24,050 research outputs found

    Hydrological Alteration Index as an Indicator of the Calibration Complexity of Water Quantity and Quality Modeling in the Context of Global Change

    Get PDF
    Modeling is a useful way to understand human and climate change impacts on the water resources of agricultural watersheds. Calibration and validation methodologies are crucial in forecasting assessments. This study explores the best calibration methodology depending on the level of hydrological alteration due to human-derived stressors. The Soil and Water Assessment Tool (SWAT) model is used to evaluate hydrology in South-West Europe in a context of intensive agriculture and water scarcity. The Index of Hydrological Alteration (IHA) is calculated using discharge observation data. A comparison of two SWAT calibration methodologies are done; a conventional calibration (CC) based on recorded in-stream water quality and quantity and an additional calibration (AC) adding crop managements practices. Even if the water quality and quantity trends are similar between CC and AC, water balance, irrigation and crop yields are different. In the context of rainfall decrease, water yield decreases in both CC and AC, while crop productions present opposite trends (+33% in CC and -31% in AC). Hydrological performance between CC and AC is correlated to IHA: When the level of IHA is under 80%, AC methodology is necessary. The combination of both calibrations appears essential to better constrain the model and to forecast the impact of climate change or anthropogenic influences on water resources

    Management of an Urban Stormwater System Using Projected Future Scenarios of Climate Models: A Watershed-Based Modeling Approach

    Full text link
    Anticipating a proper management needs for urban stormwater due to climate change is becoming a critical concern to water resources managers. In an effort to identify best management practices and understand the probable future climate scenarios, this study used high-resolution climate model data in conjunction with advanced statistical methods and computer simulation. Climate model data from the North American Regional Climate Change Assessment Program (NARCCAP) were used to calculate the design storm depths for the Gowan Watershed of Las Vegas Valley, Nevada. The Storm Water Management Model (SWMM), developed by the Environmental Protection Agency (EPA), was used for hydrological modeling. Two low-impact development techniques – Permeable Pavement and Green Roof – were implemented in the EPA SWMM hydrological modeling to attenuate excess surface runoff that was induced by climate change. The method adopted in this study was effective in mitigating the challenges in managing changes in urban stormwater amounts due to climate change

    Northern Eurasia Future Initiative (NEFI): facing the challenges and pathways of global change in the twenty-first century

    Get PDF
    During the past several decades, the Earth system has changed significantly, especially across Northern Eurasia. Changes in the socio-economic conditions of the larger countries in the region have also resulted in a variety of regional environmental changes that can have global consequences. The Northern Eurasia Future Initiative (NEFI) has been designed as an essential continuation of the Northern Eurasia Earth Science Partnership Initiative (NEESPI), which was launched in 2004. NEESPI sought to elucidate all aspects of ongoing environmental change, to inform societies and, thus, to better prepare societies for future developments. A key principle of NEFI is that these developments must now be secured through science-based strategies co-designed with regional decision-makers to lead their societies to prosperity in the face of environmental and institutional challenges. NEESPI scientific research, data, and models have created a solid knowledge base to support the NEFI program. This paper presents the NEFI research vision consensus based on that knowledge. It provides the reader with samples of recent accomplishments in regional studies and formulates new NEFI science questions. To address these questions, nine research foci are identified and their selections are briefly justified. These foci include warming of the Arctic; changing frequency, pattern, and intensity of extreme and inclement environmental conditions; retreat of the cryosphere; changes in terrestrial water cycles; changes in the biosphere; pressures on land use; changes in infrastructure; societal actions in response to environmental change; and quantification of Northern Eurasia’s role in the global Earth system. Powerful feedbacks between the Earth and human systems in Northern Eurasia (e.g., mega-fires, droughts, depletion of the cryosphere essential for water supply, retreat of sea ice) result from past and current human activities (e.g., large-scale water withdrawals, land use, and governance change) and potentially restrict or provide new opportunities for future human activities. Therefore, we propose that integrated assessment models are needed as the final stage of global change assessment. The overarching goal of this NEFI modeling effort will enable evaluation of economic decisions in response to changing environmental conditions and justification of mitigation and adaptation efforts

    A coupled terrestrial and aquatic biogeophysical model of the Upper Merrimack River watershed, New Hampshire, to inform ecosystem services evaluation and management under climate and land-cover change

    Get PDF
    Accurate quantification of ecosystem services (ES) at regional scales is increasingly important for making informed decisions in the face of environmental change. We linked terrestrial and aquatic ecosystem process models to simulate the spatial and temporal distribution of hydrological and water quality characteristics related to ecosystem services. The linked model integrates two existing models (a forest ecosystem model and a river network model) to establish consistent responses to changing drivers across climate, terrestrial, and aquatic domains. The linked model is spatially distributed, accounts for terrestrial–aquatic and upstream–downstream linkages, and operates on a daily time-step, all characteristics needed to understand regional responses. The model was applied to the diverse landscapes of the Upper Merrimack River watershed, New Hampshire, USA. Potential changes in future environmental functions were evaluated using statistically downscaled global climate model simulations (both a high and low emission scenario) coupled with scenarios of changing land cover (centralized vs. dispersed land development) for the time period of 1980–2099. Projections of climate, land cover, and water quality were translated into a suite of environmental indicators that represent conditions relevant to important ecosystem services and were designed to be readily understood by the public. Model projections show that climate will have a greater influence on future aquatic ecosystem services (flooding, drinking water, fish habitat, and nitrogen export) than plausible changes in land cover. Minimal changes in aquatic environmental indicators are predicted through 2050, after which the high emissions scenarios show intensifying impacts. The spatially distributed modeling approach indicates that heavily populated portions of the watershed will show the strongest responses. Management of land cover could attenuate some of the changes associated with climate change and should be considered in future planning for the region

    Remote Sensing and Problems of the Hydrosphere

    Get PDF
    A discussion of freshwater and marine systems is presented including areas of the classification of lakes, identification and quantification of major functional groups of phytoplankton, sources and sinks of biochemical factors, and temporal and regional variability of surface features. Atmospheric processes linked to hydrospheric process through the transfer of matter via aerosols and gases are discussed. Particle fluxes to the aquatic environment and global geochemical problems are examined

    Giving credit to reforestation for water quality benefits.

    Get PDF
    While there is a general belief that reforesting marginal, often unprofitable, croplands can result in water quality benefits, to date there have been very few studies that have attempted to quantify the magnitude of the reductions in nutrient (N and P) and sediment export. In order to determine the magnitude of a credit for water quality trading, there is a need to develop quantitative approaches to estimate the benefits from forest planting in terms of load reductions. Here we first evaluate the availability of marginal croplands (i.e. those with low infiltration capacity and high slopes) within a large section of the Ohio River Basin (ORB) to assess the magnitude of the land that could be reforested. Next, we employ the Nutrient Tracking Tool (NTT) to study the reduction in N, P and sediment losses from converting corn or corn/soy rotations to forested lands, first in a case study and then for a large region within the ORB. We find that after reforestation, N losses can decrease by 40 to 80 kg/ha-yr (95-97% reduction), while P losses decrease by 1 to 4 kg/ha-yr (96-99% reduction). There is a significant influence of local conditions (soils, previous crop management practices, meteorology), which can be considered with NTT and must be taken into consideration for specific projects. There is also considerable interannual and monthly variability, which highlights the need to take the longer view into account in nutrient credit considerations for water quality trading, as well as in monitoring programs. Overall, there is the potential for avoiding 60 million kg N and 2 million kg P from reaching the streams and rivers of the northern ORB as a result of conversion of marginal farmland to tree planting, which is on the order of 12% decrease for TN and 5% for TP, for the entire basin. Accounting for attenuation, this represents a significant fraction of the goal of the USEPA Gulf of Mexico Hypoxia Task Force to reduce TN and TP reaching the dead zone in the Gulf of Mexico, the second largest dead zone in the world. More broadly, the potential for targeted forest planting to reduce nutrient loading demonstrated in this study suggests further consideration of this approach for managing water quality in waterways throughout the world. The study was conducted using computational models and there is a need to evaluate the results with empirical observations

    EFFECTS OF LAND COVER, WATER REDISTRIBUTION, AND TEMPERATURE ON ECOSYSTEM PROCESSES IN THE SOUTH PLATTE BASIN

    Get PDF
    Over one‐third of the land area in the South Platte Basin of Colorado, Nebraska, and Wyoming, has been converted to croplands. Irrigated cropland now comprises 8% of the basin, while dry croplands make up 31%. We used the RHESSys model to compare the changes in plant productivity and vegetation‐related hydrological processes that occurred as a result of either land cover alteration or directional temperature changes (−2°C, +4°C). Land cover change exerted more control over annual plant productivity and water fluxes for converted grasslands, while the effect of temperature changes on productivity and water fluxes was stronger in the mountain vegetation. Throughout the basin, land cover change increased the annual loss of water to the atmosphere by 114 mm via evaporation and transpiration, an increase of 37%. Both irrigated and nonirrigated grains became active earlier in the year than shortgrass steppe, leading to a seasonal shift in water losses to the atmosphere. Basin‐wide photosynthesis increased by 80% due to grain production. In contrast, a 4°C warming scenario caused annual transpiration to increase by only 3% and annual evaporation to increase by 28%, for a total increase of 71 mm. Warming decreased basin‐wide photosynthesis by 16%. There is a large elevational range from east to west in the South Platte Basin, which encompasses the western edge of the Great Plains and the eastern front of the Rocky Mountains. This elevational gain is accompanied by great changes in topographic complexity, vegetation type, and climate. Shortgrass steppe and crops found at elevations between 850 and 1800 m give way to coniferous forests and tundra between 1800 and 4000 m. Climate is increasingly dominated by winter snow precipitation with increasing elevation, and the timing of snowmelt influences tundra and forest ecosystem productivity, soil moisture, and downstream discharge. Mean annual precipitation of \u3c500 mm on the plains below 1800 m is far less than potential evapotranspiration of 1000–1500 mm and is insufficient for optimum plant productivity. The changes in water flux and photosynthesis from conversion of steppe to cropland are the result of redistribution of snowmelt water from the mountains and groundwater pumping through irrigation projects
    • 

    corecore