13,654 research outputs found

    Procedurally Generating Biologically Driven Bird and Non-Avian Dinosaur Feathers

    Get PDF
    A key element in computer-graphics research is representing the world around us, and immense inspiration may be found in nature. Algorithms and procedural models may be developed that can describe the three-dimensional shape of objects and how they interact with light. This thesis focuses particularly on bird and other dinosaur feathers and their structure. More specifically, it addresses the problem of procedurally generating biologically driven geometry for modeling feathers in computer graphics. As opposed to previously published methods for generated feather geometry, data is derived from a myriad of real-world specimens of feathers and used in creating graphical models of feathers. Modeling feathers is of interest both for media production and also for various fields of research such as ornithology, paleontology, and material science. In order to create realistic, computer-graphics feathers, the anatomy of feathers is analyzed in detail with the aim of understanding their structure and variation in order to apply that understanding to modeling. Data concerning the shape of actual feathers was collected and analyzed to drive attribute parameters for modeling accurate synthetic feathers, during which methods for generating geometry informed by the data were investigated. Synthesized image results, capabilities, limitations, and extensions of the developed techniques are presented

    High refractive index of melanin in shiny occipital feathers of a bird of paradise

    Get PDF
    Male Lawes's Parotia, a bird of paradise, use the highly directional reflection of the structurally colored, brilliant-silvery occipital feathers in their courtship display. As in other birds, the structural coloration is produced by ordered melanin pigmentation. The barbules of the Parotia's occipital feathers, with thickness ~3 µm, contain 6–7 layers of densely packed melanin rodlets (diameter ~0.25 µm, length ~2 µm). The effectively ~0.2 µm thick melanin layers separated by ~0.2 µm thick keratin layers create a multilayer interference reflector. Reflectance measurements yielded peak wavelengths in the near-infrared at ~1.3 µm, i.e., far outside the visible wavelength range. With the Jamin-Lebedeff interference microscopy method recently developed for pigmented media, we here determined the refractive index of the intact barbules. We thus derived the wavelength dependence of the refractive index of the barbules' melanin to be 1.7–1.8 in the visible wavelength range. Implementing the anatomical and refractive index data in an optical multilayer model, we calculated the barbules' reflectance, transmittance and absorptance spectra, thereby confirming measured spectra

    Valorization of keratin biofibers for removing heavy metals from aqueous solutions

    Get PDF
    Four common waste keratin biofibers (human hair, dog hair, chicken feathers, and degreased wool) have been used as biosorbents for the removal of heavy metal ions from aqueous solutions. Different parameters of the biosorption processes were optimized in batch systems. For multiple-metal systems, consisting of a mixture of eight metal ions [Cr(III), Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), and Pb(II)], the total metal biosorption increased in the order: degreased wool¿>¿chicken feathers¿>¿human hair¿>¿dog hair. From the kinetic models tested, the pseudo-second-order model provided better results. Furthermore, biosorption isotherms of Pb(II) with the different keratin biofibers fitted the Langmuir model. Surface morphology of the biosorbents were analyzed before and after the sorption using Fourier transform infrared spectroscopy and scanning electron microscopy. The keratin biofibers tested are potentially good sorbents of metal ions, with degreased wool and chicken feathers being the more efficient onesPostprint (author's final draft

    Distinct mechanisms underlie pattern formation in the skin and skin appendages

    Get PDF
    Patterns form with the break of homogeneity and lead to the emergence of new structure or arrangement. There are different physiological and pathological mechanisms that lead to the formation of patterns. Here, we first introduce the basics of pattern formation and their possible biological basis. We then discuss different categories of skin patterns and their potential underlying molecular mechanisms. Some patterns, such as the lines of Blaschko and Naevus, are based on cell lineage and genetic mosaicism. Other patterns, such as regionally specific skin appendages, can be set by distinct combinatorial molecular codes, which in turn may be set by morphogenetic gradients. There are also some patterns, such as the arrangement of hair follicles (hair whorls) and fingerprints, which involve genetics as well as stochastic epigenetic events based on physiochemical principles. Many appendage primordia are laid out in developmental waves. In the adult, some patterns, such as those involving cycling hair follicles, may appear as traveling waves in mice. Since skin appendages can renew themselves in regeneration, their size and shape can still change in the adult via regulation by hormones and the environment. Some lesion patterns are based on pathological changes involving the above processes and can be used as diagnostic criteria in medicine. Understanding the different mechanisms that lead to patterns in the skin will help us appreciate their full significance in morphogenesis and medical research. Much remains to be learned about complex pattern formation, if we are to bridge the gap between molecular biology and organism phenotypes. Birth Defects Research (Part C) 78:280-291, 2006. © 2006 Wiley-Liss, Inc

    Building a Bird: Musculoskeletal Modeling and Simulation of Wing-Assisted Incline Running during Avian Ontogeny

    Get PDF
    Flapping flight is the most power-demanding mode of locomotion, associated with a suite of anatomical specializations in extant adult birds. In contrast, many developing birds use their forelimbs to negotiate environments long before acquiring “flight adaptations,” recruiting their developing wings to continuously enhance leg performance and, in some cases, fly. How does anatomical development influence these locomotor behaviors? Isolating morphological contributions to wing performance is extremely challenging using purely empirical approaches. However, musculoskeletal modeling and simulation techniques can incorporate empirical data to explicitly examine the functional consequences of changing morphology by manipulating anatomical parameters individually and estimating their effects on locomotion. To assess how ontogenetic changes in anatomy affect locomotor capacity, we combined existing empirical data on muscle morphology, skeletal kinematics, and aerodynamic force production with advanced biomechanical modeling and simulation techniques to analyze the ontogeny of pectoral limb function in a precocial ground bird (Alectoris chukar). Simulations of wing-assisted incline running (WAIR) using these newly developed musculoskeletal models collectively suggest that immature birds have excess muscle capacity and are limited more by feather morphology, possibly because feathers grow more quickly and have a different style of growth than bones and muscles. These results provide critical information about the ontogeny and evolution of avian locomotion by (i) establishing how muscular and aerodynamic forces interface with the skeletal system to generate movement in morphing juvenile birds, and (ii) providing a benchmark to inform biomechanical modeling and simulation of other locomotor behaviors, both across extant species and among extinct theropod dinosaurs

    Accounting for molecular stochasticity in systematic revisions: species limits and phylogeny of Paroaria

    Get PDF
    Different frameworks have been proposed for using molecular data in systematic revisions, but there is ongoing debate on their applicability, merits and shortcomings. In this paper we examine the fit between morphological and molecular data in the systematic revision of Paroaria, a group of conspicuous songbirds endemic to South America. We delimited species based on examination of > 600 specimens, and developed distance-gap, and distance- and character-based coalescent simulations to test species limits with molecular data. The morphological and molecular data collected were then analyzed using parsimony, maximum likelihood, and Bayesian phylogenetics. The simulations were better at evaluating the new species limits than using genetic distances. Species diversity within Paroaria had been underestimated by 60%, and the revised genus comprises eight species. Phylogenetic analyses consistently recovered a congruent topology for the most recently derived species in the genus, but the most basal divergences were not resolved with these data. The systematic and phylogenetic hypotheses developed here are relevant to both setting conservation priorities and understanding the biogeography of South America. 
&#xa

    Close-up analysis of aircraft ice accretion

    Get PDF
    Various types of ice formation have been studied by analysis of high magnification video observations. All testing was conducted in the NASA Lewis Icing Research Tunnel (IRT). A faired 8.9 cm (3.5 in.) diameter metal-clad cylinder and a 5.1 (2 in.) aluminum cylinder were observed by close-up and overview video cameras for several wind tunnel conditions. These included close-up grazing angle, close-up side view, as well as overhead and side overview cameras. Still photographs were taken at the end of each spray along with tracings of the subsequent ice shape. While in earlier tests only the stagnation region was observed, the entire area from the stagnation line to the horn region of glaze ice shapes was observed in this test. The modes or horn formation have been identified within the range of conditions observed. In the horn region, Horn Type A ice is formed by 'dry' feather growth into the flow direction and Horn Type B is formed by a 'wet' growth normal to the surface. The feather growth occurs when the freezing fraction is near unity and roughness elements exist to provide an initial growth site
    corecore