1,835 research outputs found

    Theory And Design Issues Of Underwater Manipulator.

    Get PDF
    In this paper we discuss the theory and implementation issue that is faced by underwater manipulators designers

    Incorporation of the influences of kinematics parameters and joints tilting for the calibration of serial robotic manipulators

    Get PDF
    Serial robotic manipulators are calibrated to improve and restore their accuracy and repeatability. Kinematics parameters calibration of a robot reduces difference between the model of a robot in the controller and its actual mechanism to improve accuracy. Kinematics parameter’s error identification in the standard kinematics calibration has been configuration independent which does not consider the influence of kinematics parameter on robot tool pose accuracy for a given configuration. This research analyses the configuration dependent influences of kinematics parameters error on pose accuracy of a robot. Based on the effect of kinematics parameters, errors in the kinematics parameters are identified. Another issue is that current kinematics calibration models do not incorporate the joints tilting as a result of joint clearance, backlash, and flexibility, which is critical to the accuracy of serial robotic manipulators, and therefore compromises a pose accuracy. To address this issue which has not been carefully considered in the literature, this research suggested an approach to model configuration dependent joint tilting and presents a novel approach to encapsulate them in the calibration of serial robotic manipulators. The joint tilting along with the kinematics errors are identified and compensated in the kinematics model of the robot. Both conventional and proposed calibration approach are tested experimentally, and the calibration results are investigated to demonstrate the effectiveness of this research. Finally, the improvement in the trajectory tracking accuracy of the robot has been validated with the help of proposed low-cost measurement set-up.Thesis (M.Phil.) (Research by Publication) -- University of Adelaide, School of Mechanical Engineering , 201

    A survey of non-prehensible pneumatic manipulation surfaces : principles, models and control.

    No full text
    International audienceMany manipulation systems using air flow have been proposed for object handling in a non-prehensile way and without solid-to-solid contact. Potential applications include high-speed transport of fragile and clean products and high-resolution positioning of thin delicate objects. This paper discusses a comprehensive survey of state-of-the-art pneumatic manipulation from the macro scale to the micro scale. The working principles and actuation methods of previously developed air-bearing surfaces, ultra-sonic bearing surfaces, air-flow manipulators, air-film manipulators, and tilted air-jet manipulators are reviewed with a particular emphasis on the modeling and the control issues. The performance of the previously developed devices are compared quantitatively and open problems in pneumatic manipulation are discussed

    Modeling, optimizing and simulating robot calibration with accuracy improvement

    Get PDF
    This work describes techniques for modeling, optimizing and simulating calibration processes ofrobots using off-line programming. The identification of geometric parameters of the nominalkinematic model is optimized using techniques of numerical optimization of the mathematicalmodel. The simulation of the actual robot and the measurement system is achieved by introducingrandom errors representing their physical behavior and its statistical repeatability. An evaluationof the corrected nominal kinematic model brings about a clear perception of the influence ofdistinct variables involved in the process for a suitable planning, and indicates a considerableaccuracy improvement when the optimized model is compared to the non-optimized one

    Using multiple sensors for printed circuit board insertion

    Get PDF
    As more and more activities are performed in space, there will be a greater demand placed on the information handling capacity of people who are to direct and accomplish these tasks. A promising alternative to full-time human involvement is the use of semi-autonomous, intelligent robot systems. To automate tasks such as assembly, disassembly, repair and maintenance, the issues presented by environmental uncertainties need to be addressed. These uncertainties are introduced by variations in the computed position of the robot at different locations in its work envelope, variations in part positioning, and tolerances of part dimensions. As a result, the robot system may not be able to accomplish the desired task without the help of sensor feedback. Measurements on the environment allow real time corrections to be made to the process. A design and implementation of an intelligent robot system which inserts printed circuit boards into a card cage are presented. Intelligent behavior is accomplished by coupling the task execution sequence with information derived from three different sensors: an overhead three-dimensional vision system, a fingertip infrared sensor, and a six degree of freedom wrist-mounted force/torque sensor
    corecore