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A B S T R A C T   

Purpose: Computed tomography (CT) image noise is usually determined by standard deviation (SD) of pixel 
values from uniform image regions. This study investigates how deep learning (DL) could be applied in head CT 
image noise estimation. 
Methods: Two approaches were investigated for noise image estimation of a single acquisition image: direct noise 
image estimation using supervised DnCNN convolutional neural network (CNN) architecture, and subtraction of 
a denoised image estimated with denoising UNet-CNN experimented with supervised and unsupervised 
noise2noise training approaches. Noise was assessed with local SD maps using 3D- and 2D-CNN architectures. 
Anthropomorphic phantom CT image dataset (N = 9 scans, 3 repetitions) was used for DL-model comparisons. 
Mean square error (MSE) and mean absolute percentage errors (MAPE) of SD values were determined using the 
SD values of subtraction images as ground truth. Open-source clinical head CT low-dose dataset (Ntrain = 37, 
Ntest = 10 subjects) were used to demonstrate DL applicability in noise estimation from manually labeled uniform 
regions and in automated noise and contrast assessment. 
Results: The direct SD estimation using 3D-CNN was the most accurate assessment method when comparing in 
phantom dataset (MAPE = 15.5%, MSE = 6.3HU). Unsupervised noise2noise approach provided only slightly 
inferior results (MAPE = 20.2%, MSE = 13.7HU). 2DCNN and unsupervised UNet models provided the smallest 
MSE on clinical labeled uniform regions. 
Conclusions: DL-based clinical image assessment is feasible and provides acceptable accuracy as compared to true 
image noise. Noise2noise approach may be feasible in clinical use where no ground truth data is available. Noise 
estimation combined with tissue segmentation may enable more comprehensive image quality characterization.   

Introduction 

Currently, digital radiology is producing a continuously increasing 
amount of image data with a steadily increasing part of 3D imaging 
studies in which the contribution from computed tomography (CT) has 
been substantial [1–3]. CT also provides a dominating part of the total 
radiation exposure in radiology, even 70% [4], which makes this single 
modality especially relevant for optimisation. Assessment of clinical 
image quality plays an important role in the optimisation process which 
seeks to combine and balance the level of image quality in relation to 
radiation dose. Head scans are among the most common CT studies with 
a general diagnostic task to distinguish between relevant brain tissue 
including white and gray matter, ventricles, vascular structures, bone 

and subcutaneous soft tissue. In the context of head CT clinical image 
quality assessment, these tissue types are therefore the most relevant 
targets for image quality quantification. 

The purpose of medical imaging is to provide reliable information for 
accurate diagnosis and subsequent clinical decisions for effective patient 
care. Image quality refers to how well the acquired images can serve the 
purpose of diagnostics while taking into account the existing diagnostic 
process and recommendations of acceptable images in various diag
nostic tasks [5]. Image quality may be characterised by parameters 
ranging from physical parameters (noise, contrast, spatial resolution and 
derivatives) to clinical parameters (sensitivity, specificity, accuracy and 
derivatives) [6]. In x-ray imaging methods, improved image quality has 
traditionally been achieved by using higher radiation exposure as it 

* Corresponding author. 
E-mail address: satu.inkinen@hus.fi (S.I. Inkinen).  

Contents lists available at ScienceDirect 

Physica Medica 

journal homepage: www.elsevier.com/locate/ejmp 

https://doi.org/10.1016/j.ejmp.2022.05.011 
Received 20 January 2022; Received in revised form 2 April 2022; Accepted 25 May 2022   

mailto:satu.inkinen@hus.fi
www.sciencedirect.com/science/journal/11201797
https://www.elsevier.com/locate/ejmp
https://doi.org/10.1016/j.ejmp.2022.05.011
https://doi.org/10.1016/j.ejmp.2022.05.011
https://doi.org/10.1016/j.ejmp.2022.05.011
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejmp.2022.05.011&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Physica Medica 99 (2022) 102–112

103

reduces image noise while increasing dose. Optimisation, however, in
volves an inferred and a careful balance between radiation dose and 
image quality with a fundamental aim to ensure adequate diagnostic 
image quality with minimal radiation exposure to patients. Thus, the 
absolute condition of successful optimisation is the adequacy of diag
nostic image quality. Traditional optimisation principle has been 
described by the ALARA acronym [7] – as low as reasonably achievable 
– which has focused more on radiation safety and radiation dose mini
misation. The main reason for the dose focus in medical imaging opti
misation has been the ease of measuring and monitoring of the physical 
dose output of imaging equipment – in comparison to image quality - as 
a part of regular quality assurance in radiology and in compliance with 
international technical standards. On the other hand, diagnostic or 
clinical image quality has been much harder to determine in a reliable, 
repeatable and unambiguous way. [5,8]. 

Physical image quality parameters are usually measured from tech
nical test objects (phantoms), and they have been utilized as a part of 
quality assessment (QA) for a long time. However, the ability of physical 
image parameters determined in phantoms to describe more compre
hensive diagnostic image quality in patients is limited. More specifically, 
phantoms do not provide a sufficiently versatile surrogate to patients as 
regards to individual anatomical variability, gender and age represen
tations, tissue compositions, physiological motion and numerous path
ological stages deviating from healthy individuals [5,8]. 

Another approach to assess diagnostic image quality is to use human 
or model observers [6,9]. However, human observer studies are labo
rious and present limitations by intra- and inter-observer variability 
limiting the reliability of such assessment results especially with a small 
number of observers/expert reviewers. These factors inevitably reduce 
the applicability of such subjective assessment in routine clinical level 
image quality monitoring. On the other hand, objective clinical level 
image quality assessment with model observers or equivalent methods is 
a demanding and non-trivial task with varying clinical representations 
of patients. However, there are some initial developments in this di
rection [10–13]. Regardless of these challenges, image quality assess
ment remains a pivotal target for both radiological optimisation and QA. 

New developments in artificial intelligence (AI) especially in the 
regime of deep learning (DL) has brought new methods to various ap
plications of healthcare [14]. Diagnostic radiology involving large 
amounts of standardised image data has been an attractive target of DL 
methods. Altogether, medical imaging benefits from an abundance of 
training data, transferability of DL models from previously trained 
image-based DL networks and increasing access to datasets com
plemented with ground truth labeling [15]. Due to this potential 
versatility, DL methods may be also considered for QA purposes and 
specifically for image quality assessment. For example, Kretz et al. 2020 
developed a DL method for automated mammography image quality 
assurance from a technical image quality phantom [16], and in another 
study, a DL was utilized for motion corruption assessment of MRI brain 
scans in retake evaluation [17]. 

Patient-specific image quality assessment of CT images has been 
focusing on noise and HU value measurement using traditional image 
quality metrics and image processing methods [6,10,18]. Noise magni
tude estimation from clinical CT images is usually performed by 
assessing local standard deviation (SD in Hounsfield units) in pixels from 
uniform regions. However, this approach limits the investigation only 
for uniform image regions and as for example the clinical CT head scans 
the different anatomical structures pose a challenge in comprehensive 
noise assessment biasing the SD assessment in different head regions. 
One approach to overcome this issue is to use subtracted adjacent Z-slice 
images [18] but this approach also has inherent limitations as the slice 
thickness selection affects the resulting outcome and tissue boundaries 
are visible in the subtracted image. To obtain a real noise realization 
image, a dual acquisition is needed with image subtraction. However, 
this is not clinically feasible as the patient dose would double. A study by 
Abadi et al 2017 focused on automated assessment of organ-based dis
tribution of Hounsfield units from clinical chest CT images using seg
mentation with thresholding and image processing [10]. Even though 
this method is applicable to chest CT it is difficult to generalize to other 
imaging protocols and anatomical regions. DL-based methods could 
offer more flexible and generalizable solutions. 

In this study, DL is applied to clinical head CT image quality 
assessment of image noise to overcome the aforementioned challenges 
in noise estimation. The primary goal is to develop a fast and accurate 
DL method which directly estimates image noise and noise magnitude 
(described as SD) from single CT scan corresponding to normal clinical 
CT image acquisition. We assess both supervised and unsupervised 
training schemes while evaluating several DL architectural options using 
anthropomorphic phantom data from several varied and repeated CT 
scans. In addition, we also demonstrate with openly available clinical CT 
head dataset, how the developed DL noise and SD assessment pipeline 
can be incorporated into an automated image quality assessment 
framework. This framework allows image quality monitoring which is 
pivotal for a comprehensive optimisation process. 

Material and methods 

Phantom dataset 

An anthropomorphic dosimetry phantom (CIRS ATOM 702-D, Nor
folk, USA) was scanned with a Revolution EVO (GE Healthcare, Boston, 
MA, USA) CT system using nine different scan settings (Table 1). The 
CIRS ATOM 702-D is female phantom model, and it contains bone and 
soft tissue structures, but excludes specific soft tissue such as white and 
gray matter as separate materials. The slice thickness (0.625 mm), pixel 
spacing (0.488 mm) and collimation (20 mm) were kept constant during 
different scans. Rotation time of 1 s was kept constant over all scans. The 
scan acquisition was repeated three times. Scan data was reconstructed 
with a standard kernel and ASiR-V30% statistical iterative reconstruc
tion. The image stacks were divided into training, validation, and testing 
sets based on scan settings (Table 1). For the test set, two scans were 
performed with varying vertical off-centering. This was performed to 
gain variability in the scan positions which also occurs in clinical 
practice [19]. 

Noise image and noise magnitude estimation using deep learning 

To improve the sensitivity of the noise image and noise magnitude 
estimation by assessing the local SD map, different DL noise estimation 
approaches were investigated using the phantom dataset with three 
repeated CT acquisitions (X1,2,3). These acquisitions enabled ground 
truth (GT) labeling as the ground truth noise image and subsequent local 
SD maps can be assessed by subtracting the slice images of two repeated 
CT scan acquisitions. Several convolutional neural network models were 
experimented with three distinguishable approaches: 1. Direct local SD 
map estimation (supervised learning), 2. Direct noise image estimation 

Table 1 
Imaging parameters for phantom dataset and its division for training, validation 
and test sets.  

Dataset Tube peak 
kilovoltage (kV) 

Table height Tube current 
(mAs) 

CTDIvol 
(mGy) 

Train 120 Centered 50  9.2 
Train 120 Centered 100  18.5 
Train 120 Centered 250  46.5 
Train 120 Centered 300  55.8 
Validation 120 Centered 150  27.7 
1Test 120 Centered 200  37.0 
Test 100 Centered 200  23.9 
Test 120 3 cm down 200  37.0 
Test 120 3 cm up 200  37.0  

1 Corresponding clinical head CT scan protocol. 
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with subsequent local SD map computation (supervised learning) and 3. 
Differentiation of noise using denoising CNN and subsequent local SD 
map computation with supervised and unsupervised learning ap
proaches (Fig. 1). 

Local standard deviation derived from subtracted adjacent slice images 
(Baseline) 

We computed the local SD value maps in 2D and 3D using the 5 × 5 
and 5 × 5 × 5 window kernels, respectively, over single acquisition. In 
this reference approach, the noise image is first estimated from the 
difference image of adjacent slices and divided by a factor of 

̅̅̅
2

√
to 

account for error propagation [18,20] (Fig. 1A). This is used as a base
line result for comparison, as the underlying challenge using the local SD 
values directly from single acquisition is that the anatomical structures 
distort the estimated volumetric SD maps (Fig. 1A). 

Direct estimation of local standard deviation using convolutional neural 
network model 

This direct approach aims to estimate SD maps (YSD) directly from 
single acquisition images using CNN model (Fig. 1B). First, noise reali
zation map was computed using the second (X2) and third (X3) CT scan 
acquisitions phantom image stacks difference X2-3 down-scaled with 

̅̅̅
2

√

division in order to normalise noise level according to Poisson statistics. 
The subscript denotes the acquisition number. Subsequently, GT labels 
(i.e. SD maps) were computed from noise realization image stack with 
rolling standard deviation filtering with 5 × 5 and 5 × 5 × 5 window 
kernels for 2D and 3D cases, respectively. The input tensor (x1) sizes for 
the 2D and 3D neural networks were 1 × 11 × 11 and 1 × 11 × 11 × 11, 
respectively. Both 2D and 3D patches were extracted from the head 

region of the image stack (X1) and no overlap was allowed between 
patches in training and validation set. The CNN-networks consisted of 
series convolutional filters followed by batch normalization and recti
fied linear unit activations (ReLU) (Fig. 2A), and it learns to estimate a 
mapping from the input patch (x1) to a scalar local SD value (ŷSD) using 
supervised learning with {x1, ySD} training pairs where ySD is the SD at 
the center of the patch (Fig. 2A). The input image range was shifted with 
− 200 HU and scaled with 1372 HU which was the maximum HU value 
in the phantom dataset, before feeding in the network. This was done to 
keep the network activation values small, i.e., to avoid the back
propagation gradients to explode. The output was again scaled back to 
SD value range before computing mean squared (MSE) loss function in 
training phase. 

Direct noise estimation with subsequent SD computation 

For noise estimation we experimented with DnCNN and UNet con
volutional neural net models in 2D (Fig. 1C and Fig. 2B and 2C) [21,22]. 
This supervised learning process uses 2D training pair patch axial images 
{x1, x1-2} of input image and subtracted image (Table 2). The selected 
window combinations were 48 × 48 and 128 × 128 for DnCNN and 
UNet, respectively. The smaller 48 × 48 patch was extracted from the 
head region and the larger 128 × 128 patch was taken from the whole 
image area. For both patches, no overlap was allowed. The input image 
range was scaled from − 1024 to 1812 HUs (minimum and maximum 
range in phantom dataset) before feeding in the network and rescaled 
back to HU value range before computing mean squared (MSE) loss 
function between {x1,x1-2} training pair in training phase. The esti
mated noise image was scaled with 

̅̅̅
2

√
division prior to SD map 

computation also in this method. 

Fig. 1. Workflow diagrams of different noise estimation schemes: A) depicts reference local SD estimation scheme without any noise estimation (baseline). The SD 
values are very high at the tissue boundaries. B) depicts direct SD estimation workflow where the 2D or 3D CNN network estimates local SD values directly from the 
input image. C) illustrates the 2D-CNN approaches where first a noise image is estimated with DL with subsequent local SD map computation and D) illustrates the 
denoising DL networks in which denoised image is subtracted from the input image to obtain the noise image for the local SD estimation. 
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Fig. 2. Illustration of the different convolutional neural network architechtures. In (A) 2D and 3D CNNs are trained to estimate local 2D/3D SD values from 1 × 11 ×
11 and, 1 × 11 × 11 × 11 inputs, respectively. The kernel size for convolution filters (conv, conv1) for 2D and 3D networks were (3 × 3, 1 × 1) and (3 × 3 × 3, 1 × 1 
× 1), respectively. (B) DnCNN structure is used to estimate the noise image as well as in the unsupervised denoising and (C) Residual UNet is used for denoising 
assessment of noise in both supervised and unsupervised setting. N denotes the number of Convolution, batch normalization and ReLU operations and dx denotes the 
residual output of convolutional network which added to the input image. 

Table 2 
Dataset splits for different patch sizes for the phantom dataset and model hyperparameters. The dataset size varies due to different patch window sizes. Also, no overlap 
was allowed between patches.  

Dim. Model Training dataset Batch size Patch size Initial learning rate Epochs Num. of training samples Training time (HH:MM) 

2D DnCNN Phantom 128 48 × 48 1e-4 50 42 600 01:13 
2D UNet Phantom 64 128 × 128 1e-4 25 23 104 01:23 
2D 2DCNN Phantom 128 11 × 11 1e-3 50 828 288 00:45 
3D 3DCNN Phantom 128 11 × 11 × 11 1e-3 50 75 288 00:07 
2D DnCNN Clinical 64 48 × 48 1e-4 50 132 700 03:27 
2D UNet Clinical 64 128 × 128 1e-4 25 21 232 01:25  

Fig. 3. Example of manual annotations made for the test set (subject 01380). The diameter of the annotated region is 10 pixels.  
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Learned denoising and image subtraction with subsequent SD computation 

As a final approach, we experimented with DL denoising schemes in 
both supervised and unsupervised noise2noise learning schemes 
(Fig. 1D) [23]. In this approach, the CNN learns to denoise the input 
image. In supervised setting, we fed training patch pairs {x1, x}, where x 
denotes average image over three repeated scan acquisitions. For the 
unsupervised noise2noise learning, the input (x1) is corrupted with 
additive Gaussian noise. We performed the Gaussian noise corruption 
after tensor normalization using Gaussian noise with unit normal dis
tribution scaled with 0.01. For denoising, we applied the UNet archi
tecture using 128x128 window size (Table 2, Fig. 2C) and MSE loss. The 
large 128 × 128 patching was taken from the whole image area i.e. it 
was not restricted inside the phantom. The SD values were estimated 
from subtraction image stacks between original input image (without 
noise corruption) and denoised image. 

Model training 

For model training, we used Python with PyTorch (v.1.8.1) GPU 
version with the Nvidia GTX1080 Ti 11 Gbps. The training data was read 

in the RAM (64 GB) during the initial data loading phase to optimize 
performance. The computation times for training varied between 
different networks as the number epochs and batch size were tuned for 
each model using a validation set (Table 2). MSE loss was used as a loss 
function for all models with ADAM optimizer with default parameters 
and training parameters are presented in Table 2. For all models, the 
learning rate was reduced using cosine annealing scheduler with the 
number of iterations set to equal number of epochs [24]. After the DL 
models were trained, the computation time to obtain the final SD maps 
varied between different DL approaches such that the fastest computa
tion time was with the UNet noise estimation with subsequent SD map 
computation within 27 and 52 s for the 3D and 2D SD maps for one 
phantom image volume of 512 × 512 × 361, respectively. The slowest 
method was the direct estimation of local SD using convolutional neural 
network model. As in 3DCNN and 2DCNN, the corresponding compu
tational times were 01:02:15 and 00:42:48, respectively. However, this 

Fig. 4. Illustration of the automated assessment framework for the clinical dataset. The segmentation of white and gray matter is further divided into four segments 
(red lines) in which the SD characteristics and contrast is assessed. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 

Table 3 
Local 2D SD map errors from different model outcomes evaluated on phantom 
test data (mean ± SD). The unsupervised methods were also trained on clinical 
dataset as no GT data is required. For MSE and MAPE, the SD values are standard 
deviation of squared errors and standard deviation of absolute percentage error, 
respectively.  

Model Model 
output 

Training 
dataset 

Patch 
size 

MSE (HU) MAPE 
(%) 

2DCNN 
(super) 

SD estimate Phantom 11 × 11 10.6 ±
35.5 

25.6 ±
22.6 

UNet 
(unsuper) 

Denoised 
img. 

Phantom 128 ×
128 

19.0 ±
61.6 

33.9 ±
31.8 

UNet (super) Denoised 
img. 

Phantom 128 ×
128 

26.9 ±
69.7 

38.0 ±
20.3 

DnCNN 
(super) 

Noise 
image 

Phantom 48 × 48 25.3 ±
66.9 

36.6 ±
20.9 

Local SD1 None None None 565.9 ±
2319.4 

97.7 ±
201.2 

UNet 
(unsuper) 

Denoised 
img. 

Clinical 128 ×
128 

18.8 ±
60.4 

32.9 ±
29.5 

DnCNN 
(usurper) 

Denoised 
img. 

Clinical 48 × 48 89.5 ±
3906.5 

39.2 ±
142.8 

Local SD is computed from the adjacent slice images from the single acquisition  

Table 4 
Local 3D SD map errors from different model outcomes evaluated on phantom 
test data (mean ± SD). The unsupervised methods were also trained on clinical 
dataset as no ground truth data is required. For MSE and MAPE, the SD values 
are standard deviation of squared errors and standard deviation of absolute 
percentage error, respectively.  

Model Model 
output 

Training 
dataset 

Patch 
size 

MSE 
(HU) 

MAPE 
(%) 

3DCNN SD 
estimate 

Phantom 11 ×
11 ×
11 

6.3 ±
22.0 

15.5 ±
13.0 

UNet (unsuper) Denoised 
img. 

Phantom 128 ×
128 

13.7 ±
47.0 

20.2 ±
17.7 

UNet (super) Denoised 
img. 

Phantom 128 ×
128 

25.2 ±
53.2 

37.3 ±
14.4 

DnCNN (super) Noise 
image 

Phantom 48 ×
48 

23.2 ±
50.1 

35.1 ±
15.3 

Local SD1 None None None 1245.0 
±

4036.0 

133.7 
±

255.3 
UNet (unsuper) Denoised 

img. 
Clinical 128 ×

128 
14.8 ±
47.780 

21.1 ±
17.3 

DnCNN (usurper) Denoised 
img. 

Clinical 48 ×
48 

84.0 ±
3887.9 

27.2 ±
116.7 

Local SD is 
computed from 
the adjacent slice 
images from the 
single acquisition       
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computation time could be reduced to one-third if this voxel SD 
computation would be limited to the phantom region. 

Performance evaluation metrics 

Mean square error (MSE) and mean absolute percentage error 
(MAPE) were computed for a phantom test dataset to assess and 
compare the SD map accuracy of the different DL approaches. In addi
tion, Bland-Altman plots of 5000 datapoints randomly sampled from the 
phantom test dataset SD maps were computed for each model to eval
uate trend behavior in SD estimation accuracy. 

Clinical dataset 

Openly available Low Dose CT Grand Challenge dataset were used 
for an assessment of the developed noise estimation framework [25,26]. 
A subset of this dataset containing only brain scans were collected from 
The Cancer Imaging Archive [27]. The subjects were scanned with a 
Somatom Definition Flash (Siemens, Erlangen, Germany) CT scanner in 
axial scanning mode. The tube peak kilovoltage was set to 120 kVp. The 
slice thickness was 5 mm and pixel spacing 0.488 mm. The recon
struction kernel was H40s and the dataset was divided into train, 

validation and test sets with 37, 2 and 10 subjects with corresponding 
average tube exposures of 287, 350 and 277 mAs, respectively. 

Automated noise estimation framework: Assessment on clinical data 

After phantom test data comparison, additional experiments were 
performed with the openly available clinical head dataset data with the 
best performing supervised models trained on phantom data and unsu
pervised models trained with clinical data. Supervised models could not 
be trained with clinical data as no GT SD values were available for this 
dataset. 

First, the performance of the models was assessed using manually 
annotated circular (diameter = 10 pixels) region-of-interest (ROI) from 
uniform anatomical regions: gray matter (GM) on caudate nucleus 
(Caput), white matter (WM) on centrum semiovale, cerebrospinal fluid 
and pons (Fig. 3). The uniformity region covered three adjacent slice 
images (Fig. 3 shows center slice image). The small ROI were chosen 
such that no anatomical borders were located within the regions. 
Therefore, the SD values estimated from single acquisition was used as 
the reference. Comparative local 5 × 5 2D SD maps were computed for 
different DL methods. Subsequently, mean SD value from the same an
notated region of each SD map was computed, and MSE between the 

Fig. 5. Top row scatter plots between the ground truth 2D SD values and bottom row corresponding Bland-Altman plots. Plots represent N = 5000 points randomly 
sampled from test set data within the phantom region. 

Fig. 6. Top row Scatter plots between the ground truth 3D SD values and corresponding Bland-Altman plots. Plots represent N = 5000 points randomly sampled from 
test set data within the phantom region. 
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mean SD values of reference and different DL methods was determined. 
The 2D SD assessment was chosen over 3D due to the large slice thick
ness of the clinical dataset. 

Then, we developed an automated assessment framework of SD maps 
for clinical head CT image quality assessment which automatically 
assess SD value distributions, and contrast estimate between gray and 
white matter, and visualizes the results from the segmented regions 
(Fig. 4). We included this framework to test the feasibility of SD value 
estimation combined with contrast estimation on clinical images. 

The clinical dataset was automatically segmented to GM and WM for 
the framework. The segmentation was automatically performed in 
MATLAB using CTseg [28]. The segmentation provides tissue proba
bility maps which were thresholded above 0.3 to produce GM and WM 
masks. The overlapping regions of GM and WM masks were excluded 
and finally the segmented masks were eroded using morphological disk 
operator (diam = 3 pix) to avoid tissue borders in SD maps. 

After segmentation, the SD and contrast assessment was performed 
as follows. The masks were divided into posterior left, posterior right, 
anterior left and anterior right regions (Fig. 4) and SD distribution 
characteristics and contrast between WM and GM mean HU values were 
computed for these four regions as well as from the total segmented 
volumes of GM and WM. Boxplots showing mean SD and contrast values 
for different segmentation regions in the test set are presented for 
different DL methods. 

Results 

Model performance comparison on phantom data 

The most accurate SD estimation was provided with the 3DCNN ar
chitecture which directly estimates the SD values (Tables 3 and 4). Both, 
supervised and unsupervised denoising UNet models performed well on 
the phantom dataset. The Bland Altman analysis shows that especially 
high SD values are systematically underestimated by the DL models, but 
this effect is least present with the supervised 3DCNN model (Figs. 5 and 
6). The visualizations of noise images and SD maps reveal that even 
though DL models perform better than the baseline, anatomical borders 
are still visible when compared to GT noise images (Fig. 7). 

Image quality assessment for clinical data 

When comparing the subtraction-based SD map values from the 
uniform manually labeled regions (Fig. 3), the 2DCNN and unsupervised 
UNet (trained with separate clinical dataset) models provided the 
smallest MSE errors (Table 5). All noise images provided by the different 
noise estimation methods show remaining traces of anatomical struc
tures (Fig. 8). However, with DL methods, the anatomical borders are 
more suppressed than when compared with the baseline method using 
adjacent slices. Specifically, the SD maps derived from the direct 

Fig. 7. Top Row estimated noise images with different methods, middle corresponding local 2D SD maps, and bottom corresponding local 3D SD maps on phantom 
data. The 2D- and 3D-CNN models directly estimates the SD values from single acquisition. Windowing: [-50, 50] HU (top), [0,40] HU (middle, bottom). 

Table 5 
Image quality results (MSE) from different model outcomes on clinical data (mean ± SD). Here the reference data is SD values determined from subtracted adjacent 
slice images. For MSE, the SD values are standard deviation of squared errors.  

Model Patch size GM left (HU) GM right (HU) WM left (HU) WM right (HU) Pons (HU) CSF left (HU) CSF right (HU) 

2DCNN 11 × 11 0.50 ± 0.40 0.37 ± 0.34 0.32 ± 0.25 0.43 ± 0.38 0.25 ± 0.29 0.44 ± 0.25 0.26 ± 0.16 
UNet (super) 128 × 128 1.88 ± 1.29 1.84 ± 0.74 1.81 ± 1.40 1.37 ± 0.82 1.86 ± 1.08 1.64 ± 0.74 2.23±

0.74 
UNet (unsuper) 128 × 128 0.22 ± 0.49 0.22 ± 0.28 0.25 ± 0.64 0.10 ± 0.18 0.18 ± 0.20 0.09 ± 0.08 0.17±

0.16 
DnCNN (unsuper) 48 × 48 0.33 ± 0.72 0.32 ± 0.36 0.37 ± 0.66 0.15 ± 0.21 0.15 ± 0.19 0.17 ± 0.21 0.45±

0.36  

S.I. Inkinen et al.                                                                                                                                                                                                                                



Physica Medica 99 (2022) 102–112

109

estimation method (2DCNN) showed least anatomical soft tissue struc
tures in the SD maps (Fig. 8). Overall, the results demonstrate varying 
performance and feasibility of the automated image quality assessment 
framework while focusing on different locations in the head CT scan 
regions (Fig. 9). The WM regions show lower SD values compared to GM 
regions (Fig. 9, Table 5). 

Discussion 

In this study, we investigated how DL could be applied in head CT 
scan noise estimation using both phantom and clinical datasets, and by 
using supervised and unsupervised learning. To summarize, based on 
phantom assessment with ground truth data available, the direct map
ping from input patch to SD values gave the most accurate noise esti
mation. However, in clinical situations where ground truth data from 
repeated acquisitions is not available, the unsupervised noise2noise 
denoising UNet could be used as an alternative approach. In this two- 
step approach, the first step provides an estimate of the noise image 
which can then be used in the second step in noise magnitude estimation 
via local SD values. The noise measurements can be complemented by 
automatic GM and WM segmentation to provide clinically relevant 
contrast information. 

The traditional measurements of image quality have been focusing 
on technical image quality mainly by test object (phantom) acquisitions 
which can describe the performance of an imaging equipment in a 
repeatable and reproducible way. New imaging technology, especially 
in CT, has introduced challenges to this traditional approach due to 
more complex image post-processing and reconstruction methods, 
which makes it more difficult to infer clinically adequate image quality 
from these conventional technical measurements [6,29,30]. In addition, 
modern CT scanners used sophisticated patient size and shape depen
dent tube current and voltage modulation techniques for dose optimi
zation, which in turn, further introduces patient-specific variations in 
image quality. Also, due to vendors’ different technical solutions, clin
ical images have different appearances (noise, texture, artefact promi
nence). This creates additional challenges to e.g. cross-manufacturer 

protocol harmonization. Therefore, it is important to develop more so
phisticated, robust, and patient-specific image quality assessment 
methods for CT. 

Previous clinical image quality assessment studies have focused on 
assessing CT image noise properties, for example, by evaluating noise in 
air regions outside the patient [31] and with ranges of kernels sampling 
the homogeneous regions of the image data [18] providing promising 
results. However, it should be noted that noise assessment from in air 
regions outside patient are not reliable for iterative or DL-based re
constructions, as noise texture can differ significantly outside patient in 
those reconstruction techniques. Also image contrast has been measured 
in later studies [10], and noise measurements from clinical CT data have 
been utilised in further image quality metrics based on radiologist 
grading [12]. 

In contrast to previous studies, our work utilized data-driven DL 
approaches in the image noise estimation. The underlying challenge is 
the presence of anatomical structures in the noise images where the 
image quality assessment is performed. The common approach is to limit 
the image quality assessment on the uniform body regions where the 
local SD values can be measured directly or by computing noise images 
from subtracting adjacent slices [20,31]. These methods are inherently 
limited, as the first approach noise estimation is applicable to only part 
of the image area, whereas the second approach induces challenges of 
imprinted anatomical structures and low-frequency correlated noise. 
Our work utilized DL that can provide feasible tools for CT image noise 
estimation extending from phantom images to clinical images with 
variable characteristics introduced by actual patients and scan settings. 
Although this study focused on head CT scans, a robust, general-purpose 
estimator for clinical images is desired. Building a sufficiently versatile 
training set, if supervised learning is used, remains challenging. 

The most relevant previous study was published by Christianson 
et al. involving automated technique to measure noise in clinical CT 
images. Specifically, the noise parameter was defined as a global
noise based on the mode of the kernel-based SD map histogram peak 
which corresponded to homogeneous tissue areas. Their results were 
validated by comparing the global noise with the reference 

Fig. 8. Top Row estimated noise images with different methods and bottom row corresponding local SD maps (subject 01380). The 2DCNN model directly estimates 
the SD map. Windowing: [-50, 50] HU (top), [0,30] HU (bottom). 
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image noise, which was determined by the subtracted images from tis
sue phantom and additionally by comparing global noise with observer 
study results from six patient CT images (three thoracic and three 
abdominal images) [18]. Our method was taking a few steps forward by 
providing local noise maps from clinical CT images instead of providing 
a single global noise value. Therefore, our methods provide compre
hensive noise evaluation from the CT images covering non-uniform 
body regions and offer localized noise information which can be tar
geted to certain diagnostically relevant tissue regions, in our case, WM 
and GM structures. Along with the noise estimation results, the contrast 
assessment of GM and WM was also enabled by the preceding step of 
automatic segmentation by applying CTseg algorithm. 

Despite the promising applicability of DL in CT clinical image quality 
assessment, there are several limitations in study that need to be 
addressed. We focused only on the head CT scans and the models were 
developed using only head CT data. This region was chosen because it is 
among the most common CT examination regions [32]. The idea of DL- 
based noise measurement is to learn to ignore the background 
anatomical variation, and we acknowledge that the trained models are 
not directly applicable to other body parts. The DL models should be 

trained with data comprising the corresponding anatomy and morpho
logical characteristics. Therefore, in future, these DL algorithms should 
be made more generalizable to images from any part of the body. 
Further, the organ segmentation algorithm must be applicable to 
different body regions for organ specific image quality assessment. The 
phantom data was acquired using only one CT scanner and a single 
reconstruction algorithm which likely poses a limitation for the model 
generalizability. Also, the models had high uncertainties i.e. large SD 
values when assessed using MSE and MAPE values, and when compared 
to GT images this variability could be located in the bony regions. More 
versatile model should be trained and validated with a broader range of 
data from several scanners, scan parameters, and reconstruction kernels 
enabling model adaptation to different noise textures and additional 
mean HU-value/contrast measurements. In addition, more versatile 
phantom models should be applied in the data collection with more 
realistic brain tissue structures with WM and GM matter regions and 
different anatomical variabilities. 

The normalization strategy adopted in CNN training was to use 
global normalization values. In future studies, also local image-based 
approach should be studied as it might take better into account the 

Fig. 9. Box plots of mean HU values over clinical test set (N = 10) for different DL assessment methods, and the contrast values computed directly from clinical 
images thus does not vary. ant = anterior, pos = posterior, sin = left, dex = right. Total = total segmented volume. 
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scanner-wise and kVp based variability in HU values ranges. 
It should be noted that each DL method had a linearly decreasing 

trend in the Bland-Altman plots showing that high noise magnitude 
regions i.e., the SD values from tissue borders and bony regions were 
underestimated. Discrepancy can partly be due to the spatial extent of 
the SD calculation window. However, in head imaging, the diagnostic 
interest is mainly in the soft tissue regions of GM and WM except for 
potential fractures and other specific applications. Therefore, this un
derestimation does not directly affect the most relevant results. Even 
though the direct SD estimation using CNN had the smallest error in our 
phantom dataset it may not be as flexible as the other methods involving 
a preceding step of determining the noise image as the kernel size has to 
be fixed prior to the training for the ground truth label. Furthermore, as 
compared to other processing methods, the computation of the SD map 
using CNN is a slow process because the whole image stack must be 
processed with sliding windowing though the network structure. 

As the clinical open dataset had a large slice thickness of 5 mm and 
thus was a highly anisotropic, we applied 2D SD assessment in our 

framework. However, we did not have this limitation with the isotropic 
anthropomorphic phantom data (slice thickness was 0.625 mm) but on 
the other hand it lacked diagnostically important anatomical WM and 
GM soft tissue structures. Therefore, we applied the openly available 
dataset in our image quality assessment framework demonstration 
involving noise and contrast quantification. As a beneficial reference 
aspect, the latter dataset is available to other researchers as well, to 
investigate and to benchmark their own frameworks. The discrepancy 
between phantom and clinical data was unfortunate, as it would have 
been very interesting to compare model performances between phantom 
and clinical data having exactly same acquisition protocols. This should 
be accounted in the future studies for instance using local patient da
tabases and selecting the same imaging protocol for the phantoms used. 

In manual annotations, the ROI size was kept similar for each 
anatomical location (GM, WM, Pons, CSF) to make comparison between 
anatomical regions similar. The size of the ROIs was limited to cover 
only ten pixels in diameter. This was chosen as the CSF diameter cere
bral ventricle was narrow for test set cases limiting the size. However, 
the limitations of the manual assessment using labeling could be over
come by using an automated methods as demonstrated using the segCT 
method. However, the downside of automated segmentation is that 
there is a risk of anatomical borders to be included in different soft tissue 
masks, as brain tissue segmentation from CT images is not a trivial 
segmentation task especially if there are tissue pathologies present in the 
tissue. Therefore, future studies are warranted to investigate in more 
detail how automated assessment performs compared with manual la
beling in the image quality assessment task. 

Our results presented the mean local SD values of each region in the 
clinical image quality assessment framework summarising the SD dis
tribution characteristics. The SD distribution may carry additional in
formation which could be utilized further in image quality 
characterisation. These image quality characteristics could also be 
combined with other measures of imaging performance such as with 
radiation exposure monitoring data [18] serving the comprehensiveness 
of quality assurance, consistency of imaging quality, malfunction 
detection, and optimisation of CT scan protocols over various vendors 
and scanner models. Future studies should focus on expanding the 
clinical image assessment to other image quality measures, while 
automating the analysis process. Finally, as the image quality parame
ters are sometimes challenging to interpret and translate to diagnosti
cally acceptable image quality, future studies should include data-driven 
models aiming to match the machine predictions with expert diagnostic 
quality estimates in Likert or binary scale. 

Conclusions 

Deep learning-based clinical image assessment from head CT images 
is feasible and provides acceptable accuracy as compared to true image 
noise. The unsupervised noise2noise approach may be feasible in clin
ical use where no ground truth data is available. DL-based noise esti
mation combined with automated tissue segmentation for contrast 
measurement enables more comprehensive image quality characteriza
tion. The developed method provides a promising QA and optimisation 
tool for head CT examinations, which represent the most common CT 
examination worldwide. 
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Training 61183 
Training 66237 
Training 67026 
Training 68375 
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Training 79504 
Training 80904 
Training 87201 
Training 88419 
Training 88686 
Training 88964 
Training 90289 
Training 90926 
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Training 99877  
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