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Abstract

Positron Emission Tomography - Magnetic Resonance (PET/MR) imaging combines the

functional information from PET with the flexibility of MR imaging. It is essential, how-

ever, to correct for photon attenuation when reconstructing PETs, which is challenging for

PET/MR as neither modality directly image tissue attenuation properties. Classical MR-

based computed tomography (CT) synthesis methods, such as multi-atlas propagation, have

been the method of choice for PET attenuation correction (AC), however, these methods are

slow and suffer from the poor ability to handle anatomical abnormalities. To overcome this

limitation, this thesis explores the rising field of artificial intelligence in order to develop

novel methods for PET/MR AC.

Deep learning-based synthesis methods such as the standard U-Net architecture are

not very stable, accurate, and robust to small variations in image appearance. Thus, the first

proposed MR to CT synthesis method deploys a boosting strategy, where multiple weak

predictors build a strong predictor providing a significant improvement in CT and PET

reconstruction accuracy.

Standard deep learning-based methods as well as more advanced methods like the first

proposed method show issues in the presence of very complex imaging environments and

large images such as whole-body images. The second proposed method learns the image

context between whole-body MRs and CTs through multiple resolutions while simultane-

ously modelling uncertainty.

Lastly, as the purpose of synthesizing a CT is to better reconstruct PET data, the use

of CT-based loss functions is questioned within this thesis. Such losses fail to recognize the

main objective of MR-based AC, which is to generate a synthetic CT that, when used for

PET AC, makes the reconstructed PET as close as possible to the gold standard PET. The

third proposed method introduces a novel PET-based loss that minimizes CT residuals with

respect to the PET reconstruction.
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C. J. Scott, J. Jiao, M. J. Cardoso, K. Kläser, A. Melbourne, P. J. Markiewicz, J. M. Schott,

B. F. Hutton, and S. Ourselin. Short acquisition time pet/mr pharmacokinetic modelling

using cnns. In International Conference on Medical Image Computing and Computer-

Assisted Intervention, pages 48–56. Springer, 2018.



Impact Statement

One of the main challenges that PET/MR faces is the ability to directly correct for tissue

attenuation, which is essential in order to reconstruct quantitative PET images necessary in

clinical practice, e.g., to monitor disease progression.

In the scope of this thesis, multiple deep learning based methodologies have been

developed in order to provide a fast and reliable means for PET/MR attenuation correction.

At the beginning of this thesis, only a few groups in the medical imaging field had attempted

to utilize convolutional neural networks in order to generate pseudo CT images from MR

input images that can be linearly rescaled and used as attenuation maps. The methodologies

proposed in this thesis reach from improving attenuation correction in the brain over the

mainly uncharted territory of whole-body pseudo CT synthesis to the proof-of-concept of a

novel loss metric that is the first of its kind.

All proposed convolutional neural networks have been thoroughly evaluated on hold-

out datasets. Both quantitative and qualitative pseudo CT synthesis performance was im-

proved by incorporating techniques known from classical machine learning, learning from

multiple resolutions and even by having the networks imitate the PET reconstruction pro-

cess. The proposed Deep Boosted Regression network achieves state-of-the-art results that

almost reach the theoretical limit of two CT scans that were acquired consecutively. As

a means of safety and in order to know the network’s prediction confidence, the proposed

multi-resolution network for whole-body MR to CT synthesis was extended to be able to

model two kinds of uncertainty, thus accounting for intrinsic data noise and model uncer-

tainty. The proposed Imitation Learning method was further evaluated on an independently

acquired dataset exploiting the generalizability and the extrapolation properties of the novel

metric loss that in itself imitates the PET reconstruction process.

With the increasing interest in fast and reliable attenuation correction methods that can

be incorporated into clinical settings, the proposed methods could be integrated into com-
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mercial software. This would be of particular interest for the application of whole-body

PET/MR attenuation correction as the use of whole-body PET/MR imaging in current clin-

ical settings is almost non-existent due to insufficient attenuation correction methods. Mak-

ing models uncertainty-aware can further provide a measure of safety indicating whether

the results are to be trusted and thus giving clinicians the possibility to recourse to other

methods implemented on the scanner.
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Chapter 1

Introduction

1.1 Clinical background

Medical imaging is an essential part of clinical analysis and medical intervention and aims

to improve patient care by preventing, detecting, diagnosing and monitoring medical con-

ditions. Some of the most popular imaging modalities used in clinical routines include

magnetic resonance (MR) imaging, computed tomography (CT) and positron emission to-

mography (PET). While MR and CT are able to give an insight into the anatomy of a patient,

PET provides information about the metabolic functionality within the patient’s body. In

recent years, researchers have focused on combining the advantages of these imaging tech-

niques. Most recently, researchers were able to combine MR with PET surpassing multiple

engineering challenges. Combining the excellent soft tissue contrast of MR images and

the functional image information from PET yield hopes to significantly improve clinical

practice and offer a new range of clinical applications. There are, however, some limita-

tions with this technique that need to be overcome. One way to tackle these limitations has

focused on techniques from machine learning, in particular deep learning. Deep learning

has proven to successfully solve complex problems in the field of computer science/vision.

The roots of deep learning are inspired by the way neurons in the human brain work. To

have a better understanding of each imaging modality and the theory behind deep learning

algorithms, the following chapter explains the physics behind each imaging modality and

the basic ideas and algorithms used in deep learning.

1.2 Basic physics and technology

To better understand the context of this work, this section explains the physical concepts

behind the imaging modalities used throughout the thesis. Furthermore, an introduction is
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given into the deep learning concepts which are essential building blocks of this work.

1.2.1 MR concepts

MR imaging is an imaging technique that makes use of the magnetic characteristics of

protons, usually of the least complex element, hydrogen (H), in order to generate an image.

The single proton in the nucleus of the hydrogen molecule does not sit statically in the

centre of the atom, but rotates on its axis, creating the so called spin, which is associated

with all protons within the body. In their entirety, they generate a small magnetic field, also

known as magnetic moment. The spin magnet’s orientation is random and therefore zero in

total under normal circumstances. However, exposing the protons to an external magnetic

field (B0) causes all spins to line up either in the same or opposite direction of the magnetic

field depending on their energy state. The spins now precess around the B0 axis, commonly

referred to as the z-axis. There is no magnetization in the transverse x-y-plane as the spins

cancel each other out within this plane but they sum up along the z-axis resulting in a net

magnetization M0 which is proportional to the proton density (PD).

The basic idea behind magnetic resonance is to perturb the equilibrium of the spins.

Disequilibrating the spins makes it possible to detect a change in magnetization. A high-

frequency (HF) pulse is transmitted into the vicinity of the protons in order to throw the

protons out of their equilibrium state. The strength and duration of the HF pulse determine

the angle at which spins and therefore net magnetization are flipped. Now all spins are

exactly in phase and a net magnetization in the transverse direction Mxy can be detected

whereas the magnetization along the z-axis (Mz) vanishes. When turning off the HF pulse

the spins return to their resting alignment through various relaxation processes. The time

it takes the spins to regrow the longitudinal magnetization Mz to the original magnitude

M0 is called T1, also known as longitudinal or spin-lattice relaxation time. The transverse

relaxation time T2 describes the time it takes until the transverse magnetization (Mxy) has

decayed. This phenomenon happens because the spins lose the phase coherence as some

precess slightly faster than others due to natural cross-talk between neighboring spins. It is

therefore also referred to as spin-spin relaxation time. Inhomogeneities in the main mag-

netic field B0 cause Mxy to decrease faster. This “observed” or “effective” T2 time constant

is called T2*. MR sensors are able to detect the transverse magnetization as an electrical

current. from which an image can be reconstructed.

However, it is not possible to distinguish between different tissue structures yet due to
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missing spatial allocation. Therefore, MR makes use of additional gradient fields that are

generated by a pair of gradient coils in x-, y- and z-direction with the same current strength,

but opposite polarity, making it possible to localize each individual voxel. The detected

signals are then saved line by line in a raw data matrix, the so called k-space. The final MR

image is reconstructed from the k-space by means of a 2D Fourier transform. In general,

low spatial frequencies are responsible for the MR contrast and high spatial frequencies

determine small structures like tissue boundaries.

Two important pulse sequence parameters that are chosen by the operator are repetition

time (TR) and echo time (TE). These parameters determine the MR image contrast resulting

in T1-, T2- or PD-weighted images. TR describes the time between two HF pulses and TE

is the time between applying the HF pulse and the peak of the signal induced in the coil.

Choosing a short TR and TE results in a T1-weighted image as T2 effects largely disappear,

whereas a T2-weighted image is generated when TR and TE are set to a longer time as T1

effects disappear. PD-weighted images are a result of a long TR and a short TE, which

minimizes both T1 and T2 effects. Figure 1.1 shows the correlation between TR/TE and

resulting contrast.

In PD images, proton-rich tissues (e.g., fat, fluids, grey matter) generate a high signal

and appear bright in the resulting image. These kind of images are very useful for brain

T1

T2PD

TE

TR

T1-weighted
Short TR
Short TE

PD-weighted
Long TR
Short TE

T2-weighted
Long TR
Long TE

Figure 1.1: Three different MR contrasts: T1, T2 and PD. Repetition time (TR) and echo time (TE)
determine resulting image contrast.
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Figure 1.2: X-ray attenuation: the intensity I0 of an initial X-ray beam is partly absorbed by an
object resulting in an attenuated X-ray beam with intensity I. The intensity reduction
follows Beer’s Law, which is an exponential function of X-ray energy (I0), path length
(x), and material specific attenuation coefficient (µ).

imaging owing to the great contrast between grey and white matter. T1-weighted images

on the other hand are characterized by the dark appearance of fluid filled spaces in the body

(e.g., Cerebrospinal fluid in the brain, free fluid in the abdomen, fluid in the gall) and are

very useful for brachial and lumbar plexus imaging, brain imaging and extremity imaging.

Lastly, T2-weighted images are often used for abdominal imaging, pelvic imaging and chest

imaging as they brightly depict pathological processes.

1.2.2 CT concepts

CT, like X-ray imaging, is based on the fundamental principle that the X-ray absorption

of different tissues is variable. In CT the transmitted intensity of a beam of radiation that

is finely collimated is measured making cross-sectional imaging possible. When an X-ray

beam hits an object, its energy (I0) is partly absorbed by the object. Thus, the beam that

hits the detector has a decreased intensity (I). This decrease follows the Lambert-Beer Law,

which describes the intensity reduction as a function of X-ray energy, path length (x) and

material specific attenuation coefficient (µ). Figure 1.2 illustrates this concept.

The image itself is reconstructed by solving the inverse problem to compute the at-

tenuation coefficients along different projection lines. A CT image consists of an array of

pixels representing the mean attenuation within each pixel that is expressed as a Hounsfield

Unit (HU) (Air = -1000, Fat = -60 to -120, Water = 0, Compact bone = +1000). Hounsfield

Units are defined as
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HUi = 1000∗ µi−µwater

µwater
, (1.1)

where µi describes the object’s attenuation coefficient in the i-th voxel and µwater the

linear attenuation coefficient of water. Since the tissue density determines the degree to

which the X-rays are attenuated, the reconstructed image is bright in tissues with a high

attenuation coefficient and dark in those that absorb with low attenuation coefficients.

1.2.3 PET concepts

PET is a nuclear imaging technique that relies on the decay characteristics of radionuclides

which decay after emitting a positron (β+). Within the decay process of a radioactive

atom, a positron that was ejected from the nucleus covers a short distance within the tissue

until it slows down and interacts with an electron. This collision annihilates both electron

and positron, resulting in a pair of high-energy photons (511 keV) with opposite directions

(almost 180◦ apart). These photons have a high probability of escaping the body. The

distance that a positron travels before it collides with an electron depends on its kinetic

energy; positrons with high kinetic energy will travel further than the ones with low kinetic

energy. The annihilation process is shown in Figure 1.3.

In order to reconstruct a PET image, the two annihilation photons with opposed direc-

tions are detected by two opposed detectors. When both detectors register a signal within a

given time window, a coincidence event is saved in a data matrix. In time of flight (TOF)

PET systems, an additional parameter is saved in the data matrix: the time difference be-

tween the two detected annihilation photons. This additional information makes it possible

to reduce the annihilation origin to a limited range. The resulting data matrix does not rep-

resent the radiotracer distribution directly, which is why a reconstruction process is essential

to determine the radioactive tracer distribution. PET reconstruction can broadly be split into

analytical (e.g. filtered backprojection) and iterative reconstruction algorithms (e.g. expec-

tation maximization (EM)). To accurately quantify the radionuclide uptake it is essential to

correct for multiple factors including tissue attenuation, which represents a major image de-

grading factor. Annihilation photons will be attenuated most when travelling through bone

and least when travelling through air. Without attenuation correction, false coincidence

events are likely to be saved in the data matrix resulting in inaccurate PET reconstruction.

In general, PET is used to examine physiological and biochemical functions of the

body. Radionuclides are attached to substances that take part in metabolic functions. Due to
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the fact that radioactive isotopes have the same chemical properties as their non-radioactive

counterparts, those labeled substances are metabolized identically.

1.2.4 Combined imaging modalities

PET images provide information about radionuclide uptake distribution within the body,

however, PET is not able to provide any anatomical information, which can lead to wrong

interpretations of the precise location of areas with abnormal radionuclide uptake. In ad-

diton, one of the most commonly used tracers, Fluorodeoxyglucose (18F-FDG), is metab-

olized not only in unhealthy tissue but in multiple healthy organs such as the brain, lungs,

heart, intestines and liver. To improve interpretability of PET images it is therefore desirable

to combine PET images with an anatomical imaging modality such as CT or MR. Figure

1.4 shows example images for PET, CT and MR images and their combinations.

1.2.4.1 PET/CT

In 2001, the first commercial PET/CT scanner was installed facilitating dual-modality imag-

ing (Beyer et al. 2000). Both PET and CT scanners are combined in a single gantry that

Figure 1.3: Process of PET annihilation. The radionuclide decays and a positron travels for a short
distance until it slows down and interacts with an electron resulting in a pair of high-
energy photons in almost exactly opposite directions.
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surrounds the patient bed. Images are acquired sequentially from both imaging devices in

a single session resulting in co-registered PET and CT images without the need to move

the patient. PET/CT scanners allow a combined anatomical and functional examination of

the patient in one imaging session and help radiologists interpret the results more precisely.

Clinical practice has become much easier for patients and doctors with the emergence of

PET/CT systems and has therefore exclusively been used for PET acquisitons since 2006

(Townsend 2008).

1.2.4.2 PET/MR imaging

In 2010 the first whole-body PET/MR scanner was commercially available. In fact, two

different systems were brought to the market by manufacturers Philips (Philips Medical

Systems, Best, The Netherlands) and Siemens (Siemens Healthcare, Erlangen, Germany) in

the same year. The two competing systems differ mainly in the image acquisition technique.

The Ingenuity TF PET/MR from Philips acquires PET and MR images sequentially. The

system consists of an MR scanner and a separate PET scanner in the same room with a ro-

tating bed in between so that the patient does not need to be transferred between scans. On

the contrary, there is the mMR Biograph from Siemens which is a fully integrated system

that allows simultaneous PET and MR acquisition. Building such a simultaneous system is

technically challenging due to multiple factors. On one hand, there are spatial constraints

due to the limited bore size of the MR scanner that make it difficult to integrate a rotating

transmission source within an MR gantry. On the other hand the strong magnetic field can

interfere with the detection of the PET signal due to the high sensitivity of the photomulti-

plier tubes (PMTs) of the PET detectors to magnetic fields. However, simultaneous systems

provide the advantage of the ability to make simultaneous, exactly aligned, acquisitions

(Daftary 2010).

CT PET-MRPET-CT PET MR

Figure 1.4: PET, CT and MR images and their corresponding fusions.
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1.2.5 Attenuation correction PET

In PET, attenuation from the object inside the field of view (FOV) is one of the major image

degrading factors. In order to avoid image distortions and artefacts, attenuation correction

is an important component of PET image reconstruction. Without attenuation correction

it is not possible to accurately quantify regional tracer uptake for routine clinical studies

and for quantitative dynamic studies. An extensively used attenuation correction method

in standalone PET scanners is based on transmission measurements. However, there are

several difficulties to implement a rotating transmission source within a PET/MR scanner

due to the restricted bore size and the strong magnetic field. With the emergence of PET/CT

scanners, attenuation correction became straightforward since a map of linear attenuation

coefficients at 511 keV in the object can be rapidly derived from a CT scan using piece-wise

linear calibration curves. However, MR image intensity values are related to proton density

and do not provide information about X-ray attenuation. This becomes obvious with respect

to bone and air, which yield a similar MR signal for many sequences, but have very different

attenuation coefficients. Therefore, the development of alternative attenuation correction

methods has become a main field in PET/MR research. Methods for PET/MR attenuation

correction can be categorized into five classes based on the techniques applied to create

the attenuation map, also referred to as µ-map: transmission-, emission-, segmentation-,

atlas- and learning-based approaches. A thorough review of available attenuation correction

methods for PET/MR imaging is covered in chapter 2.

1.3 Deep learning concepts
Deep learning is an area within machine learning research which has gained a substantial

amount of attention in recent years. In deep learning, several levels of representation and

abstraction are learned in order to connect data (e.g., images, sound, text). A deep learning

algorithm does not know the answer to a specific task straight away. In order to train a deep

learning network, the algorithm instead continuously analyzes training data and adapts its

approach depending on its performance.

Artificial neural networks are one main element within the field of deep learning. Neu-

ral networks, as the name may give away, are computational models inspired by the way

the cerebral cortex processes information in the human brain. Mathematically, biological

neurons are represented by computational units called perceptrons that can be connected to

each other across several layers. On its way through the network, the data runs from an input
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Figure 1.5: A simple feed-forward neural network with an input layer, two hidden layers and an
output layer.

layer through a collection of hidden layers that consist of multiple perceptrons, or nodes,

until it reaches the output layer. Such networks are also known as feed-forward networks,

which means that information is always fed forward, never back. Figure 1.5 shows a simple

example of such a neural network. If every node in a given layer passes its output to every

node in the following layer, they are referred to as fully connected layers. In this case the

output layer neurons do not have any direct connection to the input data and are only acti-

vated by the signal of the previous layer. The more layers of abstraction a neural network

is built of, the deeper it is and the more computational resources are needed to generate the

output. In Fig. 1.5, the input layer and the output layer are connected by two hidden layers

that consist of three and five nodes respectively. Therefore this example neural network has

a depth of two.

Each connection between nodes of adjacent layers has a weight θi associated with it.

This weight determines to what extent the input to the node contributes to the output of

the node. When training a neural network, the model tries to determine the set of weights

that give the best output while keeping the network architecture unchanged. In Fig. 1.5 the

weights are represented by the lines between different nodes. If there are multiple inputs to
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a node, the output of a given node is commonly calculated by a weighted sum defined as

z = ∑
n
i=1 θixi. The input data xi is multiplied by the weight θi that is associated with each

individual input in order to compute the output z. The final output y of the node, however,

consists of two more components: a bias b and an activation function f , such that

y = f (
n

∑
i=1

(θixi)+b). (1.2)

The bias can be interpreted as the intercept of a linear function. It allows the activation

function to shift left or right so that it does not necessarily go through the origin. The ac-

tivation function determines if a node activates, similar to a neuron “firing” in a biological

context. If a neuron’s input is relevant for the model’s prediction, the node activates. The

activation function can be considered as a “gate” between an input for a node and its output.

The complexety of this function can range from a simple step function through linear func-

tions to more complex non-linear functions. Figure 1.6 shows four examples for possible

activation functions. Step functions have a binary output of 0 or 1 and can be switched on

or off. The use of a binary step function as activation is often too simple and does not allow

for multi-value outputs. This, for example, can be problematic when trying to classify an

input into several output categories. Linear functions f = cz allow for multiple outputs by

generating an output signal that is proportional to the node’s weighted sum. However, a

linear activation function causes the output layer to be a linear function of the inputs and

therefore is not able to grasp the complexity of non-linear problems. Non-linear activation

functions, on the contrary, allow for the neural network to represent data in a more complex

way. Commonly used non-linear activation functions include sigmoid and rectified linear

unit (ReLU) functions. The sigmoid function is defined as

f =
1

1+ e−z . (1.3)

It maps a real-valued input and squeezes it to a range between 0 and 1. When used by

each node in a multi-layer neural network, the sigmoid activation function generates a new

“representation” of the original data that cannot be represented by any linear combination

of the input data. Unfortunately, a common problem that can be observed when training

a network with sigmoid activation functions is the so called vanishing gradient problem

(more about gradients in subsection 1.3.1.1). This phenomenon can occur for very high
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or low values of z and results in a stalling network that does not learn any further. The

ReLU activation function circumvents the vanishing gradient problem by taking a linear

activation function and setting it to zero for z <= 0, such that complex relationships can

still be modelled. The ReLu is defined as

f = max(0,z) (1.4)

and is called a piecewise function due to the combination of linear and non-linear sub-

functions. It results in an output z if z is positive and 0 otherwise. Glorot et al. (Glorot et al.

2011) have shown that the use of ReLU improves learning in networks with three or more

hidden layers, which makes it one of the most popular choices among activation functions.

The idea behind deep neural networks is to simplify a complex task by dividing it into

multiple simpler tasks. Each hidden layer by itself represents a different task, or function,

but when concatenated they can describe the more complex task. The depth and complexity

of a neural network architecture therefore determine the level of task complexity that can be

solved. However, increasing network depth comes with the pitfall of more network weights

that must be learned, which can quickly turn into a computational burden. When designing

a neural network one tries to find the best compromise between depth and computational

requirements.

1.3.1 Optimizing neural networks

Just like in classic machine learning techniques, there are multiple ways to train a network

depending on the relation between input and output data. The simplest form of learning is

called supervised learning and refers to the scenario where paired data is available. In a

medical context this could be in the form of an electroencephalogram (EEG) signal and a
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Figure 1.6: Activation functions for neurons. Left to right: binary step function, linear function,
sigmoid function, rectified linear unit (ReLU).
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corresponding diagnosis for training a classification network; MR images of the abdomen

and a corresponding binary organ mask for segmentation purposes; or paired MR and CT

images in order to perform an image regression task. Depending on the task, the neural

network tries to predict either a class or set of classes (classification), a binary pixel value

(segmentation) or a continuous pixel value (regression). No matter the task, the training

procedure follows the same principle. When a network is trained from scratch, the weights

are randomly initialized at the beginning of training and will most likely give an equally

random output. The network’s weights are then automatically updated during training in

order to find a set of weights that give the best prediction whilst keeping the architecture

unchanged. In order to evaluate its performance, neural networks make use of objective

functions. These objective functions project real error values as a function of the weights

in a multi-dimensional feature space. A typical choice for objective functions are loss func-

tions that estimate the error between a prediction and the ground truth image. The goal is

to minimize this error such that the output prediction becomes more accurate after adjust-

ing the network’s weights. Each change in the network’s weights results in a loss function

change and therefore represents a gradient. If the gradient is negative and points towards

the steepest descent the loss function decreases as quickly as possible resulting in a network

output that is closer to the ground truth than the previous prediction. Two popular optimiza-

tion techniques that are commonly used in neural networks are stochastic gradient descent

(SGD) and the Adam optimizer.

In SGD a small number of samples n are randomly selected from the data-generating

distribution and grouped into so called mini batches. Instead of calculating the gradient g

on the whole training sample distribution, which is computationally expensive and often

unfeasible, SGD adjusts the network’s weights according to the gradients of the mini batch.

This iterative process is repeated until the value of the loss function L no longer decreases,

meaning a minimum has been found. Algorithm 1 summarizes the SGD method.

Each mini batch includes n examples from the training data x(1), ...,x(n) with corre-

sponding labels/ground truth y(i). The gradients of the loss function are computed at every

iteration and the difference between the weights and the gradients determines the updated

weights. The magnitude and direction of the weight update are computed by taking a step in

the opposite direction of the loss gradient. In practice, the gradients are often too big and are

therefore scaled by the parameter η , also referred to as step size or learning rate. The learn-
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Algorithm 1: Stochastic Gradient Descent
η = Learning rate
θ = Weights (Randomly initialized)
L = Loss function
n = Mini batch size
while θ has not converged do

g← 1
n ∇θ ∑iL( f (x(i);θ),y(i)) (Compute gradient)

θ ← θ −ηg (Update weights)
end

ing rate is a critical hyperparameter in the training process and must be chosen carefully in

order to avoid overfitting. Typical values for η are between 1.0 and 10−6. Choosing a fixed

learning rate can lead to the false belief that the model has already converged. Therefore, it

is useful to gradually decrease the learning rate over time.

Another popular optimization algorithm has been introduced by Kingma and Ba

(Kingma & Ba 2014) called Adam, which stems from adaptive moment estimation. It is

different to SGD as it introduces momentum and an adaptive learning rate in order to find

individual learning rates for each weight parameter. SGD does not consider any of the pre-

vious steps whereas Adam introduces an exponentially decaying average of past gradients.

The use of momentum is desirable in order to avoid getting stuck in a local minimum. Al-

gorithm 2 summarizes the Adam optimization method. The monotonous step size used in

SGD is adapted such that it incorporates the momentum of prior steps, where parameters m

and v are the estimates of the first (mean) and second (the uncentered variance) momentum

of the gradients respectively. To estimate m and v, Adam makes use of the exponentially

moving averages of the gradient and corrects for initial bias. After incoorporating the bias-

corrected momentum estimates (m̂, v̂) the weight update rule changes to θ ← θ −η
m̂√
v̂+ε

,

where ε is a small constant that prevents division by zero.

The authors of the original work recommended the following values for the parameters

of Adam: η = 10−3, ε = 10−8, β1 = 0.9 and β2 = 0.999. Adam is the optimizer that has

been used in all experiments described in the following chapters. When training a neural

network the optimization is run until a stopping criterium is met. Usually, this stopping

criterium is either a pre-defined number of traning iterations or until convergence of the

loss function, where convergence is typically defined as a sub 5% change in the loss value

over a period of 5000 iterations.
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Algorithm 2: Adam
η = Learning rate
θ = Weights
L = Loss function
n = Mini batch size
β1,β2 ∈ [0;1) = Exponential momentum decay rates
ε = Constant to ensure numerical stability
m← 0 (Initialise 1st momentum)
v← 0 (Initialise 2nd momentum)
t← 0 (Initialise time step)
while θ has not converged do

t← t +1
g← 1

n ∇θ ∑iL( f (x(i);θ),y(i)) (Compute gradient)
m← β1m+(1−β1)g (Update 1st momentum estimate)
v← β2v+(1−β2)g2 (Update 2nd momentum estimate)
m̂← m

(1−β1)
(Correct bias in 1st momentum)

v̂← v
(1−β2)

(Correst bias in 2nd momentum)

θ ← θ −η
m̂√
v̂+ε

(Update weights)

end

1.3.1.1 Backpropagation

Another main component of training neural networks is an algorithm called backpropaga-

tion. It is used to evaluate the gradients used in the aforementioned optimization strategies.

Backpropagation gained popularity in 1986 when David Rumelhart, Geoffrey Hinton, and

Ronald Williams discovered that neural networks can be trained much faster using back-

propagation than with earlier approaches (Rumelhart et al. 1986). Like with many other

algorithms, the methodological idea of backpropagation is encapsulated in its name. The

gradients of the loss function are propagated back through the network using the chain rule

of calculus. This means that the gradients are the change in loss with respect to the net-

work weights, evaluated for the current input. The algorithm aims to compute the partial

derivatives of the loss function with respect to any weight θ and any bias b. Mathematically

speaking, the derivative of the loss function at a distinct point can be described as the rate at

which the loss function is changing its value at this particular point. Neural networks often

consist of many layers with associated weights, and therefore gradients, which is why the

derivative of the loss function must be decomposed in order to determine the rate of change

in every node of the network. Backpropagation is performed until each individual gradient

with respect to weight and bias in the first layer is known. Once all gradients are known,

they can be updated following the optimization strategies described in 1.3.1.
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1.3.2 Convolutional neural networks

To this point, all neural networks described above are fully connected neural networks,

meaning every node in each layer is connected to every neuron in the adjacent layer. The

fully connected nature of such networks can quickly become a computational burden when

working with large data. A typical three channel colour image of size [256,256,3] would

result in [256 × 256 × 3] = 196608 weights per node. Considering that fully connected

neural networks are built out of multiple layers containing many neurons, the number of

weights can easily become unfeasible to handle. In order to address this issue, convolutional

neural networks (CNNs) were introduced that offer a more efficient way of dealing with

large data (LeCun et al. 1989). Such networks make use of convolutional layers instead of

nodes. Convolutional layers perform an operation called “convolution” similar to applying

a filter to an array. Mathematically speaking, a convolution applied to a two-dimensional

image I can be written as

S(i, j) = (K ∗ I)(i, j) = ∑
m

∑
n

I(i−m, j−n)K(m,n) (1.5)

where K(m,n) is a two-dimensional kernel and S(i, j) the resulting feature map. The

idea can be visualized as sliding the kernel along the image I. An element-wise multiplica-

tion between the filter-sized patch of the input and the filter is performed and the multiplica-

tions are summed up into one scalar. This operation is repeated for each image position (i,j).

The filter-sized patch of the input image is also called receptive field. Figure 1.7 illustrates

an example of such a convolutional operation.

The values within the kernel are not fixed and can be adjusted during training simi-

lar to the weights in a fully-connected neural network. A CNN can be build out of many

convolutional layers containing an arbitrary number of filters that each result in a differ-

ent feature map. CNNs follow a hirarchical structure, which means that the abstraction of

learned features increases for layers that are deeper in the network. The first layers learn

simple features such as edges or corners, layers further down the stream learn abstract fea-

ture maps in which the human eye struggles to grasp the logical context. Convolutions are

often followed by pooling layers that serve the purpose of decreasing the number of pa-

rameters while increasing the receptive field. Pooling can also be understood as a means

of downsampling. Figure 1.7 bottom shows an example of a max-pooling operation. A

kernel of size 2 × 2 slides over the image with stride 1. The stride indicates the number of
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Figure 1.7: Top: 2D convolution. An element-wise multiplication between a filter-sized patch of
the input image I and a kernel K is performed and the multiplications are summed up
into one scalar resulting in a feature map S. Bottom: 2D max-pooling. Only the largest
output within a rectangular neighborhood is kept in the feature map.

pixels that the kernel has moved after each feature map computation. In each feature map

computation, represented by the coloured squares, the max function is applied to the values

within the kernel and only the maximum value is kept resulting in feature maps that empha-

size features like edges. Another popular pooling operation is average pooling, where the

average function is applied within the kernel resulting in feature maps that smooth features

like edges. It is important to note that the learning process of CNNs follows the same rules

as fully-connected neural networks. Thus, the optimization strategies including SGD and

Adam, as well as the backpropagation algorithm still apply for CNNs.

1.4 Thesis contribution

The ability to simultaneously acquire PET and MR images has the potential to pioneer

new research and clinical applications especially in cases where information provided by

a PET/CT acquisition is not sufficient. However, until today, PET/MR scanners have not

yet reached the same recognition as PET/CT scanners predominantly due to the inferior

performance of photon attenuation correction methods. A major problem that attenuation

correction methods on PET/MR systems face is the lack of accuracy when reconstructing

bone. This problem arises because air and bone have similar attenuation coefficients in most

standard MR sequences, however, in reality, the two materials attenuate photons with op-
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posite attenuation coefficients. Many groups have tried to solve this problem, especially in

the brain where accurate quantification is especially important. For many years, multi-atlas

propagation methods like Burgos et al. (Burgos et al. 2013) dominated the field due to their

excellent performance and robustness. With the rising popularity of artificial intelligence in

the field of computer sciences, new doors have opened for attenuation correction methods

in medical imaging. Therefore, the first objective of this thesis is to develop a novel method

for PET/MR attenuation correction in the brain that is based on deep learning.

Attenuation correction methods often focus on one particular body region only, for

the most part, the brain. However, it is important to optimize PET/MR systems such that

they are able to image any part of the body. This is of particular interest when acquiring a

whole-body PET/MR image to detect metastases. However, whole-body images are large

and prove to be problematic in deep learning based methods due to a limited GPU memory

budget. Networks only see a limited part of the image and therefore struggle to capture

the contextual information. An additional problem arises when creating a co-registered

database because the patient’s position differs in MR and CT scanners such that registration

algorithms struggle to cope with the alignment of the images. The second objective of

this project is therefore the development of a novel CT synthesis network for whole-body

applications that further incorporates uncertainty estimations as a means of safety.

The most common way to optimize MR to CT deep learning algorithms is to minimize

the error between the synthesized pseudo CT and the corresponding ground truth CT image,

equivalent to minimizing the L2-loss. This objective is often justified by the fact that in cur-

rent clinical practice the gold standard for PET/MR attenuation correction is an additional

CT acquisition that can be linearly rescaled to an attenuation map used in PET reconstruc-

tion. However, L2-losses do not recognize that the main aim of CT synthesis, when used for

PET/MR attenuation correction, is to generate a synthetic CT that, when used as attenuation

map for PET reconstruction, makes the reconstructed PET as close as possible to the gold

standard PET reconstructed with the true CT. Thus, the third objective of this thesis is to

develop a novel deep learning method for MR to CT synthesis that directly minimizes the

PET residuals when the pseudo CT is used for PET reconstruction.

The contributions include:

1. A novel CNN, namely Deep Boosted Regression (DBR), for CT synthesis of the

head. The method was inspired by the success of deep neural networks in the field of
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segmentation such as U-Net (Çiçek et al. 2016) and HighRes3DNet (Li et al. 2017)

as well as Boosting known from classic machine learning (Schapire 1990). CNNs

mimic the structure of the human visual cortex and are able to pick up patterns in the

input image through a number of convolutions in order to make a prediction. Boost-

ing combines several weak learners (here each represented by a CNN) that in their

entirety build a strong learner. Instead of predicting labels like in segmentation, con-

tinuous CT intensities are predicted by the network resulting in what will be referred

to as a pseudo CT (pCT).

2. In order to find the best possible learning conditions for the proposed network and

make it more flexible, the method is tested on multiple MR contrasts. The method is

further extended to be able to take multiple contrasts as input.

3. A second CNN is proposed particularly designed for whole-body CT synthesis. The

network operates at different levels of resolution in order to capture high-level and

low-level features. Additionally, the proposed MultiResunc network models two kinds

of uncertainty. Including uncertainty in the network acts as a measure of safety and

to account for intrinsic noise and misalignment in the data.

4. Finally, a third CNN architecture is introduced following an Imitation Learning strat-

egy so that the CT synthesis process directly includes information about the PET error

when the pseudo CT is used as attenuation map for PET reconstruction.

5. The end-to-end optimization framework is evaluated on an independantly acquired

head dataset to investigate the robustnes of the proposed method. Furthermore the

PET reconstruction accuracy is assessed for 18F-FDG PET images by comparing

the PET image reconstructed with the attenuation map derived from the synthesized

pseudo CT against the reference PET that was reconstructed with the ground truth CT

derived µ-map.

1.5 Thesis organisation

Research in the field of PET attenuation correction can be categorized in five classes:

transmission-, emission-, segmentation-, atlas- and learning-based approaches. The follow-

ing chapter thoroughly reviews the main methods for each category. Chapter 3 addresses

the first steps of tackling the MR to CT image translation task in a deep learning manner
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ranging from pseudo CT synthesis as a classification task to a novel residual learning CNN.

Chapter 4 shows how pseudo CT synthesis results change depending on the MR sequence

that is used as input (T1-, T2- and T1- & T2-weighted MR images). Chapter 5 shows how

the proposed methods that were developed for brain application perform on whole-body

images and presents a novel method that is optimized to deal with the large scale prevalent

in whole-body images. In chapter 6, an end-to-end optimization approach is presented that

questions the use of the traditionalL2-loss when synthesizing pseudo CTs for the purpose of

PET/MR attenuation correction, including an evaluation of the proposed neural network’s

performance on an independently acquired brain dataset. Finally, chapter 7 concludes this

thesis and discusses potential future research directions.





Chapter 2

Attenuation correction for PET/MR

scanners

In the early years of PET imaging, attenuation correction was performed using a rotating

transmission source. However, it is technically difficult to integrate a rotating transmission

source within an MR gantry due to the limited space. When PET/CT scanners were devel-

oped, the attenuation correction method of choice was to derive the attenuation coefficients

from the CT scan using piece-wise linear calibration curves (Burger et al. 2002). How-

ever, MR image intensities are proton density-related and do not provide information about

X-ray attenuation, which is why alternative attenuation correction methods must be devel-

oped to ensure accurate image quantification in PET/MR imaging. Methods for PET/MR

attenuation correction can be categorized into five classes based on the techniques applied

to create µ-maps: transmission-, emission-, segmentation-, atlas- and learning-based ap-

proaches. Within the next chapter, previous work on attenuation correction methods for

PET/MR imaging will be described including an overview of their advantages and disad-

vantages.

2.1 Transmission-based attenuation correction

The first class derives information about the attenuation within the object using an external

transmission source (usually a positron emitter) and directly results in linear attenuation

coefficients at 511 keV. Research within this field mainly focuses on the design of new

transmission sources.

In 1995, Meikle et al. (Meikle et al. 1995) introduced a method to measure and correct

for attenuation in whole-body PET using simultaneous emission and transmission. How-

ever, due to the limited bore size and the strong magnetic field of PET/MR scanners the
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introduction of a rotating 68Ge/Ga rod source in the scanner is difficult. Therefore, it is

essential to develop new transmission sources that can be integrated within the small bore

of the scanner. In 2012, Mollet et al. (Mollet et al. 2012) proposed the use of an annulus

transmission source. Emission and transmission data are acquired simultaneously and can

be separated by using a time-of-flight (TOF) classification approach. In TOF PET systems,

the time difference between two detected annihilation photons is measured, which allows

the annihilation origin to be reduced to a limited range. This results in a decreased spatial

uncertainty and an increased signal-to-noise ratio. In 2014, Mollet et al. (Mollet et al. 2014)

showed in a study including five human PET/MR and CT datasets that sufficient statistics

can be obtained with an annulus-shaped transmission source to derive attenuation maps.

Another method to estimate an attenuation map was proposed in 2014 by Kawaguchi

et al. (Kawaguchi et al. 2014), who used a non-rotational radiation source and a segmented

tissue map. The µ-map was computed using a segmented MR tissue map (bone, air, other

tissue), the partial path length of each tissue and the intensities of attenuated radiation that

were detected from a fixed position. The partial path length was calculated from a virtual

scan and the segmented MR image.

2.2 Emission-based attenuation correction

Emission-based approaches make use of the fact that the PET emission data not only con-

tains information about the activity, but also provides information about the attenuation

within the body. Therefore, these methods aim to calculate both attenuation and activity

coefficients simultaneously.

2.2.1 Joint estimation of emission and attenuation

In 1979, prior to the development of integrated PET/MR systems, Censor et al. (Censor

et al. 1979) presented their work on calculating attenuation and activity concentration co-

efficients simultaneously. Their method is based on a system of non-linear equations that

describes the model of gamma-ray emission. The attenuation and activity coefficients are

then calculated by iteratively refining an initial guess of both. In 1999, Nuyts et al. (Nuyts

et al. 1999) carried on this model by incorporating the Poisson nature of the emission data

and developed an algorithm called maximum-likelihood reconstruction of attenuation and

activity (MLAA). In this method an objective function which is the sum of the likelihood

and an a-priori probability about the attenuation coefficients in the human body is optimized.
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However, it has been shown that without TOF the emission data are not sufficient to derive

enough information about attenuation as the solution of the simultaneous estimation is not

unique (Natterer & Herzog 1992). In 2012, Defrise et al. (Defrise et al. 2012) demonstrated

that a unique solution for attenuation and emission, except for a constant, can be found if

TOF information is available. In the same year, Rezaei et al. (Rezaei et al. 2012a) were able

to show that TOF information can eliminate the problem of cross-talk between attenuation

and activity. However, it is still necessary to include some prior knowledge, as the solution

is only determined up to a scaling constant. In 2014, both Rezaei et al. (Rezaei et al. 2014)

and Defrise et al. (Defrise et al. 2014) proposed to maximize the above objective function

by taking not only the activity image into account, but also the attenuation sinogram, which

is comprised of a set of attenuation correction factors for all lines-of-response (LORs). The

so called maximum likelihood attenuation correction factors (MLACF) algorithm does not

reconstruct the attenuation image, but still requires pre-knowledge about the activity or the

attenuation factors.

2.2.2 Joint estimation using anatomical priors

In 2011, Salomon et al. (Salomon et al. 2011) proposed to incorporate anatomical informa-

tion of the MR into the joint reconstruction of emission and attenuation for TOF PET for

the lung. In this approach the local tracer concentration and the attenuation is iteratively

estimated by using the segmented MR image as anatomical reference. Due to the fact that

no accurate distinction between the different tissue classes is required in the beginning, the

attenuation estimation is initialized by setting the attenuation coefficients in the segmented

MR to the attenuation of water at 511 keV. In 2015, Mehranian and Zaidi (Mehranian &

Zaidi 2015) built on this approach and constrained the MLAA algorithm to only estimate

lung linear attenuation coefficients (LACs) in the segmented MR tissue map using a com-

bination of a Gaussian and Markov random field model aiming to derive continuous lung

attenuation coefficients.

2.3 Segmentation-based approaches

Segmentation-based approaches distinguish multiple distinct anatomical regions and allo-

cate a constant pre-defined linear attenuation coefficient to each region. These linear tissue-

dependent attenuation coefficients were empirically defined by the International Commis-

sion on Radiation Units and Measurements in 1989 (Tissue substitutes in radiation dosime-



2.3. Segmentation-based approaches 45

try and measurement 1989). How many regions can be discretely classified depends on

two factors: first, the MR sequence that is used for the image acquisition, and second, the

method that is used to segment those regions. Segmentation-based approaches can further

be divided into two sub-classes depending on whether they ignore information about bone

or include it.

2.3.1 Segmentation ignoring bone

In 1984, Dixon (Dixon 1984) introduced a sequence that was able to distinguish adipose-

based tissue from water-based tissue, due to the fact that the Larmor frequency of protons

slightly differs for the two tissue types. Therefore, water and fat images can be derived by

acquiring MR images at different echo times. In 2009, Martinez-Möller et al. (Martinez-

Möller et al. 2009) segmented the human body into four tissue classes (background, lungs,

fat and soft-tissue) using a 2-point Dixon sequence and by applying a threshold to both

water and fat images to separate soft-tissue and fat from the background. In order to de-

fine the lung region, a connected-component analysis of the region with low MR signal in

the inner part of the body was used. Some misidentified voxels were refined by applying

a morphologic closing filter to the tissue-air image. In 2011, Schulz et al. (Schulz et al.

2011) proposed a method that results in a 3-class tissue segmentation (air, soft-tissue, lung)

and makes use of a T1-weighted MR sequence. Both the outer body contour and the lungs

were extracted using slice-wise region-growing techniques in combination with an automat-

ically determined threshold. In 2013, Chang et al. (Chang et al. 2013) analyzed whether

non-attenuated PET images (NAC-PET) can lead to a positive contribution towards PET at-

tenuation. This method consists of three steps: segmenting the NAC-PET to initialize a first

attenuation map, correcting the raw PET data for attenuation, and refining the segmentation

using the corrected PET data. This iterative process first segments the outer contour of the

body and the lungs before refining the lung segmentation.

2.3.2 Segmentation including bone

The previous described methods however do not allow the detection of bone, which has a

significant impact on the PET quantification (Schleyer et al. 2010). Therefore, significant

effort has been made to develop MR sequences aiming to extract the bone class directly and

assigning a fixed attenuation value to the class.
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2.3.2.1 From a T1-weighted MR sequence

In 1994, already prior to the invention of combined PET/MR systems, Le Goff-Rougetet et

al. (Le Goff-Rougetet et al. 1994) attempted to extract attenuation information from brain

MR images. Aiming to simplify the acquisition protocol and to reduce the dose received

due to the transmission by the patient, this method segments T1-weighted MR images into

bone and soft-tissue classes by using a threshold, morphologic operations and connected

component analysis. In 2003, Zaidi et al. (Zaidi et al. 2003) proposed another segmentation

approach for brain MR data that applies a fuzzy c-means algorithm (FCM) to T1-weighted

spin-echo images in order to segment five tissue classes (air, brain tissue, skull, nasal si-

nuses, scalp). In 2009, Wagenknecht et al. (Wagenknecht et al. 2009) developed a three-step

segmentation method making use of anatomical knowledge of the brain. In the first step,

four classes (grey and white matter, cerebrospinal fluid, adipose tissue, and background)

were distinguished using a neural network-based tissue classification approach. Secondly,

the brain region was separated from the extracerebral region and the extracerebral region

was segmented using a knowledge-based approach. Finally, the extracerebral region was

segmented into multiple regions (brain tissue, extracerebral soft tissue, bone, mastoid pro-

cess, and (para)nasal cavities). In 2013, Yang and Fei (Yang & Fei 2013) presented a skull

segmentation method for T1-weighted MR images, in which they used a multi-scale bilat-

eral filtering scheme to process the MR sinogram data in the Radon space.

2.3.2.2 From T1-weighted and Dixon sequences

In 2014, Anazodo et al. (Anazodo et al. 2014) combined the attenuation map acquired

using a standard MR Dixon sequence for the brain with a bone mask that was generated

using individual T1-weighted MR data with segmentation tools in SPM8 (http://www.

fil.ion.ucl.ac.uk) and ICBM Tissue Probabilistic Atlases (http://www.loni.

usc.edu/ICBM/).

2.3.2.3 From UTE sequences

The Dixon-based and other standard MR sequences do not allow the distinction between air

and bone due to their low signal intensity. However, Ultrashort Echo Time (UTE) sequences

are able to visualize cortical bone despite its very short T2 relaxation time (Catana et al.

2010). In 2010, UTE images were used by Keereman et al. (Keereman et al. 2010) as an

input to their segmentation strategy. They acquired two UTE images at different echo times

(TE) that only differed in the bone signal. Using the inverse of the T2* relaxation time

http://www.fil.ion.ucl.ac.uk
http://www.fil.ion.ucl.ac.uk
http://www.loni.usc.edu/ICBM/
http://www.loni.usc.edu/ICBM/
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(R2* = lnUT E1−lnUT E2
T E2−T E1

) they were able to distinguish between cortical bone and soft-tissue.

However, it is not as simple to differentiate soft-tissue and air due to possible artifacts and

noise in the UTE images. A binary air mask of the first UTE image helped to overcome this

issue. This method was further improved in 2014 by Aitken et al. (Aitken et al. 2014), who

corrected the UTE image correcting for Eddy current artefacts, and in 2015 by Capello et

al., who refined the R2* map segmentation.

2.3.2.4 From UTE and Dixon sequences

In 2012, Berker et al. (Berker et al. 2012) combined the advantages of both the Dixon and

UTE sequences and incorporated cortical bone segmentation and water-fat decomposition.

Several combinations of echoes are used to segment cortical bone, on the one hand, and

separate fat and water signals, on the other hand. A predefined attenuation coefficient was

assigned to the segmented bone region whereas the attenuation coefficients for each mixed

water-fat voxel was calculated from the relative water fat-fraction. Hsu et al. (Hsu et al.

2013) and Su et al. (Su et al. 2015) later built on this idea by using a FCM algorithm to

either segment a set of MR images or a single UTE-mDixon image.

2.3.3 Segmentation methods with subject-specific bone attenuation coeffi-

cients

Assigning predefined linear attenuation coefficients to different tissue classes, as presented

in the previous section, can limit their accuracy due to the variability within the attenuating

tissue. In 2015, Juttukonda et al. (Juttukonda et al. 2015) overcame this problem by thresh-

olding R2*, fat, water and UTE images in order to segment bone, fat, soft-tissue and air.

Three classes (air, fat and soft-tissue) were assigned to predefined LACs whereas segmented

bone tissue was converted to attenuation values with the help of a regression model between

the R2* values and bone density. Ladefoget et al. (Ladefoged et al. 2015) based their ap-

proach on the same sequences, but used a different fitting function for their model. They

further added a regional mask that was defined on an atlas in their approach to separately

treat complex areas with mixed air and tissue.

2.4 Atlas-based approaches

Atlas-based attenuation correction methods predict attenuation coefficients on a continuous

scale by deforming an anatomical model or dataset to match the subjects anatomy using

non-rigid registration. These methods usually require a number of MR/CT datasets that
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form the atlas. In general, atlas-based approaches allow for the prediction of bone tissue

without additional UTE imaging. Within the last ten years, several research groups focused

on the development of single- and multi-atlas-based approaches.

2.4.1 Single atlas approaches

In 2007, Kops and Herzog (Kops & Herzog 2007) created an attenuation template of the

brain by averaging multiple co-registered PET transmission scans before co-registering the

associated MR template to the patient’s MR image, resulting in a µ-map for PET AC. In

2010, Schreibmann et al. (Schreibmann et al. 2010) developed a multi-modality optical

flow deformable model that co-registered a single brain CT to the target patients MR im-

age resulting in a pseudo CT for PET AC. In 2012, Dowling et al. (Dowling et al. 2012)

used a whole-pelvis MR atlas generated by manually-delineated MR scans to create subject-

specific pseudo CTs. They first registered the MR atlas to the patient’s MR before trans-

forming the corresponding pseudo CT, that is in the same space as the MR atlas, using

the same transformation matrix. In 2014, Izquierdo-Garcia et al. (Izquierdo-Garcia et al.

2014) used the SPM8 software to create attenuation maps based on MR and CT atlases.

The atlases were created by segmenting MR images into six tissue classes and non-rigidly

aligning the tissue maps before transferring the same transformation to the corresponding

CT images. Pseudo CTs were generated by segmenting the subject’s MR into the same

six tissue classes and non-rigidly registering the tissue map to the MR atlas followed by

applying the inverse transformation to the CT atlas.

2.4.2 Multi-atlas approaches

In contrast to the previously described methods, multi-atlas based approaches rely on a

database of CT and MR images instead of a single atlas. Using multiple atlases aims to

tackle the problem of the strong dependency of the resulting AC map on an accurate map-

ping between atlas and subject as well as on the representativeness of the single atlas (e.g.

anatomical abnormalities). In order to build the database each CT and MR pair in the meth-

ods reported below is affinely aligned. The generation of the pseudo CT is then based on

a non-rigid registration of all MR images within the database to the subject’s MR. All CT

images in the database are transferred to the same space by applying the resulting displace-

ment fields to the corresponding CT images before combining the deformed CT images to

the final target CT. There are several methods to fuse the deformed CT images. In 2013,

Burgos et al. (Burgos et al. 2013) introduced a multi-atlas information propagation scheme
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to synthesize pseudo CTs. They register all MR images in the database to the target MR

image before all corresponding CTs are mapped into the same space using the same trans-

formation. A local image similarity measure (LIS) between the mapped and target MR

images is then converted into weights to generate the synthetic CT. In 2015, Sjölund et

al. (Sjölund et al. 2015) generated the pseudo CT by iteratively registering them to their

mean. They were able to show that the consistency of the target CT can be improved by

taking the voxelwise median of the deformed CT images. In the same year Merida et al.

(Mérida et al. 2015) proposed a maximum probability (MaxProb) method that analyzes the

probability of each voxel belonging to a certain tissue class that has been defined by in-

tensity thresholding. The pseudo CT was generated by calculating the average intensities

on a voxelwise level of the atlases belonging to the maximum probability class. In 2017, a

multi-centre study Ladefoged et al. (2017) has shown that multi-atlas propagation methods

(Burgos et al. 2014) outperform methods that exploit emission data (Salomon et al. (2010),

Rezaei et al. (2012b)) or use assigned tissue classes (Martinez-Möller et al. (2009), Catana

et al. (2010)) in order to correct for photon attenuation.

2.5 Patch-based approaches

A potential problem of the multi-atlas methods is that they rely on non-rigid registration,

which is time-consuming and can be unstable for subjects that do not resemble the subjects

in the database, e.g., due to surgery or anatomical abnormalities. Patch-based methods try

to circumvent this since atlases and target images do not have to be accurately aligned.

They incorporate information of the neighboring voxels that surround a voxel of interest,

which could improve finding similarities between both. In 2014, Roy et al. (Roy et al.

2014) presented a patch-based approach using intensity normalized whole head dual UTE

images to generate pseudo CTs. The images are partitioned into patches and co-registered

to a CT from the same subject. Patches of the reference and target MR images are matched

and corresponding patches from the reference CT are combined via a Bayesian framework

to create the synthetic CT image following the assumption that similar intensities in target

and reference MR patches originate from the same distribution of tissues. Therefore, the

corresponding reference CT patch is an approximation of the target CT patch. In 2015,

Andreasen et al. (Andreasen et al. 2015) defined patches for all voxels from co-registered

MR and CT brain data resulting in a database of MR and CT patches. In order to generate

the pseudo CT, patches from the target MR image were extracted and an intensity-based
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nearest neighbor search was run in the patch database. The synthetic CT image was then

computed by identifying the K patches minimizing the squared L2-norm between the target

and reference MR patches.

2.6 Machine learning approaches

Learning-based approaches are based on a training dataset from which the relationship be-

tween MR and CT images is learned and then applied to a target MR to synthesize a pseudo

CT. These methods can generally be distinguished between supervised and unsupervised

methods. In supervised methods, paired data is available, which in the context of MR to CT

synthesis means MR and CT images that have been co-registered. In unsupervised methods,

on the contrary, the available data does not need to be co-registered in order to generate a

pseudo CT from a given MR image.

2.6.1 Supervised methods

In 2011, Johansson et al. (Johansson et al. 2011) proposed a method that uses a Gaussian

mixture regression model to link the MR and CT image intensities of the training dataset.

The initial method disregarded spatial information and as a result the quality of the pseudo

CT was modest. As such, they later extended this method to include the spatial position

of each voxel inside the head. In 2016, Huynh et al. (Huynh et al. 2016) presented a

method that uses a structured random forest and auto-context model to estimate CT images.

The method is also based on a training dataset of co-registered T1-weighted MR and CT

images. The first step of the training partitions each MR image into a set of patches before

a structured random forest is applied to directly estimate the corresponding CT patch. This

initial set of predictions was refined using an auto-context model. The final pseudo CT is

then generated by combining all predicted CT patches.

Since 2016, there has been a shift of emphasis in the field of PET/MR attenuation cor-

rection towards deep learning approaches that have proved to be a powerful tool in the MR

to CT image translation outperforming state-of-the-art multi-atlas-based methods (Burgos

et al. 2013). Image synthesis can be considered as a regression problem, where for every

input pixel a corresponding output pixel is required. Many deep learning methods employ

convolutional neural networks (CNN) that are able to capture the contextual information

between two image domains (as between MR and CT) in order to translate one possible

representation of an image into another. One of the first approaches was introduced by Nie
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et al. (Nie et al. 2016) and makes use of a 3D deep learning-based method to predict a

pseudo CT. The relationship between MR and CT images is learned by a 3D fully convo-

lutional neural network (FCN) that preserves the neighborhood information better than a

CNN. Differing to a CNN, the proposed FCN predicts the pseudo CT in a patch-by-patch

manner. Each patch is fed into the network that consists of three 3D convolutional lay-

ers constructing 32, 64 and 32 feature maps respectively. The output layer then generates

pseudo CT image patches by applying just one filter of size 3×3×3, which are combined

to create the entire pseudo CT image. They tested their network on a pelvic dataset and were

able to show that it outperforms other three state-of-the-art methods (atlas-based method,

structured random forest-based method, structured random forest and auto-context model).

In 2017, Han presented a 2D deep CNN that directly learns a mapping function to translate a

2D MR image slice into its corresponding 2D CT image slice (Han 2017) closely following

the U-Net architecture, which has gained recognition in the deep learning community due

to its strong performance in the field of image segmentation Ronneberger et al. (2015). The

original U-Net architecture can be seen in Fig. 2.1. Nie et al. further proposed a pseudo CT

synthesis method that utilizes a fully-connected neural network with an adversarial learning

strategy (Nie et al. 2018). A second network discriminates the output of the fully-connected

network and can urge it to look as similar to the real CT as possible. In 2018, Emami et al.

introduced a generative adversarial synthesis framework that uses a deep residual network

as image generator (Emami et al. 2018).

Figure 2.1: Original 3D U-Net architecture from Çiçek et al. (Çiçek et al. 2016).
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2.6.2 Unsupervised methods

With the emergence of the cycleGAN in 2017 (Zhu et al. 2017), a large amount of work

has been conducted in the field of unsupervised pseudo CT synthesis. Unsupervised learn-

ing scenarios disregard the need of paired data and the ill-posed L2-loss, commonly used

in supervised MR to CT synthesis. A generative adversarial network (GAN) is a machine

learning framework that consists of a generator and a discriminator. The generator gener-

ates new data with the same statistics as the training data from an initial estimate, i.e. noise.

The discriminator aims to distinguish between real (from the domain) or fake (generated)

images. The cycleGAN builds on the GAN framework idea. It consists of two pairs of

simultaneously trained generators and discriminators. The first generator uses images from

domain A to translate them into domain B, and the second generator works vice versa (i.e.

images are translated from domain B into domain A). Additionally, the framework makes

use of a concept called cycle consistency, which means that the first generator translates

the input image A into an ouput image B that when used as input to the second generator

generates the original image A. Wolterink et al. (Wolterink et al. 2017) presented a CNN in

their work that minimizes an adversarial loss to learn a mapping fuction between MR and

CT. This adversarial loss encourages the pseudo CT to be indistinguishable from the ground

truth CT. An additional CNN aims to assure that the pseudo CT corresponds to the actual

input MR image. However, using a cycleGAN alone for pseudo CT synthesis does not au-

tomatically ensure that pseudo CT and ground truth CT are structurally consistent. This

means that the reconstructed MR image is almost identical to the input MR, however, the

pseudo CT is significantly different from the ground truth CT. Therefore Yang et al. (Yang

et al. 2018) proposed a cycleGAN containing structural constraints by minimizing an ad-

ditional structural consistency loss. These methods have demonstrated that it is possible to

generate pseudo CT images from unpaired MR data of the brain. However, there have been

multiple other approaches to synthesize pseudo CT images of other body parts. Zhang et al.

presented a cycle-consistency adversarial network for cardiovascular pseudo CT volumes

(Zhang et al. 2018), Huo et al. proposed a network for MR to CT synthesis and segmen-

tation of the spleen (Huo et al. 2018) and Hiasa et al. added a gradient consistency loss to

the original cycleGAN in order to synthesize pseudo CT images from musculoskeletal MR

images (Hiasa et al. 2018).
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2.7 Overview of advantages and disadvantages of various AC

methods

Although many different approaches have been proposed, the field of PET/MR attenuation

correction remains an important topic of discussion in medical imaging research. To sum-

marize what work has been done so far, a list of the advantages and disadvantages of the

various methods for PET/MR attenuation correction is shown in Table 2.1.

2.8 Discussion

Transmission-based methods were the first to be developed for the purpose of PET atten-

uation correction and are a promising approach due to their ability to directly result in a

map of linear attenuation coefficients. For a long time, attenuation maps based on trans-

mission scans have been considered as the gold standard, however, they were developed

long before simultaneous PET/MR systems, which is why in practice it is difficult, if not

impossible, to implement a rotating transmission source inside the small bore of a PET/MR

scanner. Furthermore, the radiation dose received by the patient would increase, which is

counterintuitive when thinking of the benefit of the reduced radiation of a PET/MR scanner.

Emission-based attenuation correction methods have also shown promising results

over the last years, benefiting from the fact that no task-specific MR sequence needs to

be acquired. Studies have shown promising results, but require more validation on patients

in order to fully assess their capabilities to accurately correct for attenuation in clinical PET

data. Moreover, these methods are limited as most approaches require TOF information,

which is not available in all PET/MR systems currently on the market, thus making those

methods clinically less attractive.

Segmentation-based approaches distinguish multiple distinct anatomical regions and

allocate a pre-defined linear attenuation coefficient to each region. The success of these

methods therefore relies on the quality of the MR acquisition. Segmentation-based meth-

ods were the first to be implemented in commercial PET/MR scanners, however, until this

point, they struggle to provide sufficient information about bone, which is essential when

correcting for PET attenuation. Bone is the tissue class that attenuates photons the most,

wherefore small changes in misclassified bone tissue can result in large quantification errors

in the reconstructed PET image. In addition, the attenuation coefficients assigned to each

tissue are fixed and therefore further limit the accuracy when used for attenuation correction.
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Method Advantages Disadvantages

Transmission-based (PET) Results directly in LACs;
determination of LACs of
any object in FOV; no coil
template needed

Increased dose and addi-
tional source; implemen-
tation of rotating source
difficult

Emission-based (PET) No need for task-specific
MR sequence

Limited to tracers with
distributed uptake; cur-
rently requires TOF infor-
mation

Segmentation-based Fast; individual patient
data; reference data not
needed

Robustness depends on
anatomical assumptions;
additional acquisition
time for bone signal;
fixed AC value per tissue,
so inadequate for the
lung; truncated FOV

Atlas-based Continuous pseudo CT
values based on popula-
tion

Morphological abnormal-
ities; multiple non-rigid
registrations; truncated
FOV; difficult for whole-
body

Patch-based Do not require an accurate
alignment between atlases
and target; no non-rigid
registration needed

Carefully designed patch
search to guarantee rea-
sonable run time

Learning-based Fast as no non-rigid reg-
istration needed; ability
to capture complex non-
linear mapping from input
to output space

Need of images with
sufficient contrast to
distinguish between air,
bone, and soft-tissues;
highly dependent on size
of database; computation-
ally expensive to train the
model

Table 2.1: Advantages and disadvantages of approaches for attenuation correction in PET/MR.
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Atlas-based methods are able to generate continuous pseudo CT values and have shown

state-of-the-art results for many years. However, given the multiple non-rigid registrations

often needed in such methods, they tend to be slow. Moreover, they are limited to anatomical

features present in the atlas database and thus not able to model any anatomical abnormali-

ties. This can be particularly concerning in clinical practice where PET/MR is often used as

part of oncological examinations where abnormalities are expected. Inaccurate PET recon-

structions could potentially lead to missing crucial information such as metastatic activity.

Due to their state-of-the-art performance a multi-atlas propagation method was chosen for

comparison in this thesis for experiments performed on the skull. Since it is not inconse-

quential to generate a perfectly co-registered database for such methods, experiments on the

full body (see chapter 5) were only compared to other deep learning-based methods.

While a lot of progress has been made in the field of PET/MR attenuation correction,

no universal method has been established that is robust enough to be routinely used in clin-

ical practice. Often, patients present unique anatomical abnormalities that state-of-the-art

methods like multi-atlas propagation methods are not able to grasp. In the case of neu-

rological studies, for example, the resulting imperfect attenuation correction can lead to a

strong bias in the reconstructed PET distribution, which can result in a wrong diagnosis.

Therefore, it is essential to develop new methods to ensure accurate attenuation correction

of PET/MR data in the brain. While the progress in PET/MR attenuation correction has

been significant in recent years, there has been little progress in whole-body PET/MR ap-

plications. However, whole-body PET/MR imaging has a promising future ahead, e.g. in

the field of oncology, where accurately reconstructed whole-body PET images are needed

to detect and monitor metastatic activity.

Some groups have proposed to directly synthesize attenuation corrected PET images

from MR images directly circumventing the interim step of synthesizing a pseudo CT im-

age. Sikka et al. adapt the original 3D U-Net architecture to a global and non-linear cross-

modal approach that estimates PET images from MR images directly (Sikka et al. 2018).

Hwang et al. combine the traditional maximum-likelihood reconstruction of activity and

attenuation (MLAA) method (Rezaei et al. 2012b) with deep learning in order to over-

come the limitations of MLAA (Hwang et al. 2018). Yaakub et al. propose a method to

synthesize pseudo-normal PET images from MR images in a generative manner in order

to identify regions of hypometabolism in PET images of epilepsy patients (Yaakub et al.
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2019). However, a general difficulty that direct MR to PET synthesis methods face is the

fact that the two imaging modalities depict inherently different information: MR describes

anatomical information whereas PET is a functional imaging technique. Additionally, PET

reconstruction depends on the dose of the injected tracer that is taken into account in the re-

construction process as a parameter. While both MR and CT images are also very different

in the information that they provide, they do both descibe anatomical features, thus making

the translation task easier.

The MR to CT translation task is not only crucial for attenuation correction, but also

plays an important role in radiotherapy treatment planning. Radiotherapy aims to deliver

an optimal dose of radiation to the cancerous area while minimizing the dose received by

healthy tissues. Knowledge about different tissue attnuation properties is necessary to de-

termine the optimal dose distribution for attacking the cancerous area. Therefore, in clinical

practice, a CT scan is acquired. However, the soft tissue contrast in CT images is not strong,

which can cause large variations in segmenting the tumor, both in the brain and in the en-

tire body. It is desirable to exploit the excellent soft-tissue contrast from MR images in

order to be able to delineate tumors and organs at risk more accurately. Similarly to the

problems present in MRAC, tissue attenuation coefficients are not easily estimated from

MR images. Therefore, many groups have attempted to synthetically create CT images

from MR images specifically for radiotherapy. In 2014, Korhonen et al. (Korhonen et al.

2014) presented a method where they manually segmented bones from the MR image be-

fore converting the image into HUs. Jonsson et al. (Jonsson et al. 2015) proposed a method

where they utilize a Gaussian mixture regression model that links MR and CT intensities.

Common approaches to generate a CT from an MR image in the field of MR only radiother-

apy planning are atlas-based. Earlier methods rely on a single atlas (Dowling et al. 2012),

while newer methods make use of a database of multiple atlases (Sjölund et al. 2015, Gudur

et al. 2014, Uh et al. 2014). They mainly differ in the fusing technique applied to the reg-

istered CT images (voxelwise median, probabilistic Bayesian framework, arithmetic mean

process, pattern recognition with Gaussian process). More recently, deep learning has been

employed for MR-only radiotherapy treatment planning. While some groups used fully

connected neural networks (Zhao et al. 2018), others attempted to solve the problem with

GANs (Maspero et al. 2018). The field of MRAC and MR-only radiotherapy are similar

in many aspects, potentially benefitting from each other, while aiming to improve different
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applications. In radiotherapy MR and CT images of the same patient are acquired routinely

for dose estimation, which could be a potential data source for deep learning-based MRAC

methods that rely on a large amount of data for training. Vice versa, deep learning-based

CT synthesis methods have the potential to improve radiotherapy treatment planning such

that an additional CT acquisition becomes redundant.

Since this project’s inception in 2016, only a few attempts have been made to solve

the PET attenuation correction task with deep learning methods. The majority of them fo-

cused on the skull, some attempted to synthesize pseudo CT images of the pelvis, however,

no group had attempted to synthesize whole-body pseudo CT images. At this point, deep

learning-based methods had gained a lot of popularity in the field of computer science,

showing promising performance in the fields of image classification, segmentation and syn-

thesis. This led to the project aim of developing deep learning methods for medical image

synthesis.



Chapter 3

Deep learning in medical imaging

The first contribution to this work on PET/MR attenuation correction is a CNN that makes

use of the idea of an algorithm called Boosting known from classic machine learning

(Schapire 1990). The idea of the boosting algorithm is to combine a sequence of weak

learners that in their entirety build a strong learner. This way, each model aims to com-

pensate the weaknesses of its predecessors. In the context of neural networks this means

concatenating multiple CNNs, each representing a weak learner, that when trained all to-

gether build a strong learner that predicts a more accurate pseudo CT. The method can

also be seen as a form of residual learning, where the residuals of an initial prediction are

minimized by additional learners further down the stream. The development of the final

method followed multiple steps starting with predicting pseudo CT images as a classifi-

cation problem through the regression of continuous voxel values via direct and recursive

image synthesis to the final algorithm called Deep Boosted Regression (DBR) published in

(Kläser et al. 2018).

All contributions to this thesis have been implemented and carried out using NiftyNet,

which is a TensorFlow-based deep learning framework tailored for medical imaging (Gib-

son et al. 2018).

3.1 Experimental dataset

The experimental dataset used in this chapter consisted of 20 pairs of brain MR, CT and 18F-

FDG PET images. All 20 subjects were scanned on a 3T Siemens Magneton Trio scanner

and T1-weighted (TE/TR/TI,2.9 ms/2200 ms/900 ms; flip angle 10◦; voxel size 1.1×1.1×

1.1 mm3) and T2-weighted (TE/TR, 401 ms/3200 ms; flip angle 120◦; voxel size 1.1×

1.1×1.1 mm3) volumetric scans were acquired. PET/CT imaging was performed on a GE

Discovery ST PET/CT scanner providing CT images (voxel size 0.586×0.586×2.5 mm3,
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120 kVp, 300mA) and reconstructed PET images (voxel size 1.95×1.95×3.27 mm3). For

each subject MRs and CTs were affinely aligned using a symmetric approach (Modat et al.

2014) based on Ourselin et al. (Ourselin et al. 2001) followed by a fully affine registration

in order to compensate for possible gradient drift in the MR images. A very low degree of

freedom non-rigid deformation (i.e. low resolution control point grid with spacing of 7.5

mm along each axis) was performed afterwards in order to compensate for different neck

positioning before implementing a second non-linear registration, using a cubic B-spline

with normalized mutual information (Modat et al. 2010). Each volume had 301×301×153

voxels with a voxel size of approximately 1 mm3. Both CT and MR images were rescaled

to be between 0 and 1 for increased training stability. For evaluation purposes two masks

were extracted, a head mask from the CT and a brain mask from the T1-weighted MR

image. The head mask was generated by thresholding the CT at -500 HU thus excluding

the background from the performance metric analysis. In order to evaluate the performance

of the pseudo CT when used for PET attenuation correction, an additional brain mask was

extracted from the T1-weighted MR image to exploit the radionuclide uptake in the brain

region only. Registration quality was carefully assessed manually by multiple specialists

for each subject. The success of the supervised learning methods highly depends on the

registration quality of the MR/CT database. Even small inaccuracies in the registration

can influence the training and subsequently lead to underestimation of the attenuation map,

wherefore careful registration quality assessment is essential. The data were split into 70%

training, 10% validation and 20% testing data for all methods.

3.2 CT image synthesis as a segmentation problem

At the beginning of this project in 2016, few attempts had been made to synthesize CT

from MR images using deep learning. The development of the first published work (Kläser

et al. 2018) followed several stages. The first approach used in order to synthesize a pseudo

CT from an MR image was to consider the image-to-image translation task as a multi-class

segmentation problem instead of a regression task that predicts CT images in a continuous

scale. Therefore, all CT images have been transformed into label images containing 26

classes. In order to generate these label CTs, the original continuous CTs were linearly

rescaled to be in a range of 0 and 26. Afterwards all values within the rescaled continuous

CTs were discretized. An example can be seen in Fig. 3.1. The label CT consisting of 26

classes is pictured on the left whereas the original CT image with continuous values in the
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ContinuousDiscrete

Figure 3.1: Discrete CT with 26 classes (left) and CT with continuous pixel values (right) and cor-
responding histograms (bottom). The main difference is pointed out by arrows.

range of 0 to 26 HU can be seen on the right hand side of the figure. It is evident that 26

classes are sufficient to approximate a realistic looking CT. The corresponding histograms

are shown at the bottom of Fig. 3.1. The majority of pixel values within the continuous CT

are in a range between 0 and 1 and 7 and 10 with few outliers outside these ranges. Looking

at the histogram of the discrete CT labels, the biggest difference can be observed in the

background as the probability of a pixel to be closer to 1 is higher than to be 0. The majority

of bone is classified as a discrete label of value 7, which correlates with the distribution of

the real CT values, however, the peak for the discrete CT is sharper explaining a less smooth

image. The arrows show an obvious difference between the discrete and the continuous CT

images.

3.2.1 Implementation details

In order to train the proposed multi-class segmentation problem, a high resolution compact

network architecture known as HighRes3DNet presented by Li et al. (Li et al. 2017) was

adopted. This network was introduced for the purpose of volumetric image segmentation

and is very efficient in learning 3D representation from large-scale image data. It consists

of 20 convolutional layers with kernel size 3×3×3 that encode low-level image features.
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Figure 3.2: Original HighRes3DNet architecture from Li et al. (2017). Two crucial building blocks
of this network are a) dilated convolutions with gradually increasing dilation factors in
order to capture features at multiple scales and b) residual connections enabling identity
mapping such that features from different scales can be connected. The network ensures
that the spatial resolution of the input image is kept the same throughout the network.

Mid- and high-level image features are captured within the following convolutional layers

with kernels that are dilated by a factor of two and four respectively, preserving the spatial

resolution of the input image throughout the network. Convolutional layers are grouped

into pairs of two, and residual connections are added that enable an identity mapping so that

both parameters and computational cost are minimal as shown by He et al. (He et al. 2015a).

HighRes3DNet learns 3D representations of the data that are then mapped to the domain of

CT images through a series of 1D convolutions with non-linear activation functions. The

model can be trained end-to-end to directly generate the 3D pseudo CT images. The original

network architecture, referred to as HighRes3DNet, can be seen in Fig. 3.2.

The network was trained with the original proposed settings, also referred to as hyper-

parameters. In the scope of this thesis, the HighRes3DNet architecture has been adapted

for the purpose of synthesizing pseudo CT images from MR images, however, the base

structure was kept the same.

3.3 CT image synthesis using HighRes3DNet

Attempting to synthesize pseudo CT images as part of a multi-class segmentation task pro-

vides a realistically looking approximation of a CT image, however, it is desirable to gener-

ate pseudo CT images that result in an attenuation map with continuous attenuation factors.

Therefore, the initial method must be adapted in order to solve a pixel-wise regression prob-

lem instead of a multi-class segmentation problem. HighRes3DNet ensures that the spatial

resolution of the input image is kept constant throughout the network, which proves useful
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Figure 3.3: Initial network architecture for solving the CT Image synthesis task as a regression
problem. The MR is fed into a network Nu and a pseudo CT (pCT) is generated by
minimizing an L2-loss (here: RMSE) between real CT and pCT. Nu can be any network
architecture suitable for image-to-image translation. Here, HighRes3DNet is used.

when regressing corresponding MR and CT patches. In order to use HighRes3DNet for

direct image-to-image translation, multiple hyperparameters were optimized as well as the

image value range of input and output images (see section 3.1). Figure 3.3 shows a simpli-

fied network diagram for synthesizing pseudo CT images with continuous pixel values from

MR images. In the scope of this thesis, direct pseudo CT synthesis with HighRes3DNet is

used as the baseline for all experiments.

3.3.1 Implementation details

The HighRes3DNet was trained on images that were rescaled to values between 0 and 1

and a Parametric ReLU activation (PReLu) was used that proved to be more robust during

training. PReLUs have a small positive slope for negative values, instead of altogether

zero as in the traditional ReLU. The slope is a trainable variable itself such that it can be

learned along other network parameters. PReLUs have shown to improve network training

at nearly zero extra computational cost (He et al. 2015b). In the training stage, the data

were randomly sampled into subvolumes of size 56×56×56 pixels due to a limited GPU

memory budget. The subvolumes were then augmented by randomly rotating each of the

three orthogonal planes on the fly by an angle in the interval of [-10◦,10◦]. The MR data

was likewise randomly scaled by a factor between 0.9 and 1.1. Rotation and scaling are

known methods to augment data, a commonly used way to artifically increase the size of

the training dataset when only a small amount of data is available. Patches were sampled

uniformly from the input images. The network was trained from scratch on a single NVIDIA

Titan X GPU using the Adam optimization method. The model was trained with a learning

rate of 0.001 until convergence, where convergence is defined as a sub 5% change in the

loss value over a period of 5000 iterations. In this work, the root mean square error (RMSE)

was chosen for loss minimization, a process that tries to bring the residuals to the smallest

possible value. The RMSE is often referred to as a form of L2-loss, where the L2-norm is a

measure of distance between two vectors, equivalent to the residuals. The RMSE is defined
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Figure 3.4: Example pseudo CT generated with HighRes3DNet only and corresponding error along-
side input T1- and T2-weighted MR images and ground truth CT.

as the square root of the mean square of the error (y− ŷ)

RMSE =

√
1
n

n

∑
i=1

(yi− ŷi)2. (3.1)

3.3.2 Results

Figure 3.4 shows an example pseudo CT and the corresponding residuals when generated

with HighRes3DNet on the hold-out test set. It can be seen that the pseudo CT visually

looks similar to the ground truth CT. The main source of error comes from an intensity

underestimation within the skull and an overestimation in the nasal cavities, which is equiv-

alent to assigning any intensity other than air (-1024HU).

3.4 Recursive CT image synthesis
In order to improve the performance of the previous presented network, which only uses

MR input images to output pseudo CTs, a recursive network architecture was introduced

and can be seen in Fig. 3.5.

The objective is to simplify the training by also inputting the previous generated pseudo

CTs. At first, the network generates an initial pseudo CT containing a relatively high error

Figure 3.5: Recursive network architecture for pseudo CT synthesis. MR images are fed into a net-
work Nu and an initial pseudo CT (pCT) is synthesized by minimizing an L2-loss (here:
RMSE) between pCT and real CT. The pCT is then fed back into the same network
in order to synthesize an improved version pCT*, also by minimizing another L2-loss
between pCT* and real CT.
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rate just like the framework presented in the previous section 3.3. In order to reduce this

error, the initial pseudo CT is fed back into the same network. The network then optimizes

its weights based not only on the MR images, but also on the previous generated pseudo

CTs. Since MR and CT images vary quite differently in the information they contain, it is

much easier for the network to learn the context between images of the same modality, the

initial pseudo CT can be seen as a prior for the network. Therefore the network minimizes

two L2-losses: 1) the error between initial pCT and true CT and 2) the loss between true CT

and an updated version of the pCT (denoted as pCT*) that was corrected for its residuals.

3.5 Deep Boosted Regression

Up to this point, all work has been focused on adapting existing methods for the application

of MR to CT synthesis. These stepping stones led to the first main contribution to this

thesis, namely Deep Boosted Regression (DBR), presented in (Kläser et al. 2018). The

method also utilizes the HighRes3DNet as it has shown to generate realistic pseudo CT

images while having an efficient parameter count and large receptive field.

The aim of the proposed image synthesis approach is to find a mapping from the do-

main of T1- and T2-weighted MR input images to the domain of CT images. This mapping

can be formulated as

RT1,T2 → RCT ,

which is a mapping from y ←[ f (x), where f is a function that maps input x ∈

RT1,T2 to y ∈ RCT . This mapping function is highly nonlinear, and can be approx-

imated by a composition of simpler functions with parameters φ , of the form ỹ =

f (n)( f (n−1)(...( f (2)( f (1)(x,φ1),φ2), ...),φn−1),φn). In a supervised learning context, these

parameters φ are determined by minimizing a loss function that aims to minimize the

residuals between the predicted CT, ỹ, and the true CT, y,

L2 = ||y− ỹ||2.

However, the large number of functions and parameters φ creates computational and

optimization challenges. To avoid this, the problem is reformulated as a boosting model,

whereby the output of each function f (n) aims to approximate y. If ỹ1 = f (1)(x,φ1), then

subsequent functions can be seen as a form of corrective learning, as ỹ2 = f (2)(ỹ1,x,φ2).
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Thus, the model above can be rewritten as

ỹ = f (n)( f (n−1)(...( f (2)( f (1)(x,φ1),x,φ2), ...),x,φn−1),x,φn).

It is important to note that this corrective learning model introduces more parameters for

every corrective function f , which can result in model overfitting and increases the diffi-

culty of the optimization process. To circumvent this problem, a single corrective function

f (c) is introduced, equivalent to sharing parameters between functions f (2) to f (n). This

corrective function is applied recursively after an initial approximation of ỹ given by f (1).

The recursion can be defined as

ỹk =


f (1)(x | N1) i f k = 1

f (c)(x, ỹk−1 | Nc) i f k > 1

where a function with parameters N1 synthesizes ỹ1 from an input MR image x, at iteration

k = 1. For k > 1, a corrective function, with parameters Nc, maps the previous prediction

ỹk−1 and the input MR images x to a better approximation of the true CT y. Finally, to

ensure that the function’s parameters can be optimized, the loss function is adapted to

Loss =
n

∑
k=1
‖ỹk− y‖2 .

thus providing a form of deep supervision by introducing gradients for each function f .

The functions described above are approximated by two separate CNNs, both follow-

ing the network architecture of HighRes3DNet. The proposed network architecture is il-

lustrated in Fig. 3.6. The first network N1 is trained to synthesize an initial pseudo CT

taking both T1- and T2-weighted MR images as inputs. This first pCT is passed to a second

network Nc that learns the residuals between pCT and the real CT. Therefore the weights

of Nc depend on the output of N1, but not vice versa. An improved pCT is then generated

by adding the residuals to the initially synthesized pCT, which is then again fed back into

Nc in order to update the weights of the network. By sharing the parameters of Nc no addi-

tional parameters are introduced to the network keeping computational complexity within

limits and thus enabling a more generalized model even if only a limited number of training

datasets are available. This recursive cycle can be repeated for k iterations, however, the

number of iterations is limited to avoid overfitting. The proposed DBR approach exploits
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Figure 3.6: Framework of proposed Deep Boosted Regression method. MRs are fed into a first net-
work N1, an initial pseudo CT (pCT) is synthesized by minimizing the loss between pCT
and original CT. Within the space K, residual learning is performed, where the residuals
are added to pCT and fed into a second network Nc, wherefore the ”+” illustrates an
accumulator. A second loss is introduced minimizing the difference between ground
truth CT and updated pCT. The final output is an error boosted pCT (bpCT). The num-
ber of residual learning cycles (K) is limited to avoid overfitting and was determined
empirically (here, K=4).

the advantages of the recursive boosting model and is therefore independent of the choice

of the cost function.

3.5.1 Implementation details

The proposed DBR network was trained on images that were rescaled to values between 0

and 1 and a PReLu was used that proved to be more robust during training. During training,

the data were randomly sampled into subvolumes of size 56× 56× 56 pixels that were

augmented by randomly rotating each of the three orthogonal planes on the fly by an angle

in the interval of [-10◦,10◦]. The MR data was also randomly scaled by a factor between

0.9 and 1.1 and patches were sampled uniformely from the input images. The network

was trained from scratch on a single NVIDIA Titan X GPU using the Adam optimization

method. The model was trained with a learning rate of 0.001 until convergence, where

convergence is defined as a sub 5% change in the loss value over a period of 5000 iterations.

Both networks Nu and Nc minimized the RMSE-loss.

3.5.2 Results

Figure 3.7 demonstrates an example pseudo CT and the corresponding residuals when gen-

erated with the proposed DBR method on the hold-out test set. It can be seen that the

pseudo CT looks similar to the ground truth CT. Similarly to the results of the pseudo CT
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images generated with HighRes3DNet (Fig. 3.4), the main source of error comes from the

bones within the skull. Bone intensities are partly underestimated whereas other parts are

overestimated. In total, the error is lower than when synthesizing pseudo CT images with

HighRes3DNet only.
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Figure 3.7: Example pseudo CT generated with proposed DBR method and corresponding error
alongside input T1- and T2-weighted MR images and ground truth CT.

3.6 Comparison to state-of-the-art CT synthesis

In order to evaluate the performance of the proposed DBR method, the synthesis results

were compared to three baseline methods: a multi-atlas information propagation method, a

popular deep learning network (U-Net) and the HighRes3DNet (see section 3.3) that was

used within the boosting framework.

3.6.1 Multi-atlas propagation

The first method that was used for comparison is a state-of-the-art multi-atlas propagation

method by Burgos et al. (Burgos et al. 2013). The framework is shown in Fig. 3.8. This

method relies on a well-registered database of paired MR and CT images. In order to

generate a pseudo CT from any given MR image, they first register all MR images within

the database to the target MR image. In the subsequent step all corresponding CT images

are mapped into the same space using the same transformation as from database MR image

to target MR image. A local image similarity measure (LIS) between the mapped and target

MR images is then converted into weights to generate the synthetic CT.

An example of the CT synthesis results on the hold-out test set using multi-atlas infor-

mation propagation and the corresponding error can be seen in Fig. 3.9. The method is able

to generate a realistic looking CT with low error within the cranial vault. In general, the

highest error can be observed within the bones of the skull and in the nasal cavities. It can

be seen that the method fails to reconstruct the epidermoid cyst in the subject’s skull.
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Figure 3.8: CT synthesis from a CT-MR database. All MRs within the database are mapped to the
target MR before corresponding CTs are mapped to the target using the same transfor-
mation. A local image similarity measure (LIS) between the mapped and target MR
images is then converted into weights to generate the synthetic CT (Burgos et al. 2014).

3.6.2 U-Net

The second method that was chosen as a baseline is 3D U-Net (Çiçek et al. 2016). The

U-Net architecture gained popularity after reaching superior performance in multiple seg-

mentation tasks. Its architecture can be seen in Fig. 2.1. The U-Net consists of two distinct

paths: an analysis path (downstream) and a synthesis path (upstream). Each of the two

paths consists of four blocks. In the analysis path, each block is built of two 3×3×3 con-

volutions, one ReLu and one 2×2×2 downsampling layer, whereas blocks in the synthesis

path consist of a 2× 2× 2 upsampling layer, two 3× 3× 3 convolutions and one ReLu.

Additionally, skip-connections from layers of equal resolutions are implemented. The last

layer is a 1×1×1 convolution in order to map the features into the number of output labels

(here, into continuous values of the CT image domain).

An example for synthesis results on the hold-out test set is shown in Fig. 3.10. It can

be seen that the network is able to generate a realistic looking pseudo CT image. The main
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Figure 3.9: Example pseudo CT generated with state-of-the-art multi-atlas propagation method and
corresponding error alongside input T1- and T2-weighted MR images and ground truth
CT.
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source of error arises from within the skull region. The network tends to underestimate

the intensities within the skull. Further errors can be observed in the nasal cavities. It is

important to note that the model is able to reconstruct the epidermoid cyst in the subject’s

skull.
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Figure 3.10: Example pseudo CT generated with U-Net and corresponding error alongside input
T1- and T2-weighted MR images and ground truth CT.

3.7 PET reconstruction

The objective of this project is to synthesize pseudo CT images from MR images for

PET/MR attenuation correction. Therefore, it is important to evaluate the effect of the syn-

thesized pseudo CT images when used as attenuation maps for PET reconstruction. All PET

images were reconstructed using NiftyPET, an open-source package for high-throughput

PET image reconstruction (Markiewicz et al. 2018). Access to the raw PET data was not

granted meaning the following simulation was performed to reconstruct PET images (see

Fig. 3.11): firstly, attenuation factor sinograms were generated by forward projecting the

µ-map transformed versions of each pseudo CT. Secondly, simulated emission sinograms

were acquired using a similar forward projection applied to the original PET images. The

simulated emission sinograms are then attenuated through element-wise multiplication with

the attenuation factor sinograms. In the following step, the resulting sinograms were recon-

structed with the original CT-based µ-map in order to obtain a reference image. Likewise,

reconstruction was performed using the µ-maps derived from each pseudo CT.

3.8 Discussion and conclusion

This chapter presents the first main contribution to this thesis, a novel deep learning frame-

work for MR to CT synthesis, namely Deep Boosted Regression. The method was compared

to a state-of-the-art multi-atlas propagation method, a popular deep neural network (U-Net)

and a high-resolution compact network architecture (HighRes3DNet). In order to quantify

the results, the Mean Absolute Error (MAE) and the Mean Squared Error (MSE) of the

synthesized CT images were calculated. Only voxels within the head region were consid-
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Table 3.1: Mean Absolute Error (MAE) in pCT generated with HighRes3DNet and imitation learn-
ing pCTs and corresponding MAE in pPET in the brain region only and in the whole
head for all five folds.

Model MAE pCT (in HU) MSE pCT (in HU2) MAE pPET (in a.u.)

Multi-Atlas 150.96 ± 52.40 91316.86 ± 47790.80 174.68 ± 79.01

U-Net 115.12 ± 11.31 85116.06 ± 12792.78 155.39 ± 59.11

HighRes3DNet 71.76 ± 5.48 25904.41 ± 3434.87 122.92 ± 27.18

DBR 68.26 ± 3.13 20037.24 ± 1366.79 85.87 ± 22.15

ered by masking the surrounding air out. The choice in error metrics derives from its good

suitability for CT synthesis and due to the quantitative nature of CT images. Furthermore,

PET images were reconstructed using each pseudo CT as attenuation map. The results are

demonstrated in Table 3.1.

All three deep learning-based methods show superior performance compared to the

multi-atlas method (MAE: 150.96 HU ± 52.40 HU). A visual comparison between all four

pseudo CT images and their corresponding MAE and MSE can be seen in Fig. 3.12. All

methods are able to reconstruct realistic looking pseudo CT images with errors mainly

Attenuation 
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Sinogram
simulation

Attenuation 
estimation Reconstruction

CT µ-map

pCT µ-map

PET

pPET

Simulated 
sinogram

Figure 3.11: PET simulation: a PET forward projection is applied on the µ-map transformed CT
to obtain attenuation factor sinograms. Similar forward projection is applied to the
original PET to obtain simulated emission sinograms. Final pPETs are reconstructed
from simulated emission sinograms using pCT derived attenuation maps.
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within the skull region. This is to be expected as bone density cannot be definitely de-

termined from an MR image, i.e., bone has a value of 0 in the MR image, but can have a

range of values in the CT depending on how dense the bones are. The three deep learning

methods are able to reconstruct the epidermoid cyst in the subject’s skull whereas the multi-

atlas propagation method fails to recognize this distinct anatomical feature. It is important

to note that no other subject in the MR/CT database had a similar anatomical abnormality,

which explains why the multi-atlas information propagation method struggles to recognize

this distinct feature. As the multi-atlas propagation method is based on the registration and

fusion of images within the MR/CT database, it is not possible to reconstruct any abnor-

mal feature that does not exist within the database. This also applies to other abnormalities

like tumors. On the contrary, the deep learning methods learn a spatially aware mapping

function between MR and CT. When comparing the three deep learning methods, it can be

seen that U-Net performs worst generating pseudo CT images with a MAE of 115.12 HU

± 11.31 HU and a MSE of 85116.06 HU ± 12792.78 HU compared to pseudo CT images

synthesized with HighRes3DNet only (71.76 HU ± 5.48 HU and 25904.41 HU ± 3434.87

HU) and the proposed Deep Boosted Regression (68.26 HU ± 3.13 HU and 20037.24 ±

1366.79).

Evaluating the effect of the pseudo CT images when used as attenunation maps for
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Figure 3.12: Ground truth CT and input T1- and T2-weighted MR images (first column) followed
by predicted pseudo CT images with corresponding Mean Absolute Error (MAE) and
Mean Squared Error (MSE) for multi-atlas propagation, U-Net, HighRes3DNet and
Deep Boosted Regression.
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Figure 3.13: Ground truth CT and PET reconstructed with attenuation map derived from ground
truth CT (first column) followed by predicted pseudo CT images with corresponding
PET reconstructed with attenuation map derived from each pseudo CT and correspond-
ing PET reconstruction error for multi-atlas propagation, U-Net, HighRes3DNet and
Deep Boosted Regression.

PET reconstruction, it can be seen that the PET error can be linked to the error in the CT

image. The PET reconstruction error is highest for the PET reconstructed with the pseudo

CT generated by the multi-atlas propagation method (174.68 a.u. ± 79.01 a.u.) compared to

the deep learning methods. However, the relation between the errors is not linear. The MAE

of the pseudo CT generated with the HighRes3DNet only is more than 50% lower than the

one from the pseudo CT generated with the multi-atlas propagation method. However, the

PET reconstruction error of the PET image reconstructed with the pseudo CT generated with

the HighRes3DNet shows an improvement of only 11% (multi-atlas propagation: 174.68

a.u. ± 79.01 a.u., HighRes3DNet: 155.39 a.u. ± 59.11 a.u.). The proposed DBR method

performs best when evaluating the PET reconstruction error, achieving a MAE of 85.87 a.u.

± 22.15 a.u., which is more than 50% lower than the error in the PET reconstructed with the

pseudo CT synthesiszed with the multi-atlas propagation method. Qualitative results can be

seen in Fig. 3.13 and confirm the quantitative results.

To summarize, a novel CNN for MR-to-CT image translation was introduced that is
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able to synthesize CT images from input MR images by gradually reducing the error us-

ing a separate boosting network. A four-fold random bootstrapped validation showed that

this method outperforms state-of-the-art multi-atlas propagation and deep learning meth-

ods. The method’s performance is superior in both pseudo CT synthesis and subsequent

PET reconstruction. DBR is able to learn a spatially aware mapping from MR to CT images

to realistically generate abnormalities present in the target image but absent in the source

domain. This is evidenced in the example of an epidermoid cyst in the skull. No subject

in the training dataset showed a remotely similar abnormality yet DBR reconstructed this

unseen feature with great accuracy. However, Cohen et al. even showed that CNNs trained

with losses such as the classical L2-loss are able to predict abnormalities such as tumors

despite the training dataset not containing any tumor images (Cohen et al. 2018). This

shows that neural networks are a powerful tool for solving the image-to-image translation

task. However, the success of the training highly depends on the registration quality of the

MR/CT database. Even small inaccuracies in the registration can have a great influence on

the training. An idea to circumvent the requirement of paired data is to incorporate a gener-

ative adversarial loss which provides a means of learning the context between CT and MR

images from unpaired data. This has potential to provide a significant advantage in terms

of data availability for training due to the scarcity of accurately paired datasets, however,

challenges in terms of validation emerge due to a missing ground truth. Furthermore, in

their work, Cohen et al showed that distribution matching losses used in generative mod-

els can hallucinate image features, i.e., they can translate a healthy brain image into one

that contains tumors. Additionally, each training patch only saw a small part of the train-

ing image, which could potentially lead to the network failing to learn sufficient contextual

information. This could be circumvented by using larger training patches subject to more

powerful hardware.



Chapter 4

Multimodal learning

The CNN described in chapter 3 was trained on a database of co-registered T1- and T2-

weighted MR and CT images. This way, the network can use information contained in

both T1- and T2-weighted MR images to approximate a mapping function to the CT image

domain. However, many datasets only contain one type of MR images. Therefore, the

following chapter explores the impact of the MR input modality used during training. Three

networks with the exact same dataset split were trained using either T1- or T2-weighted MR

images as input or both.

4.1 T1-weighted images

T1-weighted images highlight the fatty tissues of the body such as subcutaneous fat on the

scalp. On the contrary, fluid filled spaces in the body (e.g. cerebrospinal fluid (CSF) in

the brain) appear dark in T1-weighted MR images due to their lack of fat. Bone, air and

the CSF all have low intensities in T1-weighted images, which can cause difficulties when

registering T1-weighted images to CT images, because all three tissue classes differ greatly

from each other in CT images. In order to explore if a CNN is able to overcome these

difficulties and still learn the relation between T1-weighted MR and CT images, a DBR

model was trained with T1-weighted input images. The data used in this chapter is the

same dataset used in chapter 3. The network was trained on 15 co-registered T1-weighted

MR and CT images. Two images were used for validation to avoid overfitting and the

network performance was evaluated on three test images (equivalent to a 75% training 10%

validation 15% testing split). The synthesis results with the corresponding ground truth CT

and the residual between them can be seen in Fig. 4.1.

It can be seen that the network struggles to learn bone as well as the mostly homoge-

nous soft tissue intensities inside the cranial vault. The brain structure from the T1-weighted
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MR image is visible in the generated pseudo CT. The residual image confirms the visual re-

sults. The network reconstructs a pseudo CT image that continuously underestimates the

bone intensities within the skull. Compared to the bone error, the error within the cranial

vault appears to be low, however, they are high enough to be apparent in the pseudo CT im-

age. Furthermore, the network does not recognize the sinus region and fails to reconstruct

the small bone structures within this region.

4.2 T2-weighted images

Unlike T1-weighted images, T2-weighted images not only recognize images of fatty tissue

but also water-based tissue. This means that the CSF appears hyperintense in T2-weighted

images, allowing a better differentiation between high CSF intensities and low bone/air

intensities. A second DBR network was trained until convergence with the same config-

urations and dataset split as the previous experiment to explore the ability of the network

to find a mapping between T2-weighted MR images and CT images. Figure 4.2 shows the

synthesis results with the corresponding ground truth CT and the residual between them.

Looking at the synthesis results of the DBR network trained with T2-weighted input

images only, it can be seen that just like in the previous experiment the error is focused

around the skull region. However, it appears that the error is generally lower and the network

rather overestimates the density within the skull. The ventricles are visible to some degree

but much less obvious than in the DBR network trained with T1-weighted images only. The

largest error can be seen in the whole sinus area.

4.3 T1- and T2-weighted images

The last experiment that was performed was the original DBR network with two input chan-

nels trained on T1- and T2-weighted images. This way, the network can take advantage of

both imaging contrasts and has more information available to find a mapping function be-
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Figure 4.1: From left to right: T1-weighted MR input image, ground truth CT image, predicted
pseudo CT, residual between ground truth CT and pseudo CT.
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Figure 4.2: From left to right: T2-weighted MR input image, ground truth CT image, predicted
pseudo CT, residual between ground truth CT and pseudo CT.

tween MR and CT. Figure 4.3 shows the synthesis results alongside the ground truth CT

and the corresponding synthesis error.

The DBR network trained with T1- and T2-weighted input images shows the best

results visually. The skull appears realistic and sharp. This observation is confirmed by the

residual map, the error within the skull region is lowest for a network trained with multi-

channel input. However, the network performance within the sinus region shows a high

error similar to the previous experiments. Overall, the generated pseudo CT looks most

realistic and shows the lowest residual when trained with both T1- and T2-weighted input

images.

4.4 Discussion and conclusion

In order to validate the above experiments, the MAE and the MSE were calculated for each

subject and averaged for all three models. Results of this validation are depicted in Table

4.1.

It can be seen that all three models perform best on the second test subject, and that for

all three subjects the MAE is highest when trained on T1-weighted images only. This obser-

vation is consistent with the problems known from registering T1-weighted images to CT

images. The network struggles to learn the correct CT intensities for the skull and the CSF,

which have a similar proton density within the T1-weighted MR image. Although there

are obvious errors in the generated pseudo CT, the network learns the spatial context of the
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Figure 4.3: From left to right: T1-weighted MR input image, T2-weighted MR input image, ground
truth CT image, predicted pseudo CT, residual between ground truth CT and pseudo CT.
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Figure 4.4: Mean Absolute Error (MAE) and Mean Squared Error (MSE) in pseudo CTs gener-
ated with HighRes3DNet trained with T1-weighted, T2-weighted and both T1- and T2-
weighted MR images as network input.

images and therefore does not misclassify the CT intensities completely. This observation

is confirmed when looking at the MAE image in Fig. 4.4. When training the DBR model

with T2-weighted input images only, the pseudo CT improves visually within the skull re-

gion as well as in the cranial vault. Looking at the numbers in Table 4.1 it can be seen that

the error is generally lower than compared to the model trained with T1-weighted images

only. Lastly, the DBR model trained with a combination of T1- and T2-weighted images

Table 4.1: Mean Absolute Error (MAE) and Mean Squared Error (MSE) in pseudo CTs gener-
ated with HighRes3DNet trained with T1-weighted, T2-weighted and both T1- and T2-
weighted MR images as network input.

Subject MAE pCT (in HU) MSE pCT (in HU2)

T1-weighted T2-weighted T1- & T2-weighted T1-weighted T2-weighted T1- & T2-weighted

1 134.82 112.11 90.83 68920.80 31423.72 51904.51

2 88.01 87.93 64.86 43209.71 25677.52 30366.76

3 111.87 94.80 77.86 35488.00 16399.72 29192.35

Average 111.57 ± 23.41 98.28 ± 12.46 77.85 ± 12.98 49206.17 ±
17504.46

24500.32 ±
7580.86

37154.54 ±
12787.34
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outperforms the networks trained with single modality input for all three test subjects. The

MAE within the cranial vault is minimal and the residuals in the skull region are smaller

than in the other two models. The MAE of the dual modality input model has an average

value of 77.85 ± 12.98 compared to the model trained with T2-weighted images with an

average MAE of 98.28 ± 12.46 and the the model trained with T1-weighted images with

an average MAE of 111.57 ± 23.41.

All three models show the highest error within the sinus region. This is expected as it is

hard for the network to differentiate between small bones and air in this region. In both T1-

and T2-weighted images the sinus region is not distinct, thus making it hard for the network

to assign the correct intensity. This further explains the high MSE in the sinus regions. Due

to its quadratic nature the MSE highlights the areas with the errors that contribute most to

the error metric. This is particularly obvious when looking at the axial slides depicted in Fig.

4.5. It can be observed that all networks have problems reconstructing the small structures

within the sinus region highlighted by the blue errors. In the model trained with T1- and T2-

weighted images the errors within the sinus region have the biggest contribution towards the

total error, whereas in the single modality trained models an additional error source stems

from the posterior part of the skull.

Overall, it is clear that superior synthesis performance is achieved when training a

DBR network with dual modality input compared to training a network with only T1- or

T2-weighted input images respectively.
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Figure 4.5: Mean Absolute Error (MAE) and Mean Squared Error (MSE) in pseudo CTs gener-
ated with HighRes3DNet trained with T1-weighted, T2-weighted and both T1- and
T2-weighted MR images as network input demonstrated on axial slides. Blue errors
highlight problems in sinus region.



Chapter 5

Whole-body CT synthesis

Up to this point, all work was developed on a database of head MR and CT images based on

the availability of data. However, the initial aim of this project was to develop novel methods

for PET/MR attenuation correction in the thoracic region. Therefore the work within this

chapter focuses on the development of a neural network for pseudo CT synthesis for whole-

body images. Until 2019, the problem of whole-body MR to CT synthesis, especially in

3D, has largely remained untackled.

In 2019, Dong et al. presented a method for whole-body PET/MR attenuation correc-

tion where they estimate pseudo CT images from non-attenuation corrected PET images

(Dong et al. 2019). They employed a CycleGAN framework in tandem with a self-attention

strategy to generate whole-body pseudo CT images. In the same year, Hwang et al. (Hwang

et al. 2019) published a pseudo CT synthesis method for whole-body PET/MR attenuation

correction. Their method utilizes a U-Net style neural network that takes activity and atten-

uation maps, estimated using the MLAA algorithm (see section 2), to learn a CT-derived

µ-map. Ge et al. (Ge et al. 2019) were the first to attempt to translate full-body MR im-

ages to CT images by introducing a multi-view adversarial learning scheme that predicts

2D pseudo CT images along three axes (i.e., axial, coronal, sagittal). 3D volumes are ob-

tained for each axis by stacking 2D slices together before an average fusion is performed to

obtain one final 3D volume. The synthesis performance is then evaluated on sub-regions of

the body (lungs, femur bones, spine etc). They do not, however, provide results on the full

volume.

At the start of the development of the presented whole-body MR to CT image transla-

tion method in early 2019, no attempts had been made to synthesize CT images from MR

images in a three-dimensional manner. It is desirable to train neural networks for medical
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image analysis in 3D due to the three-dimensional nature of medical images. 3D networks

are able to learn the contextual information between slices, which is of particular interest

in cross-sectional imaging. 2D networks on the contrary only look at a single slice, where-

fore they inherently fail to capture context from adjacent slices. The same applies for 2.5D

imaging as the training is performed on 2D slices and a 3D volume is reconstructed by

stacking all 2D image slices at inference time. The proposed method not only synthesizes

whole-body pseudo CT images in 3D, but also estimates corresponding uncertainty maps

that account for model and data uncertainty and has been published in (Kläser et al. 2020).

5.1 Data pre-processing

The dataset used for training and cross-validation consisted of 32 pairs of whole-body MR

(voxel size 0.67×0.67×5 mm3) and CT images (voxel size 1.37×1.37×3.27 mm3). CT

images were acquired on a GE Discovery 710 PET/CT scanner (140 kVp, 32mA) and T1-

and T2-weighted images were acquired on a Siemens Biograph mMR PET/MR immediately

after. T1-images were acquired using a two-point three-dimensional volumetric interpolated

breath-hold examination (VIBE) Dixon sequence (3.0 T; TE/TR, 1.23 ms/4.02 ms; flip angle

10◦) and T2-weighted images were acquired using an echo-planar fast spin echo sequence

(HASTE) (3.0 T; TE/TR, 107 ms/700 ms; flip angle 90◦). Whole-body MR images were

acquired in four/five stages consisting of 40 slices each. The standard clinical acquisition

protocol for whole body PET/MR imaging suggests to perform an axial scan from skull

vertex to mid thigh over four to five stations, depending on the height of the patient, which

are subsequently composed. Images were of size 640×500×160 or 640×500×200 voxels

depending on whether four or five stages had to be acquired. Acquisition times varied across

patients, depending on their height, between 60-90 minutes. Both T1-weighted VIBE and

T2-weighted HASTE images were acquired at breath-hold. All patients within this dataset

were scanned as part of a research study comparing the diagnostic performance of 18F-FDG

PET/CT to PET/MR in adult patients with suspected or proven cancers (over 15 different

cancer types) leading to a wide range of pathologies. Patients were both biological sexes,

male and female, and in the age range between 20 and 87 years with a mean age of 58 years.

In order to generate a continuous MR image, where the four/five stages could no longer

be distinguished, the MR images were pre-processed in two steps. Firstly, the bias-field

within each MR image was corrected. Secondly, the four distinct stages were fused using

a percentile-based intensity harmonization approach. All images were then resampled to
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CT resolution before the co-registered database was built. MR and CT images were aligned

using first a rigid registration algorithm followed by a very-low-degree-of-freedom non-

rigid deformation. A second non-linear registration was performed, using a cubic B-spline

with normalized mutual information to correct for soft tissue shift. In clinical practice,

patients are required to keep their arms up in the CT in order to reduce the radiation dose,

while arms are kept close to the body in MR acquisition due to the limited bore size. This

deformation is so large, that registration algorithms struggle to compensate for the bone

and tissue shift between the two images. A common practice that is also regularly used in

radiotherapy treatment planning is to mask out the arms in both images and perform the

registration on the thorax region only. Registration quality was carefully assessed manually

by multiple specialists for each subject. The success of the supervised learning methods

highly depends on the registration quality of the MR/CT database. Even small inaccuracies

in the registration can influence the training and subsequently lead to underestimation of the

attenuation map, wherefore careful registration quality assessment is essential. With perfect

registration being particularly challenging in the whole body, it is of utmost importance to

account for uncertainty in the model to account for such inaccuracies. Both CT and MR

images were rescaled to be between 0 and 1 for increased training stability. The data were

split into 70% training, 10% validation and 20% testing data for all methods.

5.2 Direct CT synthesis

As a first step, two direct synthesis networks were trained on the whole-body data: U-Net

and HighRes3DNet. Figure 5.1 and Fig. 5.2 show example synthesis results of one subject

and the corresponding residuals for both methods respectively. Additionally, a comparison

of all methods can be seen in Fig. 5.8. The pseudo CT synthesiszed with U-Net reconstructs

bone to a certain extent but is characterized by a large degree of blurriness most evident in

the femurs and the ribs. The model further fails to reconstruct any bone structures in the

shoulders as well as any structures within the lung. The corresponding residuals show that

the highest source of error originates from underestimating the CT intensities of the lung

and the shoulder bones, whereas soft tissue is generally slightly overestimated.

The pseudo CT reconstructed with HighRes3DNet looks visually similar to the results

synthesized with U-Net. Rib bones are more prevalent, but appear slightly blurrier. When

looking at the residuals it can be seen that the network struggles to reconstruct bones. Areas

around misclassified bones also show a high error similar to a halo. The network seems
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Figure 5.1: Qualitative results on whole-body data for U-Net. From left to right: T1- and T2-
weighted MR input images, ground truth CT, synthesized pseudo CT and corresponding
residual.

overly confident and reconstructs bones with high confidence in the wrong place. It implies

that the network tries to compensate for the understimation of the bones by assigning higher

intensities to tissues surrounding the understimated bone, thus the halo effect. The network

fails to reconstruct structures within the lung, however, the error within the lungs is gener-

ally lower than in the pseudo CT reconstructed with U-Net. Overall intensities within the

pseudo CT reconstructed with HighRes3DNet are slightly overestimated.

5.3 DBR for whole-body CT synthesis

As a second step, the method proposed in chapter 3, Deep Boosted Regression, was applied

to the whole-body synthesis problem. Figure 5.3 shows an example of the synthesis result
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Figure 5.2: Qualitative results on whole-body data for HighRes3DNet. From left to right: T1- and
T2-weighted MR input images, ground truth CT, synthesized pseudo CT and corre-
sponding residual.
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Figure 5.3: Qualitative results on whole-body data for Deep Boosted Regression. From left to right:
T1- and T2-weighted MR input images, ground truth CT, synthesized pseudo CT and
corresponding residual.

and the corresponding residuals. The synthesized pseudo CT looks visually blurrier than the

two direct synthesis models (U-Net and HighRes3DNet). Similar to the results from U-Net,

the model fails to reconstruct bones, in particular in the shoulder region. The residuals show

that intensities are generally underestimated and the highest source of error arises from the

lack of reconstructed detail within the bones.

5.4 Multi-scale network for whole-body CT synthesis

The main challenge with whole-body data is its size, and the fact that a large field of view is

necessary to make accurate predictions. Common networks, such as a U-Net, can only store

patches of size 160×160×160 due to 32GB VRAM GPU memory limitations. To tackle

this issue, an end-to-end multi-scale convolutional neural network is proposed that takes

input patches from full-body MR images at three resolution levels as inputs to synthesize

high resolution, realistic CT patches. The network also incorporates explicit heteroscedastic

uncertainty modelling by casting the task likelihood probabilistically, and epistemic uncer-

tainty estimation via traditional Monte Carlo dropout. A patch-based training approach

is employed whereby at each resolution level of the network a combination of downsam-

pling and cropping operations results in patches of similar size but at different resolutions,

spanning varied fields of view. Three independent instances of HighRes3DNet are trained

simultaneously, thus not sharing weights, taking patches of each resolution as input each

resulting in a feature map with different resolution. Lower level feature maps are concate-

nated to those at the next level of resolution until the full resolution level, where these con-
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catenated feature maps are passed through two branches of 1× 1×N convolutional layers

resulting in a synthesized CT patch and the the corresponding voxel-wise heteroscedastic

uncertainty. Note, that the 1× 1×N convolutional layers are indeed part of the original

HighRes3DNet architecture. Once low, middle and high resolution feature maps are con-

catenated, the 1× 1×N convolutional layer decodes the concatenated feature maps to a

corresponding CT image patch. This is illustrated in Fig. 5.4. Similarly to Kamnitsas et al.

(Kamnitsas et al. 2017), the hypothesis is that such a design allows the network to simul-

taneously benefit from the fine details afforded by the highest resolution patch and the in-

creased spatial context provided by the higher field of view prominent in the low resolution

patches. They proposed a multi-scale, 3D CNN architecture for brain lesion segmentation

that consists of eleven layers. The network consists of two pathes that learn image features

at different scales that are concatenated before they are passed through a fully connected

layer and an additional classification layer in order to create a lesion segmentation. Thus,

during optimization, the network tries to minimize the Cross Entropy between predicted

and actual segmentation. The proposed MultiRes network consists of an additional path,

wherefore image features are learned at three resolutions. Furthermore, the proposed Mul-

tiRes network incorporates an additional level of deep supervision for each resolution that

Kamnitsas et al. (Kamnitsas et al. 2017) misses. Finally, the second branch of 1× 1×N

convolutional layers allows to compensate for heteroscedastic uncertainty in the model.

5.4.1 Modelling heteroscedastic uncertainty

Previous works on MR to CT synthesis have shown that residuals are not homogeneously

spread throughout the image, rather, they are largely concentrated around bone/organ/tissue

boundaries. As such, a heteroscedastic uncertainty model is most suitable for this task,

where data-dependent, or intrinsic uncertainty is assumed to be variable. Heteroscedastic

uncertainty is also called data-inherent uncertainty and describes the internal randomness of

a given phenomenon. For medical images, such as MR and CT images, this data-inherent

uncertainty corresponds to intrinsic noise in the observational data, e.g. noise from detec-

tors, and cannot be compensated by acquiring more data. When modelling heteroscedastic

uncertainty, the first step is to model the pseudo CT synthesis task likelihood as a normal

distribution with mean f W (x), which is the model output corresponding to the input x, pa-

rameterized by weights W, and pixel-wise standard deviation σW (x). The data intrinsic

noise can then be described as a predictive distribution such that:
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Figure 5.4: Proposed MultiRes network architecture. T1- and T2-weighted MR patches of size 3203

are fed into the HighRes3DNet architecture at various levels of resolution and field of
view. Lower level feature maps are concatenated to those at the next level until the
full resolution level, where these concatenated feature maps are passed through two
branches consisting of a series of 1× 1×N convolutional layers: one resulting in a
synthesized CT patch and the other to the corresponding voxel-wise heteroscedastic
uncertainty.

p(y| f W (x)) =N ( f W (x),σW (x)) (5.1)

The loss function is subsequently derived by calculating the negative log of the likeli-

hood:

L(y,x;W) =−log p(y| f W (x))

≈ 1
2σW (x)2

(
y− f W (x)

)2
+ logσ

W (x)

=
1

2σW (x)
L2(y, f W (x))+ logσ

W (x)

(5.2)

In those regions where the observed L2 error remains high, the uncertainty should

compensate for the error and also increase the uncertainty. The second term in the loss

prevents the collapse to the trivial solution of assigning a large uncertainty everywhere.

5.4.2 Modelling epistemic uncertainty

Model uncertainty, also called epistemic uncertainty, arises when a model is not trained

optimally, mostly caused by a lack of training data. This means that an increased amount
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of data can reduce model uncertainty. In the scenario, where an infinite amount of data

is available, the model uncertainty can be explained away to zero. However, many deep

learning scenrios, lack training data altogether, wherefore it is important to model epistemic

uncertainty. Test-time dropout has been established as the go-to method for estimating

model uncertainty, a Bayesian approximation at inference. By employing dropout during

training and testing it is possible to sample from a distribution of sub-nets that in the regime

of data scarcity will provide varying predictions. This variability captures the uncertainty

present in the network’s parameters, allowing for a pixel-wise estimation by quantifying the

variance across these samples.

Traditional dropout has been introduced in 2014 by Srivastava et al. as a means to avoid

overfitting during training (Srivastava et al. 2014). Overfitting a model in the context of

CNNs can be understood as an overly confident network, that means the network performs

well on a particular training set, but fails to produce reliable predictions on unseen data.

The network “memorizes” training samples instead of estimating a generalizable model.

Therefore, it is desirable to have a large amount of training data, however, this is often not

the case in real life scenarios. Traditional dropout can help to avoid overfitting by randomly

dropping out network weights during training time. A visual depiction of the idea behind

dropout is presented in Fig. 5.5. Each node is associated with a dropout probability p that

determines how likely it is that a weight is voided. In each training iteration, a new set of

weights is sampled, thus preventing the network from memorizing training samples.

During test time, however, no weights are voided resulting in a deterministic predic-

tion. This means, the model will always give the exact same label or value for one input.

In Monte Carlo Sampling (MCS) or Monte Carlo (MC) Dropout (Gal & Ghahramani

2016), weights are also dropped during testing time such that the output is no longer de-

terministic. This means that a given datapoint can result in different output values when

the model is applied multiple times. MC dropout can be seen as drawing samples from a

probabilistic pseudo CT distribution.

Here, channel dropout was chosen over the traditional neuron dropout. Channel

dropout has indeed been shown to be better for convolutional layers where channels fully

encode image features while neurons do not encode individually such meaningful informa-

tion (Hou & Wang 2019). Dropout samples at inference time are acquired by performing

N stochastic forward passes over the network, equivalent to sampling from the posterior
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Figure 5.5: Dropout. During training time, random weights of the network are voided in order to
avoid overfitting. At each training iteration, a different set of weights is dropped out.
Crossed nodes have been dropped out, thus set to 0.

over the weights. A measure of uncertainty can be obtained by calculating the variance over

these samples on a pixel-wise basis.

5.4.3 Implementation details

The multi-scale network consists of three residual networks, each taking in a 80×80×80

MR image patch with different resolutions and fields of view. In order of high, medium,

and low resolution, the MR patches are obtained by taking an initial high resolution 320×

320× 320 patch and cropping the central 80× 80× 80 region (high), downsampling the

initial patch by a factor of two and taking the central 80× 80× 80 patch (medium), and

finally downsampling the initial patch by a factor of four to obtain a 80× 80× 80 patch

(low).

Starting from the lowest resolution sub-net, the output of size 80×80×80 is upsam-

pled by a factor of two and centrally cropped. This patch is concatenated with the output

of the medium resolution sub-net. This concatenated patch of size 80×80×80×2 is then

upsampled by a factor of two and centrally cropped, before being concatenated to the output

of the high-resolution sub-net. These series of upsamplings and crops ensure that the final
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outputs contain patches with the same field of view prior to the final set of four 3D convo-

lutions of kernel size 1, which produce the CT patch. Image patches of size 80× 80× 80

were used due to a limited GPU memory budget. Larger input images could potentially

increase training performance because the network can learn the contextual information

better, however, this is dependent on available hardware.

Heteroscedastic variance is modelled by the addition of a series of four 1×1×1 con-

volutional layers following the concatenation of the combined low-medium scale output to

the high scale output, architecturally identical to the convolutional layers for the synthe-

sis branch. Channel dropout probability (i.e., the probability to keep any one channel in

a kernel) was set to 0.5, both during training and testing, and N=20 forward passes were

carried out for each experiment. Parameters were chosen with regards to recommendations

in original literature. The batch size was set to one, Adam was used as the optimizer and

networks were trained until convergence, where this was defined as a sub 5% loss change

over a period of 5000 iterations.

5.4.4 Qualitative results

As a first initial experiment the proposed MultiRes network was trained without both epis-

temic and heteroscedastic uncertainty in order to see if the information provided by multiple

levels of resolution can help to achieve superior synthesis results. A qualitative example is

shown in Fig. 5.6. The pseudo CT looks reasonably sharp and shows good bone delineation.

Compared to the results generated with HighRes3DNet, U-Net and DBR, the pseudo CT

synthesized with the MultiRes network seems much sharper in the ribs and the femurs. Fur-

thermore, it is the only model that attempts to reconstruct the shoulder bones. Looking at

the residuals, it can be seen that, similar to the other models, the highest errors stem from

bones and lungs. The network appears to be overly confident in its bone prediction thus

predicting bone incorrectly. The error in the remaining body parts (organs, muscle tissue,

etc.) is, however, very low. Compared to the other synthesis results the overall error is a

combination of over- and underestimation of CT intensities.

As a second step, the proposed uncertainty-aware MultiResunc network was trained

in order to ascertain if the additional uncertainty information can improve the network’s

performance. Results are demonstrated in Fig. 5.7. The pseudo CT looks blurry, similar

to the results generated with U-Net, HighRes3DNet and DBR. Bone structures can be seen,

but are less sharp than in the pseudo CTs generated with MultiRes without uncertainty.
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Figure 5.6: Qualitative results on whole-body data for proposed MultiRes network without uncer-
tainty. From left to right: T1- and T2-weighted MR input images, ground truth CT,
synthesized pseudo CT and corresponding residual.

Just like U-Net, HighRes3DNet and DBR, the uncertainty-aware MultiResunc model fails

to reconstruct the shoulder bones completely. However, when looking at the corresponding

residuals, it can be seen that the network performs better than U-Net and DBR. The overall

error is low and evenly distributed between under- and overestimation. The highest source

of error arises from the lack of information reconstructed in the bone leading to a high

underestimation in those regions. Interestingly, the proposed uncertainty-aware MultiResunc

network shows the best synthesis performance in the lungs when compared to all other

models.

5.5 Discussion and conclusion

This chapter presents the second main contribution to this thesis, a novel uncertainty-aware

multi-resolution deep learning framework for MR to CT synthesis especially developed for

the use of whole-body data. The network can further be trained without uncertainty, if

desired. The method was compared to two deep networks that directly synthesize pseudo

CTs, U-Net and HighRes3DNet, and the boosting network presented in chapter 3. In or-

der to quantify the results the Mean Absolute Error (MAE) and the Mean Squared Error

(MSE) of the synthesized CT images were calculated only within the body by masking the

surrounding air out. The results are shown in Table 5.1.

Quantitative results show that the two direct neural networks (U-Net and High-

Res3DNet) have the highest MAE of 92.89± 13.30 HU and 89.05 ± 8.77 HU respectively.

However, HighRes3DNet has fewer trainable variables and is therefore more efficient. A

visual depiction of the MAE is shown in Fig. 5.8. For U-Net the main source of error arises
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Figure 5.7: Qualitative results on whole-body data for proposed MultiRes network including uncer-
tainty estimation. From left to right: T1- and T2-weighted MR input images, ground
truth CT, synthesized pseudo CT with heteroscedastic and epistemic uncertainty, and
corresponding residual.

Table 5.1: MAE and MSE across all experiments including number of trainable variables. Bolded
entries denotes best model (p-value < 0.05).

Experiments Model parameters MAE (HU) MSE (HU2)

3D U-Net 14.49M 92.89 ± 13.30 37358.07 ± 11266.56

HighRes3DNet 0.81M 89.05 ± 8.77 23346.09 ± 3828.22

DBR 1.62M 77.58 ± 3.20 19026.56 ± 2779.69

MultiRes 2.54M 72.87 ± 2.33 18532.23 ± 1538.41

MultiResunc 2.61M 73.90 ± 6.24 16007.56 ± 2164.76

from bones and the lungs while soft tissue and organs have a low error. On the contrary,

HighRes3DNet shows a lower MAE in the lungs but a higher error in tissues surrounding

bone. The MSE, also depicted in Fig. 5.8, highlights the regions of the pseudo CTs that

have the highest overall contribution to the error.

Both methods struggle to reconstruct bone properly, likely because of the lack of spatial
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Figure 5.8: Ground truth CT and input T1- and T2-weighted MR images (first column) followed
by predicted pseudo CT images with corresponding Mean Absolute Error (MAE) and
Mean Squared Error (MSE) for U-Net, HighRes3DNet, Deep Boosted Regression, pro-
posed MultiRes without uncertainty and proposed MultiResunc including uncertainty
estimation.

context necessary to reconstruct small (relatively) cohesive structures such as vertebrae. The

Deep Boosted Regression approach proposed in chapter 3 shows a superior performance

compared to the direct synthesis networks with a MAE of 77.58± 3.20 HU. Bone structures

show an even higher error than U-Net and HighRes3DNet, prevalent in the MSE map in

Fig. 5.8, however, the recursive boosting nature of this network minimizes the overall error

of the reconstructed pseudo CT. Just like U-Net and HighRes3DNet, DBR suffers from the

limited field of view of the patch-based training approach making it difficult for the network

to recognize small distinct structures.

The proposed MultiRes model exhibits the greatest bone fidelity: the individual verte-

brae are clearer, with intensities more in line with what would be expected for such tissues,

and the femurs boast more well-defined borders. This model further shows the lowest MAE

of 72.87 ± 2.33 HU. The proposed MultiResunc model leads to blurrier results than the
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simpler proposed MultiRes model without uncertainty, likely due to the inclusion of the

loss uncertainty term and limited network capacity. Both MultiRes models have a higher

number of trainable variables and are therefore slightly less efficient than HighRes3DNet by

itself, however, the afforded performance increase compensates for this. The MultiResunc

model demonstrates similar bone reconstruction as U-Net, HighRes3DNet and DBR, how-

ever, the overall MAE of 73.90 ± 6.24 HU is significantly lower. It is interesting to note,

that the MSE of the proposed MultiResunc model is lower than the MSE of its uncertainty

unaware counterpart. This shows that the majority of residuals in the pseudo CT generated

by MultiResunc are in a lower range than for MultiRes without uncertainty and therefore

when squared do not contribute as much to the MSE. This is likely due to the fact that the

network is less confident in bone regions, whereas the models that do not compensate for

uncertainty are overly confident and predict high bone intensities in the wrong place result-

ing in a high error. A possible cause for this are mis-registration errors between the three

imaging modalities. Although T1- and T2-weighted MR images were aquired in the same

imaging session, natural deformation of organs can occur, such as lung deformation due to

breathing, bowel movement, continuous heart beat and others. These natural deformations

are even more prevalent in the CT images as the time between imaging sessions is larger

since the patient needs to be transfered into a different imaging suite. Furthermore, the

patient’s position within an MR scanner generally differs from the position of the patient

in a CT scanner. Due to the limited bore size and the long acquisition times, patients are

scanned with their arms down in MR scanners, whereas they are scanned with arms up in

CT scanners most of the time in order to reduce the amount of radiation that the body is

exposed to. The differences in bone position and soft tissue deformation are so large that

it is difficult to align MR and CT images perfectly. In some cases registration even fails

completely. Therefore, although the majority of the arms were masked out for this dataset,

the deformation of the thorax due to the different arm position is difficult to compensate.

The uncertainty-aware MultiResunc model shows high uncertainty in those regions and

therefore has low confidence in reconstructing bone. The uncertainty-aware MultiResunc

model is particularly less confident in the shoulder regions where the highest reconstruc-

tion errors are expected due to the differing acquisition protocols of MR and CT imaging.

Furthermore, small registration inaccuracies, such as air bubbles in the bowel, are captured

by the uncertainty-aware model that can cause visually worse synthesis results. While bone
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Figure 5.9: From left to right: CT ground truth, pseudo CT prediction of MultiResunc, correspond-
ing residuals, heteroscedastic uncertainty and epistemic uncertainty. Both uncertainties
correlate with the absolute error map.

boundaries are generally very distinct in CT images, they are not clear in MR images. In

fact, manually segmenting bone in MR images leads to high inter-observer errors, where-

fore a high uncertainty is expected to be assigned by the network in such regions. This can

further be observed when looking at the uncertainty of the MultiResunc model shown in Fig.

5.9. There is a strong correlation between uncertainty and residuals, which suggests that

the model appropriately assigns a higher uncertainty to those regions that are difficult to

predict. Both epistemic and heteroscedastic uncertainties exhibit large values around struc-

ture borders, as expected. The borders between tissues are not sharp and there is, therefore,

some ambiguity in these regions, which is mirrored by the corresponding overlapping error

in the residuals. In theory, an increased amount of data should diminish the epistemic un-

certainty by providing the network with a greater number of samples from which to learn

the correspondence between MR and CT in these areas. The aforementioned blurriness,

however, could result in some inconsistency in the synthesis process, which would still be

captured by the heteroscedastic uncertainty. The benefits afforded to MultiResunc for being

uncertainty-aware can further be seen in Fig. 5.10. The joint histograms are constructed by

calculating the error rate, taken as the difference between the ground truth CT and pseudo

CT averaged across N=20 dropout samples, at different levels of both epistemic and het-

eroscedastic uncertainty (standard deviations per voxel) and taking the base 10 log. The

red line describes the average error rate at each level of uncertainty. A strong correlation

between uncertainty and error rate can be observed, suggesting that the model appropriately

assigns a higher uncertainty to those regions that are difficult to predict.
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Figure 5.10: Joint histogram of prediction uncertainty and error rate for proposed MultiResunc net-
work: epistemic (left), heteroscedastic (right). The average error rate at different un-
certainty levels is shown by the red line. Error rate tends to increase with increasing
uncertainty, showing that the network correlates uncertainty to regions of error.

It is interesting to note that the degree of uncertainty is particularly high in the vicinity

of air pockets. Unlike corporeal structures, it is expected that these pockets are subject to

more deformation between the MR and CT scanning sessions, resulting in a lack of corre-

spondence between the acquisitions in these regions. This results in the network attempting

to synthesize a morphologically different pocket to what is observed in the MR, resulting in

a high degree of uncertainty. The same applies to misregistered areas of the body as well as

natural soft tissue deformations.

To summarize, the contributions to this chapter are two-fold: MultiRes, a novel learn-

ing scheme for multi-resolution MR to CT synthesis of the full body, and MultiResunc, an

extension to this model that incorporates uncertainty as a safety measure and to account

for intrinsic data noise. A significantly superior performance (p-value < 0.05) of MultiRes

and MultiResunc can be observed by comparing the proposed methods to single-resolution

CNNs, U-Net and HighRes3DNet as well as the previously proposed Deep Boosted Regres-

sion. Furthermore, the importance of modelling uncertainty is demonstrated, showing that

MultiResunc is able to identify regions where the MR to CT translation is most difficult.

In a data-scarce environment, it becomes especially important to quantify uncertainty

as networks are unlikely to have sufficient evidence for full convergence. After all, accu-

rately aligning CT and MR images is inevitable to validate the voxel-wise performance of

any image synthesis algorithm until other appropriate methods have been developed that

allow validating on non-registered data. Despite the slightly decreased performance of
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MultiResunc compared to MultiRes, both from a quantitative and qualitative standpoint, the

additional clinical insight introduced by modelling uncertainty is a valuable asset. Further-

more, while the model does not reconstruct bone-based structures as well as its uncertainty

agnostic counterpart, it still outperforms all three baseline models. Therefore, the slight

decrease in performance of the uncertainty-aware model is insignificant compared to the

important additional information provided by the uncertainty.





Chapter 6

End-to-end optimization

6.1 Limitations of CT-based losses

Up to this point, the main objective has been to minimize the error between the predicted

pseudo CT and the corresponding ground truth CT, which is equivalent to minimizing the

L2-loss. This objective was justified by the fact that in current clinical practice the gold

standard for PET/MR attenuation correction is an additional CT acquisition that can be

linearly rescaled to an attenuation map used in PET reconstruction. L2-losses are a sensible

loss metric when the optimal pseudo CT for PET reconstruction is the one that is in terms

of intensity the closest to the target ground truth CT. However, L2-losses do not recognize

that the main aim of CT synthesis, when used for PET/MR attenuation correction, is to

generate a synthetic CT that, when used as attenuation map for PET reconstruction, makes

the reconstructed PET as close as possible to the gold standard PET reconstructed with the

true CT. Furthermore, the risk-minimizing nature of L2-losses (e.g., the sinus region, which

is dark in T1-weighted MR images, can be mapped to air or to bone but not to any value in

between (Cardoso et al. 2015)) ignores small local differences between the predicted pseudo

CT and the ground truth CT, which can significantly impact the reconstructed PET image.

An illustration of this downstream impact in PET reconstruction can be seen in Fig. 6.1.

At the time of developing the following CT synthesis approach, all CT synthesis meth-

ods found in the literature concentrate on minimizing the residuals of the predicted pseudo

CT. However, pseudo CT synthesis only represents an interim stage when intended to cor-

rect for photon attenuation in PET/MR and thus creating an additional space for likely

introduced errors. The aim of the proposed method is to directly minimize the PET resid-

uals. This is achieved by introducing a novel MR to CT synthesis framework that is com-

posed of two separate CNNs. The first CNN synthesizes multiple valid CT predictions
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Figure 6.1: a) Ground truth CT, b) predicted pseudo CT, c) absolute error between ground truth and
pseudo CT, and d) absolute error between PETs reconstructed using the ground truth
CT and pseudo CT for attenuation correction. Small and very localized differences in
the CT (c) can lead to large errors in the PET image (d). Therefore, CNNs should opti-
mize for PET residuals (d) and not for CT residuals (c) when used for PET attenuation
correction.

using multi-hypothesis learning instead of a single pseudo CT only (Rupprecht et al. 2017).

Multi-hypothesis learning deals with the fact that uncertainty is inherent in the image syn-

thesis task. Instead of assuming only a single prediction, multi-hypothesis learning allows

for multiple plausible predictions, similar to Monte Carlo dropout (see chapter 5). Once the

network predicted multiple plausible CT representations, an oracle determines the predictor

that generates the most correct pseudo CT and only updates the weights with regards to the

winning mode. An oracle can be seen as a ”black box” that can produce a solution for any

computational problem (here i.e. finding the best pseudo CT predictor). This enables the

first CNN to specialize in predicting pseudo CTs with distinct features (e.g., skull thick-

ness, bone density). A second CNN then uses imitation learning to predict the residuals

between ground truth PETs and PETs reconstructed with each valid pseudo CT. Imitation

learning tries to mimic human behavior of any given task (here i.e. imitate the PET recon-

struction process). In this setting, the second CNN acts as a metric that predicts the pseudo

PET residuals. By minimizing this metric loss, the network learns to synthesize pseudo CT

images that will ultimately result in pseudo PETs with lower residuals.

6.2 Sampling for multiple realizations

The proposed method assumes that there are multiple valid mappings from MR to CT as

there is no definite function that can describe the correlation between MR and CT images

(air and bone have the same intensity in MR images, but opposite intensities in CT). Distinct
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anatomical features in the CT such as skull thickness and bone density cannot definitively

be determined from an MR image as proton density simply does not give any conclusion

on these factors. Therefore, two different sampling strategies have been implemented in the

following work: Monte Carlo Sampling and Multi Hypothesis Sampling.

6.2.1 Monte Carlo sampling

The first method that was implemeted in order to synthesize multiple realistic realizations

of pseudo CTs is called MC dropout (see chapter 5.4.2). In this work, three forward passes

were performed to generate three different realizations of plausible pseudo CTs. It is not

trivial to model for epistemic and heteroscedastic uncertainty in the framework proposed in

this chapter, wherefore MC dropout was exclusively used to generate multiple pseudo CT

realizations from a probabilistic pseudo CT distribution.

6.2.2 Multi-hypothesis sampling

The second method that was implemeted in order to synthesize multiple realistic realiza-

tions of pseudo CTs is called Multi-Hypothesis Sampling. Multi-hypothesis sampling was

introduced by Rupprecht et al. in 2017 as an interim step to estimate uncertainty (Rupprecht

et al. 2017). During training, multiple pseudo CT realizations are generated by looping M

times through the last 1× 1× 1 convolutional layer of the network, thus resulting in a dif-

ferent set of weights for each of the M network outputs. An oracle then determines the

predictor that generates the most correct pseudo CT (lowest L2-loss) and only updates the

weights of the network with regards to the winning mode. This enables the network to

specialize in predicting pseudo CTs with distinct features such as skull thickness or bone

density.

Mathematically speaking, the proposed image synthesis approach aims to find a map-

ping function fφ between two image domains X and Y , where a set of input MR images

x ∈ X and a set of output CT images y ∈ Y is given

fφ : X →Y with φ ∈ RM. (6.1)

In a supervised learning scenario with a set of N paired training tuples (xi,yi), i =

1, ...,N, the network tries to find the predictor fφ that minimizes the error

1
N

N

∑
i=1
L( fφ (xi),yi). (6.2)
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L can be any desired loss. Just as in the previous presented methods, the classical L2-

loss was chosen. In the proposed multi-hypothesis scenario, the network provides multiple

predictions of valid pseudo CT realizations:

f j
φ
(x) ∈ [ f 1

φ (x), ..., f M
φ (x)] with M ∈ N. (6.3)

As in the original work for multi-hypothesis learning, only the loss of the best predictor

f j
φ
(x) will be used during training following a Winner-Takes-All (WTA) strategy, i.e.,

L( fφ (xi),yi) = min j∈[1,M]L( f j
φ
(xi),yi). (6.4)

This way the network learns M modes to generate pseudo CT images, where each mode

specializes on specific features. M was set to 3 as it has been shown to be large enough to

capture the task uncertainty (Rupprecht et al. 2017).

6.2.3 Comparison

In order to find a more suitable sampling scheme between the above presented methods,

the use of either method was evaluated: MC dropout versus multi-hypothesis learning. The

results are demonstrated in Fig. 6.2. The intensities of pseudo PETs reconstructed with

a µ-map from pseudo CTs generated with MC dropout show an artificially low variance,

whereas the intensities of pseudo PETs reconstructed with the pseudo CTs synthesized with

the multi-hypothesis model provide a wider distribution. To investigate the accuracy of the

predictions, the Z-score of the ground truth PET with regards to each sampling scheme

was calculated to demonstrate the relationship between the mean data distribution and the

ground truth PET. Fig. 6.2-Right presents the per pixel Z-score defined as

PET−µ(pPETM)

σ(pPETM)
, (6.5)

where µ(pPETM) and σ(pPETM) are the per-pixel average and per pixel variance over M

pseudo PET samples respectively. Results show that a significantly lower Z-score can be

found in the brain region for the multi-hypothesis model in comparison to when MC dropout

is used. This means that the multi-hypothesis-based PET uncertainty encompasses the true

PET intensity more often than the competing MC dropout method.

Consequently, the development of the proposed imitation learning approach exclu-

sively includes multi-hypothesis sampling in order to generate multiple pseudo CT realiza-
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Figure 6.2: PET values (first column), variance (middle column) and Z-score (right column) of
ground truth PET (top row) compared to pseudo PET values reconstructed with pseudo
CTs from Monte Carlo (MC) dropout sampling (middle row) and pseudo CTs from
multi-hypothesis sampling (bottom row). The multi-hypothesis model captures true
PET values better than the MC dropout method.
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tions.

6.3 Imitation learning for CT synthesis

Following the hypothesis that the L2-loss is not optimal as a loss metric for pseudo CT

synthesis when used to correct for attenuation in PET/MR because of its risk minimizing

nature (e.g., the sinus region which is dark in T1-weighted MR images can be mapped to air

or to bone but not to any value in between), the proposed network consists of a second CNN

that aims to minimize subsequent PET residuals. This network approximates the function

gψ : Y, Ỹ → Z with ψ ∈ Rn, (6.6)

by taking ground truth CTs (yi) and pseudo CTs ( f j
φ
(xi) ∈ Ỹ) as inputs. Here, Z is a set of

error maps between the ground truth PET and the pseudo PET that was reconstructed (as

in section 3.7) with each of the M pseudo CT realizations as µ-maps. In other words, the

second CNN learns to predict the PET reconstruction error from an input CT/pCT pair, thus

imitating, or approximating, the PET reconstruction process. This imitation CNN is trained

by minimizing the L2-loss between the true PET uptake error z and the predicted error z̃,

i.e.,

L2 = ||z− z̃||2. (6.7)

Lastly, this second CNN is used as a new loss function for the first CNN and minimizes

the RMSE, as it provides an approximate and differentiable estimate of the PET residual

loss. Thus, the loss minimized by the first CNN is defined as

L( fφ (xi),yi,zi) = min
j∈[1,M]

L( f j
φ
(xi),yi)

+ min
j∈[1,M]

[gψ( f j
φ
(xi),yi),zi].

(6.8)

6.4 Proposed network architecture

The proposed network architecture is presented in the following three sub-sections. Training

of the proposed imitation learning framework is performed in three distinct phases.
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Figure 6.3: Yellow solid box: semantic regression. A first CNN (Net1), here HighRes3DNet, with
MR images as inputs predicts multiple valid pseudo CT realizations by minimizing a
combination of the L2-loss between true CT and pseudo CT (L2-loss CT).

6.4.1 First training stage

In the first stage, a neural network, here HighRes3DNet, is trained with multiple hypothesis

outputs minimizing an L2-WTA loss in order to generate different pseudo CT realizations

(Fig. 6.3 yellow solid box). The first stage results in multiple realisations of pseudo CT

images that act as an input to the second stage. As previously seen, multi-hypothesis learn-

ing was chosen to generate multiple realisations of pseudo CT images as it captures the true

PET intensity more often than the competing MC dropout method.

6.4.2 Second training stage

In the second training stage, the weights of the first network (yellow box) are frozen and

a second neural network, again a HighRes3DNet, (Fig. 6.4 purple dashed box) is trained

individually. This second network takes the pseudo CT images generated in the first stage

as input images and learns to predict the residual between the PET reconstructed with the

true CT-derived µ-map and the pseudo PET that was reconstructed using the µ-map derived

from each pseudo CT to correct for attenuation. This way the network learns the mapping

between the pseudo CT residual and subsequent pseudo PET reconstruction error. Note,

that all pseudo PET images are reconstructed before the training process starts, such that a

paired CT/PET residual database is available for training.
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Figure 6.4: Purple dashed box: imitation network. A second CNN (Net2), HighRes3DNet, with
pseudo CTs that were generated in stage one and corresponding CTs as input predicts
the residuals between PET reconstructed with true CT-derived µ-map and pseudo PET
reconstructed with pseudo CT as µ-map by minimizing L2-loss PET. Thus, this network
imitates the PET reconstruction process.

6.4.3 Third training stage

The third stage is a combination of stage one and two (Fig. 6.5. In the final stage the first

network is retrained with a combination of the CT L2-loss from stage one, and the proposed

metric loss from stage two in equal proportions. All weights in the second network are

frozen such that the entire network can be used as a loss function. This way the proposed

metric loss can be seen as a function that describes the PET reconstruction error. Thus,

the combined loss allows the network to minimize both the CT residual and the pseudo

PET reconstruction error at the same time resulting in a pseudo CT that when used for PET

reconstruction will generate a PET image with minimal error.

6.4.4 Implementation details

During the training stage subvolumes of size 56× 56× 56 pixels were randomly sampled

from the input data due to a limited GPU memory budget. Those patches were augmented

by randomly rotating each of the three orthogonal planes on the fly by an angle in the in-

terval of [-10◦ ,10◦]. Further augmentations on the MR data included random scaling by a

factor between 0.9 and 1.1, random bias field augmentation of all three planes and random

noise in a range between 10 SNR and 25 SNR. The data were split into 70% training, 10%

validation and 20% testing data. All training phases were performed on a Titan V GPU

with Adam optimizer. In the first training stage a model was trained for 50k iterations with
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Figure 6.5: Final training stage: the first network is retrained with a combination of the CT L2-loss
from stage one, and the proposed metric loss from stage two in equal proportions. The
combined loss allows the network to minimize both the CT residual and the pseudo PET
reconstruction error at the same time

a learning rate of 0.001. The network of the second training stage learning to minimize

the pseudo PET reconstruction error was trained for 500k iterations with a learning rate

of 0.001. During the final training stage a complete model was trained for 100k iterations

minimizing a combination of the proposed losses with a learning rate of 0.001 before de-

creasing the learning rate by a factor of 10 and resuming training until convergence, where

convergence is defined as a sub 5% change in the loss value over a period of 5000 iterations.

While the number of pseudo CT images generated by the multi-hypothesis network can be

chosen arbitrarily, here it was set to 3 as it has been shown to be large enough to capture the

task uncertainty (Rupprecht et al. 2017).

6.5 Data pre-processing
For each subject in the training database, MRs and CTs were affinely aligned using a sym-

metric approach (Modat et al. 2014) based on Ourselin et al. (Ourselin et al. 2001) followed

by a fully affine registration to compensate for possible gradient drift in the MR images.

In the following step a very low degree of freedom non-rigid deformation was performed

in order to compensate for different neck positioning before implementing a second non-

linear registration, using a cubic B-spline with normalized mutual information (Modat et al.

2010). For the purpose of this work, the data were resampled to the original Siemens Bio-

graph mMR PET resolution of 344×344×127 voxels with a voxel size of approximately

2× 2× 2 mm3. Both CT and MR images were rescaled to between 0 and 1 for increased
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training stability. Additionally, two masks were extracted for evaluation purposes, a head

mask from the CT and a brain mask from the T1-weighted MR image. The head mask was

generated by thresholding the CT at -500 HU thus excluding the background from the per-

formance metric analysis. The additional brain mask was extracted from the T1-weighted

MR image to exploit the radionuclide uptake in the brain region only. The data used in this

chapter was the same as the data used in chapter 3 and 4. Three PETs were reconstructed

with each of the multi-hypothesis pseudo CTs (here denoted as pseudo PET or pPET) in

order to train the imitation CNN, resulting in a total of 60 pCT/pPET pairs.

6.6 Validation and results

Following the results of the comparison experiment between different sampling schemes

(see section 6.2.3), a fully 3D model was trained and a five-fold cross-validation was per-

formed. Qualitative results are presented in Fig. 6.6. The first column shows the true CT

image (top), a pseudo CT synthesized with the HighRes3DNet chosen as baseline method

(middle) and a pseudo CT synthesized using the proposed imitation learning (bottom). Next

to the CTs (2nd column) the corresponding residuals between pseudo CT and true CT are

illustrated. In the third column the ground truth PET (top), baseline pseudo PET (middle)

and the imitation learning pseudo PET (bottom) are shown followed by the resulting pseudo

PET residuals in the last column. In order to quantify the results, MAE was chosen as per-

formance metric of the pseudo CTs only in the number of voxels in a region of interest (V ),

here head and brain only region. The method was not compared to U-Net as it has been

shown in chapter 3.8 that HighRes3DNet achieves superior synthesis performance.

The advantages of the proposed imitation learning model were evaluated on the re-

maining 20% of the dataset hold out for testing (see Table 6.1). The five-fold cross-

validation therefore ensures that the proposed method is trained five times on a different

subset of training data and each model is tested on different test images. This way, each

image in the dataset has been tested as part of the cross-validation study. The proposed

method leads to a lower MAE on the CT (79.04 HU ± 3.57 HU) compared to the simple

feed forward model (92.77 HU ± 8.57 HU), the MAE in the resulting pseudo PET is sig-

nificantly lower (paired t-test, p < 10−4) for the proposed method (137.61 a.u. ± 33.28 a.u.

for brain region; 123.14 a.u. ± 18.38 a.u. for whole head) when compared to the baseline

model (197.88 a.u. ± 69.53 a.u. for brain region; 166.36 a.u. ± 46.88 a.u. for whole head).

The different results for the HighRes3DNet baseline compared to the results in chapter 3
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Table 6.1: Mean Absolute Error (MAE) in pseudo CT generated with HighRes3DNet and imitation
learning pseudo CTs and corresponding MAE in pseudo PET in the brain region only
and in the whole head for all five folds.

Fold MAE CT (in HU) MAE PET brain (in a.u.) MAE PET head (in a.u.)

HighRes3DNet Imitation learning HighRes3DNet Imitation learning HighRes3DNet Imitation learning

1 103.93 ± 14.46 79.97 ± 10.19 306.98 ± 30.03 147.26 ± 26.89 240.55 ± 32.21 134.86 ± 22.34

2 99.70 ± 15.65 82.32 ± 7.91 214.63 ± 55.41 180.85 ± 69.98 180.06 ± 47.68 142.27 ± 45.69

3 89.17 ± 10.49 81.44 ± 7.49 191.21 ± 70.28 109.91 ± 18.67 122.31 ± 25.13 98.20 ± 11.62

4 86.71 ± 10.99 78.17 ± 0.22 140.31 ± 42.63 98.71 ± 12.31 154.38 ± 41.11 109.96 ± 18.70

5 84.33 ± 7.19 73.30 ± 2.26 136.27 ± 21.29 151.32 ± 26.32 134.48 ± 20.54 130.39 ± 21.43

Average 92.77 ± 8.57 79.04 ± 3.57 197.88 ± 69.53 137.61 ± 33.28 166.36 ± 46.88 123.14 ± 18.38

are potentially caused by overfitting due to the limited amount of data available.

6.7 Validating on independent head CT dataset

In order to validate the previously trained fully 3D model on a completely independent

dataset, the performance of the proposed method was compared against ground truth data

of 23 subjects. The method was then compared to the chosen baseline method (High-

Res3DNet) and a non deep learning method, namely multi-atlas propagation that is rou-

tinely used in clinical practice and clinical trial settings. The quantitative validation was

performed in two steps:

1. Pseudo CTs were synthesized from all 23 subject’s MR images using the proposed

method, the baseline method and the multi-atlas propagation approach. All generated

pseudo CTs were then compared to the subject’s ground truth CT to validate the

accuracy of the synthesis.

2. Pseudo PET images were reconstructed following the simulation described in section

3.7 using µ-maps generated with pseudo CTs from proposed, baseline and multi-

atlas method. All pseudo PETs were then compared to the ground truth PET that was

reconstructed using the µ-map extracted from the original CT in order to validate the

accuracy of the PET attenuation correction.

6.7.1 Data pre-processing

The independent validation dataset consisted of 23 subjects that were scanned on a GE

Discovery 710 PET/CT scanner providing CT images (voxel size 1.367×1.367×3.27 mm3,

140 kVp, 10mA) and reconstructed 18F-FDG PET images (1.0×1.0×3.27 mm3). The 23
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Table 6.2: Mean Absolute Error (MAE) in pCT generated with HighRes3DNet, multi-atlas prop-
agation and imitation learning pCTs and corresponding MAE in pPET in the brain and
head region only on independent dataset.

MAE CT (in HU) MAE PET brain (in a.u.) MAE PET head (in a.u.)

Baseline Multi-Atlas Imitation
learning

Baseline Multi-Atlas Imitation
learning

Baseline Multi-Atlas Imitation
learning

172.12 ±
19.61

153.40 ±
18.68

110.98 ±
19.22

642.54 ±
117.75

290.95 ±
65.46

190.05 ±
49.23

561.62 ±
87.45

289.44 ±
89.34

204.04 ±
49.03

subjects were then scanned on a Siemens Biograph mMR PET/MR immediately after. T1-

weighted images were acquired using a three-dimensional magnetization-prepared rapid

gradient-echo (MP RAGE) sequence (Brant-Zawadzki et al. 1992) (3.0 T; TE/TR/TI,2.63

ms/1700 ms/900 ms; flip angle 9◦; voxel size 1.1× 1.1× 1.1 mm3). Three-dimensional

isotropic T2-weighted images were acquired with a fast/turbo spin-echo sequence (SPACE)

(3.0 T; TE/TR, 383 ms/2700 ms; flip angle 120◦; voxel siz 1.3×1.3×1.3 mm3). Both CT

and MR images were rescaled to be between 0 and 1 for increased training stability. This

dataset was acquired at the end of the project, thus differs slightly from the original training

dataset.

6.7.2 Imitation learning

Figure 6.6 shows the ground truth CT and pseudo CTs synthesized with the proposed imi-

tation learning and the baseline model and the corresponding residuals as well as predicted

pseudo PET images and pseudo PET residuals.

The results of the independent validation are shown in Table 6.2. The MAE over all

23 subjects in the CT for the proposed method is 110.98 HU ± 19.22 HU compared to the

baseline 172.12 HU ± 19.61 HU and multi-atlas propagation method 153.40 HU ± 18.68

HU. Subsequently, the average MAE of all reconstructed PET images within the brain for

the proposed method is 3.4 times lower than the MAE of the baseline (190.05 a.u. ± 49.23

a.u. compared to 642.54 a.u. ± 117.75 a.u.) in the brain region and 2.7 times lower in the

whole head region (204.74 a.u. ± 49.03 a.u. compared to 561.62 a.u. ± 87.45 a.u.). Further,

the proposed imitation learning method achieves an approximately 1.5 times lower average

MAE of all reconstructed PET images in both the head and the brain region compared to

PET images reconstructed with the pseudo CT generated with the multi-atlas propagation

method (290.95 HU ± 65.46 HU in brain region, 289.44 HU ± 89.34 HU in head region).

Example images of T1-, T2-weighted, CT, pseudo CT synthesized with baseline
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Figure 6.6: Qualitative results. From top to bottom: ground truth, baseline (HighRes3DNet) and
imitation learning. From left to right: CT, pCT-CT residuals, PET, pPET-PET residuals.
The error in the pCT generated with the proposed imitation learning is lower than the
baseline pseudo CT residuals. The error in the pPET reconstructed with the proposed
method is significantly lower than the pseudo PET error for the baseline method.

method, multi-atlas propagated pseudo CT and pseudo CT generated with proposed method

and corresponding reconstructed PET images are presented in Fig. 6.7 for three subjects

whose pseudo PET showed the lowest, the average, and the highest MAE.

Lastly, both the pseudo CT images and the pseudo PET images were mapped to a

common space following a CT-based groupwise registration method (Rohlfing et al. 2001).

The average across all subjects of the absolute pseudo CT error map was computed and the

absolute pseudo PET error map (Fig. 6.8 top). Note that the average error in the pseudo

CT for all three methods is centered in the skull region and only shows small improvement

for the pseudo CT generated with the proposed imitation learning. However, looking at
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Figure 6.7: From left to right: the acquired T1-, T2-weighted MR, CT, and ground truth 18F-FDG
PET, the pseudo CT and pseudo PET generated with the baseline (HighRes3DNet only),
the pseudo CT and pseudo PET generated with the multi-atlas propagation, and the
pseudo CT, and pseudo PET generated with the proposed imitation learning for the
subjects within the independent validation dataset that obtained the lowest (top row),
average (middle row), and highest (bottom row) MAE in the pseudo PET.

the absolute difference of the pseudo PET and the gold standard PET, it can be seen that

the average uptake error in the pseudo PET reconstructed with the baseline pseudo CT is

significantly higher than in the pseudo PET reconstructed with the pseudo CT synthesized

with the proposed imitation learning. Furthermore, it can be observed that small intensity

differences in the skull region in the pseudo CT generated with the multi-atlas propagation

method cause a significantly higher uptake error in the pseudo PET when this pseudo CT is

used for pseudo PET reconstruction. The bottom row of Fig. 6.8 shows the standard devia-

tion across all 23 subjects of pseudo CT and pseudo PET difference maps. It is noticeable

that the standard deviation in the average pseudo CT error map is smaller for the proposed

method compared to the baseline and the multi-atlas propagation method. Furthermore, the

standard deviation of the groupwise average pseudo PET error is significantly higher for

the pseudo PET difference map that was computed between the pseudo PET reconstructed

with the baseline method and the gold standard PET compared to the pseudo PET difference

map that was generated between the pseudo PET reconstructed with the proposed imitation

learning method and the gold standard PET.

6.8 Discussion and conclusion

Following the hypothesis that the classical L2-loss is not necessarily the optimal minimiza-

tion metric for CT synthesis, the presented multi-stage imitation learning network mini-
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Figure 6.8: Groupwise average over 23 subjects (top) and standard deviation (bottom) of the pseudo
CT absolute residuals of baseline, multi-atlas propagation and imitation learning (col-
umn 1-3) and pseudo PET absolute residuals between gold-standard PET and pseudo
PETs reconstructed with baseline pseudo CT, multi-atlas propagation pseudo CT and
imitation learning pseudoCT (column 4-6).

mizes a combination (as in Eq. 6.8) of the pixel-wise error between pseudo CT and CT

and a proposed metric-loss that itself is represented by a CNN explicitly aiming at PET

reconstruction application.

Two separate datasets were used in this chapter; one for training and cross-validation

and another completely independent dataset to evaluate the performance of the proposed

method on input images that were acquired with a different imaging protocol. The per-

formance of the proposed imitation learning framework was compared to a feed forward

network for pseudo CT synthesis that minimizes the classical L2-loss (HighRes3DNet).

The results of the five-fold cross-validation in Table 6.1 demonstrate that the mean absolute

error between the generated pseudo CT and the acquired ground truth CT is significantly

lower compared to the baseline method for each fold. This observation leads to the hypoth-

esis that this is likely caused by the regularizing nature of the imitation learning loss as all

networks were trained until convergence. It can further be noted that the standard devia-

tion for the proposed method is generally lower than the standard deviation of the baseline

method. The lower error in the pseudo CT images subsequently results in a lower error in

the reconstructed pseudo PET image when the pseudo CT is used as attenuation map for the

PET reconstruction. The MAE in the whole head region and in the brain region only is sig-

nificantly lower for the pseudo PET reconstructed with the proposed pseudo CT compared

to the baseline pseudo CT. Difference images in Fig. 6.6 reveal that the errors in the pseudo

CT are concentrated in the skull area, especially in areas with air/bone and soft-tissue/bone
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boundaries like the nasal cavities. The wrongly predicted intensities in the skull region lead

to incorrect attenuation maps that in turn lead to an overall underestimation of radionuclide

uptake in the reconstructed pseudo PET images as shown in Fig. 6.6.

Quantitative results on a completely independent validation dataset are presented in

Table 6.2 and confirm the improved performance of the proposed imitation learning net-

work. The validation on the independent dataset was further extended by an additional

comparison to a multi-atlas propagation method from Burgos et al. (Burgos et al. 2013)

that is robust to image domain shifts. Results show that the error of the proposed pseudo

CT lies around 111 HU whereas the baseline pseudo CT error is around 172 HU, which

shows an improvement of approximately 35%. Even though a smaller pseudo CT error was

not necessarily the aim of this work, the introduction of the imitation learning method has

resulted in a better optimum and more generalizable model on average, which in this study

resulted in an overall lower CT error compared to the baseline method. While the CT error

was lower on average for the proposed method, there have been cases where only the PET

error was lower compared to the baseline while the CT error was higher. This shows that

inaccuracies in the CT are tolerable and do not compensate the performance of the proposed

method when validated on the PET reconstruction accuracy. This is particularly obvious in

Fig. 6.7, where synthesized pseudo CT images present multiple imperfections. However,

those imperfections can be accepted, because the pseudo CT acts as interim step in the PET

reconstruction process. Pseudo CT inaccuracies are thus a trade-off for better PET recon-

struction. This method might not be well suited when trying to reconstruct a more realistic

CT image.

Comparing the performance of the novel deep learning framework exploiting a com-

bined pixel-wise and metric loss to the multi-atlas propagation method that is routinely used

in clinical practice and clinical trial settings, the proposed method improves the pseudo

CT synthesis performance by approximately 28%. The impact of the synthesis error in

the pseudo CT on the pseudo PET is particularly present on the independent dataset that

consisted of T1- and T2-weighted images that were acquired with a different imaging pro-

tocol than the training input MR data. The MAE in the pseudo PET reconstructed with

the baseline is approximately 3.4 times higher and 1.5 times higher for the pseudo PET

reconstructed with the multi-atlas propagated pseudo CT compared to the pseudo PET

reconstructed with the proposed imitation learning pseudo CT (642.54 a.u. compared to
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290.95 a.u. and 190.05 a.u., which represents 11%, 5% and 3% average uptake error respec-

tively). Qualitative results in Fig. 6.7 illustrate the pseudo CTs and corresponding pseudo

PETs of the independent validation and emphasize the underestimation of the skull in the

baseline method and its missing ability to generate air/bone boundaries properly whereas

pseudo CTs generated with the proposed method seem sharper than the ground truth CT

images leading to pseudo PET images that reconstruct the radionuclide uptake more accu-

rately. The pseudo CTs generated with the multi-atlas propagation method look visually

sharper than the pseudo CTs generated with the imitation learning method, however, the

density of the bone is overestimated which leads to an inaccurately radionuclide uptake in

the reconstructed pseudo PET.

Analyzing the groupwise average difference and standard deviation across all 23 sub-

jects of the independent dataset shows a similar performance on the pseudo CT synthesis for

baseline, multi-atlas propagation and proposed imitation learning method as demonstrated

in Fig. 6.8. However, when exploiting the average error map of the reconstructed radionu-

clide uptake the baseline method shows a significantly higher uptake error particularly in

the brain region compared with the other two methods. The higher average difference in the

skull region of the pseudo CT generated with the multi-atlas propagation method leads to

a higher average error in the resulting pseudo PET image especially close to the skull. All

three attenuation correction methods introduce a bias but the variance of the bias is lower

when the pseudo PET is corrected with the attenuation map derived from the imitation

learning pseudo CT.

The results of the validation on the independent dataset show a common problem of

deep learning methods: image domain shift. Often, methods are developed to serve a prob-

lem specific purpose making them less generalizable, i.e., testing on images that are from a

slightly different domain (in this case different MR acquisition protocols) than the training

data fails. Multi-atlas propagation methods can overcome this problem since they rely on

structural similarities in the image rather than voxel-wise intensity similarities. The pro-

posed method shows to have good extrapolation properties due to a more realistic metric,

which leads to less domain shift issues and an improved performance.

In this chapter it was shown that minimizing a combined loss that consists partly of

the classical L2-loss and partly of a learned metric loss that itself minimizes the error in

the reconstructed pseudo PET when the pseudo CT is used as attenuation map can indeed
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significantly improve the PET reconstruction accuracy.

As a consequence of the newly introduced imitation learning loss, the performance

of the pseudo CT synthesis on an image-based level was improved when optimizing the

propsed network not only for the pseudo CT but also the pseudo PET error. Since the

optimization happens over a high-dimensional model in a deep learning scenarios the in-

troduction of the imitation loss appears to regularize the optimization function landscape

better.

However, supervised deep learning based methods for pseudo CT synthesis for the

purpose of PET/MR attenuation correction also have limitations relying on a co-registered

database that represents a wide range of the population’s anatomy. Small inaccuracies in the

registration quality of the MR/CT database can have an influence on the training success.

But, when validating on a database of images acquired with a different imaging protocol,

the proposed end-to-end optimization strategy is robust enough to sustain local registration

inaccuracies and acquisition protocol changes generating pseudo CT images that are sig-

nificantly better than methods used in clinical practice. After all, accurately aligning CT

and MR images is inevitable in order to validate the pixel-wise performance of any im-

age synthesis algorithm until other appropriate methods have been developed that allow the

validation of non-registered data.

Current limitations of the method arise from limited anatomical information in CT and

MR images such as tumors as well as the tracer specificity of the proposed model. A larger

database containing subjects with anatomical abnormalities could improve the robustness

of the model. An uncertainty measure of the pseudo CT prediction (similar to chapter 5)

could be integrated in the network providing a means of safety checking. This would make

the method robust for clinical use by declining predictions that are highly uncertain if any

extreme abnormalities in the input MR image are present that could cause the model to fail.

Compared to the results from the previously proposed DBR method, the end-to-end

optimization presented in this chapter achieves inferior results. However, the end-to-end

optimization strategy used HighRes3DNet as the convolutional neural network of choice

when training both imitation and metric network, but can be exchanged with any other

network architecture. Thus, future work could include to train the end-to-end optimization

framework with DBR as network block that has shown to outperform a simple feed forward

network such as HighRes3DNet. A combination of residual learning and imitation learning
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has the potential to further increase the synthesis performance. While DBR has shown to

reduce the CT residuals significantly, the end-to-end optimization further reduces the PET

residuals. This way the strengths of both networks could be combined in future experiments.

Additionally, recently trending deep learning techniques such as attention learning could be

incorporated into the framework. Attention learning tries to imitate cognitive attention,

which emphasizes the most important parts of the data. This way, attention could be used

to emphasize the minimization of the PET reconstruction error. This idea could potentially

even go further and include marginalization, where the contribution of each interim pseudo

CT realisation towards the final attenuation corrected PET image would be considered in

the model.

is a technique that mimics cognitive attention. The effect enhances the important parts

of the input data and fades out the rest – the thought being that the network should devote

more computing power on that small but important part of the data

In summary, this chapter presents a novel network architecture for pseudo CT synthesis

in 3D for the purpose of PET/MR attenuation correction. Compared to state-of-the-art

image synthesis CNNs, the proposed method does not assume theL2-loss, that is commonly

used as a minimization metric in CT synthesis methods, as optimal when the ultimate aim

is a low error in the corresponding pseudo PET when used as µ-map. Quantitative analysis

on an out-of-distribution dataset shows that minimizing a more suitable metric that indeed

optimizes for PET residuals (from CTs and pseudo CTs) can improve the process of CT

synthesis for PET/MR attenuation correction. Furthermore, the proposed method proved to

be robust to changes in the imaging protocol of the input T1- and T2-weighted MR images.

Overall the proposed method provides a significant improvement in PET reconstruction

accuracy when compared to a simple feed forward network and a multi-atlas propagation

approach.





Chapter 7

General Conclusions

7.1 Summary

PET/MR imaging has a promising future ahead, combining functional imaging with an ex-

cellent soft tissue contrast, however, routine clinical use is still limited due to the imperfect

attenuation correction that causes a high PET reconstruction bias. Thus, the overall aim of

this thesis was to improve PET/MR attenuation correction by employing deep learning al-

gorithms that have seen a rise in popularity in the field of computer science. The developed

methods aim to outperform current non deep learning based state-of-the-art methods such

as multi-atlas propagation and reach comparable results to CT-based attenuation correction.

In order to achieve this goal, the first novel PET/MR attenuation correction method

developed in this work consists of a deep learning framework that synthesizes pseudo CT

images from input MR images. This deep MR to CT synthesis framework is trained in a

supervised manner, thus relying on a database of co-registered MR and CT image pairs. It

utilizes a technique called boosting, known from classic machine learning, that exploits the

idea that a collection of weak learners build a strong learner in their entirety. This way, each

model aims to compensate the weaknesses of its predecessors. In the proposed framework

this is achieved by concatenating multiple CNNs, representing a weak learner each, that

when trained together build a strong learner that predicts a more accurate pseudo CT. The

method can be seen as a form of residual learning, where the residuals of an initial predic-

tion are minimized by additional learners further down the stream. It was shown that the

proposed Deep Boosted Regression network can achieve significantly better results com-

pared to traditional multi-atlas propagation methods and deep neural networks that do not

benefit from the additional boosting mechanism. The Deep Boosted Regression framework

was validated using 18F-FDG PET images and a four-fold random bootstrapped validation
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has shown that the PET reconstruction error is 50% lower than in multi-atlas propagation

methods. Furthermore, it was demonstrated that when dealing with multi-modal data, a

combined input improves the synthesis accuracy. However, when only one modality is

available, T2-weighted MR images provide a better means for MR-based attenuation cor-

rection compared to their T1-weighted counterpart. An idea to further improve synthesis

results is to use AC specific MR sequences that are used for segmentation-based AC meth-

ods, such as Dixon or UTE, as additional input channel. The network could potentially

benefit from the additional bone information present in such sequences.

The second objective of this work was to develop a novel CT synthesis network for

whole-body applications, which, until present, has remained a largely unchartered territory.

As a means of safety, the aim was to incorporate uncertainty estimations to be aware of

the network’s prediction confidence. The proposed MultiRes network is a learning scheme

for multi-resolution MR to CT synthesis of the full body. It is an end-to-end multi-scale

convolutional neural network that takes input patches from full-body MR images at three

resolution levels as inputs to synthesize high resolution, realistic CT patches. MultiResunc is

a version of this model that also incorporates explicit heteroscedastic uncertainty modelling

by casting the task likelihood probabilistically, and epistemic uncertainty estimation via

traditional Monte Carlo dropout. By learning feature maps of different resolutions the pro-

posed method reduces the pseudo CT synthesis error significantly compared to other deep

convolutional networks that only learn the image context from high-resolution images. In-

corporating uncertainty into the model results in a slight decrease in performance however

this is outweighed by the important additional information provided by the uncertainty. This

contribution is particularly important for clinical whole-body imaging as current methods

provide insufficient attenuation correction. While standard deep learning methods achieve

already good results in brain imaging, this is not the case for whole-body imaging, mainly

due to the large image size that comes with a limited field of view for training neural net-

works. However, the MultiResunc approach requires more validation for clinical studies.

The dataset that was used for training did not account for enough pathologies that could

be present restricting the models generalizability. Furthermore, demographic characteris-

tics of the study cohort exclude children. Therefore, it is of utmost importance to acquire

more whole-body data in order to capture anatomical differences in the study population

and make the model more generalizable.
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The most common way to optimize deep MR to CT algorithms is to minimize the error

between the synthesized pseudo CT and the corresponding ground truth CT image, equiva-

lent to minimizing the L2-loss. However, minimizing the L2-loss between ground truth CT

and CT prediction fails to recognize the main aim of CT synthesis, when used for PET/MR

attenuation correction, which is to generate a synthetic CT that, when used as attenuation

map for PET reconstruction, makes the reconstructed PET as close as possible to the gold

standard PET reconstructed with the true CT. Thus, the third objective was to develop a

novel deep learning framework for MR to CT synthesis that directly minimizes the PET

residuals when the pseudo CT is used for PET reconstruction. To do so, a novel MR to CT

synthesis method is introduced that is composed of two separate CNNs. A first CNN syn-

thesizes multiple valid CT predictions using multi-hypothesis learning and a second CNN

uses imitation learning in order to predict the residuals between ground truth PETs and

PETs reconstructed with each valid pseudo CT. By minimizing this new metric loss, the

network learns to synthesize pseudo CT images that will ultimately result in pseudo PETs

with lower residuals. It has been shown that minimizing a more suitable metric that indeed

optimizes for PET residuals can improve the process of CT synthesis for PET/MR attenua-

tion correction. The proposed method further proved to be robust to changes in the imaging

protocol of the input T1- and T2-weighted MR images. Overall the concept of imitation

learning for MR to CT synthesis provides a significant improvement in PET reconstruction

accuracy when compared to simpler CNNs and a multi-atlas propagation approach. The last

contribution to this thesis is particularly promising for brain MR attenuation correction as it

corrects for the ultimate PET error. While it was shown that the PET reconstruction accu-

racy can indeed be improved on brain images and shows sufficient generalizability, clinical

integration into systems requires additional validation. It is especially important to account

for pathologies like tumors and other abnormalities into the training dataset in order to use

it routinely in clinical practice.

7.2 Limitations

The proposed methods showed promising results and efforts can be made to possibly in-

tegrate them into clinical systems. However, there are also challenges that the proposed

methods face. These include a lack of generalizability, limited training data as well as

memory constraints. In general, deep learning algorithms benefit from a large amount of

training data in order to capture the wider context between two image domains. The datasets
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used in this work were significantly smaller compared to datasets used in image translation

networks used in computer vision where thousands of images are available. A large amount

of data allows the network to generalize better and capture as many realistic scenarios, here

pathologies, as possible. Therefore, results in this work are limited in their generalizability

and would benefit from a larger amount of training data. Additionally, all methods presented

are expected to perform better subject to better hardware, thus larger input training patches.

Larger inpupt patches allow networks to learn the context between two imaging domains

from a larger field of view, which is especially important for the large images acquired with

whole-body imaging. Furthermore, all proposed networks were trained with the commonly

used L2-loss that minimizes the sum of all squared differences between the ground truth and

the predicted value. However, it is not robust to large outliers. The model will minimize

this single outlier since errors of common examples appear small compared to that single

outlier. L1-losses are more robust to outliers, however might not be able to capture small

details in the image. A possible solution is to train a combined loss that minimizes both, the

absolute error as well as the sum of all squared differences.

Overall, all presented methods need further validation to be used in clinical practice.

Integrating a new attenuation correction method on a clinical scanner requires the method

to be validated in-depth and cover all possible pathologies/scenarios that can occur as part

of routine examinations. Additionally, there must be a back-up in case a model fails in a

particular case in order to ensure robustness to the system. As discussed in chapter 5, un-

certainty is a potential way to flag if a prediction can be trusted or if the network fails to

synthesize a pseudo CT with sufficient quality for PET reconstruction. While all methods

presented in this thesis showed promising results, they describe proof of concepts, where-

fore the validation was limited to the data availabile and must be more extensive in order to

integrate them into commercial PET/MR systems.

7.2.1 Generalizability (domain shift problem)

The results of the validation on an independent dataset in Chapter 6 show a common prob-

lem of deep learning methods: Image domain shift. Often methods are developed to serve

a problem-specific purpose making them less generalizable, i.e. testing on images that are

from a slightly different domain than the training data, in this case due to a different MR

acquisition protocol, fails. Multi-atlas propagation methods are able to overcome this prob-

lem since they rely on structural similarities in the image rather than voxel-wise intensity
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similarities. This domain shift problematic applies to the proposed methods in chapter 3

and chapter 5 as both methods rely on the L2-loss and the image properties within the given

database. On the contrary, the proposed end-to-end optimization framework shows to have

good extrapolation properties due to a more realistic metric, that itself is learned, which

leads to less domain shift issues and an improved synthesis performance. In order to proof

the concept behind the end-to-end optimization method, the network architecture used for

this framework was HighRes3DNet, although it is theoretically possible to exchange the

whole network block of the optimization framework with the DBR network architecture or

the MultiResunc architecture. However, this is not insignificant from a software engineering

point of view due to the extended GPU memory requirements of those methods.

7.2.2 Imitation learning for whole-body images

The proposed MultiResunc network shows promising results for whole-body MR to CT syn-

thesis tasks which up to now have rarely been tackled. The method requires additional

validation, especially on PET images when the synthesiszed pseudo CT is used as attenua-

tion map. This is particularly difficult as the uptake distribution of PET tracers is much more

localized in the whole-body. PET tracers accumulate in metabolic active regions, which in-

clude the brain and cancers both primary and metastatic. Thus, it can be expected that PET

tracers will bind to specific regions within the whole body and are not confined to the brain.

Furthermore, the brain is surrounded by a consistent bone cage, the skull, whereas photons

that are ejected in an organ such as the lung might or might not travel through bone. It is

therefore of high importance to have a good understanding of the patient’s anatomy in or-

der to assign the right attenuation coefficients. The proposed imitation learning strategy has

shown promising results on the brain and could be used to directly optimize the model using

both CT and PET residuals. However, a larger dataset is necessary to conduct experiments

like this. Furthermore, models trained with the proposed imitation learning framework are

tracer specific, which means that all PET data was acquired with 18F-FDG, thus the model

optimizes only for this tracer.

7.3 Future research direction

There are multiple directions to continue this research project that explore uncharted ter-

ritory. One idea is to combine the advantage of the robustness of multi-atlas propagation

algorithms with a deep learning framework, similar to creating a prior for the network that
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then itself compensates for the weaknesses of the multi-atlas propagation alogorithm, such

as its inability to synthesize abnormalities. To circumvent the generalizability issue that

deep learning methods trained on a specific database face, domain adaptation techniques

could be employed such that it is possible to train an imitation learning network on non

tracer specific PET data. Another possible idea is to deploy the field of reinforcement learn-

ing for pseudo CT synthesis. The next three subchapters discuss possible implementations

of these ideas.

7.3.1 Integration of multi-atlas-propagation as prior

One idea to improve the generalizability of deep learning methods for MR to CT synthesis

is to make use of the advantages of other non deep learning related methods and integrate

them in a deep learning framework. Multi-atlas propagation methods have proved to be a

robust tool for MR to CT translation and have been the method of choice for many years.

A possible framework could include a combination of such a method with a convolutional

neural network. A multi-atlas propagation method can create an initial pseudo CT esti-

mate that in itself acts as a prior for the neural network. The neural network then tries to

compentate for the lack of extrapolation of the multi-atlas propagation method.

However, this combination would have the downside of being rather slow. The regis-

trations in multi-atlas propagation methods are time costly, which would increase by adding

an additional neural network into the pipeline. If it is possible to decrease the time that

multi-atlas propagation methods require, this approach would be feasible. This could be

achieved by fast deep learning-based image registration approaches. All registrations within

the multi-atlas-propagation approach could be replaced by a registration network resulting

in a prior for a deep learning image synthesis framework. This could have the benefit

of providing the synthesis network a quickstart into the training process as much smaller

registration errors must be compensated in the synthesis process, which has the additional

benefit of reducing the time to converge the synthesis network.

7.3.2 Domain adaptation for imitation learning

A possible idea for the future to solve the domain shift problem and to increase the robust-

ness of the proposed models is to utilize domain adaptation techniques. Such techniques

have the ability to apply a model that was trained on one domain (also called source do-

main) to another domain (also called target domain). The target domain is usually related

to the source domain but is different, for example when a model is trained on T1-weighted
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brain images in order to detect tumors whereas the target at testing time is to detect brain

bleeds. In this example target and source domain are related as both look at MR images

of the skull, but different due to the different pathologies they present. The main aim is to

make models more generalizable. Applying a domain adaptation strategy to the problem

that the end-to-end optimization model is trained on PET images acquired with one tracer

only, would mean that it is possible to train a model on PET data acquired with 18F-FDG

and test it on PET images acquired with a different tracer such as 11C-RAC that binds to

specific dopamine receptors. However, although domain adaptation itself is a large field of

research gaining wide popularity at the moment, this problem is not trivial to solve. Another

idea to allow the end-to-end optimization to be suitable for clinical use is to train multiple

models with different PET tracers. This is a more practical solution that would allow a clin-

ician to set the tracer as a parameter in the acquisition protocol. The scanner will perform

the MR to CT translation on an imitation learning model that was trained with the specific

tracer resulting in a tracer-specific reconstructed PET image.

7.3.3 Reinforcement learning

One possible idea for a new end-to-end optimization framework is to make use of rein-

forcement learning (RL), one of three machine learning paradigms next to unsupervised

and supervised learning. In an RL scenario an agent tries to reach a specific goal by taking

actions that lead to a reward depending on how well it performed with respect to a set policy.

The overall aim of the algorithm is to predict the best subsequent step in order to maximize

the associated reward. The way the agent chooses its actions relies both on learning from

experience and exploration of new tactics. Thus, the performance of the agent improves

with each iteration through this feedback loop.

7.3.4 Policy gradients

In policy-based reinforcement learning a parametrized function is learned which provides

a distribution over possible actions, a, given a particular state, s. This policy is denoted

as πθ (a,s) where θ represents the network parameters to be learned. A typical learning

scenario would collect experience as states, actions and their corresponding rewards. In this

case the episodes of experience are of size 1 which is equivalent to a 1-step Markov Decision

Process (MDP). Consider a policy objective function J(θ) for which optimal parameters,

θ ∗, need to be found, which maximize J, θ ∗ = argmaxθ J(θ). In order to maximize J, its

derivative must be taken and stochastic gradient descent applied. The derivative is provided
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by the Policy Gradient Theorem (Sutton et al. 2000),

Theorem 1 For any differentiable policy πθ (s,a) and a long-term value Qπθ (s,a) the policy

gradient is given by,

∇θ J(θ) = Eπθ
[∇θ logπθ (s,a)Qπθ (s,a)]

For the given 1-step MDP, the long-term value Qπθ (s,a) can be replaced by the final

(and only) reward, R. This means the Policy Gradient Theorem can be rewritten as follows,

∇θ J(θ) = Eπθ
[∇θ logπθ (s,a)R] = ∑

s∈S
∑

a∈A
∇θ logπθ (s,a)Ra

s (7.1)

In order to learn an optimal policy πθ ∗(s,a) tuples (s,a,R) are gathered and θ is updated

using the REINFORCE algorithm (Williams 1992).

7.3.5 Potential reinforcement learning CT synthesis framework

The MR to CT synthesis problem for the purpose of PET reconstruction can be reformulated

as a reinforcement learning problem. Figure 7.1 shows a potential reinforcement learning

CT synthesis framework and can be summarized like the following:

1. The state, s, is the MR for a particular subject.

2. The actions, a, are the generated pseudo CTs.

3. The reward, R, is the L2 between the pseudo PET and the real PET.

4. The environment is NiftyPET which takes in an action and returns a reward.

The policy gradients formulation considers an RL agent which for a state s, draws an

action a from a policy distribution πθ (s,a). In the MR to CT synthesis case, this policy

distribution is provided by a convolutional neural network. It has been shown that using

dropout as part of a neural network and drawing various samples at inference time can be

used as an unbiased estimate of the model variance (Gal & Ghahramani 2016). M samples

are taken from this distribution to obtain a pixel-wise estimate of the variance, σ̂2, and

a pixel-wise estimate of the mean µ̂ . The probability of an action, a, given a state, s, is

then given by a Gaussian distribution over each pixel. This representation is convenient

as calculating the derivative of the log in order to compute ∇θ J(θ) is a simpler task. In

order to combine the reinforcement learning loss with direct supervision between the pseudo

CT and the CT, −J(θ) is minimized. This term is denoted as LRL. At each iteration the
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total loss is a sum of the L2 between the pseudo CT and the real CT and this RL loss, i.e

L= θLCT
2 +θLRL.

The REINFORCE algorithm suffers from high variance and many approaches have

attempted to address this such as Actor-Critic methods and Deterministic Policy Gradients.

The potential reinforcement learning CT synthesis approach could address this variance by

treating the RL loss as an auxiliary task with the main task being the CT synthesis. This

approach is inspired by work from Du et al. published in 2018 (Du et al. 2018). The

cosine similarity between gradient updates is measured and the gradient is obtained using

the following update rule, ∇LCT
2 +∇LCT

2 max(0,cos(∇LRL∇LCT
2 )).

This kind of CT synthesis framework would be the first attempt to solve a medical

image synthesis problem with reinforcement learning and could open up the way for self-

learning synthesis algorithms in the medical imaging domain.

Figure 7.1: Potential reinforcement learning CT synthesis framework: T1- and T2-weighted MR
images are fed into a CNN that synthesizes a Monte Carlo dropout distribution of
pseudo CTs by minimizing the L2-loss compared to the ground truth CT. A distribu-
tion of pseudo PETs is simulated with NiftyPET (grey box) by reconstructing simulated
measured PET data using an attenuation map derived from each pseudo CT. The simu-
lated measured PET data is generated by forward projecting the original PET using the
Siemens mMR scanner geometry and multiplying the forward projected CT-based µ

map. Pixel-wise reward distributions emerge from comparing pseudo PETs to original
PETs that are an essential requirement for the REINFORCE algorithm that optimizes
the policy gradient theorem in order to update the network’s weights respectively.
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Išgum, I. (2017), Deep mr to ct synthesis using unpaired data, in ‘International workshop

on simulation and synthesis in medical imaging’, Springer, pp. 14–23.

Yaakub, S. N., McGinnity, C. J., Clough, J. R., Kerfoot, E., Girard, N., Guedj, E. & Ham-

mers, A. (2019), Pseudo-normal pet synthesis with generative adversarial networks for

localising hypometabolism in epilepsies, in ‘International Workshop on Simulation and

Synthesis in Medical Imaging’, Springer, pp. 42–51.



BIBLIOGRAPHY 136

Yang, H. et al. (2018), Unpaired brain mr-to-ct synthesis using a structure-constrained cy-

clegan, in ‘Deep Learning in Medical Image Analysis and Multimodal Learning for Clin-

ical Decision Support’, Springer International Publishing, pp. 174–182.

Yang, X. & Fei, B. (2013), ‘Multiscale segmentation of the skull in MR images for MRI-

based attenuation correction of combined MR/PET’, Journal of the American Medical

Informatics Association 20(6), 1037–1045.

Zaidi, H., Montandon, M.-L. & Slosman, D. O. (2003), ‘Magnetic resonance imaging-

guided attenuation and scatter corrections in three-dimensional brain positron emission

tomography’, Medical Physics 30(5), 937–948.

Zhang, Z., Yang, L. & Zheng, Y. (2018), Translating and segmenting multimodal medical

volumes with cycle-and shape-consistency generative adversarial network, in ‘Proceed-

ings of the IEEE conference on computer vision and pattern Recognition’, pp. 9242–

9251.

Zhao, Y., Liao, S., Guo, Y., Zhao, L., Yan, Z., Hong, S., Hermosillo, G., Liu, T., Zhou,

X. S. & Zhan, Y. (2018), Towards mr-only radiotherapy treatment planning: synthetic ct

generation using multi-view deep convolutional neural networks, in ‘International Con-

ference on Medical Image Computing and Computer-Assisted Intervention’, Springer,

pp. 286–294.

Zhu, J.-Y., Park, T., Isola, P. & Efros, A. A. (2017), Unpaired image-to-image translation

using cycle-consistent adversarial networks, in ‘Proceedings of the IEEE international

conference on computer vision’, pp. 2223–2232.


	Introduction
	Clinical background
	Basic physics and technology
	MR concepts
	CT concepts
	PET concepts
	Combined imaging modalities
	PET/CT
	PET/MR imaging

	Attenuation correction PET

	Deep learning concepts
	Optimizing neural networks
	Backpropagation

	Convolutional neural networks

	Thesis contribution
	Thesis organisation

	Attenuation correction for PET/MR scanners
	Transmission-based attenuation correction
	Emission-based attenuation correction
	Joint estimation of emission and attenuation
	Joint estimation using anatomical priors

	Segmentation-based approaches
	Segmentation ignoring bone
	Segmentation including bone
	From a T1-weighted MR sequence
	From T1-weighted and Dixon sequences
	From UTE sequences
	From UTE and Dixon sequences

	Segmentation methods with subject-specific bone attenuation coefficients

	Atlas-based approaches
	Single atlas approaches
	Multi-atlas approaches

	Patch-based approaches
	Machine learning approaches
	Supervised methods
	Unsupervised methods

	Overview of advantages and disadvantages of various AC methods
	Discussion

	Deep learning in medical imaging
	Experimental dataset
	CT image synthesis as a segmentation problem
	Implementation details

	CT image synthesis using HighRes3DNet
	Implementation details
	Results

	Recursive CT image synthesis
	Deep Boosted Regression
	Implementation details
	Results

	Comparison to state-of-the-art CT synthesis
	Multi-atlas propagation
	U-Net

	PET reconstruction
	Discussion and conclusion

	Multimodal learning
	T1-weighted images
	T2-weighted images
	T1- and T2-weighted images
	Discussion and conclusion

	Whole-body CT synthesis
	Data pre-processing
	Direct CT synthesis
	DBR for whole-body CT synthesis
	Multi-scale network for whole-body CT synthesis
	Modelling heteroscedastic uncertainty
	Modelling epistemic uncertainty
	Implementation details
	Qualitative results

	Discussion and conclusion

	End-to-end optimization
	Limitations of CT-based losses
	Sampling for multiple realizations
	Monte Carlo sampling
	Multi-hypothesis sampling
	Comparison

	Imitation learning for CT synthesis
	Proposed network architecture
	First training stage
	Second training stage
	Third training stage
	Implementation details

	Data pre-processing
	Validation and results
	Validating on independent head CT dataset
	Data pre-processing
	Imitation learning

	Discussion and conclusion

	General Conclusions
	Summary
	Limitations
	Generalizability (domain shift problem)
	Imitation learning for whole-body images

	Future research direction
	Integration of multi-atlas-propagation as prior
	Domain adaptation for imitation learning
	Reinforcement learning
	Policy gradients
	Potential reinforcement learning CT synthesis framework


	Bibliography

