120 research outputs found

    Medical image synthesis using generative adversarial networks: towards photo-realistic image synthesis

    Full text link
    This proposed work addresses the photo-realism for synthetic images. We introduced a modified generative adversarial network: StencilGAN. It is a perceptually-aware generative adversarial network that synthesizes images based on overlaid labelled masks. This technique can be a prominent solution for the scarcity of the resources in the healthcare sector

    Automatic head computed tomography image noise quantification with deep learning

    Get PDF
    Purpose: Computed tomography (CT) image noise is usually determined by standard deviation (SD) of pixel values from uniform image regions. This study investigates how deep learning (DL) could be applied in head CT image noise estimation.Methods: Two approaches were investigated for noise image estimation of a single acquisition image: direct noise image estimation using supervised DnCNN convolutional neural network (CNN) architecture, and subtraction of a denoised image estimated with denoising UNet-CNN experimented with supervised and unsupervised noise2noise training approaches. Noise was assessed with local SD maps using 3D- and 2D-CNN architectures. Anthropomorphic phantom CT image dataset (N = 9 scans, 3 repetitions) was used for DL-model comparisons. Mean square error (MSE) and mean absolute percentage errors (MAPE) of SD values were determined using the SD values of subtraction images as ground truth. Open-source clinical head CT low-dose dataset (N-train = 37, N-test( )= 10 subjects) were used to demonstrate DL applicability in noise estimation from manually labeled uniform regions and in automated noise and contrast assessment.Results: The direct SD estimation using 3D-CNN was the most accurate assessment method when comparing in phantom dataset (MAPE = 15.5%, MSE = 6.3HU). Unsupervised noise2noise approach provided only slightly inferior results (MAPE = 20.2%, MSE = 13.7HU). 2DCNN and unsupervised UNet models provided the smallest MSE on clinical labeled uniform regions.Conclusions: DL-based clinical image assessment is feasible and provides acceptable accuracy as compared to true image noise. Noise2noise approach may be feasible in clinical use where no ground truth data is available. Noise estimation combined with tissue segmentation may enable more comprehensive image quality characterization.Peer reviewe

    MRI Artefact Augmentation: Robust Deep Learning Systems and Automated Quality Control

    Get PDF
    Quality control (QC) of magnetic resonance imaging (MRI) is essential to establish whether a scan or dataset meets a required set of standards. In MRI, many potential artefacts must be identified so that problematic images can either be excluded or accounted for in further image processing or analysis. To date, the gold standard for the identification of these issues is visual inspection by experts. A primary source of MRI artefacts is caused by patient movement, which can affect clinical diagnosis and impact the accuracy of Deep Learning systems. In this thesis, I present a method to simulate motion artefacts from artefact-free images to augment convolutional neural networks (CNNs), increasing training appearance variability and robustness to motion artefacts. I show that models trained with artefact augmentation generalise better and are more robust to real-world artefacts, with negligible cost to performance on clean data. I argue that it is often better to optimise frameworks end-to-end with artefact augmentation rather than learning to retrospectively remove artefacts, thus enforcing robustness to artefacts at the feature level representation of the data. The labour-intensive and subjective nature of QC has increased interest in automated methods. To address this, I approach MRI quality estimation as the uncertainty in performing a downstream task, using probabilistic CNNs to predict segmentation uncertainty as a function of the input data. Extending this framework, I introduce a novel decoupled uncertainty model, enabling separate uncertainty predictions for different types of image degradation. Training with an extended k-space artefact augmentation pipeline, the model provides informative measures of uncertainty on problematic real-world scans classified by QC raters and enables sources of segmentation uncertainty to be identified. Suitable quality for algorithmic processing may differ from an image's perceptual quality. Exploring this, I pose MRI visual quality assessment as an image restoration task. Using Bayesian CNNs to recover clean images from noisy data, I show that the uncertainty indicates the possible recoverability of an image. A multi-task network combining uncertainty-aware artefact recovery with tissue segmentation highlights the distinction between visual and algorithmic quality, which has the impact that, depending on the downstream task, less data should be discarded for purely visual quality reasons

    Deep MR to CT Synthesis for PET/MR Attenuation Correction

    Get PDF
    Positron Emission Tomography - Magnetic Resonance (PET/MR) imaging combines the functional information from PET with the flexibility of MR imaging. It is essential, however, to correct for photon attenuation when reconstructing PETs, which is challenging for PET/MR as neither modality directly image tissue attenuation properties. Classical MR-based computed tomography (CT) synthesis methods, such as multi-atlas propagation, have been the method of choice for PET attenuation correction (AC), however, these methods are slow and suffer from the poor ability to handle anatomical abnormalities. To overcome this limitation, this thesis explores the rising field of artificial intelligence in order to develop novel methods for PET/MR AC. Deep learning-based synthesis methods such as the standard U-Net architecture are not very stable, accurate, and robust to small variations in image appearance. Thus, the first proposed MR to CT synthesis method deploys a boosting strategy, where multiple weak predictors build a strong predictor providing a significant improvement in CT and PET reconstruction accuracy. Standard deep learning-based methods as well as more advanced methods like the first proposed method show issues in the presence of very complex imaging environments and large images such as whole-body images. The second proposed method learns the image context between whole-body MRs and CTs through multiple resolutions while simultaneously modelling uncertainty. Lastly, as the purpose of synthesizing a CT is to better reconstruct PET data, the use of CT-based loss functions is questioned within this thesis. Such losses fail to recognize the main objective of MR-based AC, which is to generate a synthetic CT that, when used for PET AC, makes the reconstructed PET as close as possible to the gold standard PET. The third proposed method introduces a novel PET-based loss that minimizes CT residuals with respect to the PET reconstruction

    Deep Learning in Medical Image Analysis

    Get PDF
    The accelerating power of deep learning in diagnosing diseases will empower physicians and speed up decision making in clinical environments. Applications of modern medical instruments and digitalization of medical care have generated enormous amounts of medical images in recent years. In this big data arena, new deep learning methods and computational models for efficient data processing, analysis, and modeling of the generated data are crucially important for clinical applications and understanding the underlying biological process. This book presents and highlights novel algorithms, architectures, techniques, and applications of deep learning for medical image analysis

    Generative Models for Preprocessing of Hospital Brain Scans

    Get PDF
    I will in this thesis present novel computational methods for processing routine clinical brain scans. Such scans were originally acquired for qualitative assessment by trained radiologists, and present a number of difficulties for computational models, such as those within common neuroimaging analysis software. The overarching objective of this work is to enable efficient and fully automated analysis of large neuroimaging datasets, of the type currently present in many hospitals worldwide. The methods presented are based on probabilistic, generative models of the observed imaging data, and therefore rely on informative priors and realistic forward models. The first part of the thesis will present a model for image quality improvement, whose key component is a novel prior for multimodal datasets. I will demonstrate its effectiveness for super-resolving thick-sliced clinical MR scans and for denoising CT images and MR-based, multi-parametric mapping acquisitions. I will then show how the same prior can be used for within-subject, intermodal image registration, for more robustly registering large numbers of clinical scans. The second part of the thesis focusses on improved, automatic segmentation and spatial normalisation of routine clinical brain scans. I propose two extensions to a widely used segmentation technique. First, a method for this model to handle missing data, which allows me to predict entirely missing modalities from one, or a few, MR contrasts. Second, a principled way of combining the strengths of probabilistic, generative models with the unprecedented discriminative capability of deep learning. By introducing a convolutional neural network as a Markov random field prior, I can model nonlinear class interactions and learn these using backpropagation. I show that this model is robust to sequence and scanner variability. Finally, I show examples of fitting a population-level, generative model to various neuroimaging data, which can model, e.g., CT scans with haemorrhagic lesions
    • …
    corecore