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Abstract

Due to the popularity of e-commerce and the lack of labor power, logistic warehouses could benefit
from faster parcel handling. Currently, many tasks are handled by robot manipulators. Through-
put of these systems is often limited because picking and placing the objects happens at zero
relative velocity of the robotic arm. To increase throughput, tossing is considered a possible solu-
tion. This enables robots to handle objects faster, and to put objects outside its kinematic reach.

The required controllers for robotic tossing have to deal with complex challenges related to flight
dynamics, acquiring pre-toss conditions, the wide variety of objects, and impact dynamics when
the object hits the surface. Because of these reasons, robotic solutions that are capable of tossing
objects onto desired target surfaces, is still uncharted territory. In this work, we propose an al-
ternative method to achieve this, while avoiding a great deal of controller complexity.

Our proposed solution to push the development of robotic tossing solutions is the development of
a teleoperation system that enables humans to control the robot’s motion and gripper. The idea
is to enable the operator to perform robotic tossing demonstrations in an intuitive way, through
natural body movements for tossing. This way, human intuitivity and sensorimotor skills can
be exploited for the development towards robotic tossing trajectories. The realized teleoperation
system’s main contributions are its ability to quickly explore various robotic tossing methods, to
see how objects can effectively be tossed. This contributes to our understanding of which ways of
robot tossing are effective, and to identify the limitations of robot tossing.

For industrial applications, it is essential that the outcome of a robot toss is predictable, and can
be performed reliably. Besides the development of the teleoperation system, we also explored the
industrial applicability of robot tossing. In an experimental setup, we analyzed if repetitions of
tossing trajectories can lead to similar tossing outcomes. We showed that the outcome of a tossing
trajectory can be repeated with sufficient precision for application in an industrial setting. We
find that for tossing with relatively low velocities, where the angle between the bottom surface of
the box and the conveyor is relatively small, the outcome of a toss can be repeated quite reliably.
When tossing at higher velocities, where the box makes impact with a large angle between its
bottom surface and the conveyor, the outcome of a toss is less predictable.
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Chapter 1

Introduction

1.1 Context

The popularity of e-commerce has lead to significant growth of the worldwide parcel industry over
the past decade, and the recent consequences of the COVID-19 pandemic pushed this growth even
further in the last two years. Instead of spending time to go out shopping at physical stores,
people are buying clothing, tech products, books, daily groceries, and more products online. The
parcel delivery industry faces a major challenge for increasing efficiency in both speed and costs
in order to meet the demand. Due to labor scarcity, and the need for increased productivity and
flexibility at the lowest possible costs, automation is considered a key enabler to face this challenge
[1]. By investing in the development of smarter, faster and more flexible robotic solutions, the con-
sequences of unfavorable demographic developments (such as the declining availability, motivation
and qualification of logistics personnel) [2], and the associated declining number of employees, can
be mitigated.

In order to increase productivity in logistics warehouses, several automation systems have already
been implemented. However, in the field of logistics, still 80% of the tasks worldwide remain being
operated manually [1]. Humans possess well-developed sensory and motor skills that allow to
effectively handle a wide variety of objects, in large quantities, various combinations, and limited
space. As a result, major sorting hubs still rely on manpower, and employees spend their time
packing, unpacking, sorting, realigning, and parcel feeding. Especially feeding parcels into ware-
house systems often remains based on human labor. This process is complex because parcels often
arrive on unsorted pallets or containers, and come in a wide variety. Processing these objects at
a high speed requires a high versatility (the extent of the variety of parcels that human operators
or a system can process). Industrial robots were, until recently, immobile and non-intelligent ma-
chines that were able to perform simple repetitive tasks with a high level of speed and accuracy.
These abilities are sufficient for simple production processes, but often they are not sufficient for
all logistics activities, such as the infeed process. An example of an automated solution for the
infeed process is the Smart Item Robotics (SIR) solution from Vanderlande, see Figure 1.1. This
system uses vision software to identify and locate objects, and is equipped with a custom vacuum
gripper, which enables the system to handle a wide variety of objects.

Since the whole logistics industry faces the challenges mentioned above, a growing number of de-
velopments in robotic solutions focus on gaining the required versatility. Various research efforts
have tried to address this challenge by, for example, redesigning the robot hardware [3][4], tra-
jectory optimization [5] [6], or increasing the robot’s response time through new control strategies
[7] [8]. One of the proposed solutions to increase robot versatility is to explore more agile hand-
ling techniques. Unlike human operators, current robots are not capable of tossing packages of
arbitrary weight and size, to precise locations. This is originates from the fact that robots are
not specifically designed to perform tossing operations, and because this significantly increases the
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Chapter 1. Introduction

Figure 1.1: Smart Item Robotics solution of Vanderlande [10].

robot control. However, if robots or robot controllers were developed such that they can pick and
toss packages, performance in terms of speed can be increased, and might (at some point) even
exceed human performance. Besides reaching higher productivity, tossing also enables robots to
place items outside its kinematic range. This could even decrease the number of robots required in
logistics warehouses [9]. However, using robot manipulators for precise pick-and-toss operations in
semi-structured environments is challenging. Especially predicting the motion of a parcel depends
on many factors: from pre-toss conditions (e.g. tossing velocity, direction, and pick pose of the
object) to the properties of the package (e.g., mass distribution, shape, and size), flight dynamics
(e.g. aerodynamics) and its environment (e.g. landing surfaces), some of these parameters are
difficult to estimate.

This work continues in the direction of agile handling. Teleoperation or kinesthetic teaching can
be used to demonstrate certain tasks to robots. For certain applications, both these methods are
user-friendly, and allow operators to intuitively control a robot. However, in kinesthetic teaching,
by manually guiding the robotic manipulator in free space, demonstration of tossing operations is
not straightforward. It is typically difficult to teach tasks kinesthetically if these require synchron-
ization between multiple of the robot’s links. One of the most major drawbacks of kinesthetic
learning is that the human must generally use more of their own degrees of freedom (DOF) to
move the robot, than the number DOFs they are trying to control. To this end, the proposed
solution is to develop an intuitive teleoperation system that allows human operators to perform
tossing demonstrations, such that human intuitivity and sensorimotor skills can be exploited for
quick generation of tossing trajectories. To the best of the author’s knowledge, teleoperation has
never been used before to perform tossing demonstrations. While doing so, waypoints or entire
trajectories, consisting of joint angles, tool positions and orientations, can be recorded and stored.
In the long term, the recorded trajectories could be adapted to overcome discrepancies in the envir-
onment and/or objects, and ensure successful tossing. Besides offering an advantage in generating
tossing trajectories, through quick demonstration of tossing to predefined target locations, various
tossing strategies (motion trajectories) can be assessed. Moreover, by looking at the results of
tosses, and repetitions of tosses, the predictability of robot tossing can be studied.

This work is part of the I.AM. project1, which is an academic-industry collaboration, involving
Eindhoven University of Technology and Vanderlande Industries (among other universities and
companies), that aims at leveraging robotics technology to strengthen European leadership in this
field [11]. I.AM. particularly focuses on the development of solutions for the aforementioned, and
contributes to the challenges faced today by the logistics industry. For this research, the facilities
at the Vanderlande Innovation lab at the TU/e campus are used. For an introduction of this lab,
please refer to Appendix A.

1I.AM. is a European Union H2020 project, under GA 871899, see https://i-am-project.eu/.
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1.2 Related Work

1.2 Related Work

1.2.1 Pick-and-Place Robot Manipulators
Traditional pick-and-place operations of robotic manipulators, that handle a variety of objects,
often require accurate information of the objects to be manipulated. For each object, a predeter-
mined picking location is in place and a fixed motion trajectory brings objects to the appropriate
places. There are several picking systems available that function by explicitly modeling the con-
tact forces using prior knowledge of the object size, weight, shape, and inertia [12] [13]. Due to
the need for warehouse flexibility [14] such that a large and ever-changing variety of items can be
handled at high rates, recent research is pointed towards picking and placing of novel objects. Even
though knowledge about novel objects can be roughly estimated by vision techniques, precisely
estimating how to pick-and-place objects in semi-structured environments remains challenging
[15]. However, many advances have been made in the development of pick-and-place operations
where manipulators do not require prior knowledge about objects [16] [17] [18]. Systems have been
developed that can accurately and robustly recognize target objects in scattered environments [6].
These systems are able to perform a variety of robotic tasks by integrating a set of state-of-the-art
techniques in deep learning, computer vision, and trajectory optimization. Moreover, there are
picking approaches available, for adaptive picking and trajectory planning, which enables a robot
arm to dynamically track and pick objects moving in arbitrary trajectories [19] [20] [21]. Figure
1.2 shows a range of objects from the 2016 edition of Amazon’s Picking Challenge to illustrate the
wide range of objects encountered in the logistics industry. This edition was won by Team Delft
[22], by successfully stowing 11 out of 12 objects in 7 minutes and 10 seconds. One year later, the
winning Cartman robot system was able to successfully pick all objects [23], but still employed a
very low picking rate of only 120 picks an hour.

The picking solutions of Amazon’s Picking Challenge illustrate that the solutions mentioned above
are often not able to compete with human versatility in pick-and-place applications. A more
versatile pick-and-place solution, which is already implemented in industrial applications, is the
Smart Item Robotics (SIR) system (see Figure 1.1), as introduced earlier. Another example is
Schäfer’s fully automated robot cell Robo-Pick, which allegedly picks more than 2,400 items per
hour. Compared to human operators, which approximately pick 400 items per hour [25], this is
a huge improvement. However, due to the robot’s design, it can only pick objects straight from
above, limiting its versatility. Looking at existing applications of pick-and-place solutions, there
are no robots that reach human versatility and flexibility. The large number of developments
in logistic automation, however, offer perspective for new solutions that will gradually reach the
human performance level. More recent developments led to even more robust solutions, that can
handle a wider variety of objects. Examples of recent developments are the RightPick Platform
of RightHand Robotics [26], and GRIPP’s Robot Piece Picking solution [27], which allegedly pick
up to 1,200 items per hour.

(a) Structured objects. (b) Unstructured objects.

Figure 1.2: A handful of the items of Amazon’s Picking Challenge in 2016, illustrating the wide range of
objects encountered by logistics [24].

Towards Robot Tossing by Demonstration through Intuitive Telemanipulation 3
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Figure 1.3: TossingBot learned to pick arbitrary objects from an unstructured bin, and to toss them into
target boxes located outside its maximum kinematic reach range [29].

1.2.2 Dynamic Object Manipulation

In this research project, we aim to contribute to improving robot performance for pick-and-place
tasks, through development of a method that allows a robot to perform agile movements using
teleoperation. In literature, numerous papers treat the challenge of improving the agility of robot
manipulators. In this work, the definition of [28] is adopted, where agility is defined as “the
ability of a robot system to succeed in an environment of continuous and unpredictable change
by reacting efficiently and effectively to changing factors”. While there is no general agreement in
the literature for robot agility, this concept is consistent with its proposed definitions that include
not only robot agility, but also the agility of the manufacturing process as a whole.

There are numerous examples of researchers achieving to design or to control robots, enabling
them to perform agile robot manipulation. In [30], researchers achieved paddle juggling of a ball
by a racket attached to a robot manipulator. Moreover, a 2-DOF robot arm was developed that is
capable of hitting objects using a bat [31]. Different robotic tossing approaches have been found in
literature: link arms strengthened by springs [32], spring shooting devices, and robot manipulators
capable of tossing [33] [34]. This work focuses on the category of (agile) robot manipulators. There
already exist robot manipulators that can accurately throw a ball, for example, in a moving basket
[33]. An industrial robot manipulator that can successfully throw objects on a target location is
described in [34]. However, in these publications, the authors provided the robot with explicit
knowledge about the object. A system that can successfully pick arbitrary objects from a bin, and
toss them in the desired bin, is Google’s TossingBot [29], see Figure 1.3. This robot is trained by
a learning algorithm, its success rate of 84.7%, however, is not sufficient for industrial application.
In this research project, also box-conveyor impacts must be considered, since a package has to land
on a moving conveyor belt, preferably with the barcode up. Tossing in a bin, like the TossingBot
does, is much simpler: the ballistic motion and release control are key, but impact dynamics can be
ignored. In literature, there is no robot manipulator solution capable of tossing boxes onto target
surfaces. Unfortunately, there is no information in literature regarding the actual performance
gain through tossing objects. Only in the literature about Google’s TossingBot [29], it is reported
that pick-and-toss could increase the throughput by almost 10%, compared to traditional pick-
and-place operations.

1.2.3 Intuitive Teleoperation for Demonstration

In this work, the development of a teleoperation that allows human operators to control a robot
manipulator is presented. By enabling operators to control the motion of a robot manipulator,
human intuition can be exploited. This approach has not been used before to teach or gain insights
in robotic tossing. However, in literature, telerobotics [35] is a widely explored field of research,
including perspectives like: sensor integration, hardware development, control theory, and control
architectures. In [36], a teleoperation framework that can quickly map operator movements to
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Figure 1.4: Overview of Toyota’s Human
Support Robot [40].

Figure 1.5: Bimanual telemanipulation of dual robot
arm [38].

robot movement and vice versa was presented. It has also been showed that consumer grade VR
tools can successfully be utilized for integration in teleoperation systems, allowing operators to
demonstrate complex manipulation tasks [37] [38]. In [39], a VR gaming device is used to capture
6D hand movements to generate reference trajectories to a deep neural policy network for con-
trolling the robot’s joint movements.

An important objective in the development of the proposed teleoperation system is that the
robot can be controlled intuitively, in the sense that a human can perform tossing operations
using the robot manipulator, without prior training. For Toyota’s Human Support Robot, an
intuitive teleoperation system has been developed (see Figure 1.4), to explore the possibility in
remote assistance of daily activities in domestic environments [40]. In [38], a dual robot arm is
presented that can be controlled intuitively through a commercial VR interface. A novel approach
for intuitive telemanipulation was presented in [41]. Here, an Augmented Reality (AR) interface
is developed to assist the operator during operation, which increases situation awareness. Also,
the mapping of the input device adjusts to the viewpoint from which the operator controls the
robot. In [42], another approach is followed to achieve intuitive teleoperation: here the focus is on
keeping the similarity of the configuration between the leader and follower arms, instead of only
controlling the position of the manipulator’s end-effector in its workspace. The examples above
show that human operators are very well capable of performing precise, agile and dexterous tasks
using teleoperation systems.

1.3 Problem Definition

In order to keep up with the growing demand of parcel delivery, the throughput of parcels in
logistic processes has to be increased. Many tasks in logistics processes still require human oper-
ators, because these processes cannot yet be replaced by robots without reducing throughput and
flexibility. However, if existing robots are used by their full potential, some of these manual tasks
could be automated and thereby increase throughput, flexibility and costs.

The proposed solution is to make a transition in the way robots handle parcels. Instead of relat-
ively slow pick-and-place operations, parcels could be handled more effectively using human-like
pick-and-toss operations. However, deriving a model that can accurately predict the trajectory
and final state of arbitrary packages that are tossed on a conveyor belt, is challenging.

By looking how a task is done, and by performing these tasks repeatedly, humans can often learn
how to do it faster and more efficient. Robotic manipulation can be improved in a similar fash-
ion. Therefore, the proposed method is to exploit and explore human intuition to control existing
robots. Complex tasks require complex decision-making, and dexterous manipulation of objects.
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Through teleoperation, cognitive skills and muscle motor skills of human operators can be utilized.
By implementing a setup that is controlled by human hand motion, an intuitive and user-friendly
interface is provided. Instead of requiring knowledge of external control hardware, the user is
enabled to control the robot in a way that is already familiar to the user. Teleoperation allows the
operator to perform motions intuitively, while conveniently controlling all robot degrees of freedom
(DOFs) simultaneously. Introducing an advanced teleoperated robot could bridge the gap between
the human manipulation skills and dynamic robot manipulation tasks. Yet, to the best of the au-
thor’s knowledge, there is no such system available that is dedicated to human teleoperated tossing.

The development of this teleoperated robotic system involves the challenge of creating an intuitive
mapping from the operator’s hand to the robot’s end-effector, while ensuring stable and safe con-
trol despite time delays, during free motion and interaction. This way of intuitive robot control
may provide new insights towards the development of autonomous robot tossing solutions. By
analyzing data from robotic tossing demonstrations, the hypothesis is that useful information can
be acquired for modeling, perception, and control development for robotic tossing. Additionally,
exploring new tossing strategies to see which ways of robotic tossing are the most effective is made
easier. If the result of a toss can be repeated, leading to similar results, the outcome of a toss
becomes predictable. By recording the control inputs of various tossing motions, and repeating
these using the robot hardware, advances in our understanding in the predictability of tosses can
be made. The primary research objective of this work is formulated as:

Develop a teleoperation system that enables operators to perform tossing demonstrations through
hand motion, such that the industrial applicability of robot tossing can be explored.

The research objective of this project is divided into two sub-goals that must be met in order to
achieve the primary goal, these are given by:

• Develop a teleoperation system that enables operators to control the motion of a robot ma-
nipulator and activation of the suction gripper through hand motion.

• Quantify the variability in tossing outcomes resulting from autonomously repeating the demon-
strated tossing motion, potentially introducing controlled perturbations, to explore the pre-
dictability of robot tossing.

1.4 Thesis Outline
This thesis is structured as follows. Before diving into the main contributions of this research,
Chapter 2 gives an overview of the relevant background information and early design decisions in
the development of the teleoperation system. In this chapter, an industrial use case for robotic
tossing is presented, together with a description of the Vanderlande Innovation Lab at the TU/e
campus, where the system will be implemented and tested. Moreover, the term teleoperation is
detailed, after which the system’s requirements are presented. Then, the system’s hardware and
software components are introduced, the multibody dynamics notation used throughout this work
is presented, and QP control is introduced. In Chapter 3, the design and implementation of the
teleoperation system is discussed. This involves the hardware setup, communication channels and
a discussion about how the system is controlled by the operator. Furthermore, the teleoperation
controller algorithm is detailed, and the QP control approach is presented. Upon successful im-
plementation of the proposed system, Chapter 4 demonstrates the robot’s agility and dexterity
through examples of what an operator can do using the system, particularly focused on tossing.
Moreover, the predictability of robot tossing is tested through experiments. Finally, another set
of experiments is done to explore how uncertainties in box picking affect the predictability of a
toss. In Chapter 5 the conclusions and recommendations of this work are presented.
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Chapter 2

Preliminaries

This chapter provides a review of the relevant background information for this research. First, an
introduction into teleoperation is given, see Section 2.1. Then, in Section 2.2, an overview of the
multibody dynamics notation used throughout this work is given. Finally, Section 2.3 covers an
introduction into quadratic programming control.

2.1 Introduction to Teleoperation

Teleoperation, which literally means operations at a distance, generally refers to a remote manip-
ulator that attempts to track the operator’s input [43]. Hereby, the human operator is responsible
for any high-level planning or cognitive decision of the execution of a task, while the robot is
responsible for the task’s mechanical execution. Essentially, in teleoperation, the brain is distant
from the body. Teleoperation is beneficial in situations where a robot can provide an advantage in
performing (a) physical task(s), while human cognitive skills or muscle motor skills are required.
Therefore, teleoperation may be imposed to demonstrate dexterous motion trajectories, or scaling
to very large or small environments. Teleoperation is also often found in hazardous environments,
for example to rule out health risks while performing operations in radioactive, very hot, or ex-
plosive environment, by doing it remotely [43]. Even doctors may use teleoperation to perform
minimally invasive surgery, to combine the knowledge of a surgeon to perform delicate operations
with the precision of robotic devices [44]. In this work, a teleoperation system is developed to
perform human demonstrated tossing, using a robot manipulator. This allows for quick generation
of tossing motion trajectories, while using human cognition to toss objects towards desired loca-
tions. A sketch of the proposed teleoperation system is depicted in Figure 2.1. The device that is
used by the human operator to control the remote robot, is often referred to as the leader device,
while the remote robot that is controlled using the leader device, is referred to as the follower
device. The teleoperation system, as a whole, is referred to as a leader-follower system. In older
literature, teleoperation systems have often been referred to as master-slave systems, which was
first used in 1904 [45]. Due to its association with slavery, use of this terminology has become a
subject of controversy. Alternative terms that indicate the same are: boss-worker, parent-child,
and controller-responder.

Often, teleoperation systems are conceptually split into two sites: the local site and remote site. At
the local site, there are the human operator(s) and the input device(s) to send control commands.
The remote site contains the robot and the required control elements. The sites are connected by
a communication interface, through which control or communication signals can be transferred.
The physical separation between the two sites may be very large, for example in the case of
unmanned space missions. In the proposed teleoperation system, the physical separation between
the hardware is relatively small, since the human operator and the robot will occupy the same
room. This allows the operator to receive direct visual feedback of the system. We refer to this as
collocated teleoperation. To provide direct control, the human operator holds the leader device,
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Figure 2.1: Unilateral telemanipulation system for tossing by human motion.

while the follower device is programmed to follow its motions. Commonly, the leader device is a
joystick, keyboard, ergonomic controller, or even a kinematic replica of the follower, to provide
an intuitive interface. In some teleoperation systems, the follower device does not only measure
motions, but also forces. This allows to provide force feedback to the user, through the leader
device. Such systems are called bilateral teleoperation systems [35]. The ultimate goal of leader-
follower systems is often to give the user the ability to manipulate the remote environment, while
perceiving the environment as if encountered directly, this goal is referred to as telepresence. In
unilateral teleoperation, which means that the operator does not receive feedback from the leader
device, it is often more challenging to reach high levels of telepresence. The operator is responsible
for the execution of the task, therefore, the teleoperation system should be designed in such a way
that it becomes intuitive for the operator to perform manipulations. A good understanding of
intuitivity and how this can be enhanced may help the development of a teleoperation system
that is suitable for performing tossing operations. Therefore, a study into intuitivity is presented
in Appendix B.

2.2 Multibody Dynamics Notation

The multibody dynamics notation as proposed in [46] is used throughout this work. For reference,
the notations from [46] are presented here. First, the rigid body pose notation, expressed using
coordinate frames, is described in Section 2.2.1. Then, the formulation to describe the velocity
and acceleration of these coordinate frames is presented in Section 2.2.2. Finally, the notation to
describe the position tasks for robot manipulators in robot control is presented in Section 2.2.3.

2.2.1 Coordinate Frames and Pose Notation

To represent the position and orientation of a rigid body in 3D space, by standard practice, co-
ordinate frames are used. A coordinate frame is defined by an origin and an orientation frame.
Coordinate frames are denoted by a capital letter, for example, for frame A, its origin is written
as oA and its orientation frame as [A]. Formally, this is written as A = (oA, [A]). Coordinate
frames can move through space in time with respect to other coordinate frames. Typically, they
are assigned to rigid bodies to describe their position and orientation in space, often located at
the geometrical center or center of mass. To track the pose of a rigid body in time, it can be
expressed in a reference frame.

For a point p with respect to A, its coordinates are written as the coordinate vector Ap, which
represents the 3D geometric vector r⃗oA,p. This vector starts at the origin oA, is pointing towards
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p, and is expressed in terms of [A]. Formally, this can be written as

Ap :=

 r⃗oA,p · x⃗A

r⃗oA,p · y⃗A
r⃗oA,p · z⃗A

 ∈ R3, (2.1)

where · denotes the scalar product and x⃗A, y⃗A, and z⃗A are mutually orthogonal unit vectors
defining the orientation frame [A]. Given the frames A and B, the coordinate transformation
from [B] to [A] can be described by using the rotation matrix ARB ∈ SO(3). Note that this
coordinate transformation is independent of the positions of oA and oB , and thus only depends on
the orientation. To describe both the position and orientation, hereafter referred to as the pose,
of frame B relative to frame A, the 4 × 4 homogeneous transformation matrix AHB ∈ SE(3) is
used, which is given by (2.2).

AHB :=

[
ARB

AoB

0 1

]
. (2.2)

Using the homogeneous transformation matrix above, any given point expressed in one frame, can
be expressed in another frame. This, for example, is expressed by

Ap = AHB
Bp, (2.3)

where frame B, is expressed in frame A, given that Ap and Bp denote the homogeneous repres-
entation of Ap and Bp as

Ap :=

[
Ap
1

]
, Bp :=

[
Bp
1

]
(2.4)

2.2.2 Rigid-Body Velocity Notation
To obtain the velocities of points and origins with respect to a reference frame, differentiation is
used as

Aṗ =
d

dt

(
Ap

)
, AȯB =

d

dt

(
AoB

)
. (2.5)

Similarly, the rotation matrix ARB and the homogeneous transformation matrix AHB can be
differentiated to obtain AṘB and AḢB , respectively. In order to obtain a more compact repres-
entation of AḢB , it can be pre- or postmultiplied with the inverse of AHB , hereby obtaining an
element of se(3), which are called twists. Pre-multiplying leads to

AH−1A
B ḢB =

[
ART

B −ARTA
B oB

0 1

] [
AṘB

AȯB

0 0

]
=

[
ART

B
AṘB

ARTA
B ȯB

0 0

]
.

(2.6)

Since the term ARTA
B ṘB is skew-symmetric, it can be written as a vector in R3. This is done

using the (·)∧ hat-operator which transforms a vector in R3 to a skew-symmetric matrix in so(3),
such that

ω∧ =

 ωx

ωy

ωz

∧

:=

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 ∈ so(3). (2.7)

To this end, we define

BvA,B := ARTA
B ȯB (2.8)

Bω∧
A,B := ARTA

B ṘB . (2.9)
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From the two equations above, the left trivialized velocity of a frame B with respect to frame A,
is given by

BvA,B :=

[
BvA,B
BωA,B

]
∈ R6. (2.10)

2.2.3 Joint States and Jacobians
In the proposed teleoperation system, the UR10 serial robotic arm is controlled in three-dimensional
Cartesian space, where only the robot’s joints can be actuated. The coordinate frames and associ-
ated velocities and accelerations of the bodies of robotic manipulators, can be expressed in terms
of their joint states and corresponding Jacobians. Jacobians are essential tools to express velocity
and acceleration tasks in robot control.

Consider the 4DOF robot manipulator illustration in Figure 2.2. Here, the fixed inertial frame lays
in the robot’s base, denoted by U , and the end-effector frame is denoted by S. The end-effector
pose S, can be expressed in terms of the joint positions of the manipulator given by q ∈ Rn, with
n the number of joints in the manipulator. If the forward kinematics relating the joint positions
to the coordinate frame S is denoted by h, we can say S = h(q).

The velocity of frame S can be expressed with respect to the inertial frame U . Using the Jacobian,
these velocities can also be calculated using the robot’s joint velocities q̇ ∈ Rn. The left trivialized
velocity of S, is given by

SvU,S = SJU,S(q)q̇, (2.11)

where SJU,S(q) denotes the Jacobian relating the velocity of S with respect to U expressed in
frame S. The Jacobian is dependent on the joint positions q. The associated acceleration is
computed by

Sv̇U,S = SJU,S(q)q̈+ SJ̇U,S(q, q̇)q̇. (2.12)

To compute the right trivialized velocity UvU,S and the associated accelerations, the term SJU,S(q)
in (2.11) and (2.12) is replaced by UJU,S(q), respectively.

q2

q1

q3

oU

oS

q4

Figure 2.2: Schematic illustration of a 4DOF robot manipulator.
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2.3 Quadratic Programming Control

A quadratic program (QP) is an optimization problem with a quadratic objective function and
linear constraints. QP control is based on solving quadratic programs every control time step, and
thereby calculating the optimal solution for a certain task. In this project, we use a QP control
framework to control the robot manipulator’s motion, see Section 3.1.4. Therefore, in this section,
we briefly introduce QP control. The final QP controller approach is presented in Section 3.3.

2.3.1 Quadratic Programming
A general QP problem, see Equation (2.13), consists of a quadratic cost function (2.13a) with
linear equality constraints (2.13b) and linear inequality constraints (2.13c), see

min
x

1

2
x⊤Qx+ c⊤x (2.13a)

s.t. A1x = b1 (2.13b)

A2x ≥ b2. (2.13c)

Here, x ∈ Rn denotes the vector of optimization variables, Q ∈ Rn×n denotes the symmetric
Hessian matrix, c ∈ Rn is a vector of constants, A1 ∈ Rk×n and b1 ∈ Rk define the k equality
constraints, and A2 ∈ Rℓ×n and b2 ∈ Rℓ the ℓ inequality constraints, n denotes the optimization
variable state dimension [47]. Often, the cost function of a QP problem (2.13a) is written in the
form of (2.14), by using E = QTQ and c = QTb.

min
x

1

2
∥Ex− b∥2 (2.14)

The goal of the QP problem is to find the values of x, for which the cost function is optimized.
To ensure that there exists a unique optimal solution for the optimization problem, that can be
found quickly, the QP problem must be convex.

2.3.2 Task-Based Constrained QP Control
Quadratic programming can also be used to control robots. In such controllers, a QP is instanti-
ated at every control time step, minimizing the error of multiple desired tasks under all physical
and structural constraints of the robot. In robotic applications, QP control is often praised be-
cause it allows to perform multiple tasks simultaneously, with relative importance between tasks,
ordered via a weighted approach. QP control is particularly useful for humanoids (e.g. balancing
while reaching objects with multiple end-effectors), but robot manipulators can also favor from
it, for example while performing end-effector tasks while avoiding collision or joint limit violations.

In a QP controller, multiple simultaneous objectives can be used to minimize a cost function. The
objectives of a robot’s motion are expressed in terms of features of the system, where a feature
refers to any function f that describes a motion. For example, the position of the hand of a
humanoid, or the configuration of a door (opening angle), or the position/orientation of a drone,

etc. The value of each objective
∥∥∥f̈ − f̈d

∥∥∥ measures the difference between the current and desired

accelerations, respectively, f̈ and f̈d. For a number N of simultaneous objectives (f1, . . . , fN ), the
quadratic cost function to minimize in the QP is defined as

cq,q̇(q̈) =

N∑
i=1

wf

∥∥∥f̈i − f̈di

∥∥∥2 , (2.15)

where wf are the relative weights of the objectives that are tuned depending on which objective
is favored, depending on the observed behavior resulting from that choice (e.g., in case of a hu-
manoid, falling over would suggest increasing a center of mass objective weight).
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In the proposed teleoperation system, the robot’s current and desired end-effector pose will both
be described in task-space. Therefore, the control strategy will use the current state of the robot in
task-space for feedback, this is referred to as task-based control. Based on the desired end-effector
pose, forward kinematics are used to calculate the robot’s state q in joint space, which is fed
into the QP controller. To solve the QP problem on velocity or acceleration level, the constraints
have to be linear in q̇ or q̈, respectively. Because the dynamics of a fixed-base robot manipulator
are linear in q̈, while being nonlinear in q and q̇, and the robot dynamics have to be taken into
account while solving the QP problem, an acceleration based formulation is preferred. Moreover,
since joint accelerations allow for jumps in their control commands, minimizing the QP problem
for q̈ also leads to smoother robot motion, compared to a velocity level QP controller. A general
task-based QP formulation with the joint accelerations as minimization variable is given by 2.16.

min
q̈

cq,q̇(q̈) (2.16a)

s.t. A1q̈ = c2 (2.16b)

A2q̈ ≤ c2 (2.16c)

where q̇ and q̈ denote the robot’s joint velocities and accelerations, respectively. While solving the
QP problem, the weighted sum of the task errors cq,q̇(q̈) should express stabilized error dynamics.

2.4 Introduction to Finite-State Machines
In the QP framework that we use to control the robot, see Section 3.1.4, a finite-state machine
(FSM) controller implementation is facilitated. For this reason, we couple the proposed QP con-
troller with a finite-state machine to automatically perform a sequence of tasks using the robot
manipulator.

A finite-state machine (FSM) is an abstract machine that, at a given time, is in one state from
a finite set of states [48]. In response to internal or external conditions, the machine’s state can
change. Such a change is referred to as a transition. A list of modes, with one initial mode, and a
definition of the conditions that trigger each transition, together define an FSM. Throughout this
work, the word state has been referred to as the continuous state of the dynamics (i.e. q, q̇, q̈).
To avoid confusion of terms, in the remainder of this work, we refer to an FSM state as a mode.
FSMs are particularly well-suited to implement repetitive or sequential robotic tasks, due to the
simplicity and the composability it offers. For example, to control the locomotion of a humanoid,
its motion can be divided into different phases, or modes. A finite-state machine handles the
transitions between these modes when transition conditions are realized, for example, foot landed,
COM shifted, grasp established, grasp released, contact established, contact broken, etc. See Fig-
ure 2.3 for an example from [48], showing the building blocks of locomotion of a humanoid robot.

Figure 2.3: FSM example from [48] containing two modes for cyclic locomotion of a humanoid robot,
alternating left foot and right foot steps.
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Chapter 3

System Design and
Implementation

In this chapter, the design and implementation of the teleoperation system is presented. In Section
3.1, the chosen hardware, corresponding setup, and software components are introduced. After
this, the system’s communication framework, control input generation, and controller implement-
ation are detailed in Section 3.2. Finally, the associated QP control approach is presented in
Section 3.3.

3.1 Teleoperation System Outline

In this section, the robot manipulator and leader device, with the corresponding hardware setup,
are presented. Moreover, the software packages on which the proposed teleoperation system relies
are introduced. A schematic view of the proposed teleoperation system is depicted in Figure 3.1.
Prior to the system design, various design considerations were contemplated, for this discussion,
please refer to Appendix C. Additionally, the system requirements are stated in Appendix D.

3.1.1 Robot Manipulator
There are two robot manipulators available for the teleoperation system: Franka Emika’s Panda
and Universal Robots’ UR10. Both robot manipulators are equipped with Smart Robotics’ custom
vacuum gripper. The hardware specifications of both robots are stated in Appendix E.1 and E.2.
In a comparison between the two available robot manipulators, the main differences were the
number of degrees of freedom, payload, and maximum end-effector velocity. While the Panda
has a more anthropomorphic design than the UR10, which enhances intuitivity, its kinematic
redundancy also significantly complicates the controller design. Moreover, its payload (max. 3

Figure 3.1: Unilateral teleoperation system that senses hand movements and uses these as input signal
xh to the workstation. The hand motion is converted to a reference signal xd for the controller, which
calculates desired joint control inputs for the robot manipulator.
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kg) and maximum end-effector velocity (max. 1.7 m/s) are low compared to the UR10 (max.
10 kg and max. 3 m/s). Based on inertial motion capture measurements using an XSens suit,
an analysis of human tossing motions was made. This analysis revealed that the human hand
typically achieves velocities of 2 to 4 m/s, which the Panda is unable to reach. For these reasons,
the UR10 was chosen to be utilized in the proposed teleoperation setup. For a more detailed
comparison and choice substantiation, please refer to Appendix E.3. In the remainder of this
section, the UR10 and SR is presented into more detail.

Universal Robots’ UR10

The UR10, see Figure 3.2, is a collaborative robot manufactured by Universal Robots [49]. Collab-
orative robots, also referred to as cobots or co-robots, are robots intended for environments where
humans and robots share space or are in proximity, allowing for safe and direct human-robot inter-
action [50]. Traditional industrial robots function separated from their human co-workers, often
with fences or cages to guarantee safety. Cobots are designed to handle shared payload, and to
function safely without conventional protective measures. To ensure safe human-robot interaction,
cobots rely on lightweight construction materials, rounded edges, and inherent limitation of speed
and force, and/or sensors and software that ensure safe behavior. The cobots provide a benefit
in industrial settings such as logistics warehouses, since the advantages that robots and humans
have can be exploited simultaneously [51]. Human-robot collaboration may be preferable to purely
robotic operations, by leveraging the advantages of both humans and robots. For experimental
research settings, this has already shown to be true [52]. Because of this, using the UR10 cobot
as a follower device in a teleoperation system, to teach tossing operations in logistic tasks, seems
to be a logical choice.

The UR10 is a 6 degrees of freedom (DOF) arm, which consist of seven bodies: the shoulder,
upper arm, forearm, three wrists, and (in this case) a suction gripper, see Figure 3.2. Each joint is
equipped with high resolution joint position and velocity encoders, which allow for accurate pose
control [49]. Because the robot allows for the installation of external grippers and has various
configurable inputs and outputs to connect with accessories, the robot can be employed for a wide
range of tasks. Moreover, the UR10 has a Power and Force Limiting (PFL) functionality, which
is a safety measure that manages that a protective stop is issued, whenever an external force
leads to an exceedance of a preset limit value. Moreover, the UR10 makes use of space limiting
which is used to define any geometric shape which may be used to limit robot motion within the
defined space, or preventing the robot from entering the defined space. The UR10 is controlled
by a control box, where internal and external communication occurs at a maximum frequency of
125 Hz. The control box can be programmed using its teach pendant, or via a Linux PC through
an Ethernet connection. A PC can be used to run external applications on the UR robots, by

Shoulder

Upper Arm

ForearmWrist 1

Wrist 2

Wrist 3

SR Suction Gripper

SR Bellows Suction Cup

Figure 3.2: UR10 equipped with Smart Robotics (SR) vacuum gripper.
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communicating inputs and outputs through Real-Time Data Exchange (RTDE) at 125 Hz. The
RTDE interface is the standard interface of UR arms to synchronize external applications with
the UR controller [53]. Another interface to run external applications on the robot is ROS UR,
which is used to communicate joint states, tool center pose, and I/O’s between the PC and robot.
The latter interface is used to control the UR10 in the Vanderlande innovation lab.

Smart Robotics Gripper

The UR10 that is used in this project is equipped with the vacuum gripper of Smart Robotics,
see Figure 3.2. This gripper is equipped with a Venturi ejector, which generates a partial vacuum
inside the gripper, allowing to smoothly and securely handle a wide variety of objects. The gripper
functions as the interface between the actuated robot and the manipulated object. The gripper
is build from three main parts: the suction cup, tool arm, and the ejector. The bellows-type
suction cup allows for picking a wide variety of objects, and due to its flexibility, the suction cup
easily bends towards objects. Because of this, accurate pose estimation to pick objects is not
required. The tool arm connects the robot arm to the suction cup, and is a rigid arm consisting
of internal channels, which the air from the ejector flows through. The tool arm is also equipped
with an air pressure sensor, using which it can be detected if the suction cup is attached to an
object. One can imagine that it is of great importance that the robot quickly detaches an object
when the operator commands the robot to release it while tossing. For improved detachment of
objects when these are released, the ejector is equipped with a blow-off functionality, which forces
the object to be released as fast as possible. Without this functionality, the vacuum results in a
delayed detachment of objects. Using the gripper, objects with a mass up to 8 kilograms can be
lifted.

3.1.2 Leader Device
The teleoperation system required a leader device that enables humans to effectively and intuit-
ively control the robot’s motion, such that robotic tossing operations can be demonstrated. To
this end, the device must be capable of 6DOF motion sensing (3 translational directions, and 3
rotational directions), and needs to have a possibility to control the suction gripper, for activation
of the vacuum and blow-off functionalities.

First, the state-of-the-art in motion capture (hereafter referred to as mocap) technology is ana-
lyzed, see Appendix F.1. For each mocap technology, a market review into commercially available
systems that can potentially be employed in the teleoperation system is made. Based to this a
market review, see Appendix F.2, a number of good candidate devices were found. For example,
vision based mocap technology of OptiTrack1, inertial based mocap of XSens2, and a combination
of mocap technologies by Noitom3. Also commercial gaming devices are considered, such as VR
controllers from Oculus4 and HTC Vive5. As the popularity of motion capture technology grows,
mainly due to its application in gaming, the cost of good VR equipment falls. Because of this,
off-the-shelf VR devices are providing a feasible alternative for mocap devices in the context of
robotics. Because of its good portability, ergonomic design, integratability, and good price-quality
ratio in terms of tracking performance, The HTC Vive Pro kit system was chosen as leader device
in the proposed teleoperation system. In Figure 3.3, a picture of the HTC Vive Pro kit is depicted.

The pose of the VR controller is estimated at a 120 Hz refresh rate, with sub-millimeter accuracy
[54]. The average position’s standard deviation for pose estimation of the static (not moving)
device was found to be 0.242 mm, and its dynamic tracking accuracy varies in the millimeter
range. However, experimental results have shown that the tracking error can become up to a
meter [54]. In [55], experimental research has shown that the position tracking accuracy of the

1See https://www.optitrack.com/.
2See https://www.xsens.com/products/xsens-gloves-by-manus.
3See https://www.noitom.com/hi5-vr-glove.
4See https://www.oculus.com/quest-2/.
5See https://www.vive.com/us/product/vive-pro/.
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Figure 3.3: HTC Vive Pro Kit [56].

system is few millimeters, when two lighthouses are used. For detailed information about how the
Vive system works, and its technical specifications, please refer to Appendix G.

There is a good deal of literature available where commercial VR (gaming) controllers are used
in research projects for (precise) control. In [37] the Vive VR controller has been used as leader
device in a teleoperation system with a Franka Emika Panda robot. In [57], a method targeting
repair in space using a cobot, also controlled by a HTC Vive device, is presented. And in [58],
an ABB YuMi cobot was used as an extension for surgical tools, while also being controlled
by a VR system. Moreover, for VR controllers from multiple vendors, like the one from HTC
Vive, great software development support is available through OpenVR [59]. OpenVR, which
is developed by Valve Corporation, provides an extensive software development kit (SDK) and
application programming interface (API). OpenVR provides great assistance to engineers that are
inexperienced with software development, like the author of this work.

3.1.3 Hardware Setup

The proposed teleoperation system is operated by a human, and employs three hardware systems:
the Vive VR Pro kit, a workstation (HP EliteDesk 800 G5 TWR, Core i7 vPro 9th Gen) running
Linux with Ubuntu 20.04 as operating system, and the UR10 equipped with a vacuum gripper.
Figure 3.4 shows a schematic overview of the proposed teleoperation setup in the Vanderlande
Lab at the TU/e campus, see Appendix A.

Figure 3.4: Colocated unilateral teleoperation setup with: an operator (1) that holds a Vive VR controller
(2) which is tracked by three basestations (3). The UR10 (5) is mounted on a test bench (4), and located
in front of a conveyor (7) with a parcel (6). Next to the setup, the robot control box (8) and workstation
(9) are depicted. The system’s inertial frame is located at the robot’s base.
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The proposed teleoperation system enables humans to control the UR10’s motion, specifically for
tossing, using Vive’s VR controller. While controlling the teleoperation system, the operator does
not receive haptic feedback, and the operator is located in the same room as the robot. This
is referred to as unilateral collocated teleoperation. In the final setup, it is made sure that the
operator is always close to the robot manipulator, while also being able to receive visual feedback,
without any communication delay, and from a safe distance. The operator’s viewpoint, as shown
in Figure 3.4, is chosen such that the operator has clear overview of the robot’s surroundings while
performing tossing demonstrations. Moreover, since the operator will demonstrate robotic tossing
aiming for the conveyor belt, this viewpoint seems convenient.

3.1.4 Software
The proposed teleoperation system will communicate and be controlled through a central PC (HP
EliteDesk 800 G5 TWR, Core i7 vPro 9th Gen), running Linux with Ubuntu 20.04 as operating
system. The UR10 in the Vanderlande Innovation Lab at the TU/e campus has already been
interfaced with the Linux PC for through controller software that goes by the name of mc rtc [60].
The controller for the teleoperation system is written and implemented using mc rtc. To use the
Vive VR controller as leader device for teleoperation, an interface between the VR hardware and
mc rtc is made through OpenVR. OpenVR serves as an interface between the VR hardware and
VR software, and is implemented by SteamVR. As part of this research work, an interface has to
be made between mc rtc and the VR controller device. To this end, the software packages that
are involved in this are presented.

QP Control via mc rtc Software

The proposed teleoperation system is controlled through the mc rtc QP control framework. This
controller framework uses QP to calculate the required joint accelerations to control the robot’s
end-effector towards a desired pose. mc rtc is developed by Joint Robotics Laboratory (JRL) of
CNRS-AIST [61], for simulation and robot control systems. The mc rtc framework provides an
interface which can be used for real-time control of simulated and real robotic systems. Moreover,
the close collaboration between CRNS and the I.AM project provides an advantage in the devel-
opment of the proposed teleoperation setup. By providing a real or estimated state of a given
robot state (joints’ values, sensor readings, etc.), mc rtc can compute the commands to control the
robot towards the desired robot’s state. Moreover, the mc rtc framework uses tools that are built
around the Robot Operating System (ROS) [62], these tools provide extra functionalities, such as
an interface to visualize the robot’s surfaces within RViz [63]. In this work, the controller imple-
mentation is written in C++. For more information about the control framework, please refer to
its tutorials, API documentation, and JSON/YAML documentation6. Additional information can
be found on its GitHub repository [64].

SteamVR and OpenVR

VR controllers from multiple vendors, like the one from Vive, run on SteamVR to provide an
interface for gaming using the VR hardware. SteamVR is a tool of Steam [65], which provides
runtime to access the pose data and I/O input of each component of the VR kit. OpenVR is
an Application Programming Interface (API) and runtime which allows for accessing data that is
streamed by SteamVR [59]. The OpenVR C++ library provides a way to connect and interact with
VR hardware without relying on a specific hardware vendor’s SDK. OpenVR is implemented as a
set of C++ interface classes with virtual functions, these are used in the controller implementation
of mc rtc, which is also written in C++. For additional information, please refer to [59].

6See: https://jrl-umi3218.github.io/mc_rtc/.
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3.2 Teleoperation System Architecture

With the hardware components and the software packages described in Section 3.1, in this section,
the system architecture is presented. This includes a detailed description of the communication
framework. Moreover, the methodology in the teleoperation controller, and the control algorithm
are presented. Furthermore, the QP control approach is presented.

3.2.1 Communication Framework

Each component in the proposed teleoperation system is connected and interacts with each other.
In this section, these interactions are presented. Figure 3.5 shows a schematic overview of the basic
interactions in the teleoperation system, where the interaction between components is indicated
by arrows.

As described in Section 3.1.3, the human operator only receives live visual feedback by looking at
the robot manipulator while controlling it. Moreover, the operator controls the robot’s motion and
suction gripper using the leader device. Also, the workstation is operated by a human operator,
which can be used to change (parameter or controller) settings, start SteamVR, and run the con-
troller. One of the main challenges of this work was to find a way to establish the communication
between the commercial VR controller device and mc rtc, such that the VR controller can be used
as a leader device in the teleoperation setup. To establish communication between SteamVR and
mc rtc, the SteamVR runtime had to be accessed. To this end, the OpenVR Software Develop-
ment Kit (SDK) was utilized. OpenVR (also developed by Valve) is an application programming
interface (API) and runtime that allows access to VR hardware from multiple vendors [59], for
which no specific knowledge about the hardware required. By writing the CMakeLists files such
that these automatically install the appropriate OpenVR library on a dedicated location in the
folder where the state files are accessed by the controller, the SteamVR runtime could be accessed
directly from the mc rtc.The pose of the VR controller device tracking and button data, that is
operated by the operator, is captured in real-time at 120 Hz. Within mc rtc, this pose and button
data is used in C++ objects to generate a reference input for the QP controller and control the
robot I/O’s, such as switching the vacuum and blow-off in the gripper. Moreover, another C++
function is written to generate a reference input that contains the desired pose input, for which

Figure 3.5: Communication framework of the proposed teleoperation system. A human operator controls
the robot’s end-effector motion, and robot vacuum gripper through a Vive VR controller.
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the desired joint accelerations are calculated by the QP implementation in mc rtc. The joint
accelerations are integrated to a velocity control signal, and sent together with the I/O signals to
the robot’s control box. The UR10 is controlled at a frequency of 125 Hz. The UR10 is equipped
with encoders in each joint, which are used to measure the exact joint positions of the robot. Each
time the QP controller is started, or the FSM mode is switched, the QP controller is initialized
with the measured joint states of the robot. During control, the encoder values of the robot are
not fed back into the QP controller, hence, the QP controller does not control the robot’s motion
through closed-loop control.

3.2.2 Reference Control Input Generation
With the communication established, the VR controller’s button I/O’s and pose measurements
are used to generate a reference pose input signal for the QP controller. In this section, we discuss
how the desired pose of the robot’s end-effector is computed, and how the robot’s suction gripper
is controlled using the leader device.

Coordinate Frames

The first step in generating a reference input trajectory for the robot’s end-effector using the VR
controller, is to make sure the input (leader device) and output (robot) directions are aligned.
The relevant coordinate frames that are referred to in this work, according to the hardware setup
presented in Section 3.1.3, are schematically depicted in Figure 3.6. The inertial frame U , finds its
origin at the UR10’s base. Frame S is located in the center of the bottom of the robot’s suction
cup. Here, the robot manipulator makes contacts while gripping onto objects. Note that frame U
and frame S are connected through the chain of links of the robot manipulator. The box’ frame
is denoted by B, which finds its origin at the center of mass of the box. Finally, the conveyor
frame is denoted by C, which is represented by a contact surface with which the box (cuboid) can
collide. The leader device frame, denoted by V , is measured with respect to Vive’s global frame
H. The origin and orientation of Frame H, are set during the calibration of the VR kit, which is
done during the room setup in SteamVR7.

Figure 3.6: Illustration of the relevant frames in the teleoperation system. The inertial frame, located
at the robot’s base, is given by U . Additionaly, C denotes the conveyor frame, the suction cup frame is
given by S, and the box frame is denoted by B. The pose of the VR controller is denoted by V , which is
measures with respect to Vive’s measurement frame H.

7For details on using the Vive devices, such as the room setup, see https://www.vive.com/eu/support/

vive-pro-hmd/.
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Figure 3.7: To align [H] with frame [U ], such that [H] = [U ], H is rotated −90◦ over the x-axis, and
subsequently rotated 180◦ over the z-axis.

In each control step tk, the pose of the leader device V is retrieved from SteamVR, through a
4× 4 pose matrix. As the leader device pose V is measured in its own frame, denoted by H, this
pose matrix is denoted by HHV . The pose of the leader device HHV is retrieved through a 3× 3
orientation matrix HRV and a 3 × 1 position vector HoV . At a time instance t, the pose of the
leader device is denoted by

HHV (t) =

[
HRV (t)

HoV (t)
0 1

]
. (3.1)

In order to align the orientation of Vive’s inertial frame [H] with the robot’s base orientation frame
[U ], two subsequent rotations must be performed, see Figure 3.7. The rotation matrix URH , which
can be used to express [H] with respect to [U ] is obtained by

URH = UR∗
∗RH =

−1 0 0
0 −1 0
0 0 1

1 0 0
0 0 1
0 −1 0

 =

−1 0 0
0 0 −1
0 −1 0

 . (3.2)

where ∗ denotes the frame between the two rotations as schematically depicted in Figure 3.7.

(a) Vive’s coordinate frame.
(b) Correct alignment of the robot coordinate frame and Vive coordinate
frame.

Figure 3.8: Illustration of the frames U and H as implemented on the real setup.
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While calibrating the system, frame H is set accordingly to the pose of the HMD, as illustrated in
Figure 3.8a. Another illustration of the teleoperation setup is displayed in Figure 3.8b, this figure
shows the frames relevant for the teleoperation setup. In order to make sure that the orientation
frame [H] points in the same directions as [U ], it is important that the orientation of the head
mounted display (HMD) is properly oriented. To this end, during calibration, the HMD must be
placed such that the orientation of the coordinate frame of Vive [H], is the same as the orientation
of frame H in Figure 3.8b. After calibration, the HMD can be moved to a more convenient spot,
but must always be visible to the two basestations. Using the methodology described here, the
VR controller’s pose is expressed with respect to the origin oH , and orientation frame [U ], by (3.3)
and (3.4), respectively.

URV = URH
HRV (3.3)

H[U ]oV = URH
HoV (3.4)

Teleoperation Controls

Before we continue with the motion mapping between the leader device pose V and the robot’s
end-effector pose S, a description of how the operator commands the controller buttons is given.
In each control step tk, the so-called button events are retrieved from SteamVR. A button event
is a signal that is retrieved by the controller every time a controller button on the leader device
is pressed or released. These button event signals are used to control the suction gripper, but
also to generate the reference trajectory for the robot’s end-effector. The controller contains five
buttons, see Figure 3.9, of which four are used to command the UR10 and suction gripper. These

are the menu button ( 1 ), touchpad ( 2 ), trigger ( 4 ) and grip button ( 5 ), which are all
used to either control the end-effector motion, or the I/O controls of the suction gripper. The

grip button ( 5 ) is implemented as a safety clutch to limit the risk of unexpected robot behavior
that could damage the robot or its environment. For example, if the operator would drop the
controller device. While this button is pressed, control commands can be given to the robot, if
not, the controller button commands will not be communicated to the robot. The vacuum gripper

is controlled using the trigger button ( 4 ). By pressing the trigger, and an I/O signal is sent to
the robot’s control box, that activates the vacuum. This allows the robot to grasp onto objects.
When the trigger is released, a I/O signal is sent to the robot’s control box that deactivates the
vacuum, and activates the blow-off function, causing the suction gripper to release the object. To

stop both the vacuum and blow-off, the menu button ( 1 ) can be pressed. Finally, the touchpad

( 2 ) is implemented as a teleoperation clutch, which decides if the robot’s end-effector pose must
follow the leader device pose. How this exactly works is detailed in the remainder of this section.

Figure 3.9: Vive controller schematic with labelled buttons: the menu button (1), touchpad (2), system
button (3), trigger (4), and grip button (5).
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Motion Mapping

As said before, the reference trajectory of the end-effector pose is generated using pose meas-

urements of the leader device, the gripper button ( 5 ), and the touchpad ( 2 ). The desired
end-effector pose, or reference input pose, with respect to the controller’s inertial frame U , at time
t is given by

UHref
S(t) =

[
URref

S(t)
Uoref

S(t)

0 1

]
, (3.5)

where URref
S(t) and oref

S(t) denote the desired end-effector orientation and position, respectively.

Similarly, the actual end-effector pose at time instance t, is denoted as UHS(t). At each time

instance t, when 5 and 2 are not pressed at the same time, the desired end-effector pose at

time instance t is given by UHref
S(t) = UHS(t). Hence, the reference input pose does not change.

When 5 and 2 are both pressed, the desired end-effector pose at time instance t is computed
using pose measurements of the leader device. In this case, the reference input position and
orientation are computed by

Uoref
S(t) =

UoS(t) + α
(
H[U ]oV (t) − H[U ]oV (tp)

)
(3.6)

and

URref
S(t) =

URS(tp)

(
H[U ]R−1

V (tp)
H[U ]RV (t)

)
, (3.7)

where tp denotes the time instance at the first control loop iteration, since both the gripper and
touchpad buttons are pressed. α denotes a positional reference scaling factor, and H[U ]R−1

V (tp)

denotes the inverse orientation matrix of the leader device at time instance tp. Note that the
inverse of a rotation matrix is its transpose. Since the robot arm is relatively big compared to the
human arm, intuitivity and effectivity might be improved by applying positional scaling, denoted
by a scaling factor α, between the translational motion of the leader and follower device. Through
(3.6), the current position of the leader device, relative to its position at tp, is multiplied by a scalar
α, and added to the current end-effector position of the robot. The scaling value is determined
upon implementation, by experimenting on the real teleoperation setup. Note that the scaling
factor is only applied to translational motion, for the rotations no scaling is applied. Through
(3.7), the pose of the leader device at tp is subtracted from the current pose of the leader device,
and added to the current pose of the robot’s end-effector.

Controller Algorithm

The control input is computed by means of an algorithm implemented through C++ objects. In
the remainder of this section, the algorithm that generates the reference pose for the QP con-
troller, as well as the commands for the suction gripper, is presented. The algorithm follows the
methodology as described in this section. To refer to the states (pressed or released) of each

button in the algorithm, we use k pressed or k released, where k denotes the controller button
denoted by a number 1-5, as given by Figure 3.9. Additionally, to store the device poses at tp,
a boolean (hereafter referred to as bool) is implemented in the control algorithm, which we refer
to as setRefPose. This bool is initialized true at startup and used to store the end-effector and

leader device poses at tp. Every time 5 and/or 2 are released, the bool is set true, such that
the next time these buttons are pressed the correct end-effector and leader device poses are stored.

For the teleoperation reference input controller algorithm, see Algorithm 1. The desired end-
effector pose, computed by the algorithm, is used as reference input for the QP controller, which
is detailed in Section 3.3.
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Algorithm 1 Teleoperation reference input controller algorithm.

1: for Each control loop iteration t do
2: Input: HHV (t) from SteamVR
3: Input: UHS(t) from mc rtc

4: if 5 pressed then

5: if 2 pressed then

6: URV (t) =
URH

HRV (t)

7: H[U ]oV (t) =
URH

HoV (t)

8: if setRefPose then
9: tp = t

10: H[U ]RV (tp) =
H[U ]RV (t)

11: H[U ]oV (tp) =
H[U ]oV (t)

12: URS(tp) =
URS(t)

13: UoS(tp) =
UoS(t)

14: setRefPose = false
15: end if
16: Output: Uoref

S(t) =
UoS(t) + α

(
H[U ]oV (t) − H[U ]oV (tp)

)
17: Output: URref

S(t) =
URS(tp)

(
H[U ]R−1

V (tp)
H[U ]RV (t)

)
18: else if 2 released then

19: Output: UHref
S(t) =

UHS(t)

20: setRefPose = true
21: end if
22: if 4 pressed then
23: Output: Stop blow-off and start vacuum

24: else if 4 released then
25: Output: Start blow-off and stop vacuum

26: else if 1 pressed then
27: Output: Stop blow-off and stop vacuum
28: end if
29: else if 5 released then

30: Output: UHref
S(t) =

UHS(t)

31: setRefPose = true
32: end if
33: end for

3.2.3 Finite-State Machine Implementation
In this work, the Finite-State Machine (FSM) controller implementation provided by the mc rtc
framework was used. For an introduction to FSMs, please refer to Section 2.4. Through mc rtc,
by inheriting from a class of the framework, new modes can be programmed in C++. We use an
FSM controller to build the appropriate order of control tasks in various phases of manipulation.
For each task, a mode is build, which could contain one or multiple waypoints to guide the robot’s
motion, without the need to specify any explicit trajectory. We also programmed modes that
activate the teleoperation framework, or repeat a previously demonstrated toss. Moreover, the
FSM controller is appropriate to build variations of modes. In this case, for example, we made
one teleoperation mode where the control inputs are stored such that these can be repeated later,
and another teleoperation mode which does not store control inputs. The FSM controller in this
work is defined by the modes listed below, whose names already imply the mode’s functionality.

• BoxToStart, activates the conveyor for a given time, guiding the box into the corner.

• MoveToStart, guides the robot along specified waypoints that moves the robot into a neutral
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configuration, or start position.

• GrabBox, guides the robot along waypoints, reaching for the specified box (Box 3, Box 4, or
Box 5). When contact with the box is made, the vacuum gripper is activated, causing the
gripper to hold onto the box. Subsequently, the box is lifted upwards to a final position.
Additionally, an option (which is set by a boolean) to automatically grab a box at different
positions and orientations is implemented. This way, experiments to analyze the sensitivity
of pick poses on boxes can be executed very effectively (see Section 4.4 for details).

• Teleoperation, enables to control the robot and suction gripper using Vive’s VR controller,
allowing the operator to demonstrate tossing (or any other task). For details, see Section
3.2.2.

• RecordTeleoperation, is identical to the Teleoperation mode, but in addition it automatically
logs the controller reference data at each time instance in a binary log, which can be replayed.

• RepeatDemonstration, can be appointed to any logged demonstration from the RecordTele-
operation mode, and replays the exact same reference control inputs, causing the robot to
perform the same toss/task.

• TerminateProcess, stops the robot, terminates the process and shuts down the controller.

Each of the modes listed can be performed in any desired sequence, running in an infinite loop,
or until the process is terminated by itself or an error. Moreover, each mode is implemented such
that, with minor adaptions, OptiTrack recordings can be started and stopped with commands
from the controller’s modes.

3.2.4 GitLab
The software developed for the H2020 project I.AM. is available in one GitLab group. The tele-
operation controller software developed during this project, is also made available to everyone
involved with the I.AM. project, and can be found through the following link:

https://gitlab.tue.nl/h2020-i-am-project/ur10-teleoperation-controller

For information about how to download, install, and use the software, please refer to the GitLab
project provided by the link above.

3.3 QP Control Approach
In Section 2.3, an introduction into QP control was given. In this Section, the QP control ap-
proach to control the robot’s end-effector pose based on the reference position and orientation
inputs as described in Section 3.2.2. First, the QP’s minimization variables are presented. Then,
the QP objectives are stated from which the the QP controller’s cost function is derived. Then
the constraints and how these are implemented is discussed. Finally, the final QP control problem
is formulated.

The dynamics of a 6-DOF robot manipulator can be described using Lagrange dynamics. Neg-
lecting friction and disturbance input, the dynamic model is described by Lagrange’s equation:

D(q)q̈+C(q, q̇)q̇+ g(q) = u, (3.8)

where D(q) ∈ R6×6 is the mass matrix, C(q, q̇)q̇ ∈ R6 is the vector of Coriolis and centrifugal
forces, g(q) ∈ R6 is the vector of gravity force, and u ∈ R6 is the vector of inputs for joint control
of the actuators.

To control the full-body motion of the UR10, the robot’s end-effector pose S is controlled to
a desired state Sref. In the QP control approach, a constrained optimization problem is solved
online during manipulation every ∆t seconds, which in case of the UR10 is fixed at ∆t = 0.008
seconds The outcome of the QP problem serves as input for the low-level control of each individual
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joint. In the remainder of this section, the different aspects of this QP problem are highlighted.
First, the minimization variables are discussed, then the tasks that make up the cost function are
described, and finally the constraints are stated.

3.3.1 Minimization Variables
The UR10 can be controlled by position or velocity control, which means that the output of this
QP problem should be a set of joint-level positions or velocities. However, the joint positions
and velocities depend explicitly on the joint accelerations. Moreover, by controlling the joint
accelerations it is possible to command the desired inputs directly within one time step tk, without
generating too large motor torques, as would be the case if the QP is solved for the for position and
velocity at each time step. Therefore, we choose the joint accelerations q̈ ∈ R6 as the minimization
variables. The output of the QP problem is then integrated once, and used as input for low-level
control of the individual joints for velocity control.

3.3.2 QP objectives
The quadratic cost function to minimize in the QP is defined in Equation (2.13), see Section 2.3.
In the proposed teleoperation system, the QP controller objectives are described by two reference
inputs: the desired end-effector position Uoref

S and orientation URref
S , see Section 3.2.2. These QP

objectives are described in the following two sections [48].

Position Task

The position task is used to control the robot’s end-effector position UoS , towards a desired end-
effector position Uod

S . To fit the QP problem discussed in Section 2.3, the cost function for the
position task is formulated in quadratic form. This cost function, denoted by Epos, is given by

Epos =
1

2

∥∥U öS − U öd
S

∥∥2 . (3.9)

Here, U öd
S is given by [66]

U öd
S = U öref

S − kp(
UoS − Uoref

S )− kd(
U ȯS − U ȯref

S ) (3.10)

where Uoref
S is the end-effector reference position as computed by the methodology discussed in Sec-

tion 3.2.2. Moreover, kp, kd ∈ R denote scalar proportional and derivative gains, respectively. The
damping kd is determined by assuming a critically damped harmonic oscillator, hence kd = 2

√
kp.

For desired contacts, such as parcels that are to be tossed by the system, the force exerted on an
object is determined by a coupling between the chosen stiffness for the error between the actual
end-effector pose, and the desired pose.

Since only the position and orientation of the leader device are measured, and the velocities and
accelerations not, and it was sufficient to use only piecewise constant profiles of Uoref

S , the reference
velocities and accelerations have zero-values: U ȯref

S = 0 and U öref
S = 0. Hence, the desired end-

effector acceleration U öd
S for regulating the end-effector position around a constant value and

steering it towards a target value, is calculated by

U öd
S = −kp(

UoS − Uoref
S )− kd

U ȯS . (3.11)

Orientation Task

The orientation task is used to control the orientation of the end-effector [S], to the time varying
desired orientation, denoted by URref

S(t). The computation of the reference orientation was discussed

in Section 3.2.2. The quadratic cost function for the end-effector orientation is denoted by Eori.
This cost function is taken from [67], where its derivation, based on the PD controller on SO(3),
can be found. Here, only the cost function itself is given, which is formulated as

Eori =
1

2
∥U ω̇S − U ω̇d

S∥2 (3.12)
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where UωS ∈ R3 and Uωd
S ∈ R3 denote the end-effector’s current and desired angular velocity,

respectively. U ω̇d
S is given by

U ω̇d
S = U ω̇ref

S − UωS ×
(
Uωref

S − UωS

)
+ kd

(
Uωref

S − UωS

)
+ kp

URS

(
log

(
UR−1

S
URref

S

))∨
(3.13)

where Uωref
S ∈ R3 denotes the end-effector’s reference angular velocity. The proportional and

derivative gains are denoted by scalars kp, kd ∈ R, and are determined by assuming a critically
damped harmonic oscillator kd = 2

√
kp. The error between the orientation matrices URS and

URref
S is defined as the matrix logarithm of URref

S with respect to URS , as proposed in [67].
This error is computed by UR−1

S
URref

S . The vee operator, denoted by ∨, performs the inverse
transformation, from a skew-symmetric matrix in so(3) to a vector in R3, such that

W∨ =

 0 −z y
z 0 −x

−y x 0

∨

:=

 x
y
z

 ∈ R3. (3.14)

Again, since only the position and orientation of the leader device are measured, and the velocities
and accelerations not, and it is sufficient to use only piecewise constant profiles of URref

S , the
reference angular velocities and angular accelerations have zero-values: Uωref

S = 0 and U ω̇ref
S = 0.

Hence, the desired end-effector acceleration U ω̇d
S for regulating the end-effector position around a

constant value and steering it towards a target value, is calculated by

U ω̇d
S = −kd

UωS + kp
URS

(
log

(
UR−1

S
URref

S

))∨
. (3.15)

Task-space to joint level conversion

To successfully control the end-effector, the task-space pose objective of the end-effector, controlled
by the leader device pose, needs to be converted to joint-level objectives. The end-effector pose
S(q) can be determined from the joint positions qi with i ∈ {1, . . . , 6}, using forward kinematics.
The body frame velocity and acceleration of S can be expressed using

UvS =

[
UvS
UωS

]
= UJS(q)q̇ (3.16)

and

U v̇S =

[
U v̇S
U ω̇S

]
= UJS(q)q̈+ U J̇s(q)q̇, (3.17)

where the Jacobian matrix UJS relates the velocity of the body frame with respect to the inertial
frame U .

3.3.3 Constraints
During human-operated manipulation, for example when gripping objects, the robot manipulator
will interact with its environment. This raises the question of how to deal with interaction between
the robot and its environment. If the operator controls the robot motion such that the desired
trajectory of the robot goes through physical boundaries of the robot’s environment, it must be
made sure that the robot cannot damage its environment, and vice versa. In the first place, this
is solved through collision constraints in the QP controller. In this section, it is presented which
constraints are applied to the QP problem, and how this is done.

Joint limit constraints

The first constraints set is a result of the limits in the robot hardware, such as joint position,
velocity and acceleration limits [68]. For each joint qi with i ∈ {1, . . . , 6}, these can be described
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by:

q
i
≤ qi(t) ≤ qi, (3.18)

q̇
i
≤ q̇i(t) ≤ q̇i, (3.19)

q̈
i
≤ q̈i(t) ≤ q̈i, (3.20)

for any time t, with lower joint bounds for the joint position, velocity, and acceleration given by
q
i
, q̇

i
, and q̈

i
respectively, and upper bounds given by qi, q̇i, q̈i.

However, constraints (3.18) and (3.19) cannot be enforced directly at time t using the optimization
variables q̈i, as there is no direct control over qi and q̇i. To overcome this issue, these constraints
are discretized such that the predicted joint/link position and velocity after a single time step can
be constrained [69]. To this end, a constant time step δt can be selected [70]. Here, this time step
δt is set equal to the control time step of the controller ∆t. The discretization is done using the
forward Euler method to estimate the velocity at time t+ δt through

q̇i(t+ δt) = q̈i(t)δt+ q̇i(t), (3.21)

for any time t. The joint positions are estimated using (3.21) and the backward Euler method
(3.22), to obtain (3.23).

qi(t+ δt) = q̇i(t+ δt)δt+ qi(t) (3.22)

qi(t+ δt) =
1

2
q̈i(t)δt

2 + q̇i(t)δt+ qi(t) (3.23)

The joint accelerations are chosen such that the joint position limits (3.18) and velocity limits
(3.19) will not be violated at time t+ δt. This leads to Equations (3.24) and (3.25), respectively.

q
i
≤ qi(t+ δt) ≤ qi (3.24)

q̇
i
≤ q̇i(t+ δt) ≤ q̇i (3.25)

Finally, to gain control over the constraints, using (3.23) the joint position and velocity constraints
are rewritten in terms of q̈i, see (3.26) and (3.27), respectively.

q
i
≤ 1

2
q̈i(t)δt

2 + q̇i(t)δt+ qi(t) ≤ qi (3.26)

q̇
i
≤ q̈i(t)δt+ q̇i(t) ≤ q̇i (3.27)

Through this discretization, the constraints are transformed to joint acceleration constraints that
can directly be enforced using the optimization variables q̈i with i ∈ {1, . . . , 6}, and therefore can
be added to the QP control formulation [69] [70].

Collision avoidance

The collision avoidance constraints are introduced to make sure the robot does not harm/damage
itself, nor its environment. The collision avoidance in this work is applied by the methodology of
[48]. This method allows for collision avoidance without the need for pre-computation or prediction
of trajectories, and acts reactive to the motions that are present in the robot scene. The collision
avoidance constraints are imposed as a set of a velocity-damper-based constraints. Consider two
bodies a and b in the robot scene which require a constraint to avoid collision. The distance da,b

between these bodies is

da,b = σ||pa − pb||, (3.28)

where pa and Upb are the two witness points, and σ = +1 if there is no collision and σ = −1
if there is collision (in this case d is an inter-penetration distance). This distance is computed
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in the software using an implementation of the Gilbert, Johnson and Keerthi (GJK) algorithm
[71]. At every configuration of the two convex bodies a and b, the GJK algorithm computes a
witness point for each of the respective surfaces. These witness points are defined such that the
distance between them is equal to the (minimal) distance between the two convex bodies. As the
configuration of the bodies changes over time, these witness points move along the surfaces. The
positive distance constraints are applied using these two moving points, thereby guaranteeing the
satisfaction of the collision-avoidance constraint between the two convex bodies a and b, as they
move over time. A basic velocity damper behavior is obtained through the following inequality

ḋa,b ≥ −ξ
da,b − δs
δi − δs

, (3.29)

where the velocity damping coefficient, the influence distance between links below that the con-
straint starts to act, and the security distance between links that the constraint ensures will never
be reached, are denoted by parameters ξ, δi, and δs, respectively. Inequality (3.29) can be used to
prevent both self-collisions of a robot as collisions between a robot and its fixed environment. For
a schematic overview of the collision avoidance method, see Figure 3.10.

However, the collision constraint as shown by inequality (3.29), cannot be directly enforced using
the optimization variables q̈i with i ∈ {1, . . . , 6}. Using the same method as used for the joint
limit constraints, the collision constraints is rewritten to a QP-compatible version of 3.29, stated
in (3.30).

d̈a,b ≥ 1

δt

(
−ξ

da,b − δs
δi − δs

− ḋa,b

)
(3.30)

Denoting the unit vector w between pa and pb as w = (pa−pb)/d, the derivative ḋa,b is obtained
by

ḋa,b = (ȯa − ȯb)
Tw. (3.31)

Denoting Jpos
oa

and Jpos
ob

respectively, the linear (translational) Jacobians at pa and pb, d̈a,b can
be expressed as

d̈a,b = wT
(
Jpos
oa

q̈a + J̇pos
oa

q̇a − Jpos
ob

q̈b − J̇pos
ob

q̇b

)
+ ẇT (ȯa − ȯb) . (3.32)

Figure 3.10: Illustration of the collision avoidance method where the blue (a) and red body (b) must avoid
colliding [48]. The thin purple area wrapping body b represents the security zone within interaction with
other bodies is considered as collision, the larger light blue zone represents the influence distance from
which the constraint is activated and starts influencing the motions of the bodies. Using the distance da,b

between the witness points oa and ob, it can be determined whether the constraint must be activated or
collision has occurred. w is the unit vector between oa and ob.
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As can be seen in (3.32), d̈a,b can be enforced directly in the minimization variables q̈, allowing
the constraints to be added to the QP control formulation.

An analysis has been made to investigate which possible (self-)collisions could occur to find out
which constraints must be applied to the QP problem. In Table 3.1, each link ℓi with i ∈ {1, . . . , 7}
of the UR10 (see robot description in Section 3.1.1), together with the testbench and conveyor
belt bodies (respectively b1 and b2) are listed to compare which links could possibly collide. Each
of the links (rows) that could collide with another link (columns) is marked with an “×”. Since
a reduced number of constraints leads to less computational effort, the number of constraints is
minimized to the required amount for safe operation. By only applying constraints between links
that are marked with an “×∗” (see Table 3.1), self-collisions in the whole robot can be avoided,
while avoiding the need for constraints between each link. This results in self-collision avoidance
based on only six constraints, which are all applied to the QP problem.

Table 3.1: Possible (self-)collisions of the UR10.

Shoulder Upper arm Forearm Wrist 1 Wrist 2 Wrist 3 Gripper

ℓ1: Shoulder
ℓ2: Upper arm
ℓ3: Forearm ×∗

ℓ4: Wrist 1 ×
ℓ5: Wrist 2 ×∗ × ×
ℓ6: Wrist 3 ×∗ × ×
ℓ7: Gripper ×∗ ×∗ ×∗

b1: Testbench ×∗ ×∗ ×∗ ×∗ ×∗ ×∗

b2: Conveyor × ×∗ ×∗ ×∗ ×∗ ×∗

3.3.4 Final QP Formulation
Combining the cost function formulated in (2.13) and the constraints given by (3.26), (3.27), and
(3.20), the final QP problem that is implemented is stated below.

min
q̈

cq,q̇(q̈) = wposEpos + woriEori (3.33a)

s.t. D(q)q̈+C(q, q̇)q̇+ g(q) = u (3.33b)

q̈iδt+ q̇i ≥ q̇
i

(3.33c)

q̈iδt+ q̇i ≤ q̇i (3.33d)

1

2
q̈iδt

2 + q̇iδt+ qi ≥ q
i

(3.33e)

1

2
q̈iδt

2 + q̇iδt+ qi ≤ qi (3.33f)

q̈i ≥ q̈
i

(3.33g)

q̈i ≤ q̈i (3.33h)

d̈a,b ≥ 1

δt

(
−ξ

da,b − δs
δi − δs

− ḋa,b

)
(3.33i)

In the QP formulation above, constraints (3.33c) to (3.33h) are active for each joint q1,...,6. To
avoid collisions, (3.33i) is active on the sets of bodies market by an × in Table 3.1. The QP task
weights wpos and wori are set to be equal, and are tuned upon system implementation.

This QP problem (3.33) is solved online in mc rtc at every control time-step. The resulting q̈ is
integrated to send a velocity reference for velocity control. Moreover, the system is controlled in
open loop, to update the state of the system for the next time-step iteration, the calculated states
(q, q̇) are used.
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Validation

In this section, the functionality of the realized teleoperation system for tossing is experimentally
validated. We also assess the applicability of robotic tossing in industry. To this end, we present
a use case for robot tossing operations in logistic warehouses, see Section 4.1. Based on this use
case, the experiments and requirements for tossing outcomes are established. Then, in Section
4.2, the general setup of the experiments at Vanderlande’s Innovation lab at the TU/e campus
is described. Subsequently, the repeatability of robotic tossing is assessed, which is presented in
Section 4.3. In another experiment, an exploration is made to get an idea of how the position and
orientation of the suction gripper with respect to the box affects the outcome of a toss. We refer
to this experiment as the sensitivity study, which is presented in Section 4.4.

4.1 Use Case for Robotic Tossing

In this section, the use cases for robotic tossing in industry is presented, to give an idea of in which
logistics processes tossing can be applied. Vanderlande identified two logistic processes in industry
as potentially interesting for the usage of tossing operations to increase the throughput. To this
end, the crossorter infeed [72] and traysorter infeed [73] processes were identified, see Figure 4.1a
and 4.1b, respectively. Both these processes are part of larger logistics sortation systems where
unsorted objects coming in unstructured bins, containers, or pallets, are added to a sortation
system.

In the crossorter infeed process, human operators or Vanderlande’s SIR system (see Figure 1.1,
Chapter 1), place the objects on a 1.3 m wide conveyor, running at 1.5 m/s. From the conveyor,
these objects are fed into the crossorter, which is a continuous train of carts moving at 2 - 2.5

(a) Scenario 1: crossorter infeed [72]. (b) Scenario 2: traysorter infeed [73].

Figure 4.1: Scenarios for applying autonomous robot tossing.
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Table 4.1: Tossing scenario specifications.

Specifications: Scenario 1: Crossorter Infeed Scenario 2: Traysorter Infeed

Conveyor speed: 1.5 m/s 1.5 m/s
Target area size: 1300× 2100 mm 400× 400 mm
Target orientation: Barcode not pointing down and short- Barcode pointing up,

edge leading, with an orientation of any orientation
30◦ ± 5◦ with respect to the crossorter

Parcel weight: < 8 kg (67% < 1 kg) < 8 kg (67% < 1 kg)

m/s, each containing a conveyor belt perpendicular to the driving direction. While placing objects
on the infeed conveyor, the object’s barcode must be visible (i.e. not pointing down), and the
parcel is placed such that its orientation matches the orientation of the crossorter belt within a
maximum deviation of 30◦. In the traysorter infeed process, picked items are (manually) placed in
trays on a sorter, running at a speed of 1.5 m/s. These trays have dimensions of 400×400 mm, or
600× 400 mm. While placing objects in a tray, any orientation is allowed, as long as the barcode
is pointing up. An overview of the specifications and placement requirements of each process are
given in Table 4.1.

In both processes, a wide variety of objects is handled: envelopes, bags, and boxes, in many
combinations of size, shape and weight. A group of parcels that is identified by Vanderlande to
increase throughput by tossing, is the so-called smalls category. Smalls parcels are typically envel-
opes, boxes, or plastic-wrapped items, up to 8 kg. A study of Vanderlande into smalls parcels at
a parcel site found that the average parcel weight was 0.78 kg, with parcels weighing 0.4 kg being
the most common. The dimensions of parcels were also investigated in this study, this revealed
that parcel dimensions typically don’t exceed 30 cm. For reference, a global survey with over
33 thousand respondents by Statista was reviewed, regarding the average weight of packages in
cross-border deliveries worldwide over 2021 [74]. In correspondence with Vanderlande’s study, this
revealed that the most common parcel weighs in the range of 0.2-0.5 kg (29%), and that 67% of
all parcels weigh less than 1 kg.

Unfortunately, we cannot assess the complete range of parcels for robotic tossing in this project.
The behavior of a parcel during tossing and while landing differ immensely per parcel type. A
carton box might shift and tumble, plastic bags, however, are not likely to roll or bounce back
up. To limit the scope, this work focuses on filled carton boxes. To this end, three typical
smalls parcels that are identified by Vanderlande, see Figure 4.2. These boxes are available in the
Vanderlande Innovation lab at the TU/e campus, to which we refer as Box 3, Box 4, and Box
5. These carton boxes are a good representation of the parcels that are handled in the crossorter

(a) Box 3. (b) Box 4. (c) Box 5.

Figure 4.2: Three boxes provided by Vanderlande that are representative for the smalls parcels in industry.
Each box is equipped with 6.4 mm reflective markers on its top surface to allow motion tracking with the
OptiTrack mocap system
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Table 4.2: Dimensions, mass and inertia properties of Box 3, Box 4 and Box 5.

Specifications: Unit Box 3 Box 4 Box 5

Mass: kg 0.316 0.297 0.566
Dimensions (ℓ× w × h): mm 165× 143× 117 198× 93× 129 272× 155× 114
Inertia {Ixx, Iyy, Izz}: kg mm2 {899, 1077, 1255} {626, 1382, 1184} {1746, 4103, 4623}

infeed and traysorter infeed processes of Vanderlande. Each box is uniformly filled with a hard
foam block that goes by the name of sculpture block foam SB30 [75]. By using this material,
the boxes can be filled uniformly, and the center of mass of each box lays approximately in its
geometrical center. In Table 4.2, the properties of each box can be found. Moreover, each box is
equipped with five OptiTrack reflective markers, which allow for capturing real-time motion data
of the boxes while being tossed.

4.2 General Setup

The experiments are carried out in the Vanderlande Innovation lab, at the TU/e campus. An
overview of the setup in the lab, at the time of the experiments, is given in Figure 4.3. The
teleoperation system’s hardware setup is described in Section 3.1.3. For a complete description of
Vanderlande’s Innovation lab at the TU/e campus, please refer to Appendix A. During the experi-
ments, the joint limit velocities and accelerations of the UR10 robot are set to its maximum limits,
which can be found in Table 4.3. During the experiments, we use the OptiTrack motion capture
system to track bodies in 3D space. By applying OptiTrack markers to the robot, conveyor, and
boxes, the pose of each component is tracked. For details about the OptiTrack system, please
refer to Appendix A.2. Additionally, for reference to the measurements during each experiment,
an Intel RealSense D415 camera is used to record video footage. The OptiTrack recordings and
RealSense recordings are automatically started and stopped using digital control outputs from
the controller. On top of that, by default, controller inputs and outputs such as iteration time,
encoder values, body poses, and joint commands are logged by the control software (see Section
3.1.4). Moreover, the control inputs to repeat tossing recordings are saved, such that tossing mo-
tions can be repeated any time later. For each experiment, all empirical data is saved and linked
to the metadata of the experiment, then this data is added to the TU/e impact-aware robotics
database1, which is part of the I.AM. project.

Summed up, the following (empirical) data is generated for each robot toss:

• Video recording of the complete experiment using a RealSense camera, on which the box
and robot are clearly visible.

• OptiTrack motion capture data of the SR suction gripper, suction lip, and box.

• QP controller log, containing the following information: iteration time (starting from 0,
increasing by the configured time step (∆t = 0.008)), encoder values of the robot (stored in
the robot’s reference joint order), orientation (as a quaternion) and position for the main
robot (controller reference), joint commands for the robot (controller reference, stored in the
robot’s reference joint order).

• QP control input log to replay the robot tossing/task demonstration.

Table 4.3: Joint velocity and acceleration limits of Universal Robot’s UR10 [49].

Joints: Base Shoulder Elbow Wrist 1 Wrist 2 Wrist 3

Joint velocity limit: 131◦/s 131◦/s 131◦/s 191◦/s 191◦/s 191◦/s

1See: https://www.impact-aware-robotics-database.tue.nl/
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(a) Front view. (b) Top view.

Figure 4.3: Overview of the teleoperation setup during the experiments. The front view (a) shows two
Basestations, one VR controller, a box and the robot’s end-effector are indicated by the red, blue, orange
and green dotted lines, respectively. The top view (b) shows three of the six OptiTrack Cameras, indicated
by the yellow dotted line.

Table 4.4: Final controller parameters of the teleoperation controller.

Controller stiffness QP task weight ratio Position reference scaling

kp = 45 Nm−1 wpos/wori = 10/1 α = 2

To improve the teleoperation system for tossing operations, various controller parameters such as
the controller’s position and rotational stiffness, QP task weight, and position reference scaling
can be tuned, see Section 3.3. By changing these parameter values, the teleoperation system can
be tuned for better performance in terms of intuitiveness, and easier task demonstration. By
means of experiments, these parameter values are broadly tuned. An experiment is defined to
quantify reasonable parameter settings, such that the teleoperation system can effectively be used
to demonstrate tossing operations. The final parameters resulting from the experiments are given
in Table 4.4, which are used in the controller, see Section 3.3. For a description of the complete
experiment, please refer to Appendix H.

4.3 Robot Tossing Repeatability

Through the teleoperation system presented in this work, human intuitivity can be exploited to
perform robotic tossing operations, enabling to quickly generate motion trajectories for tossing to
desired locations. In order to provide robotic solutions for automated tossing in industry, it is im-
portant to determine whether a tossing trajectory can be repeated by the robot hardware, thereby
leading to similar tossing outcomes. If it can be proved that a tossing outcome can be repeated,
the outcome of this toss becomes predictable. We define repeatability as the variation between
the results of successive tossing demonstrations, under the same conditions of measurement (e.g.,
same robot, object, environment, location, measurement instrument, and procedure), in a short
period of time [76]. The repeatability of a robot toss is reported in terms of standard deviation
and variance of the final pose of the box, after a toss.

In this section, first, the goal of the experiments is presented, see Section 4.3.1. Then, in Section
4.3.2 the experimental setup is presented. Subsequently, the procedure to determine whether the
robot hardware is capable of reproducing a tossing result is presented in Section 4.3.2. Finally,
the results are presented and discussed in Section 4.3.3.
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4.3.1 Goal of the Repeatability Study
We aim to show if a human demonstrated toss with a successful tossing result, can be repeatedly
executed by the robot, leading to predictable tossing results. To this end, we perform repetitions
of tossing motions using the robot hardware. By computing the deviation in the box’ rest poses
after each toss, we can analyze how the rest poses after each repetition distribute about the mean.
This way, it can be demonstrated if repeated open-loop tossing is effective. The research question
for this experiment is:

Can a human-demonstrated toss on a target surface, which lands on its bottom side and does not
tumble after impact, repeatedly be performed by the robot hardware, and thereby lead to predictable
tossing results?

4.3.2 Setup and Procedure of the Repeatability Study
In the experiments, a distinction is made between short and long range tossing, as well as between
tossing on a stationary and a running conveyor belt. In the current setup, by default, the speed
of the running conveyor is 0.4 m/s. Note that this speed does not correspond to the speed that
is utilized in crossorter and traysorter processes (see Section 4.1). Due to time constraints, we
could not perform the experiments for a conveyor speed of 1.5 m/s, as is utilized in the crossorter
infeed and traysorter infeed processes, was not implemented. However, at a speed of 0.4 m/s,
the difference between tossing on a running and idle conveyor can still be examined. The tossing
repeatability for Box 5 is examined for four different situations: (1) a short range toss on a
stationary conveyor belt, (2) a long range toss on a stationary conveyor belt, (3) a short range
toss on a running conveyor belt, and (4) a long range toss on a running conveyor belt. In this
context, a short range toss is defined as a toss that results in a box end pose that is inside the
robot’s kinematic range. A long range toss is defined to result outside the robot’s kinematic range.
To indicate this difference, Figure 4.4 displays two pictures of tossing trajectories of a toss where
the box lands inside the robot’s kinematic range, and one toss where the box lands outside the
robot’s kinematic range.

During each experiment, the same UR10 robot, at the same lab, is controlled using the same
control inputs. Moreover, the measurements are done with the same measuring instrument (Op-
tiTrack), under the same conditions, and the repetitions of demonstrations are done over a short
period of time (< 30 seconds). Moreover, the repeatability of a demonstrated toss is examined
using Box 5 (see Section 4.1). Box 5 has proved to be easily trackable using the OptiTrack system,
and is the best representation for the smalls category parcels, in terms of dimensions and mass.
However, since it has been tossed extensively in other projects, the edges and surfaces of Box 5
are rather rounded. Because of this, we expect more deviation in the rest-pose of Box 5 after a

(a) Short range toss motion trajectory. (b) Long range toss motion trajectory.

Figure 4.4: Visualization of the tossing trajectories for the short and long range tossing motions.
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toss, compared to tossing outcomes of a box with sharp edges. We chose to use Box 5 for the
experiments, assuming that the results will represent the worst case scenario of predictability in
tossing outcomes. Moreover, due to time constraints, there was no time to make new boxes, as
this would also require ordering new materials and identifying its properties.

The process during the experiments is basically divided in two parts: first, the operator demon-
strates a toss, after this, the robot repeats the same (human demonstrated) toss. Before each toss,
the box is automatically guided back to a predefined position, picked up by the robot, and moved
to a start position, each time in the same way. To carry out this process, the FSM controller
implementation, as introduced in Section 3.2.3, is used. A sequence of pictures that shows the
robot in motion during an experiment, is shown in Figure 4.5. Four FSM modes are implemented,
Figure 4.6 depicts a schematic of the FSM modes and transitions. In this figure, the colors below
each picture correspond with the colors of the modes as depicted in Figure 4.5.

Figure 4.5: FSM machine sequence with images at specified times, showing a human tossing demonstration
and an automated repetition of the tossing demonstration. The colored line under the photos is used in
correspondence to the colors of the FSM modes in Figure 4.6. During t = [9, 15] s, a human tossing
demonstration is performed. During t = [25, 30] s, the inputs during the tossing demonstration are
automatically repeated by the robot.
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Figure 4.6: Overview of the FSM modes that are implemented during the experiments. The controller
loops through each mode until a requirement is met, at which point it moves on to the next mode.

When the operator activates the FSM controller, in the first mode (Mode 1) the conveyor is ac-
tivated for four seconds from t = [0, 4) s. This way, the box is guided into the positioning hook,
ensuring that the robots consistently picks the box in the same position and orientation. Then,
from t = [4, 6) s during the second mode (Mode 2), the robot automatically picks the box with
a predefined suction gripper pose. Subsequently, during t = [6, 10) s (Mode 3), the robot lifts
and moves the box into a start position. After this, in the teleoperation mode (Mode 4), during
t = [10, 15) s, the operator gains control over the robot motion by controlling the robot’s end-
effector motion using the teleoperation leader device. During this mode, the operator performs a
tossing demonstration The control inputs during this mode are logged such that the motion can
be repeated at a later stage. When an appropriate short and long range tossing demonstration
are recorded, the process can be repeated, but this time the robot repeats the demonstrated toss
automatically. To this end, modes 1, 2 and 3 are repeated during t = [15, 23) s. Note that the
process during t = [17, 23] s is the same as during t = [0, 6] s. Finally, over t = [25, 30) s, the
RepeatDemonstration mode (Mode 4) is active, during which the recorded control inputs of the
tossing demonstration are replayed by the robot. The repeated tossing motion leads to the same
tossing result as at t = 15. When the box has landed, the RealSense and OptiTrack recordings are
stopped and stored. The OptiTrack recordings are used to determine the box’ rest-pose after each
toss. Note that Mode 4 is either a teleoperated tossing demonstration of the operator in real-time,
or a repetition of the recorded tossing demonstration.

The first step is to generate an appropriate short and long tossing trajectory by human demonstra-
tion. The tossing demonstrations must involve a very stable toss on the conveyor, for which the
box does not tumble. In this context, the tossing demonstration must lead to a tossing outcome
where the box lands on its bottom without tumbling, and the orientation of the box’ end-position
is < ∥15◦∥ with respect to the conveyor. In addition, the hypothesis is that the outcome of a toss
is more predictable if the box does not tumble after impact. To limit the chance of tumbling, the
angle between the conveyor and the box’ bottom surface will be < ∥30◦∥ at the moment of impact.
After impact, this angle should remain < ∥30◦∥ until the box reached its final pose. Through these
requirements, we assume repeatable tossing can be achieved. To confirm if a tossing demonstration
complies with the requirements, we make video recordings of the box’ motion. The final short-
and long range tossing trajectories are shown in Figures 4.4a and 4.4b, respectively. A total of 30
tosses for both the short and long range toss are repeated. For the reasoning behind the choice
for this sample size, please refer to Appendix I.2.

Consider Figure 4.7 for an illustration of a box after tossing. The result of a tossing demonstration,
which we refer to as the box’ rest-pose, is expressed as the position and orientation of B, with
respect to the robot’s base frame U . The rest-pose of a box is reached when the box stops moving
with respect to the conveyor. For each toss, where the box lands on the same side, (UoB)z is
constant since the box end up at the same height every time. Therefore, to describe the difference
between the box’ rest-positions after tossing, we only use (UoB)x and (UoB)y. Moreover, as can
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be seen in Figure 4.7, [B] is only rotated over zU . Hence, the orientation of frame B with respect
to [U ] can be given by

URB(θ) =

 cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 (4.1)

where θ denotes the angle between [B] and [U ]. To this end, we express the rest-pose of a box
after the ith toss by

bi =
[(

UoB

)
x,i

(
UoB

)
y,i

θi
]T

. (4.2)

While the rest-pose of the box on a stationary conveyor is easily determined, for tossing on a
running conveyor, we need to find a way to determine the rest pose of the (moving) box. To
determine the rest-pose of a box in case of a running conveyor, we defined a condition: the
rest pose of the box for toss i = {1, . . . , 30}, is defined to be bi(kr), where kr is the index of
the OptiTrack measurement time to, at the first moment when the rate of change between the
position of the box UoB and one of the conveyor frames UoCj

is below 1 mm, during 0.5 seconds.
Mathematically, this condition is expressed by

∥UoCj
(k)− UoB(k)∥ < 10−3 mm, for k ∈ [kr, kr + 180], (4.3)

where k denotes the time index of the OptiTrack measurements, given by to = k/360 for k = 1, 2, ...,
and UoCj with j = {1, . . . , 6} denotes a rigid body frame that is fixed on the moving conveyor.

Figure 4.7: The pose of Box 5 expressed, given by B and the UR10 robot base frame U .

to(kr)

Moment when box
reaches rest pose

Figure 4.8: Example of 2-norm between measurements of UoB and UoC1 at each time instance to, to
determine the box’ rest-pose for tossing on a running conveyor.
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The six conveyor rigid body frames are composed by six sets of five OptiTrack markers that are
placed on the conveyor, in a way that always at least one conveyor frame Cj is visible. For more
information about the OptiTrack system, please refer to Appendix A.2. While the conveyor is
running, we can always measure the position UoCj

of at least one frame during the experiments.
Using the OptiTrack measurements, the difference between the box’ pose B and the pose of at
least one conveyor frame Cj can be calculated at each time instance. Figure 4.8 shows the moment
of rest t(kr) for one of the tossing experiments. In the post-processing scripts that are written in
MATLAB, an algorithm automatically determines the rest-pose of the box after each toss. In the
remainder of this section, the repeatability results of each experiment are presented and discussed.

4.3.3 Repeatability Results and Analysis
Repeatability is defined as the variation between the results of successive tossing demonstrations,
under the same conditions of measurement (e.g., same robot, object, environment, location, meas-
urement instrument, and procedure), in a short period of time [76]. We studied if the same box,
given the same conditions, can be tossed to the same location, for 30 repetitions. We assume that
the box rest poses follow a Gaussian distribution. The repeatability of a tossing demonstration
is expressed in terms of the standard deviation and precision of the box’ rest-pose parameters.
We denote the standard deviation of the rest-pose parameters

(
UoB

)
x
,
(
UoB

)
y
, and θ, by σxb

,

σyb
, and σθb , respectively. Since we compute the standard deviation using a limited number of

samples, we report the standard deviation with a confidence interval of 95%. For more information
about how we compute the standard deviation and confidence interval, please refer to Appendix
I. We define the precision of the tossing outcomes by the difference between the minimum and
maximum value of each box rest-pose parameter. For example, the precision of the box’ rest pose
in direction x⃗U , is given by

∆
(
UoB

)
x
=

(
UoB

)max

x
−

(
UoB

)min

x
. (4.4)

Similarly, the precision of the box’ rest pose in direction y⃗U , and the precision of the box’ rest-pose
orientation θ are given by ∆

(
UoB

)
y
and ∆θ, respectively.

Short Range Tossing Repeatability Results

After repeating 30 short range tosses on both an idle and running conveyor, the repeatability of
a short range toss for Box 5 is determined. The rest-poses after each toss bi are displayed with
respect to the mean rest-pose after tossing b̄, where position is expressed in millimeters, and orient-
ation is expressed in degrees. In Figures 4.9a and 4.9b, the box’ rest-poses after each toss for short
range tossing are displayed for an idle and running conveyor, respectively. In Table 4.5, the repeat-
ability results can be found. For the sake of completeness of the results, the mean rest-pose b̄ of

the box with respect to the UR10 robot base coordinate frame U , is b̄ =
[
293.7 −934.7 10.9

]T
.

For short range tossing on a running conveyor b̄ =
[
281.4 −982.1 11.7

]T
.

Table 4.5: Repeatability of short range tossing, expressed by the standard deviation and precision. The
standard deviation of the rest-pose after tossing σxb , σyb , and σθb , are computed for a 95% confidence
level, based on 30 tosses.

Toss Result Unit: Idle conveyor Running conveyor

σxb [mm] 17.7± 6.3 17.3± 6.2
σyb [mm] 11.5± 4.1 7.2± 2.6
σθb [◦] 10.5± 3.7 11.8± 4.2
∆

(
UoB

)
x

[mm] 104.7 61.4

∆
(
UoB

)
y

[mm] 55.0 29.9

∆θ [◦] 44.8 49.3
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(a) Tossing on an idle conveyor. (b) Tossing on a running conveyor.

Figure 4.9: Box rest-poses b with respect to the mean b̄ after 30 short range tossing repetitions. The rest
position of each toss is indicated by the circles, each rest position contains a line indicating the rest-pose
orientation. For reference, the gray area displays Box 5.

(a) Tossing on an idle conveyor. (b) Tossing on a running conveyor.

Figure 4.10: Box rest-poses b with respect to the mean b̄ after 30 long range tossing repetitions. The rest
position of each toss is indicated by the circles, each rest position contains a line indicating the rest-pose
orientation. For reference, the gray area displays Box 5.

Table 4.6: Repeatability of long range tossing, expressed by the standard deviation and precision. The
standard deviation of the rest-pose after tossing σxb , σyb , and σθb , are computed for a 95% confidence
level, based on 30 tosses.

Toss Result Unit: Idle conveyor Running conveyor

σxb [mm] 62.8± 22.5 57.1± 20.4
σyb [mm] 34.9± 12.5 27.9± 10.0
σθb [◦] 44.8± 16.0 37.0± 13.2
∆

(
UoB

)
x

[mm] 204.5 104.7

∆
(
UoB

)
y

[mm] 145.1 55.0

∆θ [◦] 134.8 112.7
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Long Range Tossing Repeatability Results

After 30 long range tossing repetitions on both an idle and running conveyor, the repeatability
of the long range toss is determined using the OptiTrack measurement data. Figures 4.10a and
4.10b show the tossing results for long range tossing on an idle and running conveyor, respectively.
The long range tossing repeatability results are found in Table 4.5. For long range tossing on an
idle conveyor, the mean rest-pose was b̄ =

[
362.0 −1446.8 −10.4

]
. On a running conveyor, the

mean box rest pose b̄ =
[
347.6 −1483.5 −14.6

]
.

Analysis and Interpretation of the Results

The goal of the experiment was to determine if a human demonstrated toss can be repeated,
thereby leading to predictable outcomes. From the results of the short range tossing experiments,
we conclude that Box 5 can be tossed with a positional precision of few centimeters, and acceptable
orientations looking at the requirements for tossing in industry, presented in Section 4.1. Tossing
on both the idle and stationary conveyor leads to box’ rest-poses that distribute close to the mean
tossing result. Hence, predictable robotic tossing can be achieved.

Looking at Tables 4.5 and 4.6 we see that tossing on a conveyor running at 0.4 m/s leads to better
repeatability, compared to tossing on a stationary conveyor, as the box’ rest poses distribute closer
to the mean. This can be traced back to the fact that the box has a lower relative velocity, with
respect to a running conveyor, while landing.

To put the results in perspective, we would like to make reference to the use case presented in Sec-
tion 4.1). For tossing in the crossorter scenario, the box must end up within an area of 1300×2100
mm, while the box’ rest pose orientation must be ≤ ∥30◦∥ with respect to the mean, and the bar-
code must be visible. For tossing in the traysorter scenario, the box must consistently land in an
area of 400 × 400 mm, under the only requirement that the barcode is pointing upwards. While
the results up to now give a clear idea of the result of each toss, one might have trouble with
translating these results to the final rest-pose of each box. To this end, the top view of the box’
rest-pose after each short and long range toss are given by Figures 4.11 and 4.12, respectively. In

(a) Tossing on an idle conveyor. (b) Tossing on a running conveyor.

Figure 4.11: Box rest-poses bi of 30 short range tossing repetitions, with respect to the mean rest-
position, where the orange square depicts a TraySorter deck [73]. The running conveyor is moving in the
vertical direction on the graph.
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(a) Tossing on an idle conveyor. (b) Tossing on a running conveyor.

Figure 4.12: Box rest-poses bi of 30 long range tossing repetitions, with respect to the mean rest-position,
where the orange square depicts a TraySorter deck [73]. The running conveyor is moving in the vertical
direction on the graph.

these figures, an orange square of 400× 400 mm is drawn around the mean, which corresponds to
the target area size of a tray in the traysorter process.

Based on the tossing requirements of the crossorter and traysorter scenarios, it seems that the short
range toss is sufficiently precise for application in the traysorter- and crossorter infeed processes.
However, future experiments must show how the box rest-poses deviate around the mean for a
conveyor running at 1.5 m/s, which is the conveyor speed in the crossorter and traysorter processes.
Although the box landed with its barcode up after each long range toss, the long range toss lead
to less predictable rest position and orientation of the box. Both on an idle and running conveyor,
the long range toss leads to box’ rest-poses with too low precision for successful tossing in both the
traysorter and crossorter processes. It seems that for longer range tossing, which requires higher
tossing velocities, less predictable tossing can be achieved. Especially the box’ orientation has a
far larger deviation in its rest-pose. For future experiments, the requirements for proper tossing
demonstrations can be tightened, to investigate if long range tossing can be achieved with more
predictable tossing outcomes.

4.4 Pick Pose Sensitivity on Robotic Tossing

In the previous section, we have shown that predictable tossing can be achieved. We also know
that the accuracy by which the result of a robot toss can be repeated, depends on multiple factors,
such as the object’s weight, dimensions, and shape, but also on the motion trajectory of a toss,
and the pick pose of the suction gripper on the box. In industrial logistics processes, there are
many conditions that change each time a parcel is tossed. For example, each pick-and-place op-
eration, the robot might pick a different object, at a changed pick pose. Because of this, we
want to investigate how controlled perturbations in the pick pose of the suction gripper on the
box, affect the outcome of a toss. In this work, we refer to this as the pick pose sensitivity on
robotic tossing. We define the sensitivity as the variation between the outcomes of successive
tossing demonstrations, for changed pick poses, under the same measurement conditions. By toss-
ing outcomes, as in Section 4.3, we refer to the rest position and orientation of the box after a toss.
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The effect of a changed pick pose on a tossing result is interesting, especially since Vanderlande has
examples of industrial settings where each object is the same, but automated picking technologies,
have disturbances in the pick pose of the gripper onto an object. Consider an industrial setting
where a UR10 robot unloads a container, filled with one type of box, and where each box has the
same properties (mass, dimensions and inertia). In this setting, the pose of the suction gripper on
the top surface of the box is not consistent. To explore how this affects the outcome of a toss, the
reference trajectories and release timing will be kept constant.

In this section, first the goal is presented, see Section 4.4.1. Subsequently, the setup and procedure
during the experiments is described in Section 4.4.2. Finally, the results and analysis of this study
are discussed in Section 4.4.3.

4.4.1 Goal of the Sensitivity Study
By exploring the effect of inaccurate box picking, on tossing results, it can be explored which
picking accuracy is required, and what tossing precision can be achieved for a given accuracy. The
goal of the pick pose sensitivity exploration is to determine if reliable and predictable tossing can
be achieved, while disturbances in the pick pose of the suction gripper on a box are introduced.
Moreover, this exploration might help to get an idea of what are acceptable limits on deviations
in the pick pose, and how each independent pick pose parameter affects the outcome of a toss.
Furthermore, by analyzing the deviation and precision of tossing results for changed pick poses on
one object, it can be explored whether tossing can be applied in the crossorter infeed or traysorter
infeed processes, see Section 4.1. To this end, the following research question is answered:

Can a single reference tossing trajectory be used for automated tossing of an object that is picked
on various positions and orientations, thereby leading to predictable tossing?

4.4.2 Procedure and Setup of the Sensitivity Study
During these experiments, the effect of a variable pick pose on the resulting pose of Box 5 after
tossing, is explored. In the remainder of this work, these experiments are referred to as the sens-
itivity experiments. The procedure for these experiments is similar to the procedure that was
followed through the repeatability experiments, presented in Section 4.3.2. Also, the same tossing
trajectories are used during these experiments, this way, the results of the sensitivity experiments
can be compared to the results of the repeatability, that were presented in Section 4.3.3. Due to
time constraints, the sensitivity experiments are only carried out for tossing on an idle conveyor.

There are two differences in the procedure of the sensitivity experiments compared to the re-
peatability experiment: (1) the number of repetitions, and (2) that for each tossing repetition, a
deviation in the pick pose is introduced. To introduce deviations in the pick pose, one setting is
changed in the Grab Box mode (Mode 2, where the robot automatically picks the box, see Section
3.2.3). By this setting, we can change whether the robot picks the box at the center of its top
surface, or if the box is picked with a predefined deviation in the pick pose. We define the pick
pose in a similar fashion as we did for the box rest-pose, see (4.2). Since the box is picked by the
suction gripper at the same height each time, we describe the pick position by only two parameters(
BoS

)
x
and

(
BoS

)
y
. Moreover, we assume the orientation of the suction cup frame S with respect

to [B] is only rotated over the zB axis, hence,

BRS(φ) =

 cos(φ) − sin(φ) 0
sin(φ) cos(φ) 0

0 0 1

 , (4.5)

where φ denotes the angle between [B] and [S]. To this end, we express the pick pose of the ith

toss by

pi =
[(

BoS

)
x,i

(
BoS

)
y,i

φi

]T
. (4.6)
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Figure 4.13: Schematic top view of Box 5, where the orange marked area is the area where the suction
gripper is allowed to pick the box, and the green area depicts the area where the center of the suction
gripper can pick the box.

We assume the pick pose deviation of parameters
(
BoS

)
x
,
(
BoS

)
y
, and φ, in industrial applic-

ations, can be modelled as a Gaussian distribution. Therefore, we sample the pick poses from
a multivariate Gaussian distribution with three variables. Gaussian distributions can be used to
explain the statistical distribution of industrial processes in different disciplines of engineering and
applied science, and even in describing many natural phenomena [77]. Consider the schematic
view of Box 5, displayed by Figure 4.13. For the suction gripper to successfully pick the box, the
center of the suction cup must be within the green marked area when the vacuum is activated.
Therefore, the pick position must be within the range

(
BoS

)
x
= [−40, 40] mm,

(
BoS

)
x
= [−75, 75]

mm. To study how deviations in the pick pose affect the tossing outcomes, we consider the full
range of possible pick positions to pick Box 5. By doing so, we can explore the limits on the
pick position parameters for Box 5. Moreover, the range for the pick orientation is chosen to be
φ = [−30, 30] ◦, under the assumption that this will noticeably affect the tossing outcome. Let’s
assume the mean pick pose is given by p̄ =

[
0 0 0

]
. Based on the aforementioned ranges for

each pick pose parameter, the covariance for
(
BoS

)
x
,
(
BoS

)
y
, and φ, are chosen to be 3σxp = 75

mm, 3σyp = 40 mm, and 3σφp = 30◦, respectively. As such, the pick poses are defined within the
bounds for successful picking, with a probability of 99.7%.

Given the mean pick pose p̄, the covariance matrix

Σ =

3σxp 0 0
0 3σyp 0
0 0 3σφp

 , (4.7)

and the number of samples n = 125, a Gaussian distribution of picking points is calculated using
MATLAB [78] [79]. To start with, 125 Gaussian distributed pick poses are calculated. Figure

Figure 4.14: Three sample pick poses from the chosen Gaussian pick pose distribution on Box 5.
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(a) 3D Gaussian distribution of pick poses. (b) Pick positions visualized on the box.

Figure 4.15: Visualization of the Gaussian distributed pick poses for Box 5, including probability density.
The red dotted line corresponds to the pick position bounds, the black rectangle in (b) represents the
border of Box 5.

4.15a depicts the Gaussian distribution of poses that are used as pick pose for the sensitivity
study. Figure 4.15b depicts these points on a visualization of the box, with the corresponding
probability density of the pick poses. Figure 4.14 shows an example of three different pick poses
that were sampled from the Gaussian distribution.

4.4.3 Sensitivity Study Results

The tossing outcomes of the sensitivity study, for the short and long range tossing trajectories,
are depicted in Figures 4.16b and 4.17b, respectively. To show how the tossing outcomes are af-
fected by controlled perturbations in the pick pose, the corresponding short and long range tossing
outcomes of the repeatability study, are given by Figures 4.16a and 4.17a, respectively. Since the
experiments are designed to analyze the predictability of robot tossing, the box’ rest-pose orient-
ations are not expressed by the circular mean, but by the complete angle a box rotated while
landing. Note that the mean box rest-pose for repeatability and sensitivity, respectively indicated

(a) b for the repeatability experiments. (b) b for the sensitivity experiments.

Figure 4.16: Box rest-poses b with respect to the mean b̄ after 30 short range repeatability tosses
on an idle conveyor (a), and 125 short range sensitivity tosses on an idle conveyor (b). The rest
position of each toss is indicated by the circles, each rest position contains a line indicating the rest-pose
orientation. For reference, the gray area displays Box 5.
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(a) b for the repeatability experiments. (b) b for the sensitivity experiments.

Figure 4.17: Box rest-poses b with respect to the mean b̄ after 30 long range repeatability tosses on an
idle conveyor (a), and 125 long range sensitivity tosses on an idle conveyor (b). The rest position of
each toss is indicated by the circles, each rest position contains a line indicating the rest-pose orientation.
For reference, the gray area displays Box 5.

Table 4.7: Repeatability and sensitivity results for short range tossing, expressed in the standard de-
viation and precision. The standard deviation of the rest-pose after tossing 3σxb , 3σyb and 3σθb , are
computed for a 95% confidence level, based on 30 tossing samples.

Short Range Toss Long Range Toss
Toss Result: Unit: Repeatability Sensitivity Repeatability Sensitivity

σxb [mm] 17.7± 6.3 81.0± 14.2 62.8± 22.5 60.2± 10.6
σyb [mm] 11.5± 4.1 42.4± 7.4 34.9± 12.5 42.3± 7.4
σθb [◦] 10.5± 3.7 57.3± 10.0 44.8± 16.0 68.5± 12
∆

(
UoB

)
x

[mm] 104.7 493.5 204.5 321.1

∆
(
UoB

)
y

[mm] 55.0 279.4 145.1 261.4

∆θ [◦] 44.8 335.3 134.8 354.6

by the × and + in the figures, are very close. For a quantitative comparison between the tossing
outcomes, see Table 4.7. The standard deviation of the tossing results, for combined deviations in
the pick poses, is obtained by 125 samples. To determine the sample standard deviation, we use
the method as explained in Appendix I.

As expected, the controlled perturbations in the pick pose of a box, significantly affect the predict-
ability of a toss. For the sensitivity results, the boxes end up in a larger area, and especially the
deviation in the rest-pose orientation of the boxes increases significantly. For short range tossing
with unchanging pick poses, the box’ rest-positions had a deviation of no more than 10 cm, and
the box would not rotate more than 25.1◦ with respect to the mean. From the sensitivity results,
we observe that the box ends up to 30 cm from the mean rest-position, and that the box rotates
up to 236.9◦ with respect to the mean.

Although the wide range of pick poses lead to unpredictable tossing, many tosses resulted in a
box rest-pose that does lay close to the mean rest-pose of the repeatability experiments. This
indicates that predictable tossing might be possible, even though the pick pose is not constant.
This raises the question of how precise the robot must pick the box in order to perform predict-
able tossing operations. In Appendix J.1, an effort to determine for which pick pose precision the
robot is able to perform predictable tossing, is presented. In this analysis, we divided the sampled
pick pose distribution to explore what acceptable deviations in the pick pose are, for which robot
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(a) [0, 1
2
σ] (b) [0, 3

4
σ] (c) [0, σ] (d) [0,2σ] (e) [0,3σ]

Figure 4.18: Box’ rest-poses for various ranges of deviations in the pick pose, for short range tossing.
The orange square depicts the target area size of 400× 400 mm in the traysorter process.

(a) [0, 1
2
σ] (b) [0, 3

4
σ] (c) [0, σ] (d) [0,2σ] (e) [0,3σ]

Figure 4.19: Box’ rest-poses for various ranges of deviations in the pick pose, for long range tossing. The
orange square depicts the target area size of 400× 400 mm in the traysorter process.

tossing leads to predictable outcomes. To this end, we presented the sensitivity results, that the
box’ rest-poses with large deviations in the pick pose can be distinguished from tossing outcomes
with smaller deviations in the pick pose. The tossing outcomes for various ranges of deviations
in the pick pose are depicted in Figures 4.18 and 4.19, for short and long range tossing, respectively.

Here, we use σ to denote each pick pose parameter covariance σxp , σyp , and σφp . Hence, as
explained in Appendix J.1, for the tossing outcomes that had a pick pose deviation in the interval
[0, 1

2σ], we mean the ranges for each pick pose parameter are
(
BoS

)
x
= [−6.67, 6.67] mm,

(
BoS

)
y
=

[−12.5, 12.5] mm, and φ = [−5◦, 5◦]. It must be emphasized that there are only few pick pose
samples with very small deviations (< 1

2σ) in all pick pose parameters. However, in the results
presented here, it is clearly visible that if deviations in the pick pose increase, tossing becomes less
predictable. This conclusion applies to both short and long range tossing of Box 5. Consider Figure
4.18, for short range tosses, pick pose deviations up to 3

4σ in each pick pose parameter, lead to
tossing results that are very close to comply with the traysorter requirements. Also, the deviation
in rest-pose orientation is close to the allowable orientation precision for crossorter tossing. For
long range tosses with deviations in the pick pose, the positional precision is somewhat comparable
to the repeatability results, for deviations in the pick pose parameters up to σ. For the orientation,
however, pick poses with deviations in the pick pose up to 3

4σ lead to much larger deviations in
the box’ rest-pose orientation. In Figure 4.19 the results from the sensitivity exploration for each
range of deviations are shown with respect to the target area in the traysorter scenario. The
long range tossing example is not precise enough to lead to reliable tossing results for both the
crossorter and traysorter processes. To determine the allowable pick pose deviation for tossing,
such that minimal deviations in the box’ rest-pose are introduced, more experiments must be
carried out.

In the analysis presented in Appendix J.1, where we analyze for which deviations in the pick pose
predictable tossing can be achieved, we did not take into account how each pick pose parameter
independently affects the outcome of a toss. If we explore this, we can make a better estimation
of how precise the box must be picked, to achieve predictable tossing. To this end, in Appendix
J.2, we present an analysis in an effort to explore how each individual pick pose parameter in the
chosen sample distribution affects the box’ final rest-pose.
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(a) Short range tossing results. (b) Long range tossing results.

Figure 4.20: Box rest-poses b with respect to the mean b̄ after 125 tossing (sensitivity) repetitions on an
idle conveyor.

The results presented in Appendix J.2, show that for the short range toss, large deviations in the
pick orientation (φ > 6.4◦), lead to unpredictable tossing outcomes. For deviations in the pick
orientation that are φ < 1.3◦, the tossing outcomes are significantly more precise. The pick orient-
ation seems to significantly affect both the box’ rest-position and orientation. Moreover, it seems
that larger deviations of pick pose parameter (BoS)x, the box’ rest-position in (UoB)y decreases.
Similarly, it seems that the effect of deviations in pick pose parameter (BoS)y mainly results in
lower precision of tossing outcomes in the box’ rest-position in (UoB)x. For the long range toss,
these effects are far less obvious. Therefore, unfortunately, the effects are not clear enough to
base conclusions on. However, the obtained results help to understand if there is a clear mapping
from error in the output space and allowable interval in the input space. Based on the analysis,
we estimate that the pick pose parameters should be in the ranges of

(
BoS

)
x
= [−10, 10] mm,(

BoS

)
x
= [−15, 15] mm, and φ = [−2.5, 2.5] ◦, to perform predictable tossing. To confirm this,

however, a new set of sensitivity experiments is required, for pick poses sampled from a Gaussian
distribution with pick pose parameter covariance matrix, see (4.7), with 3σxp = 10 mm, 3σyp = 15
mm, and 3σφp = 2.5◦, respectively.

In Figure 4.20, all box’ rest-poses after tossing are depicted. Looking at the use case applications
for robotic tossing, as discussed in Section 4.1, boxes can be tossed to target areas precisely.
However, it is challenging to toss Box 5 such that the rest-orientation of the box is consistently
within 30◦. While for unchanging pick poses the tosses were close to precise enough to comply
with the requirements for tossing in the traysorter scenario, for changed pick poses the resulting
rest-poses are far less precise. For both the short and long range tosses, positional precision still
remains acceptable (for example, for a crossorter scenario). Moreover, the tossing accuracy also
remains acceptable, since the mean box’ rest-pose of the repeatability results is close to those of
the sensitivity results. Based on the results, we think that robotic tossing can be applied in an
industrial setting, even when the pick pose is not exactly the same each toss. In addition, the
traysorter deck [73] has a back wall and edges around the surface on which the box lands. This
might make it easier to apply robot tossing in this scenario, since the box is constrained in how
much it can move after it landed on the traysorter deck.
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Chapter 5

Conclusion and recommendations

The primary objective of the conducted work was to develop a teleoperation system which enables
human operators to effectively perform tossing demonstrations. In this chapter, conclusions are
drawn based on the results, and recommendations for further research on this topic are discussed.

5.1 Conclusion
This thesis is divided into two research objectives: system development, where the design and
implementation of the teleoperation system for human-demonstrated tossing is described, and the
applicability of robotic tossing, where the reliability and predictability of a human demonstrated
robot toss is assessed. In the following two sections, a reflection regarding these topics is given.

5.1.1 System Development
The research objective related to the development of a teleoperation system particularly focused
on tossing operations is:

Develop a teleoperation system that enables operators to control the motion of a robot manipu-
lator and activation of the suction gripper through hand motion.

A teleoperation system for research around robotic tossing has been developed using a commer-
cially available leader device. Based on a market review, the HTC Vive Pro kit was chosen for as
a leader device in the teleoperation system due to its good price-quality ratio in terms of accuracy,
and its good integratability and portability. After design of the system’s hardware configuration,
one of the most challenging topics was to establish the communication framework between the
hardware components. To overcome this challenge, a way was found to directly retrieve the data
from SteamVR in the controller’s implementation. Using C++ objects, pose measurements and
button data of the controller device are used to generate a pose acceleration reference input. Us-
ing forward kinematics, this reference input was converted into joint acceleration inputs for the
QP controller, which in turn computes velocity level control inputs q̇ for the robot manipulator.
Through implementing the QP controller as an FSM controller, with separate modes for each
task, such as teleoperation, recording manipulation tasks, repeating recorded tasks, automatic
box picking, and moving to predefined poses, tasks could be implemented in convenient sequences,
that are easily modified. The final controller implementation lays a good foundation to perform
robotic tossing experiments, and for further research into robotic tossing. The low-costs and high
portability of the leader device, provided with the plug-and-play nature of the software installation
through GitLab1, allow any UR10 robot controlled through mc rtc to be extended with the tele-
operation system very quickly. This way, the teleoperation system can be exploited and improved
by developers in other research laboratories, and it can be used for various manipulation tasks.

1For the GitLab group containing software developed for the H2020 project I.AM., see: https://gitlab.tue.

nl/h2020-i-am-project
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Moreover, the empirical data that is/can be generated through the teleoperation system can be
used to build more accurate tossing prediction models, and to confirm numerical simulations of
tossing outcomes.

5.1.2 Applicability of Robotic Tossing

Formally, the research objective related to the reliability and predictability of robotic tossing op-
erations, as stated in Section 1.3, is:

Quantify the variability in tossing outcomes resulting from autonomously repeating the demon-
strated tossing motion, potentially introducing controlled perturbations, to explore the predictability
of robot tossing.

In Chapter 4, an exploration of the reliability and predictability of human demonstrated robot
tossing is presented. The experiments were carried out with Box 5, which represents the average
box in the total range of boxes handled by the use case processes presented in Section 4.1. There-
fore, we assume that the results presented in Chapter 4, give a fair indication whether robotic
tossing can be applied in logistic warehouses. We must emphasize, however, that the presented
results are not representative for the complete range of boxes, as well as other types of objects (e.g.
bags, envelopes). Moreover, Box 5 has rather rounded edges and surfaces, due to the many times
the object has been tossed before. When compared to tossing a box with sharp edges and straight
surfaces, the hypothesis is that this causes more variance in the outcomes of repeated tosses. We
chose to use Box 5 for the experiments, assuming that the results will represent the worst case
scenario of predictability in tossing outcomes. Therefore, we believe that the conclusions given
below will be representative for a wider range of boxes, but to prove this, and to confirm our
hypothesis, many more experiments must be carried out.

To determine if robotic tossing can be successfully applied in logistics, the outcome of a robot
toss must be predictable. Through experiments, we studied if a repeated tossing demonstration
performed by the UR10, leads to comparable tossing outcomes. One short range and a long range
toss were repeated by the robot hardware on an idle and running conveyor. The results of these
tossing experiments, presented in Section 4.3.3, show that repetitions of tossing trajectories result
in very similar outcomes. For longer range tossing, the precision decreases. Using this teleoper-
ation system, various tossing methods can be studied to determine when robotic tossing leads to
predictable results, and when this is not the case. We also have seen that tossing on a conveyor
running at 0.4 m/s leads to more repeatable tossing outcomes than tossing on an idle conveyor.
This difference is expectedly caused due to the difference in relative velocity between the box and
conveyor for both situations. All in all, the results show that performing predictable robot tossing
using the teleoperation setup is possible, and that recorded tossing trajectories can be repeated,
thereby leading to predictable tossing outcomes. The variance in the tossing outcomes, however,
is strongly dependent on the tossing trajectory. We find that for tossing with relatively low velo-
cities, where the angle between the bottom surface of the box and the conveyor is relatively small,
the outcome of a toss can be repeated quite reliably. When tossing at higher velocities, where the
box makes impact with a large angle between its bottom surface and the conveyor, the outcome
of a toss is less predictable.

Vanderlande identified two processes for which robotic tossing is potentially interesting, for usage
in industrial logistics processes. In Section 4.1 these processes were presented: the traysorter
infeed and crossorter infeed. For the traysorter infeed, boxes need to be tossed with a precision of
400× 400 mm, with any orientation and its barcode pointing up. The crossorter infeed requires a
low positional accuracy of the box, its barcode may not point downwards, and its orientation may
deviate within 60◦ ± 5◦. Given the requirements, and looking at the short range tossing results,
we showed that robotic tossing can be done with sufficient accuracy in the use case scenarios.
For long range tossing, the positional precision is just below the requirement for the traysorter
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infeed, and the rotational precision is far below the requirements for the crossorter infeed. We
must emphasize, however, that the experiments were not carried out for tossing on a conveyor
running that is running on the same speed as in the use case processes. To prove if robotic tossing
can be reliably used in this case, the experiments must be repeated for tossing on a conveyor that
runs at a velocity of 1.5 m/s. Moreover, during the experiments we didn’t perform tossing on
real traysorter decks, see [73]. Tossing on these decks will result in different outcomes because of
the different material and construction of the traysorter deck, compared to the conveyor. On top
of this, the traysorter deck has edges around the target area, and a back wall, which in practice,
we can toss against. This expectedly allows for more deviation in tossing onto the traysorter decks.

In automated pick-and-place processes in industry, the pick pose of an object is often computed
through vision technology. The pick pose of the suction gripper of an object in industrial processes
is not consistently in the center of the box, like was the case in the repeatability study. We were
curious to learn more about the predictability of a toss when uncertainties to the process are
introduced. Through another set of experiments, we explored the sensitivity of the outcome of a
toss, related to the pick pose of the suction gripper on the box. The results of these experiments
are interesting to explore how deviations in the pick pose parameters affect tossing outcomes.
Logically, inaccuracies in the pick pose introduce even larger variance in the outcome of a toss.
However, Chapter 4 showed that repetitions of tosses can lead to very similar tossing outcomes,
and that for small perturbations in the pick pose, predictable tossing can still be achieved. There-
fore, we conclude that the results presented so far, offer great perspective in the possibility to
reliably apply robotic tossing in logistic warehouses. to determine the exact precision by which
boxes must be picked, more research is required.

5.2 Recommendations
During this work, several improvements for the current teleoperation system came to mind, these
are presented in the following Section 5.2.1. Moreover, based on the experience gained during the
experiments and the post-processing of the results, some new ideas came to mind to study the
predictability of robot tossing. This is presented in Section 5.2.2. Since this research project is
part of a vision that aims to develop automated solutions for tossing, some research directions are
proposed in Section 5.2.3.

5.2.1 Teleoperation System Improvements
As expected, the robot responds very smoothly to velocity control inputs while operating the robot
using the teleoperation device. However, open-loop QP control in velocity mode leads to drift,
causing constraints and input positions to shift over time. Especially after a tossing demonstration,
large drift occurs between the estimated joint states and the actual robot states. Commanding
the robot using joint position control eliminates drift. However, for an appropriate QP controller
stiffness gain, such that the teleoperation system can effectively be used to demonstrate tossing,
joint position control introduces vibrations in the robot motion, which makes it difficult to per-
form teleoperated tossing demonstrations. To address the issue of drift in velocity control mode,
the mc rtc logs of multiple teleoperation demonstrations are analyzed, these contain the joint
positions and velocities of the robot at each time instance, as well as the commanded velocities.
This reveals that the UR10 is not tracking the velocity command sufficiently, which might be the
reason of the observed drift. An obvious solution to eliminate the drift is to enable closed-loop
QP control. Unfortunately, a stable implementation of a closed-loop QP controller failed, since
for high acceleration inputs, the robot shows unstable behavior. This behavior can be explained
by the robot’s control frequency of 125 Hz, which might be too low for these input motions. For
this control frequency, due to the controller gain, the controller might try to over-correct itself
when high velocity control inputs are given, which would indeed lead to unstable behavior of the
robot manipulator. As a final solution to cope with the issue of drift, the control state is updated
from the real state after every toss, thereby eliminating the drift introduced by that same toss.
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For this work, the latter solution is regarded sufficient. However, for future improvements of the
teleoperation system closing the control loop might lead to more repeatable tossing, as the mo-
tion trajectories are followed more closely, and this minimizes the difference between two tossing
repetitions.

To further improve the teleoperation setup, different mappings between the leader device and
robot could be explored. Currently, the reference pose that is computed from the control sig-
nals and measurements from the leader device is used as input for the reference position of the
bottom of the gripper’s suction cup. By changing the location of the frame that is controlled
using the reference input pose, the system might be even more effective and intuitive to perform
tossing demonstrations. To compare the various motion mappings, the experiments as described
in Appendix H can be used.

5.2.2 Tossing Predictability

In this work, only indications about the reliability and predictability of robotic tossing are given.
This is because experiments were only carried out using one box, for two different tossing traject-
ories, and only changing two conditions: the conveyor velocity and pick pose of the box. To prove
if robot tossing can really be applied in the logistics processes that were presented in Section 4.1,
more experiments must be carried out. To this end, I would propose to adapt the robot setup at
the lab such that the crossorter infeed and traysorter infeed scenarios are imitated. For this, the
conveyor speed must be increased to 1.5 m/s, and traysorter decks to experiment tossing on must
become available. Moreover, tossing must be carried out using the variety of objects that repres-
ent the range of objects that are handled in both the crossorter- and traysorter infeed processes.
Besides proving the possibility of robotic tossing, this way, we can also determine the potential
of robotic tossing in industry, as the required time for a pick-and-toss operation can be measured
and compared to the time required by the SIR system to perform a pick-and-place operation.
Moreover, the allowable pick pose deviation for a wide range can be determined.

In order to perform predictable tossing, it is important to identify how predictable tossing can
be achieved. By carrying out experiments using the developed setup, much more empirical data
of robotic tossing can be generated using the developed system. By analyzing the results of
successful robot tosses, one might find a relationship between successful robot tosses, and identify
how predictable tosses must be generated. In this work, we defined the requirements for a successful
tossing demonstration on trial-and-error by simple observation of what would lead to a good toss,
and what not. By analyzing more data about how the box should be released, and how it should
land, more accurate requirements could be defined to determine whether a tossing demonstration
is successful or not.

5.2.3 Development Towards Automated Tossing

This project is part of a larger vision that puts effort in the transition from automatic pick-and-
place operations, to automated pick-and-toss operations. Therefore, we would like to propose
directions that can help with achieving this goal, in which the developed teleoperation system
can prove to be beneficial. Using the developed setup, the robot can repeat tossing from human
demonstration. However, since the range of objects in logistic warehouses, and the properties of
these objects are not constant (varying mass, inertia, etc.), a more flexible and reliable approach
is preferred.

Once the teleoperation system is improved, see Section 5.2.1, and we have established good meth-
ods to achieve predictable tosses, see Section 5.2.2, one way to toss a wide variety of objects to
desired locations might be to define the complete range in subgroups. Based on the results presen-
ted in this work, there is hope that a large variety of objects can be tossed, leading to predictable
tossing results. The problem is that for a large variety of objects, a large variety of tossing demon-
strations is required, likely with different tossing strategies depending on the specific object type.

Towards Robot Tossing by Demonstration through Intuitive Telemanipulation 51



Chapter 5. Conclusion and recommendations

Coupling every single object to an individual tossing demonstration is inefficient. However, if toss-
ing demonstrations can be defined for ranges of objects, it might be feasible to toss a wide range of
objects, by coupling a predefined tossing motion to groups of objects which have similar properties.

However, we doubt the reliability of such an implementation, in order to improve the adaptability
of the robot, robot skill learning approaches can be used. This can be a powerful tool for en-
hancing and accelerating learning in robotics [80]. Robot skill learning encompasses a wide range
of techniques and frameworks, the most popular are [81]: learning from demonstration and rein-
forcement learning. For teaching robots how to toss, the developed teleoperation systems can be
advantageous for collection of high-quality demonstrations [82]. The TU/e impact-aware robotics
database might prove useful to learn tossing from the empirical data, which makes the implement-
ation cost less time, and gives the database more practical application value. The hypothesis is
that, parametrization, learning algorithms, and development of dynamic motion primitives can
contribute to the modeling, perception, and control of autonomous robotic tossing operations.

The process of learning from demonstrations (LfD) profits from situations where it might be easier
for a teacher to demonstrate a desired behavior, rather than to engineer it manually. There are
many publications available in which Learning from Demonstration (LfD) is explained, together
with advantages and limitations of certain methods [81] [83] [84]. Some methods attempt to learn
to replicate the desired behavior directly, a process which is called behavioral cloning [85]. Other
methods rely on using demonstrations to learn the hidden objectives of the desired behavior.
These methods are referred to as inverse optimal control [86], or inverse reinforcement learning
[87]. An important distinction can be made between various methods are model-based approaches,
and model-free approaches. In model-free approaches, the system dynamics are only implicitly
encoded in the policy learned. Many learning approaches are successfully implemented by learning
skills at trajectory level, instead of the control commands level. In model-free approaches, it is
considerably more challenging to apply learning approaches, since it is often difficult to learn the
system dynamics of a real robotic system, for instance for tasks involving impacts. We did not
find literature to apply LfD particularly to teach robots to toss autonomously. In reinforcement
learning, the robot learns by itself using guidance provided by a reward function [39]. However,
this usually requires a very high number of demonstrations to learn a task: for instance, in [88],
3000 hours of robot interaction time was needed to learn hand-eye coordination for robotic grasp-
ing.

For teaching robots how to toss novel objects autonomously, we would suggest research into model-
based learning from demonstration methods.
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Cobots for Final Assembly,” Procedia CIRP, pp. 175–180, 2016.

[52] R. Bloss, “Collaborative robots are rapidly providing major improvements in productiv-
ity, safety, programing ease, portability and cost while addressing many new applications,”
Industrial Robot: An International Journal, pp. 463–468, 2016.

[53] Universal Robots, “RTDE C++ Interface,” https: // sdurobotics. gitlab. io/ ur_

rtde/ . Date accessed: 2021-10-03.

[54] M. Borges, A. Symington, B. Coltin, T. Smith, and R. Ventura, “HTC Vive: Analysis and
Accuracy Improvement,” IEEE International Conference on Intelligent Robots and Systems,
pp. 2610–2615, 2018.

[55] P. Bauer, W. Lienhart, and S. Jost, “Accuracy investigation of the pose determination of a
vr system,” Sensors, pp. 1–17, 2021.

[56] VIVE European Union, “VIVE Pro Full Kit,” https: // www. vive. com/ us/ product/

vive-pro-full-kit/ . Date accessed: 2021-09-02.

[57] H. Wang, R. Mecham, and B. Zhang, “AMethod Targeting Repair in Space: Tele-operating a
Collaborative Robot with Virtual Reality,” 2017 IEEE 7th Annual International Conference
on CYBER Technology in Automation, Control, and Intelligent Systems, CYBER 2017,
pp. 1068–1071, 2018.

[58] N. Sanchez-Tamayo and J. P. Wachs, “Collaborative Robots in Surgical Research: A
Low-Cost Adaptation,” ACM/IEEE International Conference on Human-Robot Interaction,
pp. 231–232, 2018.

[59] ValveSoftware, “OpenVR SDK,” https: // github. com/ ValveSoftware/ openvr . Date
accessed: 2021-11-02.

[60] Joint Robotics Laboratory (JRL), “mc rtc - overview,” https: // jrl-umi3218. github.

io/ mc_ rtc/ index. html . Date accessed: 2021-01-08.

56 Towards Robot Tossing by Demonstration through Intuitive Telemanipulation

https://www.universal-robots.com/products/ur10-robot/
https://www.universal-robots.com/products/ur10-robot/
https://sdurobotics.gitlab.io/ur_rtde/
https://sdurobotics.gitlab.io/ur_rtde/
https://www.vive.com/us/product/vive-pro-full-kit/
https://www.vive.com/us/product/vive-pro-full-kit/
https://github.com/ValveSoftware/openvr
https://jrl-umi3218.github.io/mc_rtc/index.html
https://jrl-umi3218.github.io/mc_rtc/index.html


Bibliography

[61] Joint Robotics Laboratory (JRL), “CNRS-AIST,” https: // unit. aist. go. jp/ jrl-2/

index_ en. html . Date accessed: 2021-09-27.

[62] ROS, “Robot Operating System,” https: // www. ros. org/ . Date accessed: 2021-08-12.

[63] ROS, “RViz Visual Tools,” http: // wiki. ros. org/ rviz/ . Date accessed: 2021-08-12.

[64] Joint Robotics Laboratory (JRL), “Github - mc rtc,” https: // github. com/

jrl-umi3218/ mc_ rtc . Date accessed: 2021-10-05.

[65] Valve Corporation, “SteamVR,” https: // www. steamvr. com/ en/ . Date accessed: 2021-
10-17.
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Appendix

A Vanderlande Innovation Lab

For implementation and validation of the proposed teleoperation system, the Vanderlande Innov-
ation lab at the TU/e campus is available. Here, resources such as a robot setup, conveyor, and
OptiTrack motion capture system are available. The setup in the lab, as depicted in Figure 1,
can be used to perform experiments in an industrial-like setup. The robot manipulators can be
programmed, via Ethernet connection, on a workstation (HP EliteDesk 800 G5 TWR, Core i7
vPro 9th Gen) running Linux with Ubuntu 20.04 as operating system.

A.1 Robot Manipulators at the Lab
The setup employs two robot manipulators, see Figure 1, which are both available for this project:

• the Panda by Franka Emika,

• and the UR10 of Universal Robots.

Moreover, both robots equipped with the vacuum suction gripper of Smart Robotics. This grip-
per is equipped with a Venturi ejector located inside the gripper, which can generate a partially
vacuum. The robots can therefore handle a wide range of objects, while enabling smooth and
secure handling of goods. There are several differences between the two robots. First, the UR10
is a 6-DOF manipulator, whereas the Panda has one degree of freedom (DOF) more, therefore
the Panda is kinematically redundant which makes it more flexible in dynamic environments. The
UR10 has a higher payload than the Panda, 10 kg to 3 kg, respectively, and can thus manipulate
heavier objects than the Panda. Furthermore, the UR10 has a larger reach. In terms of sensing
capabilities, the difference is that the UR10 is only equipped with high resolution encoders, while
the Panda has additional torque sensors.

A more detailed specification of the technical details of both the Panda and UR10 can be found
in Appendix E.1 and E.2, respectively.

Figure 1: Vanderlande lab at the TU/e campus, with the UR10 (left) and Panda (right) robots.
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(a) OptiTrack Prime 17W camera [90]. (b) OptiTrack Primex 22 camera [91].

Figure 2: OptiTrack cameras used in the setup at Vanderlande’s innovation lab. Featuring 20 ultra high
power LEDs, transmitting light at 850 nm IR, which is invisible to the naked eye.

A.2 OptiTrack Motion Capture System

In the Vanderlande Lab, there is an OptiTrack motion capture system in place, employing two
Primex22 cameras and four Prime 17W cameras, see Figure 2, by which displacements of markers
can be tracked at 360 Hz, and sub-millimeter accuracy [89]. The cameras are installed such that it
can track the pose of the robot arm, lip of the suction cup, and boxes during manipulation, even
while being tossed.

OptiTrack is based on recording specific 850 nm 70° IR light, which is either reflected by passive
reflective markers or transmitted by active LEDs. The light reflected by the passive markers is
transmitted by 20 high-intensity IR LEDs which the OptiTrack cameras are equipped with. By re-
cording using multiple cameras, at high resolution (17 MP, 1664×1088 pixels) and frequency (360
Hz), at a wide angle, marker locations can be tracked at an accuracy up to 0.3 mm, depending on
the calibration and scene [90]. Identified markers can be tracked by their location relative to each
camera, which can be stored in a vector starting at the camera’s origin and passing through the
marker location. If at least two of these vectors are known, together with the relative position of
each camera in the setup, a 3D position can be calculated. For this to allow accurate tracking,
the cameras are calibrated each time the cameras are used. During calibration, the pose of each
camera is defined in OptiTrack’s inertial frame. While the cameras allow for grayscale footage,
which is very helpful to identify unwanted reflections during calibration, markers are generally
identified on-camera to avoid high bandwidth.

The OptiTrack system is controlled from its software platform Motive, where one can create rigid
bodies from unique marker patterns. Such rigid bodies are represented by a frame defined with
respect to the marker positions. Once a minimal amount of markers (at least 3) of identified
markers fit a known pattern, the corresponding rigid body frame is fitted. Once a rigid body
is created, these are automatically recognized and tracked. The measured rigid-body poses and
marker positions are saved to a .tak file, which can then be exported to a .csv file. These .csv files
will then be processed using MATLAB.

B Intuitive Use

One of the goals of this project is to develop the teleoperation setup such that it allows an oper-
ator to intuitively control a robot arm by hand motion, and thereby perform tossing operations.
However, the term intuitive use (IU) is not well-defined in the sense of defining if, and to which
extent, a system is intuitive. To develop an intuitive teleoperation system, a clear definition of
intuitive use is required. In this section, IU is discussed to give a clear understanding about the
meaning of the concept. Furthermore, we will investigate if there are methods to determine if a
system is intuitive, and how an intuitive system is designed.
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B.1 Definition

The concept of “intuitive” is commonly avoided by researchers because it is regarded as vague, ill
defined or non-scientific. The interdisciplinary IUUI research group (Intuitive Use of User Inter-
faces) focuses on exploring the use of the term intuitive use, as well as to define it as a scientific
concept [92]. Since IUUI tries to relate the IU approach to international usability standards, for
this project, the choice is made to adopt the definition given by IUUI. This team of psychologists,
computer scientists, engineers, and designers, defined the concept of intuitive use as follows: “A
technical system is, in the context of a certain task, intuitively usable while the particular user is
able to interact effectively, using subconscious application of prior knowledge.” [92]. This defini-
tion includes the concepts of prior knowledge and subconscious application, both of these concepts
need to be clarified.

Prior knowledge refers to the knowledge, experience, and skills a user has at the start of learning
a new topic or task. The prior knowledge a person has, may stem from different sources, divided
over four levels [93]. The first level is innate knowledge, which is said to be universal to all human-
ity and is ‘acquired’ through the activation of genes, or during the prenatal stage of development.
The second level is sensorimotor, which consists of general knowledge that is acquired very early
in childhood, and from then on used continuously through interaction with the world. The third
level refers to the knowledge specific to the culture an individual lives in, and can thus influence
how people from different cultures approach technology. The fourth level is expertise, which is
specialist knowledge, gained through experience. On each of the latter three levels (sensorimo-
tor, culture and expertise) one might have specialist knowledge about using respective tools and
technologies. At sensorimotor level these tools are primitive, at cultural level it refers to tools
that are commonly used by humans (phones, lights, or cycles in the case of Dutch culture). At
expertise level, there are tools that are used in one’s area of expertise, for example CAD tools for
engineers. On each level of knowledge, IU (according to the above definition) can be assigned,
as long as it is subconsciously applied by users. In the above definition, persons can only use
intuitive processing, if they have had previous experience to exploit, it can therefore be said that
things that a human can use intuitively, are those that employ features/characteristics that they
have encountered before.

Subconscious application of prior knowledge, can be explained by the model of human data-
processing of Rasmussen [94], which allows a designer to look at human-machine systems as one
integrated system. This model is explained by the concept of a so-called dynamic world model,
which refers to the “system” in humans that accounts for control of responses to the environment
that are too fast to allow control by perceptual feedback; humans may have complex responses
which can be released by very simple signals. To serve this purpose, it simulates the behaviour
of the environment as well as the behaviour of the body; i.e., it simulates the interaction. When
users respond to events or information that does not happen or appear in a familiar context, the
dynamic world model also manifests itself. In the human data-processing model, Rasmussen dis-
tinguishes between a subconscious and a conscious processor. He states that perception is mapped
subconsciously to the actual goal and states of the user, and also subconscious to the user’s dy-
namic world model stored in long term memory. This is stated to form the basis of efficient control
of physical actions. However, when there is a mismatch between a user’s perception and dynamic
world model, the conscious processor is activated. This conscious processor operates by controlling
attention and is limited by the capacities of the user’s working memory and sequential processing.

Application of knowledge can become subconscious due to frequent exposure and reaction to
stimuli in the environment. Knowledge at expertise level is not used as frequently as knowledge
from culture or sensorimotor level. This suggests that knowledge from the lower levels is more
likely to be applied subconsciously than expertise knowledge. As stated in the definition above,
the subconscious application of knowledge is a precondition for IU. Therefore, it will be more likely
for a user to interact intuitively, when lower level knowledge (innate, sensorimotor, and cultural)
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are involved.

B.2 Evaluating intuitive use
Setting intuitive use as a design requirement, involves the need for a method to measure if a
design or system is intuitive. Measuring the intuitiveness of a system is complex since it regards
the mental efficiency, and unconscious utilization of prior knowledge. Usability, of which IU is a
sub-concept [93], is a (well-defined) measure of how well a specific user in a specific context can
use a product/design. Analyzing how the indicators of usability relate to intuitive interaction,
may provide insights in how IU can be evaluated. Usability involves measures for effectiveness,
efficiency, and satisfaction [95]. In the ISO 9241-11, effectiveness is defined as the accuracy and
completeness with which users achieve certain goals. Effectiveness can be indicated by error rates
or the quality of goal achievement. Efficiency is defined as the relation between the effectiveness
and the expended resources during the goal achievement. Expended resources can be indicated
by measures like: task completion time, learning time, number of mouse clicks or key presses,
material consumed, derived measures (such as financial cost), but also mental workload. Subcon-
scious application of prior knowledge will affect efficiency since it reduces the workload from the
conscious processor. Satisfaction refers to the comfort while and positive attitudes towards the
use of the system, and can be assessed by a questionnaire.

Similar to the usability measures, IU has three indicators to measure intuitivity during human-
robot interaction for a specific task: effectiveness, efficiency, and satisfaction. However, in usability
measures, efficiency regards all resources (e.g. time, cognitive resources, material resources, en-
ergetic resources, financial resources, and number of steps to reach the goal) that the operator
consumes. According to the definition of UI, only one resource of efficiency has direct correlation
with IU: mental workload. Therefore, the three consequences by which IU can be assessed are:
effectiveness, cognitive efficiency, and satisfaction. A precondition that has to be measured in
order to assess IU is the probability of subconscious application of prior knowledge.

The definition of IU involves effective interaction, thus the indicators for effectiveness given by
ISO 9241-11 will apply [95], such as the number of completed tasks and the proportion of errors.
Moreover, effectiveness can be measured subjectively by using questionnaires to assess the per-
cieved error rate and percieved achievement of goals. The cognitive efficiency can be measured
either by objective means (e.g. physiological measures or response times) or by subjective means.
For subjective measurements there are questionnaires available, like: Subjective Mental Effort
Questionnaire (SMEQ) [96], and the NASA Task Load Index (TLX) [97]. The precondition can
be assessed subjectively using questionnaires. For the probability of subconscious application of
prior knowledge, so-called technology familiarity questionnaires can be used. Intuitive interaction
measures also include satisfaction since users should be satisfied with using the system. Satisfac-
tion for IU while interacting with a system can be evaluated by pragmatic and hedonic qualities in
the INTUI questionnaire [98]. Moreover, Based on the theoretical framework presented by IUUI, a
standardized questionnaire named “QUESI” was developed to measure the subjective satisfaction
consequences of IU [99].

C Design Considerations
In this appendix, a discussion about the design considerations is given.

C.1 Control actions
One of the main challenges for this project is to design the telemanipulation system such that it
is intuitive for the human operator. Controlling the system intuitively, while performing tossing
operations, requires a system where the operator can quickly learn how to create control actions.
Therefore, the system should be controlled in a way similar to how humans toss boxes. This raises
the question how can human tossing movements be transformed to “natural” control actions? A
box can be tossed in many ways, but for a human to toss a box with one hand, the human
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hand must move towards the box, and to grab onto it, finger movements (of the same hand) are
required. Then, to move the box, the hand should hold the box. For tossing, the box must be
accelerated and released, by finger movements. The natural way of tossing, will be used to create
control actions, such that for an operator it is immediately clear how to move the manipulator,
and how to operate the gripper. Therefore, the control of the robot manipulator motion will be
done by the movements of only one arm. The gripper will be controlled by finger movements,
which movements exactly is yet to be determined: opening your hand is similar to real human
tossing, but adds significant complexity to the system, whereas only releasing a trigger with one
finger is not exactly how a human releases a box. The robot manipulators both are equipped with
a vacuum suction cup, extensibility is not considered because only this end-effector will be used for
this project. However, the grasp of the object is therefore different, it is therefore interesting how
tossing with a suction cup relates to tossing with hand grasps. Moreover, it might be interesting
to develop a controller that is a replica of the suction gripper, which can be used to control the
robot. This could increase the operator’s feeling of telepresence.

C.2 Human variability

The setup must be operable for multiple humans, which have different characteristics. For intuitive
control, the movements of the operator must be accurately followed by the robot manipulator.
Therefore, in the design it must be considered how to deal with left- and right-handed persons or
different limb lengths between operators. This raises the question: how to deal with variability in
human operators? Does the setup have to be operable for left- and right-handed persons, or are
there reasons to choose for a setup that can only be used with the right hand? And, how does the
system deal with different body- and arm lengths, should the reference frame of the operator w.r.t
the frame of the robot manipulator be calibrated for each person, and should this be manually
provided to the system or automatically measured?

C.3 Anthropomorphism

By choosing an anthropomorphic robot arm, the system intuitiveness and operator’s feeling of
telepresence could be improved. However, there are two robot manipulators already available,
from which the kinematic design cannot be changed. Therefore, other ways to improve the feeling
of telepresence have to be studied: how to enhance the feeling of telepresence? The mapping of
the operator movements to manipulator movements is important for the feeling of telepresence,
the better the mapping, the better the feeling of telepresence. Taking this into account, the con-
figuration of the robot manipulator and a human scaled-workspace of the telemanipulation setup
are mandatory. One can study if the feeling of telepresence improves, if only the manipulator’s
end-effector must be controlled, or also the configuration of the robot. For example, when the
human operator tosses underhand, does the robot also toss underhand, and similar for overhand
tossing.

C.4 Operator position and viewpoint

Another important aspect is the viewpoint from the operator w.r.t to the robot manipulator. For
intuitive control, we prefer a viewpoint close to the robot, that provides a complete overview of
the surroundings of the robot. In the meantime, the operator must not be limited for moving
in its own environment. Therefore, the following question must be answered: what is a proper
position and viewpoint of the operator w.r.t the robot? Using VR, a virtual environment can be
created, in which the operator feels like being inside the robot arm. However, the environment of
the robot manipulator is uncertain since objects can enter within the kinematic range of the robot.
Therefore, a VR environment is not desirable. To properly control the robot, while interacting
with the environment, the human operator must directly see the robot. If the system is designed
such, that the human operator can move to adapt her/his viewpoint, it can be practically analyzes
which viewpoint is sensible. Moreover, the operator is more flexible to adapt to situations where
the current viewpoint limits the operator’s overview of the situation. Another pointer to decide
which is an appropriate viewpoint, is which viewpoint provides a safe overview of the complete
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system. This is also dependent on the situation in the Vanderlande innovation lab at the TU/e
campus.

C.5 Mapping input to robot reference

The mapping from control input to robot movements and control settings is an important aspect
of the intuitive control. Finding a proper, intuitive mapping between human (hand-)motion and a
non-anthropomorphic robot hand is challenging, due to the different joints, axes, and dissimilarities
between the hand and vacuum suction cup. Therefore, the question which mapping is most suitable
to map human inputs to robot outputs must be answered. To avoid difficulties in task completion
of the human operator, a one-to-one (unscaled) position mapping is chosen to start with. For
the mapping of input directions, which relate the movement directions of the operator to those of
the robot manipulator, one can choose to map input directions in the operator (local) coordinate
frame, or in the robot’s coordinate frame. In case of a fixed mapping, in the robot’s coordinate
frame, together with the possibility of multiple viewpoints, may result in unexpected behaviour
of the robot, or can at least be considered error-prone because the user is responsible to take the
coordinate transformations into account. The choice of input mapping directions must be based
on the development of a system in which the operator does not have to think about how to execute
control actions. In order to develop a system by which a human operator can toss accurately, it
can be useful to create a system which can filter human inaccuracies, such as holding a box at an
angle. It also has to be determined where to define the base of the reference frame of the human
operator. If the base is located at a fixed place in space, the operator is not able to change its
viewpoint. If the operator has a moving base which is fixed on the operator, the operator can move
to change the viewpoint. Another thing to deal with, is when the controller pose is forwarded
to the robot. The system can be incorporated with a safety mechanism, such that the controller
pose is only forwarded to the robot if an “enable” button is held. In case of such a button, one
can also choose to program the telemanipulation system such, that the robot tool position follows
the relative controller offset with respect to the initial state where tracking was enabled through
the safety mechanism, while orientation tracking is absolute.

C.6 Interaction with environment

The robot manipulator will interact with its environment during human-operated manipulation,
for example when gripping objects. This gives raise to the question: how to deal with interaction
between the robot and its environment? If the operator controls the robot motion such that the
desired trajectory of the robot goes through physical boundaries of the robot’s environment, it
must be made sure that the robot cannot damage its environment, and vice versa. A method
to control the interaction forces is by impedance control, using this technique a desired damping
and stiffness of the system can be chosen. However, more measures are required to make sure
that the robot manipulator can only exert limited force on the environment. It also has to be
determined what an appropriate value is for the maximum allowable force that can be applied to
the environment. Similarly, the robot arm will also have to deal with different payloads, under
which the robot should still follow the desired trajectory. During interaction of the robot with
its environment, it would be valuable for the operator to be able to feel which forces the robot
exert on the environment, and vice versa. For good tossing performance, having an indication of
what objects weigh can help to estimate how to toss an object. However, the possibilities for force
feedback depend on the available sensing in the robot manipulator, and require haptic feedback
devices. For haptic force-feedback only a few haptic feedback systems are commercially available
on the market. Because most of these devices are limited in their degrees of freedom (DOFs), have
only a small workspace, or a low output capability, they do not enable an intuitive interaction
with the remote environment. Moreover, most haptic interfaces that enable for force-feedback are
fixed to the ground and therefore do not allow for any locomotion of the operator. A simpler
method to offer haptic feedback functionality would be through controller vibration.
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D System Requirements
In the proposed system, a UR10 robot is controlled by human motion, such that the operator can
perform robot tossing demonstrations. It is important that the teleoperation system allows the
operator to intuitively toss objects, to desired locations. This way, the teleoperation system can
be used for effective trajectory generation of tossing trajectories for the robot. Besides this, the
proposed teleoperation system is subject to a number of additional requirements, in this section
these requirements are listed (R.1 - R.8)

R.1 The operator controls the robot manipulator through co-located teleoperation, in other words:
the operator is present in the same room as the robot, and has a complete overview of the
robot manipulator and its environment.

R.2 To enhance intuitivity of the system for tossing operations, the operator must be able to
perform tossing operations using motion input that resembles human tossing motion. There-
fore, the robot must be controlled in real-time by human hand motion. Additionally, human
tossing motion may not be hindered due to the presence of hardware (e.g. cables) during
operation.

R.3 The leader device must be a commercially available device, and must be able to track 6 DOF
motion. The three translational motions: surge (forward/backward), heave (up/down), and
sway (left/right). And the orientation described by three rotations: yaw (rotation over the
normal axis), pitch (rotation over the transverse axis), and roll (rotation over the longitudinal
axis).

R.4 Using the leader device, the operator must be able to control the vacuum suction gripper by
two-step control, hereby either activating the vacuum gripper to pick objects, or deactivate
the vacuum and activate the blow-off functionality to release objects. Hereby, the blow-off is
normally off, and is only activated shortly when the vacuum is deactivated.

R.5 The teleoperation system must be equipped with a clutch (e.g. a button) to control when the
follower device must imitate the leader device motion.

R.6 By controlling the robot manipulator through the teleoperation system, an operator must be
able to toss Box 3, 4 and 5 (see Section 4.1) to locations outside the kinematic range of the
robot.

R.7 For safety, the robot’s controller must be implemented such that self-collisions and possible
collisions between the robot and its environment are avoided.

R.8 The leader device/system must be able to track the operator’s hand in a nominal workspace
of minimal 2 × 2 × 2 m, giving the operator some freedom to properly control the robot from
the desired viewpoint.

E Available Robot Manipulators

E.1 Technical Specifications Franka Emika Panda
Franka Emika’s Panda [100] is a cobot (collaborative robot), that is inspired on the mobility of
the human arm, which results in an anthropomorphic design. The robot’s payload is 3 kg and it’s
Cartesian velocity limit is 1.7 m/s, and features 7 DOFs, which makes the robot very agile. The
kinematic reach is 855 mm, with a corresponding workspace coverage of 94.5%. Moreover, the
robot arm has high resolution joint position encoders and link-side torque sensors incorporated in
all 7 axes, allowing adjustable stiffness/compliance and advanced torque control. The robot’s force
and torque sensing resolution are < 0.05 N and < 0.02 Nm, respectively. The system has a pose
repeatabillity of < ±0.1 mm (ISO 9283), and a path deviation2 of < ±1.25 mm. The technical
specifications of the Franka Emika Panda can be found in [100]. A summary of the specifications
is given below.

2Based on ISO 9283 (Annex A): specified value refers to a workspace of 0.4 × 0.4 × 0.4 m, centered at [0.515,
0.0, 0.226] m, with the Z-axis of the flange oriented parallel to earth-gravity and the elbow positioned upwards.
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Table 1: Hardware- and performance specifications of Franka Emika’s Panda robot [100].

Arm

Degrees of freedom: 7
Payload: 3 kg
Max. reach: 855 mm
F/T sensing: Link-side torque sensors in all 7 axes
Joint position limits: • A1, A3, A5, A7: -166/166°

• A2: -101/101°
• A4: -176/-4°
• A6: -1/215°

Weight: ∼17.8 kg
Moving mass: ∼12.8 kg

Control

Supply voltage: 100 - 240 VAC

Mains frequency: 47 - 63 Hz

Motion

Joint velocity limits: • A1, A3, A5, A7: -166/166 °/s
• A2: -101/101 °/s
• A4: -176/-4 °/s
• A6: -1/215 °/s

Cartesian velocity limits: Up to 2 m/s end effector speed
Pose repeatability: < ± 0.1 mm (ISO 9283)
Path deviation: < ± 1.25 mm

Force

Force resolution: < 0.05 N
Relative force accuracy: 0.8 N
Force repeatability: < 0.15 N
Torque resolution: < 0.02 Nm
Relative torque accuracy: 0.15 Nm
Torque repeatability: < 0.05 Nm

E.2 Technical Specifications Universal Robots’ UR10
Universal Robots’ UR10 [49] is an industrial cobot. The payload of 10 kg and it’s Cartesian
velocity limit of 3 m/s allow for a wide range of applications in machine tending, palletizing,
and packaging. The 6 DOF robot arm has a kinematic reach of 1300 mm, and no joint position
limits, which allows for full workspace coverage. The UR10 is equipped with high resolution joint
position encoders in all 6 joints, which allows for accurate position control. The system has a pose
repeatability of ±0.1 mm (ISO 9283). The robot force sensing are estimations from the electrical
currents in the joint actuators. The technical specifications of the Universal Robots UR10 can be
found in [49]. An overview of the technical specifications is given by Table 2.
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Table 2: Specifications of Universal Robots’ UR10 [49].

Arm

Degrees of freedom: 6
Payload: 10 kg
Max. reach: 1300 mm
F/T sensing: Force in x-y-z directions and torque sensing in each joint
Joint position limits: Base, shoulder, elbow and wrist 1, 2 and 3: ±360°
Weight: ∼33.5 kg

Control

Supply voltage: 100 - 240 VAC

Mains frequency: 47 - 440 Hz

Motion

Joint velocity limits: • Base and shoulder: ±120°/s
• Elbow and wrist 1, 2 and 3: ±180°/s

Cartesian velocity limits: 1 m/s end effector speed
Pose repeatability: < ± 0.05 mm

Force

Force Sensing Tool x− y − z, Joint Torque Sensing
Range 100.0 N, 10.0 Nm
Precision 5.0 N, 0.2 Nm
Accuracy 5.5 N, 0.5 Nm

E.3 Robot Manipulator Choice

The required hardware to develop a teleoperation system are: a leader device, a controller, and
a follower device. This project is based at the Vanderlande Innovation Lab at the TU/e campus,
here, two robot manipulators (follower devices) are readily available, of which one must be used
for this project. In this section, both of these robot manipulators are presented. Furthermore,
since there is a wide range of leader devices that can be used for the desired system, a review
is presented about which (controller) devices can be used to control the robot manipulator are
(commercially) available.

The two readily available robot manipulators for this project: are Franka Emika’s Panda, and
Universal Robots’ UR10, see Figure 1. One of these robots will be implemented such that the
end-effector will follow the leader device movements as closely as possible. Both robot manipu-
lators are equipped with the vacuum gripper of Smart Robotics, which contains a Venturi ejector
located inside the gripper, which generates a partially vacuum that allows the robots to handle a
big variety of products. The robots can therefore handle a wide range of products, while enabling
smooth and secure handling of goods. Moreover, both robots are capable of following a predefined
trajectory by controlling joint position or velocity inputs and can be programmed on a Linux PC
via Ethernet connection.

One of the two robot manipulators presented above, will be chosen for the proposed teleoperation
setup. Here, a comparison is made which emphasizes the most important differences between the
robots. An important difference between the robots is that the Panda is equipped with both high
resolution encoders and torque sensors in each joint, whereas the UR10 only has high resolution
encoders in its joints. The Panda is therefore able to provide haptic feedback to the operator when
the robot interacts with objects or the environment, which enhances intuitivity while using the
system. Moreover, the Panda is inspired on the mobility of the human arm, choosing this robot
could lead to more intuitive tossing operations, than in case the UR10 is chosen. However, the
Panda is a 7 DOF robot, which due to kinematic redundancy, complicates control compared to
controlling a 6 DOF manipulator like the UR10. Additionally, the size of each robot is different,
which results in a kinematic range of respectively 855 mm and 1300 mm, for the Panda and UR10.
For tossing, the payload and tool velocity of the robots is very important. The UR10 is able to
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move objects of up to 10 kg at a speed of max. 3 m/s, whereas the Panda can only reach 1.7 m/s
for objects up to 3 kg. Therefore, the UR10 is considered more suitable for tossing operations,
and thus the UR10 is chosen to implement in the proposed teleoperation system.

F Review on Leader Devices

F.1 State-of-the-Art in Motion Capture

Market research into mocap systems reveals that there are two main categories mocap systems:
optical and non-optical. The optical systems’ category can be subdivided into: markerless, act-
ive (light emitting), or passive (reflective) systems. Non-optical mocap systems are subdivided
into: inertial, mechanical, and magnetic mocap systems. Below, each of these system types are
introduced and compared.

Optical Motion Capture

Active and passive systems use markers that are tracked by special cameras, markerless (or video)
motion capture systems do not require markers or special equipment for tracking, but instead
rely on software to track the subjects’ movement [101]. Markerless motion capture systems use
video and special software to track almost any subject. These systems provide good flexibility,
but generally track subjects at a lower performance compared to marker-based solutions. Active
mocap systems use special cameras that track the light that is emitted by LED markers. The
emitted light provides that active systems are able to track markers at increased distance. Unlike
passive- and markerless mocap systems, active mocap systems require the subject to carry wires
or other electronic equipment. Passive mocap systems are the most accurate and commonly used
in industry. These systems use reflective markers, that are tracked by infrared cameras. In these
systems, each camera makes a two-dimensional image in which the position of the centroid of
each marker is estimated. If multiple calibrated cameras capture a marker, a three-dimensional
position can be obtained. Active and passive optical mocap systems can provide highly accurate
6D real-time tracking data of markers at high sample rates and in big workspace areas. However,
sometimes these systems provide poor tracking, due to marker occlusion.

Inertial Motion Capture

Inertial mocap technology relies on inertial measurement units (IMUs), (bio)mechanical models,
and sensor fusion algorithms. Using an IMU, linear acceleration and angular velocity along each
of the three principal axes: pitch, roll and yaw can be measured. Sometimes the angular ori-
entation can also be measured. The measurements are generated by integrating the acceleration
measurements from the accelerometers and (a) gyroscope(s). Often, a magnetometer is used to
measure the component of the earth’s magnetic field in units of Gauss (G). The combination of
the accelerometer and the magnetometer, is referred to as the digital compass of the IMU. The
measurement outputs of the accelerometers, magnetometer and gyroscope can be converted in
real-time to digital signals, which is often transmitted wirelessly to a computer. The computer
can use this relative motion data to record the subject’s full six DOF body motion. One of the
main differences between optical and inertial motion capture is that optical systems can capture
absolute positions, and inertial systems can only capture relative motion. To capture the subject’s
absolute position, external cameras and emitters/markers are required. Since IMUs can provide
6 DOF measurements to control the robot’s end-effector position by relative motion inputs, this
does not eliminate the possibility for the use of an inertial mocap system as leader device. An
advantage of IMU’s is that these devices can operate in very large areas and that marker occlusion,
like in optical mocap systems, is not possible. A major disadvantage of IMUs is that they typically
suffer from dQuest : an ever-increasing difference between the measured orientation and position
output and the actual values. IMU’s are widely available, devices range in price from low to high
performing systems, with a bias instability (dQuest) of the gyroscope from 0.1◦/s to 0.001◦/h,
and bias instability of the accelerometer from 100 mg to 10 µg.
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Mechanical Motion Capture

Mechanical motion capture systems, often referred to as exoskeletons, directly track body joint
angles by real-time measurements of the motion from the mechanical parts, articulated by the
user’s body motion [101]. In some cases, these devices can provide force-feedback or haptic in-
put. Alternative to exoskeletons, robot arms can also be used as input device for the purpose of
mechanical motion capture. Mechanical mocap systems have the advantage that these can provide
force feedback to the user, but since the UR10 can not measure interaction forces, this ability can
not be used. Disadvantages are that the user’s motion is often constrained by the construction
and extra weight, and the technology has no awareness of ground and direction in which the user
is moving (and will thus not capture the complete tossing motion). Moreover, these systems are
often costly. Hence, mechanical mocap systems will not be considered for controlling the motion
of the teleoperator.

Magnetic Motion Capture

With magnetic mocap systems, it is possible to monitor 6DOF results of a motion capture session
in real time. Magnetic motion capture systems can track a subject’s position and orientation
by placing receptors on the object’s body, and by measuring the relative magnetic flux of three
orthogonal coils on both the transmitter and each receiver [101]. The receptors are not occluded
by nonmetallic objects, but metal objects in the environment (e.g. wiring, monitors or computers)
cause magnetic and electrical interference. Some systems are even sensible to the building’s struc-
ture (like steel reinforcing bars in concrete), making this a flaw in magnetic mocap systems.
Moreover, magnetic motion capture systems do not provide a sufficiently large workspace. Due
to these reasons, magnetic mocap systems are not suitable to serve as a leader device in the
teleoperation system.

Acoustical Motion Capture

In acoustical mocap systems, three receptors are placed on site, and a set of sound transmitters are
placed on the subject’s main articulations. Then a characteristic set of frequencies is produced,
by sequentially activating the emitters. The emitter’s positions can then be calculated as the
receptors pick up these signals, which calculate the emitters’ positions in three-dimensional space
[101]. Some problems with these systems occur, it is difficult to obtain a correct description of
the data in real-time, the cables on the subject cause limitations of movement, and the amount of
transmitters is limited, which limits the quality of the motion capture data. Moreover, acoustical
systems are very susceptible to sound reflections or external noise. This makes it difficult to provide
accurate real-time tracking data using this mocap technology and therefore, this technology is not
suitable.

F.2 Market Review
Besides hand motion tracking, the operator must be able to use the leader device to somehow con-
trol the vacuum suction gripper for picking and releasing objects. There are two main methods
to control the gripper: by two-step control (using a button, trigger or switch), or by measuring
the operator’s finger positions. The latter option controls the activation of the suction gripper
by calculating if the hand is opened or closed. Measuring finger positions for gripper control can
be done using commercially available gloves that capture high fidelity movements of all fingers,
using OptiTrack markers, or by simple 1-axis measurements on one finger. A trigger, button, or
switch can be operated by a commercially available controller device, or it can be mounted onto
the operator’s hand.

Based on the state-of-the-art in motion capture techniques, see Appendix F.1, we provide a market
review in potential leader devices that can be used for the teleoperation system.

Handheld motion controllers

Commercially available motion controllers have become available since several game companies
have developed high-accuracy and user-friendly motion capturing devices. Two of such controller
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devices are the HTC Vive3 and Oculus Quest4. Review of the HTC Vive controller, showed that
the device is suitable for robot control in case there is no requirement for accurate visual stimu-
lation or self-motion through a visual world [102]. Since it has been showed that the HTC Vive
performs better than the Oculus Quest [103], and both devices offer the same functionalities, the
HTC Vive controller will be presented here.

The Vive’s tracking technology uses two so-called Lighthouses, that contain laser emitters. These
laser emitters send out horizontal and vertical infrared laser sweeps alternatingly, spanning 120◦

in both directions. The controller devices have photodiodes on their surface, which allows tracking
6D position of the controllers in space with a reasonable accuracy (less than 2 mm error) in a
volume up to (4 m × 4 m × 4 m) [102]. In addition, the controllers provide extra inputs like
a trackpad and trigger, and allow for feedback by vibration. Using the HTC Vive controllers,
an intuitive teleoperation setup can be build, that enables the operator to smoothly control the
end-effector of the robot manipulator with hand motions. Telemanipulation setups like these have
already been successfully implemented [37] [38].

Motion sensors

Instead of using a handheld controller, the robot’s motion and suction gripper can be controlled
in alternative ways. Using traditional controller devices, the suction gripper is activated using
buttons. However, a more natural way to control the release of an object could be to open your
hand. Recently, with the rapid development of the motion sensors and vision-based techniques,
it is believed that more natural and intuitive ways for robotic teleoperation are possible [104]. A
common method to track human motion is using motion sensors such as: inertial motion tracking
sensors [105] [106], electromagnetic motion tracking sensors [107], or electromyographic muscular
activity sensors [108]. Inertial sensors are widely used because of the low cost, small size and
energy efficiency. In [109], an effective method for the operator to focus on the manipulation
task, rather than the required gesture for robot control is presented. Here, a position sensor and
an inertial measurement unit (IMU) are used to track the 6D motion of the operator’s hand.
Using the sensory data, a robot could be controlled using the orientation and position of the
hand. Moreover, electromagnetic sensors can also be used for motion tracking [110]. An inertial
and magnetic measurement unit (IMMU) can be used for an accurate approach in estimating 6D
positions, without external actuators or cameras. IMUs and IMMUs have also be incorporated
in gloves, to control 6DOF robot manipulators [111] [112]. Gloves are often useful for robots
employing dexterous hands, but can also be used to develop intuitive operation interfaces. Data
gloves are often used in situations which require dextourous hand movements, and thus have to
accurately capture the motion of the hand. In case of suction gripper control, the gloves only
have to record if the hand is opened or closed, to activate (closed hand) or deactivate (open hand)
the suction gripper. Commercially available motion capture data gloves are the CyberGlove5, the
Xsens gloves6, and the Noitom HI5 VR gloves7 compatible with the HTC Vive trackers8.

Some of the presented leader devices may hinder natural human-limb motions due to cables. Since
vision-based techniques only require physical markers, these techniques provide less hindrance to
human motion. This should help the operator to concentrate on the task at hand, rather than
on how to break the task into limited, gesture-like, commands that the human–robot system
understands for each type of robot motion. Using vision systems with markers, a human-robot
telemanipulation setup can be programmed such that human operators are able to communicate
simultaneous 6DOF motion tasks to a robot manipulator [113]. This can also be done with the

3See: https://www.vive.com/eu/product/#pro%20series.
4See: https://www.oculus.com/quest-2/.
5See: http://www.cyberglovesystems.com/.
6See: https://www.xsens.com/products/xsens-gloves-by-manus
7See: https://www.noitom.com/hi5-vr-glove
8See: https://www.vive.com/eu/accessory/tracker3/
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OptiTrack9, which is already available in the Vanderlande Innovation lab at the TU/e campus. In
[114], a robot manipulator teleoperation setup is presented by which Kinect10 sensor data controls
the robot. In this setup, an operator is able to control the 3D motion of the robot using hand po-
sitions, and the gripper configuration using hand gestures. The Kinect has also been used for the
control of humanoid robots [115]. The Kinect tracking device avoids that there may be marker
occlusion and identification. However, vision-based systems are often affected by varying light
conditions, changing backgrounds, and a large clutter. Due to this, extracting relevant informa-
tion from visual signals is difficult and computationally intensive. Furthermore, the occlusion of
fingers to control the gripper signal may result in a non-observable problem that leads to a poor
estimation of the hand pose [116].

Instead of mounting OptiTrack markers directly on the operator’s fingers, the OptiTrack gloves
by Manus11 are a plug-and-play solution to track accurate finger data directly into the Optitrack
control software Motive. In such system, the OptiTrack markers can capture the 6DOF hand
motion. For gripper control, the gloves can track finger movements to capture if the operator’s
hand is open or closed.

Haptic devices

In case haptic feedback to the operator is required, haptic devices can be used. During control of a
robot manipulator using a haptic device, the forces that act on the robot arm can be exerted to the
stylus of the haptic device, so the operator can adjust the position and direction of the robot arm
in the distance according to the haptic feedback. The use of feedback, however, is only possible
if the robot manipulator is equipped with force sensors. A frequently used haptic device for the
control of manipulators, is the OpenHaptics Touch X12. The device has 6 DOFs, that allows the
operator to perceive forces related to the obstacle and environment in any direction [117] [118].
The device’s workspace is 16 cm x 12 cm x 7 cm, and it can provide force feedback up to 3.3 N,
its positional resolution is around 0.055 mm.

G Technical Details HTC Vive Pro Kit
The Vive Pro Kit, see Figure 3.3, comes with the following components: a head mounted display
(HMD), link box, two VR controllers (2018 version), and two basestations 2.0. To ensure stable
tracking and limit dQuest in the pose tracking, a third basestation was ordered separately.
Vive’s tracking system operates through a so-called outside-in principle, where external tools are
used to calculate the position of the system’s equipment [119]. Vive estimates the positions of
the HMD and VR controllers through a time difference [54]. The Vive system uses two (or three
in this case) basestations (also referred to as lighthouses), which are stationary sensor units that
continuously send out vertical and horizontal sweeps of infrared light in an alternating manner, at
an angle of 120◦ per cycle in each direction, see Figure 3. Besides the sweeping plane of infrared
light, in every cycle, a synchronization flash of infrared light is emitted, containing calibration
parameters to correct the sweeping plane of light. The HMD and the VR controllers are equipped
with photodiodes that indicate when the infrared light hits them. By detecting both these signals,
given that the laser rotates at a constant angular velocity, the time difference between the signals
can be used to estimate the angle α (see Figure 3) between the normal vector of the basestation
and the photodiode. Using the estimated angle for both a horizontally and vertically rotating
laser, and given the fact that each rigid body consists of multiple photodiodes, the absolute pose
of each VR controller and the HMD can be calculated. A problem that is similar to calculating
the pose of the HMD and VR controllers is the Perspective-n-Point (PnP) problem, for more
details about the pose estimation principle, refer to [120]. In the calculations, multiple frames
are involved [54] (see Section 2.2 for documentation about multibody notations), see Figure 4.

9See: https://optitrack.com/.
10See: https://azure.microsoft.com/en-us/services/kinect-dk/.
11See: https://www.manus-vr.com/optitrack-gloves
12See: https://www.3dsystems.com/haptics-devices/touch.
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Figure 3: Illustration of the HTC Vive working principle, with α being the angle between a sweeping
plane and the normal vector to the basestation (lighthouse) [54]. Note that in this figure, a Vive tracker
is displayed instead of the VR controller that is used in the proposed teleoperation setup.

Figure 4: Schematic overview of the frames that are involved in the pose estimation of Vive’s VR controller
[54]. Here, yTz denotes a rigid-body transform from frame y to z (which is equivalent to the pose of y in
frame z) [46].

The frames of the basestations are indicated by bi, with i the index of the basestation. The frame
of the controller is indicated by c, and an auxiliary frame v, is selected during the calibration
procedure to always be coincident with one of the basestation’s frames. The frames allow the
system to relate the poses of the basestations, since multiple basestations can be used. Moreover,
the world frame w can be selected by the user, since the HMD is used to set the world frame during
the calibration. The output that is used by the teleoperation system to generate the reference
input for the controller is a rigid-body transform wTc between a tracker frame and the world
frame, represented by a red arrow in Figure 4. Detailed information about how the reference
trajectory is generated, is presented in Section 3.2.2. The HMD and VR controllers are also
equipped with inertial measurement units (IMUs), which are used to primarily update the HMD
pose through deadreckoning (path integration), this allows for much higher update rates. Using
the basestations, the error build-up that is inherent in deadreckoning is limited and corrected,
based on inertial measurements. Based on this technology, the pose of the VR controller’s can
be estimated at a 120 Hz refresh rate, with sub-millimeter accuracy [54]. The average position’s
standard deviation for pose estimation of the static (not moving) device was found to be 0.242 mm.
However, the dynamic tracking accuracy varies from few millimeters, but experimental results have
shown that the tracking error can become up to a meter [54]. In [55], experimental research has
shown that the position tracking accuracy of the system is few millimeters, when two lighthouses
are used. It has also been proven, that the second generation of the HTC Pro system does not
provide a horizontal reference plane, an inclination of 0.8◦ has been observed for two lighthouses.
Major impacts on the overall accuracy are a poor calibration of the VR devices, and a changing
hierarchy in the lighthouse system (when two or more lighthouses are used). These effects can
lead to position errors of over one centimeter (up to 4 cm).

H QP Controller Parameter Choices
The QP controller has various parameters for which suitable values have to be found, such that
the teleoperation system is suitable for demonstrating tossing operations. In this work, it has
been assumed that human intuition and learning abilities can contribute to the rapid creation
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of motion trajectories for directed robotic tossing. The development of the teleoperation system
enabled to rapidly demonstrate robotic tossing, thus generating motion trajectories for tossing.
This experiment aims to improve the teleoperation system such, that the operator is able to
generate motion trajectories quicker. Therefore, the goal of this experiment is to find parameter
settings for which the operator is able to perform targeted robotic tossing demonstrations, with
the least amount of required attempts.

H.1 Procedure and setup
In this experiment, the following parameters are tweaked:

• QP controller task stiffness gains k, see Section 3.3.2.

• Reference position scaling α, see Section 3.2.2.

• QP controller task weight ratio wpos/wori, see Section 3.3.4.

Because this study is only meant to set reasonable values for the teleoperation system for demon-
strating tossing, and the goal is not to find the ideal combination of parameter settings, it is
assumed that the parameters do not mutually influence the tossing result. Therefore, the experi-
ment is executed for each parameter seperately, in three sets (A, B, and C). The chosen parameter
values that will be used during each round of the experiment are denoted in Table 3. During Set
A, we vary the task stiffness, during Set B, we tweak the reference position scaling, and during
Set C, the task weight ratio is tweaked. As can be seen in the table, the order of parameter
values is randomized, to minimize the influence of potential learning effects on the outcome of the
experiments. For each parameter, a default value is chosen that is used when that parameter is
not varied (e.g. during experiment Set A, the values for scaling and task weight ratio are set at 2
and 100/6, respectively). The default values are chosen to be the mean of each range of parameter
values. During experiment Set A, the task stiffness gain is varied in steps of 5 N/m, between a
minimal value for the stiffness gain of k = 25 N/m, and a maximum value of k = 45 N/m. The
maximum has been found to be the maximum stiffness gain for smooth control of the robot using
the teleoperation setup. The maximum scaling for which the robot can be controlled smoothly
was found to be α = 3. For a scaling value α < 1, teleoperated robot tossing was not effective.
Therefore, during experiment Set B, the scaling is varied between α = 1 and a α = 3, in steps of

Table 3: The different parameter settings that will be checked during the experiments.

Set A: k Set B: α Set C: wpos/wori

A-1 40 N/m B-1 3 C-1 100/10
A-2 30 N/m B-2 1 C-2 100/8

Defaults −→ A-3 35 N/m B-3 2 C-3 100/6
A-4 25 N/m B-4 1.5 C-4 100/4
A-5 45 N/m B-5 2.5 C-5 100/12

Figure 5: Schematic top view of robot setup with three tossing targets.
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0.5. During experiment Set C, the task weight ratio is varied between a ratio of 100/4 and 100/12,
with steps of 100/2. A ratio of 100/12 is the ratio that is found to be the maximum to keep the
deviations on the position task small when the orientation error is large.

During the experiment, the operator is asked to toss boxes onto three predefined targets. These
predefined targets are located on the conveyor in front of the robot, as displayed in Figure 5.
Each target is a square area of 400 × 400 mm. The operator gets three different boxes: Box 3,
Box 4, and Box 5, see Table 4.2. During each experiment set A to C, the parameter values are
substituted in the controller, according to Table 3. For example, during experiment Set A-1, the
value for k = 40 N/m, and the values for the scaling α and task weight ratio wpos/wori are set to
default (α = 2, wpos/wori = 100/6 N/m). In another example, for experiment Set C-4, the value
for the task weight ratio wpos/wori = 100/4, and the values for the scaling α and task stiffness k
are set to default (α = 2, k = 35 N/m).

Then, for each box, the operator must aim to toss on each target, in the sequence given by Figure
5. When the box is successfully tossed on the first target, the operator aims for the second target,
and so on, until the box is tossed successfully on each target. The operator tries to do this in
the least possible amount of attempts. A maximum number of attempts for each target is set at
10, if this amount is reached, the target will be identified as uncompleted. Each time a box is
tossed successfully on a target, the amount of attempts is registered. The tossing result is called
successful when it complies with the following three requirements: (1) the box ends up within
the bounds of the target, (2) the short edge of the box is pointed perpendicular to the moving
direction of the conveyor with an orientation accuracy of at least 30◦ ± 5◦, and (3) the barcode is
pointing up. In Figure 6, an example is shown of a successful tossing result and three unsuccessful
results. This figure illustrates that the second, third and fourth toss are unsuccessful because of
tossing requirements (1), (2), and (3) respectively. The parameter value which requires the least
number of attempts to toss each box on the intended target, is chosen for that parameter.

Figure 6: Examples to show if a tossing result is successful or not.

H.2 Results
Tables 4, 5, and 6, denote the amount of attempts that were needed to toss the box onto each
target, as explained in the procedure, for each experiment set, see Appendix H.1.

During the experiments, we experienced that the teleoperation system is very suitable to demon-
strate robotic tossing where boxes have to land in dedicated target areas. Tossing such that the
boxes would make impact on particular locations was easy. Tossing boxes such that they end up
close to the location where they made impact, however, was more challenging. Toss Box 3 and
4, proved to be far more challenging, as these would easily tumble after impact. Moreover, a
higher QP stiffness gain gives the operator the feeling of having more control over the motion. For
scaling, the operator personal preference laid on α = 2 and α = 2.5. The task weight ratio that
the operator preferred lays between wx/wφ = 100/12 and wx/wφ = 100/8.

Based on the results in the tables, the chosen values for the controller’s stiffness gain k = 45 N/m,
position reference scaling α = 2, and task weight ratio wx/wφ = 100/10, see Tables 4, 5, and 6,
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respectively.

Table 4: Number of attempts to toss each box in each target for different controller stiffness gains, an X
counts for 10 attempts.

Set A Number of attempts:

Box: Box 3 Box 4 Box 5

Target: 1st 2nd 3th 1st 2nd 3th 1st 2nd 3th Totals:

A-1: k = 40 N/m 4 5 7 2 2 5 2 3 1 31
A-2: k = 30 N/m 6 9 X 6 5 8 2 4 2 54
A-3: k = 35 N/m 2 6 9 1 2 5 1 2 2 30
A-4: k = 25 N/m 5 7 X 2 3 X 6 2 2 47
A-5: k = 45 N/m 3 4 5 2 1 6 1 1 2 25

Table 5: Number of attempts to toss each box in each target for different reference position scaling factors,
an X counts for 10 attempts.

Set B Number of attempts:

Box: Box 3 Box 4 Box 5

Target: 1st 2nd 3th 1st 2nd 3th 1st 2nd 3th Totals:

B-1: α = 3 5 2 8 6 4 2 4 4 4 39
B-2: α = 1 3 4 9 5 7 X 3 5 4 50
B-3: α = 2 2 3 2 1 2 2 1 1 2 16
B-4: α = 1.5 3 1 4 2 2 3 1 1 2 19
B-5: α = 2.5 1 2 4 3 2 3 3 1 1 20

Table 6: Number of attempts to toss each box in each target for different QP task weight ratios.

Set C Number of attempts:

Box: Box 3 Box 4 Box 5

Target: 1st 2nd 3th 1st 2nd 3th 1st 2nd 3th Totals:

C-1: wx/wφ = 100/10 1 2 1 1 3 1 1 3 3 16
C-2: wx/wφ = 100/8 1 3 3 1 3 2 1 1 2 17
C-3: wx/wφ = 100/6 2 4 3 2 3 4 1 1 2 22
C-4: wx/wφ = 100/4 3 3 4 2 4 4 2 1 2 25
C-5: wx/wφ = 100/12 2 3 4 1 2 4 2 3 2 23

I Statistics Related Concepts

I.1 Standard Deviation and Confidence Interval
To quantify how precise the result of a toss can be repeated, we use the standard deviation of to
measure the amount of variation in a set of tossing outcomes [121]. To compute the (corrected)
sample standard deviation of the rest-position of a box in (UoB)x we use

σxB
=

√√√√∑n
i=1

(
(UoB)x,i − ¯(UoB)x,i

)
n− 1

, (I.1)

where (UoB)x,i denotes the value of b, for the ith toss, ¯(UoB)x,i denotes its mean, and n is the
total number of tosses for each experiment.
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Since the standard deviation is obtained by a limited number of samples, the value for the standard
deviation that we compute using I.1, has an error margin. Using the confidence interval (CI), we
can quantify an interval for which we can determine the computed standard deviation with a
certainty of 95% [121]. For example, given a desired level of confidence, which is denoted by the
Z-score, we can determine an interval within which the value for σxB

lays with a 95% certainty.
We compute this by

CIx = ¯(Uob)x,i ± Z × σxB√
n
, (I.2)

where Z denotes a standard Z-score for the desired level of confidence, and σx is the sample
standard deviation (I.1). For the tossing results in this work, we choose to report them with a
confidence level of 95%, which corresponds to a Z-score of 1.96.

I.2 Determine Appropriate Sample Size
To determine the appropriate sample size of tossing repetitions to determine the repeatability,
a calculation is made. The appropriate sample size is based on the central limit theorem [121],
where an estimation of the required sample size n̂, can be calculated using

n̂ =
4Z2σ̂2

W 2
, (I.3)

where Z denotes a standard Z-score for the desired level of confidence, σ̂ is an estimation of
the expected standard deviation of tossing repetitions, and W is twice the margin of error that
we accept for reporting the standard deviation. The estimated amount of required samples is
calculated using a Z-score of 1.96, which corresponds to a 95% confidence interval of the estimation.
Based on preliminary tests with tossing repetitions, the expected standard deviation between rest
positions of the box

(
UoB

)
x
and

(
UoB

)
y
is estimated to be σ̂ = 20 mm. We choose the accepted

margin of error of the calculated standard deviation to be between 5 and 10 mm. Based on these
variables and the general rule that for using the central limit theorem the sample size must be ≥
30 [122], the estimated number of required samples is chosen to be 30.

J Analysis of the Pick Pose Sensitivity

J.1 Permissible Pick Pose Deviation
Based on the sensitivity results for the short and long range toss, the limits on the pick pose
deviation are explored. It is worth noting that the bounds on the pick poses are only investigated
for two tossing trajectories and one box. To give an indication of the permissible variations in
pick pose parameters, more research is required. However, by means of these experiments, we

Figure 7: Division of pick pose samples according to the order of deviation in the pick pose p.
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(a) b for the short range tosses. (b) b for the long range tosses.

Figure 8: Box rest-poses b of the sensitivity experiments, with respect to the mean box rest pose from
the repeatability experiments, for Gaussian distributed box pick poses. The color bar displays the box
picking deviation. The rest position of each toss is the center of the circles, where the line gives a more
intuitive indication of the rest-pose orientation.

can gain understanding of what could be admissible pick pose deviations. To find the permissible
variations in the pick poses, the sampled pick poses are divided in five ranges. The first range
contains the pick pose samples where all parameters have values ≤ 1

2σ, the second range includes
all pick poses for which the deviations in all pick pose parameters are ≤ 3

4σ. The third, fourth,
and fifth range include all samples where the pick pose parameters have deviations in the range
[0, σ], [0, 2σ], and [0, 3σ], respectively. The first range consists of only three samples. The second,
third, fourth and fifth range consist of 15, 30, 98 and 125 samples, respectively. The division of
pick pose samples, in each aforementioned range, is visualized in Figure 7.

To find the bounds on the pick pose deviations for which robotic tossing leads to predictable
tossing results, the pick pose ranges are reflected on the box rest-poses after tossing. Figures 8a
and 8b show the rest-pose after each toss i, related to the deviations in the pick pose, prior to
each toss i. From the figures, a clear relationship between the pick pose deviation and tossing
results can be observed. For higher deviations in the pick pose, as expected, the tossing result
is clearly less precise, as these tosses often result in box’ rest poses relatively far from the mean.
Pick poses with deviations > σ (denoted by the light and dark blue color in the figures) lead to
tossing results with outliers far away from the mean box rest-pose b̄. For smaller deviations in the
pick pose, where the deviation in the pick pose for all parameters is ≤ σ, leads to more predictable
results. Moreover, for tosses where the pick pose deviated in the range [ 34σ, σ] in each parameter,
the box’ rest orientation shows large differences between tosses. Looking at all samples that had a
pick pose deviation in the range [0, 3

4σ], the tossing results seem to have small deviations between
tosses. In Tables 7 and 8, for the short range and long range tosses respectively, the deviation
and precision of tosses for each range of deviations in the pick pose parameters are given. For
reference, the repeatability results are also denoted in this table.

Perturbations in the pick pose introduce more deviation in the tossing outcomes, and the outcomes
are less precise. However, for small perturbations in the pick pose, it looks like predictable tossing
can still be achieved if the short range trajectory is repeated. Based on the results presented
here, we believe that for appropriate tossing demonstrations, small deviations in the pick pose are
admissible. During these experiments, as discussed in Section 4.4.2, the covariance for

(
BoS

)
x
,(

BoS

)
y
, and φ, are 3σxp = 75 mm, 3σyp = 40 mm, and 3σφp = 30◦. Based on the results given

in Table 7, it seems like the admissible pick pose deviation for appropriate tossing demonstrations
is equal to a covariance of 3

4σ for each pick pose parameter. This would mean that the admissible
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range for the pick pose parameters is equal to
(
BoS

)
x
= [−6.67, 6.67] mm,

(
BoS

)
y
= [−12.5, 12.5]

mm, and φ = [−5◦, 5◦]. However, based on the analysis presented, we do not consider any scaling
between how much each pick pose parameter affects the outcome of a toss. Therefore, it might
be that the aforementioned range is not representative. To choose a more appropriate range for
the required pick pose precision, we made an analysis to investigate how each pick pose parameter
affects the outcome of a toss. If we know how much a certain value for a pick pose parameter
affects the outcome of a toss, we can make an estimation of what is an appropriate scaling between
the pick pose parameters. Based on this estimation, we can give a more accurate estimation of
what could be admissible deviations in the pick pose, for predictable tossing. The analysis where
we investigate the effect of each pick pose parameter on the outcome of a toss, is presented in
Appendix J.2.

J.2 Picking Parameters Effect
We want to analyze the results of the sensitivity tossing outcomes, to find out how each pick pose
parameter affects the box’ rest-pose after tossing. The knowledge we gain here, can be used to
decide a more appropriate scaling between the admissible pick pose precision of each parameter,
as explained in Appendix J.1. As described in Section 4.4.2, during the sensitivity experiments,
125 pick poses were sampled from a Gaussian distribution. For each sampled pick pose, there are
three (coupled) parameters, which all affect the outcome of a toss. To explore the effect of each
parameter individually, the pick pose samples are divided into five ranges that all have the same

Table 7: Short range tossing results for different orders of deviation in the pick poses. In each column,
the results are given for only the pick pose samples that have a deviation in the specified range (e.g.
[0, 1

2
σ]). The deviation of the rest-pose is given with a confidence interval of 95%.

Toss Result: Unit: Repeatability [0, 1
2
σ] [0, 3

4
σ] [0, σ] [0,2σ] [0,3σ]

σxb [mm] 17.7± 6.3 49.0± 48.0 37.5± 18.4 59.0± 18.5 69.1±13.7 81.0±14.2
σyb [mm] 11.5± 4.1 22.7± 22.2 27.2± 13.3 27.7± 8.7 36.6±7.3 42.4±7.4
σθb [◦] 10.5± 3.7 26.2± 25.7 23.3± 11.4 40.6± 12.7 53.5±10.6 57.3±10
∆

(
UoB

)
x

[mm] 104.7 103.0 119.2 214.6 357.2 493.5

∆
(
UoB

)
y

[mm] 55.0 24.4 57.2 63.9 200.5 271.9

∆θ [◦] 44.8 58.9 75.9 136.7 335.3 335.3

Table 8: Long range tossing results for different orders of deviation in the pick poses. In each column,
the results are given for only the pick pose samples that have a deviation in the specified range (e.g.
[0, 1

2
σ]). The deviation of the rest-pose is given with a confidence interval of 95%.

Toss Result: Unit: Repeatability [0, 1
2
σ] [0, 3

4
σ] [0, σ] [0,2σ] [0,3σ]

σxb [mm] 62.8± 22.5 15.9± 15.6 53.0± 26.0 55.7± 17.5 58.3±11.5 60.2±
σyb [mm] 34.9± 12.5 31.4± 30.8 33.3± 16.3 31.1± 9.8 40.2±8.0 42.3±10.6
σθb [◦] 44.8± 16.0 37.1± 36.4 57.9± 28.4 54.5± 17.1 65.5±13.0 68.5±12.0
∆

(
UoB

)
x

[mm] 204.5 29.6 176.6 214.6 245.2 261.4

∆
(
UoB

)
y

[mm] 145.1 59.7 110.4 114.1 182.2 321.0

∆θ [◦] 134.8 95.1 180.9 180.9 354.6 354.6

Figure 9: Gaussian distribution divided in five ranges that each have a 19.94% probability.

80 Towards Robot Tossing by Demonstration through Intuitive Telemanipulation



Appendix

probability. By doing this, the pick pose distribution of 125 samples is divided such that each range
(statistically) should contain 25 samples. This way, it is possible to divide the pick pose sample
distribution in ranges by the order of deviation for one parameter, whiles the other two parameters
remain Gaussian distributed. Figure 9 depicts a Gaussian distribution, which is divided into five
areas: green (≈ ±[0, 0.254σ)), yellow (≈ ±[0.254σ, 0.524σ)), orange (≈ ±[0.524σ, 0.842σ)), red
(≈ ±[0.842, 1.282σ)), and dark red (≈ ±[1.282, 3σ]). Each for a certain parameter, the chance
that a sample is taken from each of these areas is equal (there is a probability of 19.94% to
take a sample from each of these areas, since the probability for picking in the range [−3σ, 3σ] is
99.7%). Moreover, in each division of one parameter, the other two parameters remain Gaussian
distributed. The division of the areas is calculated using the inverse cumulative distribution
function for the three-parameter distribution [123]. For any sample within each of the areas,
the other two parameters are Gaussian distributed, and thus it is possible to analyze how each
pick pose parameter affects the outcome of a toss. Furthermore, each range of data samples
is roughly comparable in size. The division as depicted in Figure 9, can be projected on each
parameter. For example, when a parameter xbp is analyzed, the tossing results can be shown for

five ranges of deviations in parameter xbp. To analyze the effect of small and larger deviations
in picking parameter x equally, the pick pose deviation is divided in ranges of R1x = [0, 3.38),
R2x = [3.38, 6.99), R3x = [6.99, 11.22), R4x = [11.22, 17.09), and R5x = [17.09, 40]. Each of these
ranges have the same probability of being sampled, and the other pick pose parameters ybp and θbp
follow a Gaussian distribution in each range. It is worth noting that since this exploration is only
done for 125 short and long range tosses, the number of samples might not be sufficiently large to
base conclusions on or detect patterns at all. Therefore, the information presented below, is just
a first exploration of how each pick parameter affects the box’ rest-pose.

Pick Pose Position

First, the effect of deviations on the picking positions on the box is analyzed. Figures 10a and 10b
depict the tossing results for the sensitivity study for the short and long range toss, respectively.
In the graph, the color bar relates the deviation in the pick position in the x-direction, to the
rest-pose of a box after tossing (see Figure 4.13). Table 9 and 10 list the standard deviations and
precision of the rest-pose of the box, for each range of the picking positions in the x-direction Rx1

to Rx5 (see Figure 9), for the short and long range toss, respectively. Looking at the results in
both the scatter plots as the standard deviations in the table, no clear effect of the pick position in
the x-direction was observed. Therefore, it seems that the pick position in x-direction has limited
contribution to the increased deviations in the rest-pose after tossing. In Figures 11a and 11b, the
tossing results can be compared for different picking positions in the y-direction. Table 11 and

(a) 2D scatter plot of box’ rest poses. (b) 2D scatter plot of box’ rest poses.

Figure 10: Box rest-poses b w.r.t. the mean, for Gaussian distributed box pick poses, for short (a) and
long (b) range tossing. The color bar is divided into the pick pose deviation in in

(
BoS

)
x
.
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Table 12, show the standard deviation and precision of each rest-pose parameter after tossing with
a picking positions in a range of the y-direction, for the short and long range toss, respectively.
For the short range toss, it seems that the pick pose in y-direction affects the box’ rest-pose after
tossing in the x-direction. However, for the long range toss, this effect is not visible.

Pick Pose Orientation

Finally, the effect of deviations on the picking orientation is analyzed. Figures 12a and 12b depict
the tossing results for the sensitivity study, where the color bar displays the range of the pick-
ing orientation that a particular tossing repetition was tossed with. Table 13 and 14, give the
standard deviation and tossing precision for each range of box picking orientations, for the short
and long range toss, respectively. For both the long and short range tosses, a picking orientation
of φ < 2.62◦ leads to fairly smaller deviations in the box’ rest-pose orientation. An even larger

Table 9: Deviation and precision the tossing results for five ranges of pick pose parameter
(
BoS

)
x
, for the

short range toss. The deviation of the rest-pose is given with a confidence interval of 95%.

Toss Result: Unit: SRx1 SRx2 SRx3 SRx4 SRx5

σxb [mm] 97.2± 40.6 61.7± 23.7 103.8± 38.4 71.6± 26.1 54.6± 31.8
σyb [mm] 38.3± 16.0 30.7± 11.8 50.1± 18.6 39.9± 14.5 51.2± 23.0
σθb [◦] 72.3± 30.2 49.8± 19.1 68.5± 25.4 48.4± 17.6 38.4± 17.3
∆

(
UoB

)
x

[mm] 212.7 141.6 269.7 152.2 132.2

∆
(
UoB

)
y

[mm] 79.5 74.1 176.7 100.3 116.8

∆θ [◦] 237.5 123.6 221.9 135.8 100.7

Table 10: Deviation and precision the tossing results for five ranges of pick pose parameter
(
BoS

)
x
, for

the long range toss. The deviation of the rest-pose is given with a confidence interval of 95%.

Toss Result: Unit: LRx1 LRx2 LRx3 LRx4 LRx5

σxb [mm] 62.0± 25.9 70.9± 27.3 51.4± 19.0 50.1± 18.2 67.2± 30.2
σyb [mm] 32.8± 13.7 48.6± 18.7 31.3± 11.6 44.4± 16.2 52.1± 23.4
σθb [◦] 61.4± 25.7 88.7± 34.1 53.8± 19.9 70.7± 25.7 59.8± 26.9
∆

(
UoB

)
x

[mm] 119.9 211.8 102.4 103.5 166.1

∆
(
UoB

)
y

[mm] 58.2 149.0 68.4 90.4 116.5

∆θ [◦] 179.2 268.4 84.6 262.5 100.4

(a) 2D scatter plot of tossing results. (b) 2D scatter plot of tossing results.

Figure 11: Box rest-poses b w.r.t. the mean, for Gaussian distributed box pick poses, for short (a) and
long (b) range tossing. The color bar is divided into the pick pose deviation in

(
BoS

)
y
.

82 Towards Robot Tossing by Demonstration through Intuitive Telemanipulation



Appendix

deviation in the pick orientation does not clearly affect the box’ rest position.

(a) 2D scatter plot of tossing results. (b) 2D scatter plot of tossing results.

Figure 12: Box rest-poses (or, tossing results) w.r.t. the mean after the short and long range tosses,
for Gaussian distributed box pick poses. The color bar is divided into the pick pose deviation in in φ.

Conclusion on Pick Pose Parameter Analysis

In Appendix J.1, the results indicated the admissible range for the pick pose parameters is equal
to

(
BoS

)
x
= [−6.67, 6.67] mm,

(
BoS

)
x
= [−12.5, 12.5] mm, and φ = [−5, 5] ◦. However, here, we

did not include the effect of each pick pose parameter separately. Based on the results presented
in this appendix, we can decide on a scaling of the pick pose deviations, according to how much
each pick pose parameter affects the outcome of a toss.

From the results of the analysis presented in this appendix, we can not identify a clear effect on

Table 11: Deviation and precision of the tossing results for five ranges of pick pose parameter
(
BoS

)
y
, for

the short range toss. The deviation of the rest-pose is given with a confidence interval of 95%.

Toss Result: Unit: SRy1 SRy2 SRy3 SRy4 SRy5

σxb [mm] 48.6± 18.7 53.1± 23.9 79.1± 79.1 94.0± 32.6 111.2± 48.7
σyb [mm] 41.9± 16.1 37.0± 16.6 53.7± 20.3 41.6± 14.4 30.1± 13.2
σθb [◦] 52.0± 20.0 52.3± 23.5 49.1± 18.5 64.8± 22.5 65.5± 28.7
∆

(
UoB

)
x

[mm] 126.8 152.7 260.3 217.7 244.3

∆
(
UoB

)
y

[mm] 103.7 97.7 178.2 82.6 73.7

∆θ [◦] 123.1 136.2 168.6 237.5 221.9

Table 12: Deviation and precision of the tossing results for five ranges of pick pose parameter
(
BoS

)
y
, for

the long range toss. The deviation of the rest-pose is given with a confidence interval of 95%.

Toss Result: Unit: LRy1 LRy2 SRy3 SRy4 SRy5

σxb [mm] 55.4± 21.3 66.5± 29.9 57.9± 21.8 59.1± 20.5 64.6± 28.3
σyb [mm] 40.5± 15.6 39.0± 17.5 35.0± 13.2 43.2± 15.0 53.2± 23.3
σθb [◦] 47.0± 18.1 58.7± 26.4 56.1± 21.2 84.8± 29.4 84.2± 36.9
∆

(
UoB

)
x

[mm] 127.4 166.7 105.8 128.4 207.7

∆
(
UoB

)
y

[mm] 76.1 93.7 64.8 104.0 149.0

∆θ [◦] 90.6 91.0 90.4 263.6 263.5
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Table 13: Deviation and precision of the tossing results for five ranges of pick pose parameter φ, for the
short range toss. The deviation of the rest-pose is given with a confidence interval of 95%.

Toss Result: Unit: SRφ1 SRφ2 SRφ3 SRφ4 SRφ5

σxb [mm] 78.8± 31.5 63.1± 27.0 76.7± 26.6 78.0± 32.6 101.1± 39.6
σyb [mm] 24.0± 9.6 35.8± 15.3 28.3± 9.8 43.5± 18.2 67.9± 26.6
σθb [◦] 38.4± 15.4 29.1± 12.4 51.8± 17.9 59.5± 24.9 87.2± 34.2
∆

(
UoB

)
x

[mm] 173.2 156.8 239.0 154.0 263.7

∆
(
UoB

)
y

[mm] 55.7 84.9 67.4 96.2 176.8

∆θ [◦] 80.3 51.3 221.9 110.3 251.6

Table 14: Deviation and precision of the tossing results for five ranges of pick pose parameter φ, for the
long range toss. The deviation of the rest-pose is given with a confidence interval of 95%.

Toss Result: Unit: LRφ1 LRφ2 LRφ3 LRφ4 LRφ5

σxb [mm] 58.0± 23.2 56.4± 24.1 71.3± 24.7 51.9± 21.7 56.2± 22.0
σyb [mm] 34.5± 13.8 34.6± 14.8 50.3± 17.4 46.6± 19.5 39.8± 15.6
σθb [◦] 47.3± 18.9 55.4± 23.7 85.4± 29.6 80.5± 33.6 58.7± 23.0
∆

(
UoB

)
x

[mm] 162.6 104.0 206.3 93.0 119.2

∆
(
UoB

)
y

[mm] 66.4 61.3 154.2 115.3 90.9

∆θ [◦] 83.4 90.4 261.5 264.3 179.4

the tossing outcomes that is related to the pick position
(
BoS

)
x
and

(
BoS

)
y
. In the analysis

of how the pick orientation φ affects the tossing outcomes. However, we observe that for the
short range tosses, the outliers in the box’ rest-poses were all picked with a large deviation in
the pick-orientation φ. In the long range tossing outcomes, this relation is not clearly visible. To
confirm if the chosen precision in the pick-orientation, indeed affects box’ rest-poses more than the
pick-position, there are more experiments required. Since the effect is already clearly visible for
the short range tosses, we think that a more appropriate scaling must be chosen between the pick
positions and orientations in the pick pose samples. If more sensitivity experiments are performed,
we advise to increase the precision in pick orientation, and we think that the precision of the pick
position can be relaxed. To this end, we propose that in a new set of experiments, the admissible
range for the pick pose parameters is chosen to be

(
BoS

)
x
= [−10, 10] mm,

(
BoS

)
x
= [−15, 15]

mm, and φ = [−2.5, 2.5] ◦.

To determine the effect of each separate parameter, it might be useful to perform experiments
in which each parameter is deviated independently. In this case, however, it must be taken into
account that the independent effect of deviations in the pick parameters does not certainly have
the same effect on the tossing results as when the pick parameters are combined.
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