s1 ::{} S1 ‖ . . . ‖ sn ::{} Sn

If now we are interested in inferring the type δ of P , we have that:

δ : rec ν.(self 7−→ 〈{o, i, e, n}, ν〉, u′ 7−→ 〈{o, i, e, n}, ν〉, locD 7−→ 〈{e}, δ′〉)
δ′ : self 7−→ 〈{o, i}, φ〉, u′′ 7−→ 〈{o}, φ〉, u′′′ 7−→ 〈{e}, δ′′〉
δ′′ : rec ν.(self 7−→ 〈{r}, φ〉, u′′ 7−→ 〈{o}, φ〉, u′′′ 7−→ 〈{e}, ν〉)

These types state that P performs any kind of operation both at the site where it is
located (addressed by self) and at the site it dynamically creates (namely u′). More-
over, when (a process activated by) P migrates to the site of the marketplace directory
(addressed by locD), it performs both local out and in, remote out at u′′ (to return the
outcome of the initial query), and migration to u′′′ (the site of a camera shop). Finally,
when running at the site of a camera shop, (a process activated by) P performs local
read (to read the local price for the camera c), remote out at the original site of P , and
migrations to the sites of other camera shops.

26

6 Klava: Klaim in Java

In this section we describe the prototype implementation of Klaim. To ensure portability
over different platforms we choose Java [3] as the implementation language. Of course,
here we assume a basic knowledge of Java.

The implementation of Klaim in Java (JDK 1.1), called Klava [5], extends Java
packages with two new packages, Linda and Klaim.

The Linda package implements standard Linda primitives. The main classes of this
package are Tuples and TupleSpace. The class Tuples provides the methods to build and
handle tuples. The class TupleSpace provides the mechanisms to build, access and update
a tuple space. In particular, the Linda operations in, out and read are implemented as
methods of this class.

The Klaim package supports the implementation of Klaim. The main classes of this
package are Net, Node, K-Process and NodeMsg.

The class Net implements Klaim coordination language, i.e. a Klaim net is an object
of this class. A net object behaves like a server and contains the code to register the sites
of a net. In the current implementation, localities are implemented as strings. Sites, on
the other hand, are Internet addresses.

An object of the class Node implements a Klaim node. Hence, it encapsulates a tuple
space and a set of processes. Klaim primitives (in, read, out, eval) are implemented as
methods of this class. One of the parameters of these methods is the locality of the node.

A Klaim process is an object of the class K-Process. The main method of this class
is the method execute(). This method is invoked to run a process on a node, such as the
method run of the class Thread.

The objects of the class NodeMsg are used to implement node communications. A
message object contains the sender node, the receiver node, the operation code, and a
content field of type Object. This feature permits transmission of processes. However,
the receiver node may not know the class the process belongs to. Therefore, the process
must be sent together with the corresponding .class file. Each node has also a specific
NodeClassLoader which performs the dynamic linkage of the class received from other
nodes of the net.

The main method of the class NodeClassLoader is addClassBytes which is invoked
when a node receives a process from the net. The method addClassBytes inserts the
.class files into a local hash table. The method loadClass uses the hash table to load
the class definitions of remote processes before starting their execution. Note that a
similar approach was adopted in the implementation of the AGLETS library [26]. Figure 1
presents part of our Java code implementing the NodeClassLoader.

To give the reader a flavour of Klava programming, we report in Figure 2 the source
code of the CameraClient agent of the example presented in Section 5.3.

27

public class NodeClassLoader extends ClassLoader {

private Hashtable classes = new Hashtable();

private Hashtable classData = new Hashtable();

Node thisNode;

public NodeClassLoader() {

}

synchronized public void addClassBytes(String className, byte classBytes[]) {

if(classData.get(className) == null && classBytes != null)

classData.put(className, classBytes);

}

:

public synchronized Class loadClass(String className, boolean resolveIt)

throws ClassNotFoundException {

Class result;

byte classData[];

result = (Class)classes.get(className); /* Check local cache of classes */

if (result != null) {

return result;

}

classData = getClassBytes(className); /* Load the class from the repository */

if (classData == null) {

try {

result = super.findSystemClass(className);

return result;

} catch (Exception e) {

System.err.println("NodeClassLoader : " + e);

e.printStackTrace();

throw new ClassNotFoundException(className);

}

}

result = defineClass(classData, 0, classData.length); /* Parse the class file */

if (result == null) {

throw new ClassFormatError();

}

if (resolveIt) {

resolveClass(result);

}

classes.put(className, result);

return result;

}

}

Figure 1: NodeClassLoader.java

28

public class CameraClient extends K-Process {

protected KString CameraMake;

protected Locality MarketPlaceDir;

protected KInteger distance;

protected MarketPlaceAgent mAgent;

public CameraClient(KString c, Locality m, KInteger d) {

CameraMake = c;

MarketPlaceDir = m;

distance = d;

}

public void execute() {

PhysicalLocality newLoc;

PhysicalLocality KLoc = new PhysicalLocality();

KString ShopName = new KString();

KInteger CameraPrice = new KInteger();

newLoc = (PhysicalLocality)newloc();

out(self, newLoc);

in(KLoc, newLoc);

mAgent = new MarketPlaceAgent(CameraMake, KLoc, distance);

eval(mAgent, MarketPlaceDir);

in(CameraMake, ShopName, CameraPrice, self);

Print(CameraMake + " at " + ShopName + " costs " + CameraPrice);

}

public static void main(String args[]) throws IOException {

Node node;

PhysicalLocality ClientLoc = new PhysicalLocality("CameraClient");

KString CameraMake = new KString("CameraX");

Locality MarketLoc = new PhysicalLocality("MarketPlace");

KInteger distance = new KInteger(10);

if (args.length > 0)

ClientLoc = new PhysicalLocality(args[0]);

if (args.length > 1)

CameraMake = new KString(args[1]);

if (args.length > 2)

MarketLoc = new PhysicalLocality(args[2]);

if (args.length > 3)

distance = new KInteger(Integer.parseInt(args[3]));

node = new NodeG("CameraClient", ClientLoc, "localhost", 9999);

K-Process P = new CameraClient(CameraMake, MarketLoc, distance);

node.start();

node.addProcess(P);

}

}

Figure 2: CameraClient.java

29

Remark 6.1 Java has also been used to implement a dialect of Linda called Jada [12].
Jada supports a version of Linda with multiple tuple spaces. Tuple spaces are the key
notion of Jada; they are autonomous entities, distributed over the nodes of a net and
identified by the internet address of the nodes where they are placed. In Jada there
is no distinction between logical and physical addresses. Processes use tuple spaces by
connecting to the nodes where they are placed and by invoking their methods. Jada does
not support process mobility, namely the eval primitive is not implemented and processes
cannot be exchanged in communications.

7 Concluding Remarks

In this paper we have presented a kernel programming language which supports mobile ap-
plications. An operational semantics, which focuses on the coordination of mobile agents,
is provided. A type system that permits one to statically detect violations of security
properties related to capabilities and access control has been developed. Programming
examples have been presented that illustrate how mobile applications can be expressed in
Klaim. Finally, a prototype implementation in Java has been described.

The Klaim type system provides a first step towards the ambitious goal of demon-
strating that typing information can be systematically used to guarantee that well–typed
processes enjoy security properties. We plan to extend the type system by introducing:

- user–defined capabilities,

- allowance capabilities (e.g. maximum life–time in seconds, maximum size in bytes,
etc.),

- multi–level security (e.g. structuring localities into levels of security), and

- dynamic transmission of access rights.

Klaim can also be equipped with cryptographic primitives as done in spi–calculus [1].
We plan to develop observational semantics as a foundation for programming logics

and verification techniques. To this end, our starting point will be the testing framework
developed for a process calculus based on Linda in [18, 37].

We are currently exploring the possibility of allowing nets to communicate and move
processes and tuples between them. The current Klava implementation appears to be
well–suited also to program this feature, that will lead to providing Klaim and Klava

with hierarchical nets.
Klaim has been implemented via Java packages, hence programmers have to adopt

the Java (object–oriented) programming discipline to use Klaim. A compiler from Klaim

30

extended with Pascal–like primitives in Klava is under development, together with the
implementation of the typed version of Klava.

Acknowledgments We are grateful to Luca Cardelli and Betti Venneri for stimu-
lating discussions about global programming and type systems, and to the anonymous
referees, whose useful comments helped us to improve the paper. We also thank Lorenzo
Bettini and Emilio Tuosto for discussions about the implementation of Klaim. This work
has been partially supported by Esprit Working Groups CONFER2 and COORDINA,
HCM project EXPRESS, by CNR Progetti Speciali Modelli e Metodi per la Matematica
e l’Ingegneria’ and Metodologie e Strumenti di Analisi, Verifica e Validazione di Sistemi
Software Affidabili.

References

[1] M. Abadi, A. Gordon, A Calculus for Cryptographic Protocols: the spi–calculus. In Proc.
Fourth ACM Conference on Computer and Communications Security, 1997.

[2] R. Amadio, S. Prasad. Localities and Failures. FCT&TCS 14, Proceedings (P.S. Thiagarajan,
Ed.), LNCS 880, pp. 205-216, Springer, 1994.

[3] K. Arnold, J. Gosling. The Java Programming Language. Addison Wesley, 1996.

[4] G. Berry, G. Boudol. The chemical abstract machine. Theoretical Computer Science, 96:217-
248, 1992.

[5] L. Bettini. Progetto e Realizzazione di un Linguaggio di Programmazione per Codice Mobile
(In Italian). Tesi di Laurea, Dipartimento di Sistemi e Informatica, Università di Firenze,
1998. (forthcoming)

[6] G. Boudol, I. Castellani, M. Hennessy, A. Kiehn. Observing Localities. Theoretical Computer
Science, 114, 1993.

[7] L. Cardelli. A language with distributed scope. Computing Systems, 8(1):27-59, MIT Press,
1995.

[8] L. Cardelli. Global Computation. Manuscript, 1996. (Available at URL
http://www.luca.demon.co.uk)).

[9] L. Cardelli, A. Gordon. Mobile Ambients. To appear in FoSSaCS, 1998. (Available at URL
http://www.luca.demon.co.uk)).

[10] N. Carriero, D. Gelernter. Linda in Context. Communications of the ACM, 32(4):444-458,
1989.

[11] N. Carriero, D. Gelernter, J. Leichter. Distributed Data Structures in Linda. Proc. of the
ACM Symposium on Principles of Programming Languages, ACM, New York, pp. 236-242,
1986.

31

[12] P. Ciancarini, D. Rossi. Jada: Coordination and Communication for Java agents. In Mobile
Object Systems: Towards the Programmable Internet (J. Vitek, C. Tschudin, eds.), LNCS
1222, pp. 213-228, Springer, 1997.

[13] F. Corradini, R. De Nicola. Locality Based Semantics for Process Algebras. Acta Informatica,
Vol. 34, pp. 291-324, 1997.

[14] G. Cugola, C. Ghezzi, G.P. Picco, G. Vigna. Analyzing Mobile Code Languages. In J. Vitek
and C. Tschudin, editors, Mobile Object Systems, LNCS , Springer, 1997. (to appear)

[15] R. De Nicola, G. Ferrari, R. Pugliese. Locality based Linda: programming with explicit lo-
calities. TAPSOFT’97, Proceedings (M. Bidoit, M. Dauchet, Eds.), LNCS 1214, pp. 712-726,
Springer, 1997.

[16] R. De Nicola, G. Ferrari, R. Pugliese. Coordinating Mobile Agents via Blackboards and Access
Rights. COORDINATION’97, Proceedings (D. Garlan, D. Le Metayer, Eds.), LNCS 1282, pp.
220-237, Springer, 1997.

[17] R. De Nicola, G. Ferrari, R. Pugliese, B. Venneri. Types for Access Control. Submitted for
publication, 1998. (Available at URL http://di.unipi.it/ giangi/papers).

[18] R. De Nicola, R. Pugliese. A Process Algebra based on Linda. COORDINATION’96, Proceed-
ings (P. Ciancarini, C. Hankin, Eds.), LNCS 1061, pp. 160-178, Springer, 1996.

[19] C. Fournet, G. Gonthier, J.-L. Lévy, L. Maranget, D. Rémy. A Calculus of Mobile Agents.
CONCUR’96, Proceedings (U. Montanari, V. Sassone, Eds.), LNCS 1119, pp. 406-421,
Springer, 1996.

[20] D. Gelernter. Generative Communication in Linda. ACM Transactions on Programming Lan-
guages and Systems, 7(1):80-112, 1985.

[21] D. Gelernter. Multiple Tuple Spaces in Linda. PARLE’89, Proceedings (G. Goos, J. Hartmanis,
Eds.), LNCS 365, pp. 20-27, 1989.

[22] D. Gelernter, N. Carriero, S. Chandran, et al. Parallel Programming in Linda. Proceedings of
the Internatinal Conference on Parallel Programming, IEEE, pp. 255-263, 1985.

[23] A. Giacalone, P. Mishra, S. Prasad. Facile: A symmetric integration of concurrent and func-
tional programming. International Journal of Parallel Programming, 18(2), 1989.

[24] M. Hennessy, H. Lin. Symbolic Bisimulations, Theoretical Computer Science, 138:353-389,
1995.

[25] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall International, 1985.

[26] IBM Aglets Workbench — Home Page. URL address: http://www.trl.ibm.co.jp/aglets/,
1996.

[27] A. Ingolfsdottir. Semantic Models for Communicating Processes with Value–Passing. Ph.D.
Thesis, University of Edinburgh, 1994.

[28] N. Kobayashi, B. Pierce and D. Turner. Linearity and the π-calculus. In Proc. POPL’96, 1996.

32

[29] J. Leitcher. Shared Memories, Buses and LANs — Linda Implementations Across the
Spectrum of Connectivity. Dep. of Computer Science, Yale Univ., Research Report
YALEU/DCS/TR-714, 1989.

[30] R. Milner. Communication and Concurrency. Prentice Hall International, 1989.

[31] R. Milner, The Polyadic π-calculus: a Tutorial, Technical Report, ECS-LFCS-91-180, 1991

[32] R. Milner, J. Parrow, D. Walker. A calculus of mobile processes, (Part I and II). Information
and Computation, 100:1-77, 1992.

[33] B. Pierce, D. Turner. Concurrent Objects in a Process Calculus. Theory and Practice of
Parallel Programming (T. Ito, A. Yonezawa, Eds.), LNCS 907, pp. 186-215, 1994.

[34] B. Pierce and D. Sangiorgi. Typing and subtyping for mobile processes. Proc. LICS’93, IEEE-
Press, 1993 (full version in Mathematical Struct. in Comp. Science)

[35] G.D. Plotkin. A Structural Approach to Operational Semantics. Tech.Rep. DAIMI FN-19,
Aarhus University, Dep. of Computer Science, 1981.

[36] G.D. Plotkin. Lectures notes in domain theory. University of Edinburgh, 1983.

[37] R. Pugliese. Semantic Theories for Asynchronous Languages. Ph.D. Thesis VIII-96-6, Univ.
di Roma “La Sapienza”, Dip. Scienze dell’Informazione, 1996.

[38] J. Reppy. Higher Order Concurrency. Ph.D. Thesis, Cornell University, Tr-92-1285, 1992.

[39] B. Thomsen, L. Leth, A. Giacalone. Some Issues in the Semantics of Facile Distributed Pro-
gramming. REX Workshop “Semantics: Foundations and Applications” (J.W. de Bakker,
W-P. de Roever, G. Rezenberg), LNCS 666, pp. 563-593, Springer, 1992.

[40] D. Volpano, G. Smith. A typed-based approach to program security. Proc. TAPSOFT’97,
LNCS 1214, pp.607-621, Springer, 1997.

[41] J.E. White. Mobile Agents. In Software Agents (J.M. Bradshaw, Ed.), pp. 437-471, 1996.

33

