365 research outputs found

    Towards effective modeling and programming multi-core tiled reconfigurable architectures

    Get PDF
    For a generic flexible efficient array antenna receiver platform a hierarchical reconfigurable tiled architecture has been proposed. The architecture provides a flexible reconfigurable solution, but partitioning, mapping, modeling and programming such systems remains an issue. We will advocate a model-based design approach and propose a single semantic (programming) model for representing the specification, design and implementation. This approach tackles these problems at a higher conceptual level, thereby exploiting the inherent composability and parallelism available in the formalism. A case study illustrates the use of the semantic model with examples from analogue/digital co-design and hardware/software co-design

    Type-driven automated program transformations and cost modelling for optimising streaming programs on FPGAs

    Get PDF
    In this paper we present a novel approach to program optimisation based on compiler-based type-driven program transformations and a fast and accurate cost/performance model for the target architecture. We target streaming programs for the problem domain of scientific computing, such as numerical weather prediction. We present our theoretical framework for type-driven program transformation, our target high-level language and intermediate representation languages and the cost model and demonstrate the effectiveness of our approach by comparison with a commercial toolchain

    Analysis and identification of possible automation approaches for embedded systems design flows

    Get PDF
    Sophisticated and high performance embedded systems are present in an increasing number of application domains. In this context, formal-based design methods have been studied to make the development process robust and scalable. Models of computation (MoC) allows the modeling of an application at a high abstraction level by using a formal base. This enables analysis before the application moves to the implementation phase. Different tools and frameworks supporting MoCs have been developed. Some of them can simulate the models and also verify their functionality and feasibility before the next design steps. In view of this, we present a novel method for analysis and identification of possible automation approaches applicable to embedded systems design flow supported by formal models of computation. A comprehensive case study shows the potential and applicability of our method11212

    Revisiting Actor Programming in C++

    Full text link
    The actor model of computation has gained significant popularity over the last decade. Its high level of abstraction makes it appealing for concurrent applications in parallel and distributed systems. However, designing a real-world actor framework that subsumes full scalability, strong reliability, and high resource efficiency requires many conceptual and algorithmic additives to the original model. In this paper, we report on designing and building CAF, the "C++ Actor Framework". CAF targets at providing a concurrent and distributed native environment for scaling up to very large, high-performance applications, and equally well down to small constrained systems. We present the key specifications and design concepts---in particular a message-transparent architecture, type-safe message interfaces, and pattern matching facilities---that make native actors a viable approach for many robust, elastic, and highly distributed developments. We demonstrate the feasibility of CAF in three scenarios: first for elastic, upscaling environments, second for including heterogeneous hardware like GPGPUs, and third for distributed runtime systems. Extensive performance evaluations indicate ideal runtime behaviour for up to 64 cores at very low memory footprint, or in the presence of GPUs. In these tests, CAF continuously outperforms the competing actor environments Erlang, Charm++, SalsaLite, Scala, ActorFoundry, and even the OpenMPI.Comment: 33 page

    Coordination of Dynamic Software Components with JavaBIP

    Get PDF
    JavaBIP allows the coordination of software components by clearly separating the functional and coordination aspects of the system behavior. JavaBIP implements the principles of the BIP component framework rooted in rigorous operational semantics. Recent work both on BIP and JavaBIP allows the coordination of static components defined prior to system deployment, i.e., the architecture of the coordinated system is fixed in terms of its component instances. Nevertheless, modern systems, often make use of components that can register and deregister dynamically during system execution. In this paper, we present an extension of JavaBIP that can handle this type of dynamicity. We use first-order interaction logic to define synchronization constraints based on component types. Additionally, we use directed graphs with edge coloring to model dependencies among components that determine the validity of an online system. We present the software architecture of our implementation, provide and discuss performance evaluation results.Comment: Technical report that accompanies the paper accepted at the 14th International Conference on Formal Aspects of Component Softwar

    Bridging MoCs in SystemC specifications of heterogeneous systems

    Get PDF
    In order to get an efficient specification and simulation of a heterogeneous system, the choice of an appropriate model of computation (MoC) for each system part is essential. The choice depends on the design domain (e.g., analogue or digital), and the suitable abstraction level used to specify and analyse the aspects considered to be important in each system part. In practice, MoC choice is implicitly made by selecting a suitable language and a simulation tool for each system part. This approach requires the connection of different languages and simulation tools when the specification and simulation of the system are considered as a whole. SystemC is able to support a more unified specification methodology and simulation environment for heterogeneous system, since it is extensible by libraries that support additional MoCs. A major requisite of these libraries is to provide means to connect system parts which are specified using different MoCs. However, these connection means usually do not provide enough flexibility to select and tune the right conversion semantic in amixed-level specification, simulation, and refinement process. In this article, converter channels, a flexible approach for MoC connection within a SystemC environment consisting of three extensions, namely, SystemC-AMS, HetSC, and OSSS+R, are presented.This work is supported by the FP6-2005-IST-5 European project

    An empirical evaluation of High-Level Synthesis languages and tools for database acceleration

    Get PDF
    High Level Synthesis (HLS) languages and tools are emerging as the most promising technique to make FPGAs more accessible to software developers. Nevertheless, picking the most suitable HLS for a certain class of algorithms depends on requirements such as area and throughput, as well as on programmer experience. In this paper, we explore the different trade-offs present when using a representative set of HLS tools in the context of Database Management Systems (DBMS) acceleration. More specifically, we conduct an empirical analysis of four representative frameworks (Bluespec SystemVerilog, Altera OpenCL, LegUp and Chisel) that we utilize to accelerate commonly-used database algorithms such as sorting, the median operator, and hash joins. Through our implementation experience and empirical results for database acceleration, we conclude that the selection of the most suitable HLS depends on a set of orthogonal characteristics, which we highlight for each HLS framework.Peer ReviewedPostprint (author’s final draft
    • …
    corecore