
04241 Abstracts Collection

Graph Transformations and Process Algebras
for Modeling Distributed and Mobile Systems

Barbara K̈onig 1, Ugo Montanari2, Philippa Gardner3

1 Institut für Formale Methoden der Informatik, Universität Stuttgart, Germany
koenigba@fmi.uni-stuttgart.de

2 Computer Science Department, University of Pisa, Italy
ugo@di.unipi.it

3 Department of Computing, Imperial College London, Great Britain
p.gardner@imperial.ac.uk

Dagstuhl Seminar Proceedings 04241
http://drops.dagstuhl.de/opus/volltexte/2005/27

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62910771?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Summary

Recently there has been a lot of research, combining concepts of process alge-
bra with those of the theory of graph grammars and graph transformation systems.
Both can be viewed as general frameworks in which one can specify and reason
about concurrent and distributed systems. There are many areas where both theo-
ries overlap and this reaches much further than just using graphs to give a graphic
representation to processes.

Processes in a communication network can be seen in two different ways: as
terms in an algebraic theory, emphasizing their behaviour and their interaction with
the environment, and as nodes (or edges) in a graph, emphasizing their topology and
their connectedness. Especially topology, mobility and dynamic reconfigurations at
runtime can be modelled in a very intuitive way using graph transformation. On the
other hand the definition and proof of behavioural equivalences is often easier in the
process algebra setting.

Also standard techniques of algebraic semantics for universal constructions, re-
finement and compositionality can take better advantage of the process algebra rep-
resentation. An important example where the combined theory is more convenient
than both alternatives is for defining the concurrent (noninterleaving), abstract se-
mantics of distributed systems. Here graph transformations lack abstraction and pro-
cess algebras lack expressiveness.

Another important example is the work on bigraphical reactive systems with the
aim of deriving a labelled transitions system from an unlabelled reactive system such
that the resulting bisimilarity is a congruence. Here, graphs seem to be a convenient
framework, in which this theory can be stated and developed.

So, although it is the central aim of both frameworks to model and reason about
concurrent systems, the semantics of processes can have a very different flavour
in these theories. Research in this area aims at combining the advantages of both
frameworks and translating concepts of one theory into the other. The Dagsuthl
Seminar, which took place from 06.06. to 11.06.2004, was aimed at bringing to-
gether researchers of the two communities in order to share their ideas and develop
new concepts. These proceedings4 of the do not only contain abstracts of the talks
given at the seminar, but also summaries of topics of central interest.

We would like to thank all participants of the seminar for coming and sharing
their ideas and everybody who has contributed to the proceedings.

Stuttgart, Barbara König
November 2004

4 The proceedings were compiled by Tobias Heindel.

Contents

1 Bigraphs, link graphs, transitions and Petri nets 1
Robin Milner

2 A Complete and Minimal Programming Language for Graph Trans-
formation . 3
Annegret Habel, Detlef Plump

3 Completeness and Minimality of Rule-based Languages. 4
Annegret Habel, Detlef Plump

4 Deriving Bisimulation Congruences in the DPO Approach to Graph
Rewriting . 5
Barbara König

5 Adhesive and Quasiadhesive Categories. 7
Paweł Sobocínski

6 Adhesive High-Level Replacement Categories and Systems: New Ab-
stract Framework for Graph Transformation . 8
Hartmut Ehrig

7 Coinductive Reasoning for Contextual Graph-Rewriting 9
Vladimiro Sassone, Paweł Sobociński

8 Bigraphical Programming Languages . 10
Arne John Glenstrup

9 Modelling Distributed Systems: some contributions from Pisa. 11
Andrea Corradini

10 Stochastic Graph Transformation Systems. 12
Reiko Heckel

11 On Finite Interactive Systems. 13
G. Stefanescu

12 CommUnity, Tiles and Connectors. 14
Roberto Bruni

VI

13 Graph Rewriting for Nominal Calculi . 16
Fabio Gadducci

14 Bigraphs and Weak Bisimilarity . 17
Ole Høgh Jensen

15 A Context Logic for Tree Update . 18
Philippa Gardner

16 Higher Order Mobile Embedded Resources. 19
Thomas Hildebrandt

17 Solos in D-Fusion . 20
Björn Victor

18 D-Fusion: a Distinctive Fusion Calculus. 22
Michele Boreale, Maria Grazia Buscemi, Ugo Montanari

19 Encoding the weakλ-calculus into the Calculus of Explicit Fusions. . 23
Tobias Heindel

20 Abstract Graph Transformation . 24
Arend Rensink, Dino Distefano

21 Unfolding Techniques for Verifying Graph Transformation Systems 25
Paolo Baldan
Joint work withAndrea Corradini, Barbara K̈onig, Bernhard K̈onig

22 Shaped Hierarchical Architectural Design. 28
Dan Hirsch, Ugo Montanari

23 Old names for nu. 30
Lucian Wischik

24 Synchronizations with Mobility for Graph Transformations 32
Ivan Lanese, Ugo Montanari

25 Generalizing Interaction Nets: which generalization for which prop-
erties . 34
Lionel Khalil, Maribel Fernandez

1 Bigraphs, link graphs, transitions and Petri nets

Robin Milner

University of Cambridge, The Computer Laboratory,
J J Thomson Avenue, Cambridge CB3 0FD, UK

In my two lectures I introduced the bigraph model of mobile interactive systems,
and explained some of the mathematics underlying the model. I illustrated this by
formulating a model of a simple class of Petri nets, and then using bigraph theory
to derive a behavioural congruence for them. The subject matter was treated in four
parts.

In Part One I discussed in broad terms the way in which the two constituents
of bigraphs –theirplacing and linking– combine to yield a very general dynamic
structure. One way to think of it is:where you are doesn’t affect whom you can talk
to. In a bigraph, elements that are placed arbitrarily ‘far apart’ can be linked, and
the bigraph can reconfigure both placing and linking. I illustrated this by present-
ing reaction rules –i.e. the discipline of reconfiguration– for theπ-calculus and the
ambient calculus, both of which employ placing and linking non-trivially. I isolated
four distinct roles played by placing in bigraphs; when none of these is required then
it is enough to employ just one of their constituents: thelink graphs.

In Part Two I stepped back from bigraphs to the framework ofs-categories, a
form of category in which the composition of two arrows is defined iff theirsupport
setsare disjoint. In this framework, thinking of the arrows ascontextsand the objects
as interfacesbetween them, I defined an general notion of reactive system. I then
recalled work done jointly with Jamey Leifer five years ago, in definingrelative
pushouts(RPOs) andidem pushouts(IPOs); when these exist in an s-category then
it is possible to derivelabelled transition systemsuniformly for any reaction system,
in such a way that familiar equivalences and preorders, such as bisimilarity and the
failures preorder, are guaranteed to becongruential– i.e. preserved by all contexts.

In Part Three I returned to the more applied world of bigraphs, or more accu-
rately of their link-graph constituents. I set up link graphs as an s-category whose
interfaces are just finite sets of names, acting as links; the support of a link graph
is just the sets of its nodes and edges. These support elements do the job of keep-
ing track of differentoccurrencesof the same kind of nodes, and this is essential
in demonstrating that RPOs and IPOs do indeed exist in link graphs. (The same
holds for place graphs, which are the other half of bigraphs, and thence it holds also
for bigraphs themselves. However, it fails for any of these if we attempt to work in
the associated, more abstract,category, gained by forgetting ther identity of nodes
and edges.) From this, the background theory of reactive systems over s-categories
yields a behavioural bisimilarity which is a congruence.

In Part Four I addressed the question: in a particular application, does this be-
havioural congruence correspond to anything that has been, or could be, defined
by means independent of bigraphs? A particular application domain can be deter-

2 Robin Milner

mined (in either link graphs or bigraphs) by two things: asignaturethat defines the
kinds of node that will be used, and asortingdiscipline that constrains the ways in
which these nodes can be assembled into a graph. I therefore defined the signature
and sorting discipline that allow link graphs to model a certain class of Petri nets –
the so-calledcondition-eventnets. Independently of link graphs I defined a natural
transition system for these nets, yielding an associated bisimilarity. I then outlined
the fairly simple proof that it coincides with the bisimilarity induced by link-graph
theory; as a corollary, this yields that the former bisimilarity is also a congruence.

The lectures gave an introduction to bigraph theory by means of a particular
application, rather than by a more rigorous theoretical development. Full references,
and comparisons with other work, can be found in the two Technical Reports listed
below. They can also be found via the authors websitehttp://www.cl.cam.ac.
uk/users/rm135.

References

[1] Jensen, O.-H. and Milner, R. (2004), Bigraphs and mobile processes (re-
vised). Technical Report UCAM-CL-TR-580, University of Cambridge
Computer Laboratory.

[2] Milner, R. (2004), Bigraphs and Petri nets. Technical Report UCAM-CL-TR-
581, University of Cambridge Computer Laboratory.

2 A Complete and Minimal Programming Language
for Graph Transformation

Annegret Habel1 and Detlef Plump2

1 Universiẗat Oldenburg, Germany
habel@informatik.uni-oldenburg.de

2 The University of York, United Kingdom
det@cs.york.ac.uk

The use of graphs to represent and visualise complex structures is ubiquitous in
computer science, and often these structures occur in contexts where they have to
be dynamically changed. Functional and logic programming languages, on the other
hand, are successful examples of high-level programming languages based on rules.
Thus a natural idea is to design programming languages based on graph transforma-
tion rules, in order to combine the strengths of graphs and rule-based programming.

Existing programming languages of this type include PROGRES, AGG, GAMMA ,
GRRR, and DACTL. These languages have in common that they are based on graph
transformation rules, but they vary strongly with respect to both the formalisms un-
derlying the rules and the available constructs for controlling rule applications. In
view of the variety of control mechanisms, the question arises what programming
constructs are really needed on top of graph transformation rules to obtain a compu-
tationally complete language. By computational completeness we mean the ability
to compute every computable partial function on labelled graphs. Identifying such a
core language for graph transformation will be valuable for both the understanding
of existing languages and the design of new programming languages of this kind.

We identify a set of programming constructs ensuring that a programming lan-
guage based on graph transformation (in the so-called double-pushout approach) is
computationally complete. These constructs are nondeterministic application of a
finite set of graph transformation rules, either (a) one-step or (b) as long as pos-
sible, and (c) sequential composition of graph programs. Moreover, this language
is minimal in that omitting any of the three constructs results in a computationally
incomplete language. Our completeness proof is based on the sequential composi-
tion of three programs: the first encodes arbitrary graphs as string-like graphs, the
second simulates Turing machines on these string graphs, and the third decodes the
resulting string graphs back into general graphs.

A preliminary conference paper on this topic can be found in the proceedings
of FOSSACS 2001, LNCS (volume 2030 of Lecture Notes in Computer Science,
Springer-Verlag, 2001.

3 Completeness and Minimality
of Rule-based Languages

Annegret Habel1 and Detlef Plump2

1 Department Informatik, Universität Oldenburg
2 Department of Computer Science, The University of York

We study computational completeness and minimality of rule-based programming
languages on arbitrary domains. Our abstract framework only assumes a universe of
rules whose subsets induce binary relations on a given domain:

LetO andR be sets ofobjectsandrules, respectively, such that each subset R ofR
induces a binary relation⇒R on O.

Three concrete examples are sets of string, term and graph rewriting rules with
their one-step rewrite relations.Programsover R are built from three constructs:
nondeterministic application of a finite set of rules, either (a) in one step or (b) as
long as possible, and (c) sequential composition of programs. Formally:

(1) For every finite setRof rules,RandR↓ are programs.
(2) If P1 andP2 are programs, thenP1;P2 is a program.

Thesemanticsof a programP is a binary relation[[P]] on O:

(1) [[R]] = ⇒R for a finite set of rulesR.
(2) [[R↓]] = {〈x,y〉 | x⇒∗R y andy 6∈ Dom(⇒R)}.
(3) [[P1;P2]] = [[P1]]◦ [[P2]].

We have established acompleteness conditionguaranteeing that every com-
putable binary relation (and hence every computable partial function) onO is com-
puted by some program. Roughly, the condition requires that there is a subclass of
“string-like” objects such that computable relations on strings can be computed by
programs on string-like objects (e.g. by simulating Turing machines), and that there
are programs for encoding objects as string-like objects and decoding the latter.

One can show that the completeness condition holds in the settings of string,
term and graph rewriting programs, and hence these languages are computationally
complete.

Moreover, we have developed abstract techniques for showing that program-
ming constructs are necessary for computational completeness. Applying these tech-
niques in the cases of string, term and graph rewriting, we can show that if either
the construct “as long as possible” or the sequential composition is omitted, the re-
sulting languages will be incomplete. For string and graph rewriting, the one-step
application of rules cannot be omitted either and hence the string and graph rewrit-
ing languages are minimal in the sense that none of the three constructs can be
dropped.

4 Deriving Bisimulation Congruences in the DPO
Approach to Graph Rewriting ?

Barbara K̈onig

Institut für Formale Methoden der Informatik, Universität Stuttgart
koenigba@fmi.uni-stuttgart.de

Motivated by recent work on the derivation of labelled transitions and bisimulation
congruences from unlabelled reaction rules, we show how to solve this problem
in the DPO (double-pushout) approach to graph rewriting. Unlike in previous ap-
proaches, we consider graphs as objects, instead of arrows, of the category under
consideration. This allows us to present a very simple way of deriving labelled tran-
sitions (called rewriting steps with borrowed context) which smoothly integrates
with the DPO approach, has a very constructive nature and requires only a min-
imum of category theory. The core part of this paper is the proof sketch that the
bisimilarity based on rewriting with borrowed contexts is a congruence relation.

Let us briefly summarize the main ideas of the paper. We consider double-
pushout rewriting on graphs with interfaces. A graph with interface is given by an
injective graph morphismJ→ G whereJ is called interface. Furthermore we are
considering graph contexts of the formJ→ F ← K, whereJ is the inner andK is
the outer interface. A graph with interface can be composed with a context by taking
the pushout ofJ→G andJ→ F which results in a new graph with interfaceK.

Whenever we have a graph with interfaceJ→G and a rewriting ruleL← I→R,
then we say thatJ→G can be rewritten toK→H with labelJ→ F← K whenever
there are graphsD, G+,C and additional morphisms such that the following diagram
commutes and the squares are either pushouts (PO) or pullbacks (PB) with injective
morphisms.

D

��

// L

��

Ioo //

��

R

��

PO PO PO

G // G+ Coo // H

PO PB

J

OO

// F

OO

K

OO

oo

>>

? Joint work withHartmut Ehrig

6 Barbara K̈onig

The cospanJ→ F ← K is called borrowed context and can be considered as the
minimal context needed in order to complete a partial match of the rule’s left-hand
side.

We have shown that bisimilarity defined on top of these labelled transitions is
a congruence relation, i.e., it is preserved under composition with graph contexts.
Furthermore we have presented two proof techniques that help to simplify actual
bisimulation proofs. These techniques are “bisimulation up to context” and a tech-
nique that avoids checking certain trivial transitions for which only the interface of
the graph and the interface of the left-hand side overlap.

It has turned out our results can be generalized to adhesive categories [3] and
that the labelled transitions obtained by our construction agree exactly with the
transitions obtained in [4] where the notion of minimal context is formulated via
a universal property, using so-called (groupoidal) relative pushouts.

The work presented in this talk has appeared in [1] and as a technical report [2].

References

[1] Hartmut Ehrig and Barbara K̈onig. Deriving bisimulation congruences in the
DPO approach to graph rewriting. InProc. of FOSSACS ’04, pages 151–166.
Springer, 2004. LNCS 2987.

[2] Hartmut Ehrig and Barbara K̈onig. Deriving bisimulation congruences in
the DPO approach to graph rewriting. Technical Report 01/2004, Universität
Stuttgart, 2004.

[3] Stephen Lack and Paweł Sobociński. Adhesive categories. InProc. of FOSSACS
’04, LNCS. Springer, 2004. to appear.

[4] Vladimiro Sassone and Paweł Sobociński. Congruences for contextual graph-
rewriting. Technical Report RS-04-11, BRICS, June 2004.

5 Adhesive and Quasiadhesive Categories

Paweł Sobocínski

IT University
Copenhagen, Denmark

Adhesive categories have structure ensuring that pushouts along monomorphisms
are well-behaved. Many types of graphical structures used in computer science
are examples of adhesive categories. Quasiadhesive categories can be viewed as a
somewhat weaker notion and enjoy well-behaved pushouts along regular monomor-
phisms.

The talk will consist of a mini tutorial on adhesive and quasiadhesive categories.
We shall also make precise the idea of how such categories provide a natural setting
for DPO rewriting.

6 Adhesive High-Level Replacement Categories and
Systems: New Abstract Framework for Graph
Transformation

Hartmut Ehrig

Adhesive high-level replacement (HLR) categories and systems are introduced as a
new categorical framework for graph transformation in a broad sense, which com-
bines the well-known concept of HLR systems with the new concept of adhesive
categories introduced by Lack and Sobocinski.

In this paper we show that most of the HLR properties, which had been intro-
duced ad hoc to generalize some basic results form the category of graphs to high-
level structures, are valid already in adhesive HLR categories. As a main new result
in a categorical framework we show the Critical Pair Lemma for local confluence of
transformations. Moreover we present a new version of embeddings and extensions
for transformations in our framework of adhesive HLR systems.

7 Coinductive Reasoning for Contextual
Graph-Rewriting

Vladimiro Sassone and Paweł Sobociński

We introduce a comprehensive operational semantic theory of graph-rewriting. Graph-
rewriting here is meant in a broad sense as we aim to cover and extend previous work
based both on Milner’s bigraphs and Ehrig and König’s rewriting via borrowed con-
texts. The central idea is recasting rewriting frameworks as Leifer and Milner’s reac-
tive systems. Consequently, graph-rewriting systems are associated with canonical
labelled transition systems, on which bisimulation equivalence is a congruence with
respect to arbitrary graph contexts (cospans of graphs). The central technical con-
tribution of the paper is the construction of groupoidal relative pushouts, introduced
and developed by the authors in recent work, in input-linear cospan (bi)categories
over arbitrary adhesive categories.

8 Bigraphical Programming Languages

Arne John Glenstrup

Milner and Høgh Jensen’s theory of bigraphs captures two of the most important
aspects of mobile, distributed systems: location and connectivity.

The Bigraphical Programming Languages project at the IT University of Copen-
hagen aims to use the theory in practise, designing programming languages based
on bigraphs.

Currently, this work in progress has defined a core syntax and static semantics,
as well as prototype compilers in Java and ML.

9 Modelling Distributed Systems: some
contributions from Pisa

Andrea Corradini

Several research threads have been developed at the Computer Science Department
of Pisa within Ugo Montanari’s group along the years.

The goal of this talk is to give a brief, personal and partial overview of those
research threads which are more closely related to the topics of the Seminar, trying
to make explicit their interrelationships. This overview isalso intented to provide
a unifying context to the more specific contributions that will be presented during
the Seminar by my collegues from Pisa: Marzia Buscemi, Roberto Bruni, Fabio
Gadducci, Dan Hirsch, Ivan Lanese and Emilio Tuosto.

The topics I will survey include:

1. The concurrent semantics of Algebraic Graph Transformation Systems deveoped
since 1990 also in cooperation with the team of Hartmut Ehrig in Berlin, in large
part further developed in Paolo Baldan thesis;

2. The theory of Synchronized Hyperedge Replacement, started in the 1980’s with
the work on Grammars for Distributed Systems (GDS) by Castellani, Degano
and Montanari, and revitalized in the recent years;

3. The theory of Structured Transition Systems, started around 1990 by generaliz-
ing the seminal work of ”Petri Nets are Monoids” by Meseguer and Montanari;

4. The thery of the Tile Model, introduced around 1997, which generalizes Struc-
tured Transition Systems and Plotkin’s SOS by equipping rules with pairs of
labels (trigger, effect), allowing for vertical (besides horizontal) composition.

10 Stochastic Graph Transformation Systems

Reiko Heckel

To formalize, measure, and predict availability properties, stochastic concepts are
required. Reconfiguration and communication in mobile and distributed environ-
ments, where due to the high volatility of network connections reasoning on such
properties is most important, is naturally described by graph transformation sys-
tems.

In this talk we introduce stochastic graph transformation systems, following the
outline of stochastic Petri nets. Besides the basic definition and a motivating exam-
ple, we discuss the analysis of properties expressed in continuous stochastic logic
including an experimental tool chain.

11 On Finite Interactive Systems

G. Stefanescu

In this talk we briefly introduce “Interactive systems with Registers and Voices”
(shortly, RV-Systems), a new model for interactive systems obtained by applying a
Space-Time Duality machinery to register machines.

A register machine consists of a finite automaton for control and registers for
storing data. By Space-Time Duality this decomposition gives a decomposition of
an RV-System into two parts: a “Finite Interactive System” (shortly, FIS) for its
control and interaction part and registers and voices (a “voice” is the time dual of a
register) to capture the data on the memory states and on interaction interfaces.

The core of the talk is focusing on FIS’s. We describe FIS’s semantics as sets
of grids, compare them with MSC’s and with various devices used for describing 2-
dimensional languages, and gives an estimation of the number of words associated
to a grid by the flattening operator.

12 CommUnity, Tiles and Connectors?

Roberto Bruni

Dipartimento di Informatica, Università di Pisa, Italia.
bruni@di.unipi.it

The Categorical Approach(CA) and theAlgebraic Approach(AA) are two well
known frameworks for the study of complex systems: The first is based on colimit
constructions, the second on algebraic operators for composition. In CA, category
objects model components and morphisms tell how systems are simulated, refined,
etc. Complex systems are modeled as diagrams and composition is achieved via
universal constructions (e.g., colimit), which encapsulate components and their in-
teractions in a single object. In AA, constants and operations of a signature model
basic processes and their admissible compositions. System behaviors are defined by
LTSs in the SOS style. Abstract semantics (e.g. bisimilarity) collapse systems that
exhibit the same observable behavior.

Reconciling CA and AA is useful for the mutual transfer of concepts and tech-
niques. As a first step, we investigate the relation between two representatives:Com-
mUnity [1] (for CA) and theTile Model [2] (for AA). CommUnity is an architec-
tural description language that provides a conceptual distinction betweencompu-
tation andcoordinationconcerns in communicating distributed systems. The Tile
Model [2] is an operational model for concurrent systems that deals uniformly with
closed and open systems and where two dimensions coexist:distribution in space
and computationin time. A translation from CommUnity diagrams into the Tile
Model is given in [3], which exploits a novel decomposition of CommUnity dia-
grams in terms of elementary programs. Tile connectors for synchronization, hiding
and mutual exclusion are used to coordinate elementary components. The main re-
sult of [3] is that the translation of a diagram istile bisimilar to the translation of its
colimit.

In the talk, we establish a stronger link between the colimit construction and the
abstract semantics by showing that the encoding of a CommUnity diagram isequal
to the encoding of its colimit up-to a suitable axiomatization of the connectors.

References

[1] Fiadeiro, J., Maibaum, T.: Categorical semantics of parallel program design.
Science of Computer Programming28 (1997) 111–138

? Joint work with Jośe Luiz Fiadeiro, Ivan Lanese, Antónia Lopes, Ugo Montanari. Research
supported by FET-GC Project IST-2001-32747 AGILE on Software Architectures for Mo-
bility.

12 CommUnity, Tiles and Connectors 15

[2] Gadducci, F., Montanari, U.: The tile model. In Plotkin, G., Stirling, C., Tofte,
M., eds.: Proof, Language and Interaction: Essays in Honour of Robin Milner.
MIT Press (2000) 133–166

[3] Bruni, R., Fiadeiro, J., Lanese, I., Lopes, A., Montanari, U.: New insights on
architectural connectors. In: Proc. of IFIP TCS 2004, Kluwer Academics (2004)
To Appear.

13 Graph Rewriting for Nominal Calculi ?

Fabio Gadducci

Dipartimento di Informatica, Università di Pisa
gadducci@di.unipi.it

The talk introduces a graphical implementation for (possibly) recursive pro-
cesses of theπ-calculus, encoding each process into a (hyper-)graph. The imple-
mentation is sound and complete with respect to the standard structural congruence
for the calculus: Two processes are equivalent if and only if they are mapped into
isomorphic graphs.

Most importantly, the encoding allows for using standard graph rewriting mech-
anisms in modeling the reduction semantics of theπ-calculus. Furthermore, the im-
plementation suggests a possible heuristics for describing graphically the semantics
of other calculi with name mobility.

? Research partially supported by the EU within the FET - Global Computing Initiative,
projectAGILE IST-2001-32747 (Architectures for Mobility).

14 Bigraphs and Weak Bisimilarity

Ole Høgh Jensen

Bigraphs are a graphical formalism suited for modelling mobile processes. A main
result in bigraphs is the uniform derivation of labelled transitions from (unlabelled)
reaction in such a way that the associated strong bisimilarity is always a congru-
ence. This talk addresses the issue of defining uniformly a suitable notion of weak
bisimilarity for bigraphs.

15 A Context Logic for Tree Update

Philippa Gardner

Spatial logics have been used to describe properties of tree-like structures (Ambient
Logic) and in a Hoare style to reason about dynamic updates of heap-like struc-
tures (Separation Logic). We integrate this work by analyzing dynamic updates to
tree-like structures with pointers (such as XML with identifiers and idrefs). Naive
adaptations of the Ambient Logic are not expressive enough to capture such local
updates.

Instead we must explicitly reason about arbitrary tree contexts in order to capture
updates throughout the tree. We introduce Context Logic, study its proof theory and
models, and show how it generalizes Separation Logic and its general theory BI. We
use it to reason locally about a small imperative programming language for updating
trees, using a Hoare logic in the style of O’Hearn, Reynolds and Yang, and show that
weakest preconditions are derivable. We demonstrate the robustness of our approach
by using Context Logic to capture the locality of term rewrite systems.

16 Higher Order Mobile Embedded Resources

Thomas Hildebrandt

We present the calculus of Higher-order Mobile Embedded Resources (Homer), a
higher-order calculus with local names and mobile computing resources in nested
locations.

The Homer calculus is a simple extention of the core process-passing subset of
Thomsen’s Plain CHOCS. In particular, it is equipped with reduction and labelled
transition semantics, which are simple conservative extensions of the semantics of
Plain CHOCS.

We provide strong and weak contextual labelled transition bisimulation equiva-
lences, which is proven to be congruences using Howe’s method.

An interesting aspect of the bisimulation due to the presence of copyable com-
puting resources in nested locations with local names is that bisimilar processes
must have the same set of free names.

We provide examples of the expressiveness. In particular, we sketch an encoding
of pi-calculus name-passing in Homer.

We describe a type system for distinguising between copyable and non-copyable
mobile resources in the calculus.

17 Solos in D-Fusion

Björn Victor

Department of Information Technology, Uppsala University, Sweden

TheSolos Calculus[3] is a “symmetrically asynchronous” version of the (ordinary)
fusion calculus [4]. Neither input not output prefixes have continuations, and like
in fusion, they are symmetric and non-binding. Interestingly, the solos calculus can
still encode the full prefixes of fusion.

The Solo Diagrams[2] are a simple graphical formalism corresponding to the
solos calculus. Nodes represent names, and edges represent solos. Putting a graph in
a box corresponds to replication. Reduction in diagrams correspond 1-1 with reduc-
tion in the calculus, and graph isomorphism corresponds to structural congruence.

D-Fusion Calculus[1] is fusion calculus with constants, added by re-introducing
the nu binder. In this calculus mixed guarded choice can be encoded, showing its
increased expressive power.

By introducing nodes of another colour to solo diagrams, and modifying the
reduction rules, we obtain D-Solo Diagrams, corresponding to D-Solos Calculus, a
“symmetrically asynchronous” variant of the D-fusion calculus.

?>=<89:;x /.-,()*+�������� /.-,()*+ ?>=<89:;y /.-,()*+��������

?>=<89:;a
^^ ??

?? ``

/.-,()*+ /.-,()*+ /.-,()*+ /.-,()*+

−→

?>=<89:;x /.-,()*+�������� /.-,()*+��������

?>=<89:;a
^^

??

/.-,()*+ /.-,()*+
Fig. 17.1.A sample D-Solo diagram reduction: a choice encoding

References

[1] M. Boreale, M. G. Buscemi, and U. Montanari. D-fusion: a fusion calculus with
distinction. To appear, 2004.

[2] C. Laneve, J. Parrow, and B. Victor. Solo diagrams. In N. Kobayashi and B. C.
Pierce, editors,Proceedings of TACS 2001, volume 2215 ofLecture Notes in
Computer Science, pages 127–144. Springer-Verlag, 2001.

[3] C. Laneve and B. Victor. Solos in concert.Mathematical Structures in Com-
puter Science, 13(5):657–683, Oct. 2003. An earlier version appeared in the
proceedings of ICALP’99.

17 Solos in D-Fusion 21

[4] J. Parrow and B. Victor. The fusion calculus: Expressiveness and symmetry in
mobile processes. InProceedings of LICS ’98. IEEE, Computer Society Press,
June 1998.

18 D-Fusion: a Distinctive Fusion Calculus

Michele Boreale1, Maria Grazia Buscemi2, and Ugo Montanari2

1 Dipartimento di Sistemi e Informatica, Università di Firenze, Italy.
2 Dipartimento di Informatica, Università di Pisa, Italy.
boreale@dsi.unifi.it {buscemi,ugo}@di.unipi.it

Fusion calculus is commonly regarded as a generalisation of pi-calculus. And, in-
deed, the pi-calculus transition system can be embedded into Fusion’s, provided
that one identifies restriction(νx) with the(x) binder of Fusion. However, we claim
that this embedding breaks down if comparing the two calculi on the basis of be-
havioural semantics. We prove that no uniform encoding exists of pi-calculus into
Fusion that preserves any ‘reasonable’ behavioural equivalence (at least as fine as
trace equivalence). By ‘uniform’ we mean homomorphic with respect to parallel
composition and name substitution, mapping(νx) to (x) and preserving (a subset
of) weak traces. The ultimate reason for this failure is that the binding mechanism
of Fusion ignores the issue of uniqueness of newly generated names; in other words,
in Fusion all names are like logical variables, namely, unification always succeeds,
which is not true in the pi-calculus.

The above considerations motivate the introduction of a new calculus,D-Fusion,
with two name binders,λ andν: the former analogous to the only binder of Fusion,
and the latter modelling restriction. D-Fusion calculus is at least as expressive as pi-
calculus and Fusion separately, and, we strongly argue,moreexpressive than both.

This expressiveness gap is also explored shows up from a more concrete per-
spective. We a simple security protocol and a relatedcorrelation property that are
readily translated into D-Fusion. The property breaks down if uniformly translating
the protocol into Fusion. The failure is illuminating: in Fusion, one has no way of
declaring unique fresh names to correlate different messages of the protocol.

We further clarify the gap between D-Fusion and Fusion/pi-calculus by prov-
ing that, under mild typing assumptions, there exists a fully abstract encoding of
mixed guarded choice into the choice-free fragment of D-Fusion. The idea behind
this encoding is that branches of a choice are represented as concurrent processes.
Synchronisation is performed in the ordinary way, but it forces a fusion between a
λ-name global to all branches and aν-name local to the chosen branch. Excluded
branches are atomically inhibited, since any progress would lead them to fusing two
distinctν-names.

19 Encoding the weakλ-calculus into the
Calculus of Explicit Fusions

Tobias Heindel

Institut für Formale Methoden der Informatik, Universität Stuttgart
heindets@fmi.uni-stuttgart.de

We give a compositional encoding of Plotkin’s weak call-by-valueλ-calculus into
a fragment of the Calculus of Explicit Fusions [Wis01] and show that there is a
exacte correspondence between theλ-term and its encoding w.r.t. the number of
computation steps (β-reductions/reactions). From this follows that the encoding is
sound and hence adequate as has been shown by the author in [Hei03].

It is noteworthy that the fragment needed for the encoding consist only of asyn-
chronous output and replicated (non-delayed) input, and of course explicit fusions.
The latter play a crucial rôle, since they allow to “glue” together the encodings of the
subterms of aλ-term without introducing spurious (reaction) behaviour. During the
seminar a conjecture came up that the uniform receptive part of the used fragment
of the Calculus of Explicit Fusions could make the encoding fully abstract.

References

[Hei03] Tobias Heindel. Cyclicλ-graph reduction, call-by-need and their process
semantics. Master’s thesis, Wilhelm-Schickard-Institut, Eberhard Karls
Universiẗat Tübingen, 2003.

[Wis01] Lucian Wischik.Explicit Fusions: Theory and Implementation. PhD the-
sis, Computer Laboratory, University of Cambridge, 2001.

20 Abstract Graph Transformation

Arend Rensink1 and Dino Distefano2

1 Department of Computer Science, University of Twente
P.O.Box 217, 7500 AE, The Netherlands
rensink@cs.utwente.nl

2 Department of Computer Science, Queen Mary University of London
ddino@dcs.qmul.ac.uk

We study graph-based verification, in which graphs are used to representing pro-
gram states and execution steps are modelled by derivations from graph production
rules. We propose the resulting state space model as an alternative to traditional,
state vector-based models.

Except for very small cases, however, the concrete graphs themselves as well
as the number of them needed in the model will be too large to make verification
practically feasible. One of the most promising techniques to deal with this problem
is abstraction: by reducing the amount of information in the individual graphs, they
will become smaller; moreover, states can be collapsed when their distinctions dis-
appear. An obvious drawback is that the verfication will in all but a very few cases
become approximative. Moreover, the effect of the graph transformations must also
be lifted to the abstract level, which introduces another possible source of impreci-
sion.

In this work we continue our investigation into a particular abstraction technique
in this framework. The state graphs are contracted, using a technique first proposed
in [1], by collecting nodes that have similarlocal structure. This results in smaller
states and a smaller, in fact finite, state space. A new and (so far) unpublished ex-
tension, presented here, is lifting the application of the graph production rules to
this abstract level. Since graph abstractions and rule applications can all be com-
puted completely automatically, we believe that this can be the core of a practically
feasible technique for software model checking.

References

[1] A. Rensink. Canonical graph shapes. In D. A. Schmidt, editor,Programming
Languages and Systems — European Symposium on Programming (ESOP), vol-
ume 2986 ofLecture Notes in Computer Science, pages 401–415. Springer-
Verlag, 2004.

21 Unfolding Techniques for Verifying
Graph Transformation Systems

Paolo Baldan1

Joint work with
Andrea Corradini2, Barbara K̈onig3, and Bernhard K̈onig4

1 Dipartimento di Informatica, Università Ca’ Foscari di Venezia, Italy
baldan@dsi.unive.it

2 Dipartimento di Informatica, Università di Pisa, Italy
andrea@dsi.unive.it

3 Institut für Formale Methoden der Informatik, Universität Stuttgart
koenigba@fmi.uni-stuttgart.de

4 Department of Mathematics, University of California, Irvine, USA
bkoenig@math.uci.edu

Graph transformation systems (GTSs) are recognised as an expressive specification
formalism, properly generalising Petri nets and especially suited for concurrent, dis-
tributed and mobile systems [7]: the (topo)logical distribution of a system can be
naturally represented by using a graphical structure and the dynamics of the sys-
tem, e.g., the reconfigurations of its topology, can be modelled by means of graph
rewriting rules.

The concurrent behaviour of GTSs has been thoroughly studied and a consoli-
dated theory of concurrency for GTSs is available, including the generalisation of
several semantics of Petri nets, like process and unfolding semantics (see, e.g., [6,
14, 3]). However, only recently, building on these semantical foundations, some
efforts have been devoted to the development of frameworks where behavioural
properties of GTSs can be expressed and verified (see [9, 11, 10, 15, 13]).

In this talk we discuss how the unfolding semantics of GTSs can be used as a
basis for their formal verification.

For general, possiblyinfinite-state, GTSs one can construct finite structures
which provide under- and over- approximations of the (infinite) unfolding, with ar-
bitrary accuracy. Such approximations can be used to check behavioural properties
of a GTS, expressed in a suitable temporal graph logic. The logic is a variant of
the propositional mu-calculus, where propositional symbols range overstate pred-
icates, i.e., closed formulae of a monadic monadic second-order logic, characteris-
ing static graph properties. Over- and under-approximations allow to check different
fragments of the logic at hand, which are characterised through a type system. For
details on this approach we refer the reader to [1, 4, 5].

For finite-stateGTSs, a variant of McMillan’s approach (originally developed
for Petri nets) [12, 8] allows us to single out a finite under-approximation of the
unfolding which is ”complete”, i.e., which provides an ”exact” representation of
the behaviour the original system as far as reachability properties are concerned.

26 Paolo Baldan

Some problems related to the construction of the complete prefix and to its use
are discussed. In particular we discuss how a finite complete prefix can be used to
check properties of the kind “eventuallyφ” and “alwaysφ”, whereφ is a formula of
a monadic second-order logic (interpreted over graphs). This is done by exploiting
both the graphical structure underlying the prefix and the concurrency information
it provides. The relevant reference for this work is [2].

References

[1] P. Baldan, A. Corradini, and B. K̈onig. A static analysis technique for graph
transformation systems. In K.G. Larsen and M. Nielsen, editors,Proceedings
of CONCUR 2001, volume 2154 ofLNCS, pages 381–395. Springer Verlag,
2001.

[2] P. Baldan, A. Corradini, and B. K̈onig. Verifying finite-state graph grammars:
an unfolding-based approach. In P. Gardner and N. Yoshida, editors,To appear
in the Proceedings of CONCUR 2004, LNCS. Springer Verlag, 2004.

[3] P. Baldan, A. Corradini, and U. Montanari. Unfolding and Event Structure Se-
mantics for Graph Grammars. In W. Thomas, editor,Proceedings of FoSSaCS
’99, volume 1578 ofLNCS, pages 73–89. Springer Verlag, 1999.

[4] P. Baldan and B. K̈onig. Approximating the behaviour of graph transformation
systems. In A. Corradini, H. Ehrig, H.-J. Kreowski, and G. Rozemberg, edi-
tors,Proceedings of ICGT’02, volume 2505 ofLNCS, pages 14–30. Springer
Verlag, 2002.

[5] P. Baldan, B. K̈onig, and B. K̈onig. A logic for analyzing abstractions of graph
transformation systems. In R. Cousot, editor,Proceedings of SAS’03, volume
2694 ofLNCS, pages 255–272. Springer Verlag, 2003.

[6] A. Corradini, U. Montanari, and F. Rossi. Graph processes.Fundamenta
Informaticae, 26:241–265, 1996.

[7] H. Ehrig, J. Kreowski, U. Montanari, and G. Rozenberg, editors.Handbook of
Graph Grammars and Computing by Graph Transformation, Vol. 3: Concur-
rency, Parallelism and Distribution. World Scientific, 1999.

[8] J. Esparza. Model checking using net unfoldings.Science of Computer Pro-
gramming, 23(2–3):151–195, 1994.

[9] F. Gadducci, R. Heckel, and M. Koch. A fully abstract model for graph-
interpreted temporal logic. In H. Ehrig, G. Engels, H.J. Kreowski, and
G. Rozenberg, editors,Proceedings of TAGT’98, volume 1764 ofLNCS, pages
310–322. Springer Verlag, 2000.

[10] R. Heckel. Compositional verification of reactive systems specified by graph
transformation. In E. Astesiano, editor,Proceedings of FASE’98, volume 1382
of LNCS, pages 138–153. Springer Verlag, 1998.

[11] B. König. A general framework for types in graph rewriting. InProc. of FST
TCS 2000, volume 1974 ofLNCS, pages 373–384. Springer Verlag, 2000.

[12] K.L. McMillan. Symbolic Model Checking. Kluwer, 1993.
[13] A. Rensink. Towards model checking graph grammars. In M. Leuschel,

S. Gruner, and S. Lo Presti, editors,Proceedings of the3rd Workshop on Auto-

21 Unfolding Techniques for Verifying Graph Transformation Systems 27

mated Verification of Critical Systems, Technical Report DSSE–TR–2003–2,
pages 150–160. University of Southampton, 2003.

[14] L. Ribeiro. Parallel Composition and Unfolding Semantics of Graph Gram-
mars. PhD thesis, Technische Universität Berlin, 1996.

[15] Dániel Varŕo. Towards symbolic analysis of visual modelling languages. In
P. Bottoni and M. Minas, editors,Proc. GT-VMT 2002: International Work-
shop on Graph Transformation and Visual Modelling Techniques, volume 72
of Electronic Notes in Computer Science, pages 57–70. Elsevier, 2002.

22 Shaped Hierarchical Architectural Design

Dan Hirsch and Ugo Montanari

Dipartimento di Informatica, Universitá di Pisa

The architectural design of systems deals with the high level structuring of configu-
rations. Checking that a system belongs to an architectural style (or shape) implies
that the architecture is an instance of a structurally defined class. On the other side,
hierarchies allow modeling at different levels of detail: subsystems may be repre-
sented as single components to abstract structure and behavior.

This talk presents an approach for representing hierarchical software architec-
ture shapes using types [1]. Typing proofs define a general framework based on
inference rules where shape rules and graphs representing system configurations
are represented as type judgements [2]. Therefore, if there is a typing proof for a
judgment, then the system is correctly shaped (i.e. typed), where the axioms of the
type system are the shaping rules of a style.

An aspect strongly related to shape isSA reconfiguration. Reconfiguration has
to respect shape, i.e. type. But for design, just observing the actual configuration
may not be enough. Instead, observing the steps taken to obtain the final system
may provide important information about the process of construction. We claim
that proof terms (i.e., terms of rule names encoding typing proofs) provide more
information than just graphs about the process of constructing systems and allow to
specify reconfigurations as proof term rewritings. Then, reconfiguration consistency
is obtained as subject reduction: as long as cutting and pasting typing proofs still
yields typing proofs, subject reduction is guaranteed.

Also, our approach allows the integration of shapes and hierarchies. Hierarchi-
cal composition allows to describe systems at different levels of detail. Hierarchi-
cal structures are present in many aspects related with system configuration, and
in areas like process calculi (Ambient Calculus), concurrent system modeling (Bi-
graphs), UML (e.g. state charts with decomposition and refinement). In our case, hi-
erarchical structure is captured via hierarchy constructors which are similar to basic
constants, i.e. only type and name is specified. Then for each hierarchical construc-
tor a standard ”symbolic” body is defined as a type judgment. Hierarchical graphs
can be derived in the resulting type system.

References

[1] Hirsch, D. and Montanari, U. Shaped Hierarchical Architectural Design. In
GT-VMT 2004(ETAPS 2004 workshop), ENTCS, to be published, 2004.

22 Shaped Hierarchical Architectural Design 29

[2] Hirsch, D. Graph Transformation Models for Software Architecture Styles.
PhD thesis, Dept. of Computer Science, Universidad de Buenos Aires, May
2003.

23 Old names for nu

Lucian Wischik

Microsoft

How should one understandrestriction(νx)P in the pi calculus? From CCS tradition
it declares that the namex that occurs inP is hidden: no one outside the scope of
(νx) can communicate on it. But pi also allows forscope extrusion, for whenP
sends the namex to some third party who was outside its initial scope. To deal with
this syntactically, pi adds rules for scope extrusion and alpha-renaming and it allow
interaction to take place inside the scope of(νx) .

This syntactic baggage of scope extrusion is largely bypassed in graphical ac-
counts of the pi calculus. This has been explained with in several of the current
Dagstuhl presentations, for instance in Milner’sbigraphs. It is bypassed because,
graphically, scopes are unnamed and the extent of their scope is implicit.

For someone implementing the pi calculus, restriction has an entirely different
meaning: it is not a declaration but acommandwhich, when executed, generates a
fresh name:

((νx)P) | R → P{x′/x} | R x′ fresh

In this respect it is much likemalloc from C, or thesocketcommand in TCP. Us-
ing this fresh name semanticsfor pi also bypasses the syntactic baggage of scope
extrusion: it is enough to add the communication rule

ux.P | u(y).Q | R → P | Q{x/y} | R

and assert that a pi term is a multiset with atoms separated by the parallel operator|.
These two rules constitute a complete semantics of the pi calculus: they do not need
scope extrusion or alpha-renaming, and they do not need to be closed under scopes.
Multisets have previously been used for pi (Engelfriet, ‘A multiset semantics for pi’,
TCS 153(1-2):65-94, 1996), but in the absence of fresh name semantics they had to
use infinite multisets.

Why does this ‘fresh name semantics’ bypass the syntactic baggage of scope
extrusion? It is because, similar to graphical presentations, scopes have globally
unique names and the extent of their scope is implicit.

Fresh-name creation for pi has appeared previously, notably in the pi implemen-
tation Pict (Turner, ‘The Polymorphic Pi-Calculus’, PhD thesis, Edinburgh 1996).
Actually it is ubiquitous in implementations of concurrent systems, for instance also
CML (Reppy, ‘CML’, ACM SIGPLAN 26(6):293-305, 1991) and Klaim (Nicola,
Ferrari, Pugliese, ‘Klaim’, IEEE trans Soft.Eng. 24(5):315-330, 1998). The join
calculus also has a fresh name semantics as well as a traditional semantics (Fournet,

23 Old names for nu 31

Gonthier, ‘The reflexive chemical abstract machine and the join calculus’, POPL
1996).

It might seem obvious that fresh name semantics and traditional pi semantics co-
incide, but to no one previously has made a complete proof for either join or pi. The
original contribution of the current author is to demonstrate formally, with proofs for
operational correspondence and full abstraction, that the two semantics do coincide.
The essence of the proof is to turn each statement‘X can be alpha-renamed to Y’
into ‘Given an execution history which produced X, there must have been possible
an alternative execution history which produced Y.’This is proved with an inter-
mediate calculus which keeps a top-level record(|x̃|) of which names have been
generated so far in the entire history of the computation: the‘old names’. The inter-
mediate calculus has appeared previously (Gardner, Laneve, Wischik, ‘The Fusion
Machine’, LNCS2421:418-433). We believe that a vastly simpler proof can be found
using the Gabbay-Pitts operator (Gabbay, Pitts, ‘A new approach to abstract syntax
with variable binding’, Formal Aspects of Computing 13(0):1-23, 2001).

24 Synchronizations with Mobility for Graph
Transformations

Ivan Lanese and Ugo Montanari

Computer Science Department, University of Pisa, Italy
{lanese,ugo}@di.unipi.it

Our work is aimed at developing high-level models for complex global computing
systems. At the high level of abstraction, the primitives made available by the under-
lying middleware are used to coordinate the behaviours of different computational
entities. Important features of such a kind of model are: (i) expressiveness, since
complex forms of interaction have to be modelled; (ii) compositionality, which is
required to allow a bottom-up development of systems.

We propose an approach based on graph transformations, which extends Syn-
chronized Hyperedge Replacement (SHR) [2]. The main advantage of SHR is that
it can be easily implemented in a distributed setting. In fact, transformations are
specified by defining the behaviour of single hyperedges via productions with local
effects. Productions interact via synchronizations on common nodes and exchange
data via name mobility in the Fusion Calculus style.

We extend standard SHR by parameterizing the inference rules that are used to
compose productions using a generalization of synchronization algebras that allows
to specify the underlying synchronization model [4]. Thus by changing the synchro-
nization algebra one can model systems based on different middlewares. The pro-
posed extension adds structures suitable to deal with mobility and local resources,
which are two main features of global computing systems.

We formalize the model using a Labelled Transition System (LTS) where labels
contain synchronizations and names of nodes. We prove that the resulting bisimi-
larity is a congruence w.r.t. the operators of a suitable algebra of graphs by showing
that the LTS can be specified in De Simone format [1]. As an example, we study the
equivalence of different implementations of dynamic routers.

As a larger example, we show how to map Fusion Calculus into our model [3]
and that this mapping provides a concurrent compositional semantics for it.

References

[1] M. Buscemi and U. Montanari. A first order coalgebraic model of pi-calculus
early observational equivalence. InProc. CONCUR’02, LNCS2421, pages
449–465.

[2] G. Ferrari, U. Montanari, and E. Tuosto. A LTS semantics of ambients via graph
synchronization with mobility. InProc. of ICTCS’01, LNCS2202, pages 1–16.

[3] I. Lanese and U. Montanari. A graphical fusion calculus. InProceedings of
CoMeta Final Workshop, ENTCS, 2003. To appear.

24 Synchronizations with Mobility for Graph Transformations 33

[4] I. Lanese and U. Montanari. Synchronization algebras with mobility for graph
transformations. InProc. FGUC’04, ENTCS, 2004. To appear.

25 Generalizing Interaction Nets: which
generalization for which properties

Lionel Khalil1 and Maribel Fernandez2

1 LIPN, Institut Galiĺee,
Universit́e Paris 13
99 av. J-B. Cĺement, 93430 Villetaneuse, France
lionel.khalil@lipn.univ-paris13.fr

2 Computer Science
King’s College London
Strand, London WC2R 2LS, U.K.
maribel@dcs.kcl.ac.uk

Interaction nets, introduced by Lafont [2], consists of a graph with agents at the
nodes, and a set of graph rewriting rules which specify the interaction between two
agents connected through their principal ports (each agent has a unique principal
port, and there is a unique rule for each pair of agents). However, they are intrinsi-
cally deterministic and this prevents from applying these techniques to concurrent
languages where non-determinism plays a key rôle.

As an example of a non-deterministic process, we consider a parallel merge:
it can be specified in three ways, calledfair merge, angelic merge, and infinity
merge[5]. All the merge primitives have a pair of input sequences and one out-
put sequence. The elements of the input sequences appear unaltered in the output
sequence, and their relative order in the input sequence is preserved (but elements
from different input sequences can appear in any order in the output). The difference
between these primitives is that, in a fair merge, every element of an input sequence
will eventually appear in the output, whereas for an angelic merge all that is guar-
anteed is that the output sequence is infinite if at least one of the input sequences
is infinite. The infinity merge has the dual property: it guarantees that if one of the
input sequences is infinite then all the elements of the other one will appear in the
output.

Panangaden [4] has proved that infinity merge can be implemented with angelic
merge and that angelic merge can be implemented using fair merge. Moreover, these
three levels of expressivity are fundamentally different: fair merge cannot be imple-
mented by angelic merge, which in turn cannot be implemented by infinity merge.

Our aim is to increase the expressive power of the interaction net framework,
but remaining as close as possible to the original definition. A first extension, called
IN with asymmetric rules, would be to allow two rules randomly chosen for the
same left member. A second extension, called IN extended with context rules, is
to allow a conditional selection between two rules depending on the context of the
left-hand side rule. In a third extension, called IN extended with amb, we add one
agent with two principal ports (used as inputs) and two auxiliary ports. The agent,

25 Generalizing Interaction Nets: which generalization for which properties 35

which we callamb inspired by McCarthy’s work [3], is defined by rules as shown
below, whereα is any agent and described in [1].

We arrived to the following result. IN with asymmetric rules can be implemented
with IN extended withamb, which can be implemented IN extended with context
rules. IN with asymmetric rules can implement infinity merge, but not angelic merge
and fair merge. IN extended withamb can implement infinity and angelic merge but
not fair merge. IN extended with context rules can implement infinity, angelic merge
and fair merge.

References

[1] M. Ferńandez and L. Khalil. Interaction Nets with McCarthy’samb. Elec-
tronic Notes in Theoretical Computer Science, vol.68(2), 2002. Proceedings of
the 9th Int. Workshop on Expressiveness in Concurrency, EXPRESS’02, Brno,
Czech Republic.

[2] Y. Lafont. Interaction nets. InProceedings, 17th ACM Symposium on Princi-
ples of Programming Languages, pages 95–108, 1990.

[3] J. McCarthy. A basis for a mathematical theory of computation. In P. Braf-
fort and D. Hirschberg, editors,Computer Programming and Formal Systems,
pages 33–69. North Holland, 1963.

[4] P. Panangaden and V. Shanbhogue. The expressive power of indeterminate
dataflow primitives.Information and Computation, 1992.

[5] D. Park. The fairness problem and non-deterministic computing networks. In
Proceedings of the 4th Advanced Course on Theoretical Computer Science.
Mathematisch Centrum, 1982.

