
Hindawi Publishing Corporation
EURASIP Journal on Embedded Systems
Volume 2008, Article ID 738136, 16 pages
doi:10.1155/2008/738136

Research Article
Bridging MoCs in SystemC Specifications of
Heterogeneous Systems

Markus Damm,1 Jan Haase,1 Christoph Grimm,1 Fernando Herrera,2 and Eugenio Villar2

1 Institute of Computer Technology, Vienna University of Technology, 1040 Vienna, Austria
2 Microelectronics Engineering Group, TEISA Department, University of Cantabria, 39005 Santander, Spain

Correspondence should be addressed to Jan Haase, haase@ict.tuwien.ac.at

Received 15 October 2007; Revised 21 February 2008; Accepted 14 May 2008

Recommended by Sandeep Shukla

In order to get an efficient specification and simulation of a heterogeneous system, the choice of an appropriate model of
computation (MoC) for each system part is essential. The choice depends on the design domain (e.g., analogue or digital), and
the suitable abstraction level used to specify and analyse the aspects considered to be important in each system part. In practice,
MoC choice is implicitly made by selecting a suitable language and a simulation tool for each system part. This approach requires
the connection of different languages and simulation tools when the specification and simulation of the system are considered
as a whole. SystemC is able to support a more unified specification methodology and simulation environment for heterogeneous
system, since it is extensible by libraries that support additional MoCs. A major requisite of these libraries is to provide means to
connect system parts which are specified using different MoCs. However, these connection means usually do not provide enough
flexibility to select and tune the right conversion semantic in a mixed-level specification, simulation, and refinement process. In this
article, converter channels, a flexible approach for MoC connection within a SystemC environment consisting of three extensions,
namely, SystemC-AMS, HetSC, and OSSS+R, are presented.

Copyright © 2008 Markus Damm et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

Today’s embedded systems mostly consist of digital hard-
ware, analogue hardware and software, a circumstance
often referred to as being heterogeneous. The description
and simulation of such systems are usually associated to
different teams with an expertise in a specific domain (e.g.,
signal processing, analogue hardware, digital hardware and
software). Each team selects the most suitable language and
simulation tool for its domain. For instance, digital hardware
is described with an HDL and simulated with a cycle-based
simulator, while an analogue part is described as a transistor-
level schematic and simulated with solver-based tools.

The role of a system engineer in such a distributed work
flow is to conceive the specification of the whole system and
deliver it to domain specific teams. Often, the specification
is a text, that is, written in English, while at other times, it
is an abstract model written in a high-level programming
language, such as C.

This approach has several drawbacks, where the major
one is the late coupling of the different system parts. Speci-

fication flaws with respect to the overall system are detected
quite late (after the development phase, instead of detecting
them after the specification phase). In addition, the use of
different languages results in additional difficulties. First, it
involves the cumbersome task of coupling simulators, which
mostly involves ad hoc solutions for respective simulator
pairs. Moreover, it makes the overall system description more
difficult to understand. Even if the different languages used
have a similar syntax, they sometimes present subtle, but
important semantical differences. For instance, the “signal”
concept is employed in different metamodels, in RTOS
interprocess communications, in the Esterel synchronous
language and in VHDL, and is used for the communication
of concurrent computations. However, the respective seman-
tics of the “signal” happen to be very different. Thus, it is
important to ensure that the system designer is able to deliver
an unambiguous specification, where the meaning of each
part is clear for all the agents involved in the design.

An alternative is to provide the system engineer with a
methodology to produce an executable system-level specifi-
cation whose constructs are expressive, general, and specific

mailto:haase@ict.tuwien.ac.at

2 EURASIP Journal on Embedded Systems

B
u

s
ad

ap
te

r

HW/SW system

rf
Carrier

Low pass
filter

ADC

Clock recovery

Sample
points

Memory

DSP
processes

Memory

CPU

Figure 1: Example for an embedded analog/mixed-signal architecture: SW defined radio.

enough to be accepted and understandable by the different
design communities. An executable specification enables a
simulation-based process to discover specification flaws and
validate the specification before implementing further design
steps. A key point for such a methodology is to base it on
a language which establishes a common and unambiguous
basis in syntactical and semantical terms for specification and
simulation tasks. At the same time, the design methodology
must support gradual refinement of different parts of the
specification. The effect of such refinement steps must be
checkable globally, that is, within the framework of the whole
system. As it will be seen later, this is related to the support
of mixed-level simulation.

SystemC [1] is a system modelling language which is
widely accepted and has features to become a common basis
for system-level specification and simulation of embedded
systems. SystemC is a C++ class library for system modelling
and simulation with a discrete event (DE) simulation
kernel. SystemC provides additional specification facilities
to model time, concurrency, hierarchical partitioning, and
hardware constructs like clocks and signal channels. In
addition, the language provides facilities for extensibility.
This has been recently exploited by several methodologies,
based on extension libraries, like SystemC-AMS [2] and
HetSC [3]. These libraries support additional MoCs in
SystemC, which provide a system-level support for different
application domains in a single system-level specification of
a heterogeneous system.

Using these libraries enables, for instance, a faster
simulation of analogue hardware and signal processing parts
and a safer development of concurrent embedded software.
Other SystemC extensions, like transaction-level modelling
(TLM) [4], are focusing on the application of MoC concepts
to support early and fast hardware platform modelling.

Figure 1 shows a software-defined radio (SDR) system
as an example of an embedded mixed-signal application.
Such a system samples the radio frequency input with a large
sampling frequency. The signal demodulation then can be
carried out by the digital hardware part with software.

The modelling and simulation of such a system give rise
to using a number of different MoCs. Obviously, there is
an analogue part to the left of the A/D converter (ADC),
and a digital part, namely, the hardware/software (HW/SW)
system. But the choice of MoCs for modelling within these
two domains might depend on simulation requirements or
the abstraction level of the different system parts. For exam-

ple, the analogue part may be modelled with a signal flow-
oriented MoC (like the SystemC-AMS-timed synchronous
dataflow (T-SDF) MoC [5]), while the functionality of the
whole HW/SW system may be modelled using the Kahn
process network (KPN) MoC first, abstracting its structure
as indicated in Figure 1.

Later refinement steps might require an electrical net-
work model for the low-pass filter, while for the HW/SW
system, a structural model is provided with the bus com-
munication abstracted using TLM concepts. A subsequent
refinement step then uses a clocked synchronous model
for bus communication, while the digital DSP part may
be modelled using the T-SDF MoC for simulation speed
purposes. This example indicates that the usage of various
MoCs in modern system design is natural, and indeed
inevitable if a profound theoretical basis is desired. This, in
turn, implies the need for conversion means between system
parts being modelled using different MoCs. These conversion
means should be easy to handle.

1.1. MoC-conversion

While SystemC extensions enable the designer to model
and simulate heterogeneous systems with custom MoCs for
distinct system parts, their usage also requires conversion
means between system parts modelled using different MoCs.
These conversion means have to adapt time, communication,
and computation domains of the respective system parts,
with time adaptation being of capital importance. By abuse
of language, we will refer to this conversion process as MoC-
conversion, in accordance with [6], although one might argue
that terms like MoC-bridging or MoC-composition are more
appropriate.

In some cases, the required conversion is natural and
explicit, for example, when considering a system consisting
of digital and analogue hardwares. Such a system will contain
A/D- and/or D/A-converters from the specification level
down to the implementation level. Concepts like mixed-level
simulation [7] give rise to more artificial MoC conversion
problems. The idea of mixed-level simulation is to simulate
systems such that different parts are specified at different
levels of abstraction. The benefit of this approach is the
combination of the speed of the system-level simulation
with the accuracy of simulation on more detailed levels. The
drawback is that every time a system part is refined to a
lower abstraction level, the respective MoC will often change

Markus Damm et al. 3

too, while the other parts remain at a higher abstraction
level with their MoC unchanged. Therefore, MoC converters
are needed here for the sole purpose of modelling and
simulation.

MoC converters are usually “static” in the sense that they
perform a single adaptation, for example, MoC1→MoC2.
For example, SystemC-AMS provides converter ports to
connect T-SDF-modules to discrete event signals. However,
the support provided by these static converters can be
improved to speed up refinement steps and design space
exploration. Each refinement step in a mixed-level design
approach may involve a different static MoC converter. This
can require a systematic, error-prone, and time-consuming
replacement of such static converters.

This article presents an approach to automate the usage
of MoC (and also data type) conversion with a SystemC
channel called converter channel. Converter channels detect
the MoCs of the system parts they are connected to via
the interface types of the respective ports, and provide
automatically the conversion means needed. If the conver-
sion semantic is not obvious, options are provided for the
designer to steer the behaviour of the converter channel
in certain cases. Moreover, since the conversion is hidden
within the channel, it does not interfere with the reuse of
partial design blocks.

The rest of the article is organized as follows: Section 2
gives an overview of the related work. Section 3 introduces
the two SystemC libraries which the converter channels are
based on, namely, HetSC and SystemC-AMS. In Section 4,
we show how a converter channel is used. Section 5 treats
the internal structure of converter channels, and gives details
on how two specific MoC conversion cases are handled. In
Section 6, we give an application example. We conclude in
Section 7.

2. RELATED WORK

This article focusses on the improvement of MoC connec-
tions, a key issue in heterogeneous specification. The work
done on heterogeneous specification will be reviewed in the
following sections. It will situate this work and will also show
its basis.

2.1. Metamodels

Metamodels are an important part of the theoretical study
of MoCs. They provide general and formal ways to study
and compare different MoCs. This is key to understand the
properties of each MoC, as well as the interactions which
arise when two or more MoCs are combined in the same
specification.

In [8], any concurrent specification is abstracted as a
set of processes connected by means of signals. A signal is
understood as a set of events, while an event is a value-tag
pair. Neither an order relationship is assumed among the
events (although it can be established as a function of the
event tags), nor is there any additional implication in terms
of communication semantic. Finally, a process is defined as a
relationship among input and output signals of the process.

This view of a process is quite different from that of a process
being a sequence of statements able to change a set of state
variables related to it.

ForSyDe (formal system design) [9] is a metamodel also
based on process, signal, and event concepts. However, it
presents slight differences with respect to the metamodel
in [8]. A signal is a sequence of events, where an event is
just a value. Despite there is no tag associated to a ForSyDe
event, the definition of a signal as a sequence provides a
notion of strict order among the events belonging to it.
In addition, ForSyDe defines three types of events, which
provide the capability to represent untimed, synchronous,
and timed models. A major difference to [8] is that a ForSyDe
process is defined in an introspective way, by means of
process constructors, which take as input the functions which
relate the input and output signals. A strength of ForSyDe
is a set of transformation rules, which enable a safe formal
procedure for the MoC refinement process involved in the
design process, when the specification is refined into the
implementation.

Although metamodels provide a formal basis for a
heterogeneous specification methodology, a metamodel is
not a methodology itself. ForSyDe, however, is also based on
a Haskell library [10], such that ForSyDe models can actually
be implemented and simulated. A handicap is that Haskell is
not quite extended among the design community.

There are several approaches to provide heterogeneous
specification methodologies. Two main approaches can
be distinguished. On one hand, the extension of hard-
ware description languages (HDLs), mainly for analogue
extensions, on the other hand, the extension of high-level
languages like UML, Java, or C++. These proposals will be
reviewed in the following sections.

2.2. Extension of HDLs: Verilog-AMS and VHDL-AMS

The mixed signal hardware description language Verilog-
AMS [11] incorporates two different MoCs for simulating
analogue and digital hardware, respectively. While digital
simulation is handled by a DE simulation kernel, a dif-
ferential equation kernel is engaged with the simulation
in the analogue domain. Disciplines can be defined to
be associated to these domains, for example, an analogue
discipline for electrical signals or digital disciplines for binary
or multivalued logic. To connect modules belonging to
different disciplines, Verilog-AMS provides the features of
connect modules and connect modes [12]. Connect modules
must be implemented by the designer and define the
interaction between modules of different disciplines. Apart
from signal conversion, connect modules can also model
subtle behaviour like the influence of a capacitor to the delay
of a digital signal. With connect modes, the designer steers
the automatic insertion of these connect modules.

The VHDL-AMS language [13] is an extension of the
IEEE 1076 (VHDL) standard that supports description and
simulation of analogue, digital, and mixed-signal circuits
and systems. A basic principle is not to rely on a specific
algorithm, but on a mathematical foundation to solve the
implicit or explicit differential algebraic equations (DAE)

4 EURASIP Journal on Embedded Systems

which describe the analogue part of the system specification.
Models must not depend on the time steps taken by the
analogue solver. VHDL-AMS adds two new object types
to VHDL: the quantity and the terminal. Both can either
be a local or an interface object, and they are used in
conjunction with basic VHDL primitives, like entity and
architecture. Specifically, input and output ports can be
declared either as terminals or as quantities. Quantities are
floating point scalars, which are the unknowns of the DAEs
solved by VHDL-AMS. Quantity associations create a signal
flow model. Terminal associations of the same nature can
be used to create an analogue net list. A nature restricts
the association of terminals to those of the same nature. A
nature also relates across aspects, which are quantities which
represent effort like effects (voltage, pressure, etc.), with
through aspects, which represent flow-like effects (current,
fluid flow rate, etc.). An example of nature is the electrical
nature, which relates voltage quantity with current quantity.
These basic elements let the user specify implicit DAEs. A
set of explicit concurrent statements enables the specification
of explicit DAEs. Among them, the simultaneous procedural
statement allows the formulation of the DAE as inline
sequential code.

Analogue extensions of HDLs provide support for the
specification of mixed signal systems, combining digital, and
analogue domains. However, they lack support for more
abstract MoCs, and are able to consider abstract models
in the early design phases and for embedded software,
an important part of embedded systems. We now review
specification frameworks based on extensions of high-level
languages, which cover these deficiencies better.

2.3. Extensions of high-level languages

The lack of a unified system specification language is one
of the main obstacles bedevilling SoC designers [14]. A
common specification language is a major aid in gener-
ating a heterogeneous specification methodology. It states
a common and unambiguous syntax and semantic for
the specification facilities. This improves the understanding
between the different design areas and enables exchanging
the unambiguous models, independent of the tools used by
each part for graphical capture, verification, performance
analysis, synthesis, that is. Therefore, extensions of program-
ming languages like UML, Java, or C++ have been proposed
for system modelling and simulation.

2.3.1. Ptolemy II

Ptolemy II [15] (the latest evolution of the Ptolemy project)
is one of the first and most important approaches to provide
a unified framework for the specification and simulation of
heterogeneous systems. A Ptolemy specification consists of a
set of components called actors. Actors communicate among
them by means of ports. Actors can be either composed
out of a set of other actors or primitive. In the latter,
the actor has a specific functionality described in Java.
The Java functionality is distributed in a set of internal
methods (initialise, prefire, fire, postfire, etc.), which are

callbacks that execute functional code and perform read
and write accesses to the actor ports at different times of
the simulation. These callbacks are governed by a Ptolemy
director. A director is associated to an actor and defines
its domain, that is, the MoC. The callback structure and a
graphical capture environment called Vergil provides a kind
of common specification framework to Ptolemy, while Java
has more an implementation role.

Heterogeneity is handled through hierarchisation, in the
sense that actors on the same hierarchy level obey the same
director, thus the same MoC. Each specification instantiates
its own hierarchy of directors, which coordinates actor
executions. This helps MoC connection, since the order and
time position in which each token is transferred across the
domains is explicitly controlled by the directors’ hierarchy.
Because of this, in general, no special MoC interface
infrastructure to connect actors of different domains is
necessary, apart from port communication. In addition,
Ptolemy introduces the ModalModel for models which let
specify different modes of operation for a model under any
of the supported MoCs. By means of a discrete FSM, the
different mode transitions which the model can traverse is
specified. Each mode has a refinement, under the specific
model embedded in this mode FSM. Then, Hibrid Systems
embed continuous time models in a mode FSM. In any case,
Ptolemy provides a hierarchical approach to heterogeneity.

2.3.2. SysML

SysML (systems modelling language) [16] is a domain-
specific modelling language for system engineering appli-
cations. It supports the specification of systems which may
include hardware, software, information, processes, person-
nel, and facilities. The main idea is that UML is well suited for
software modelling, but too comprehensive and imprecise
for domain-specific applications which require nonsoftware
components. Therefore, SysML is constituted as a profile
which reuses a subset of UML 2.0. At the same time, SysML
also extends UML 2.0 providing diagrams for the capture of
requirements and parametric constraints. These capabilities
enable requirements engineering and performance analysis,
two major activities in system design.

SysML was originally developed as an open source
specification project. In 2005, the OMG (bject management
group) derived the OMG SysML [17], which is defined as
SysML, highlighting it as a graphical language. Graphical
capabilities of SysML for the specification capture are
endorsed by a wide set of modelling tools supporting UML
2.x and the SysML profile. Thus, SysML provides a common,
rich, and graphical method to model systems under specific
design domains. However, SysML, as other UML profiles
must rely on an implementation language to be executable
or simulatable. For instance, in [18], SysML is used for
the specification of analogue systems. That is, SysML is
used to model the dynamics of continuous systems by
means of DAEs. However, since UML lacks analogue solvers,
the solution adopted is to translate SysML constructs to
Modelica language constructs.

Markus Damm et al. 5

2.3.3. Metropolis

Metropolis [19] is a specification methodology which is
(like Ptolemy) based on Java. It also targets simulation,
verification, and synthesis (mainly of software). Metropolis
supports heterogeneity in two levels. In the lower level, it
defines a metamodel language which provides a class-based
infrastructure. The classes have a well-defined semantic, but
are general enough to support existing MoCs and new ones
layered in an upper level.

In Metropolis, there are basic specification elements, like
the process, the port, and the interface, which are similar
to other specification methodologies like SystemC. Processes
are atomic computation elements, defined as sequences of
events mapped to threads. The port is the unique mean of
a process to communicate with other processes. Interfaces
are a set of communication methods. Other specification
facilities, for example, media, quantity manager, and state
media, are specific of Metropolis. Media are the primitives for
communicating processes. They connect processes through
ports. Quantity managers fix constraints whether processes
must be scheduled. Quantity managers communicate among
themselves by means of state media. The metamodelling
character of the lower level of Metropolis is confirmed by
the ability to combine executive parts with declarative parts.
Declarative parts enable the specification of nonfunctional
constraints.

Metropolis is able to support heterogeneous design
building specific models over a general framework. This
is mainly achieved by means of the different implementa-
tions of media, whose semantic mostly defines the MoCs
employed. This is a major distinction with respect to
Ptolemy, where MoC semantic mostly relies on the director
class and where actors connections play a more secondary
role. Strengths of Metropolis are its high expressivity and its
formal framework, which enables the connection of synthesis
and verification tools.

Regarding MoC connection, the Metropolis metamodel
defines a core element called adapter or wrapper. It is
modelled as a process in charge of adapting the process
which contains the actual functionality to the medium this
functional process is connected to. This adaptor determines
the firing condition of the functional process and the inter-
action with the connected media. Therefore, when processes
are refined and different MoC connections are involved,
this requires only changing the adapter (the functional
processes are not affected). In addition, Quantity managers
can somehow be employed to control the execution semantic
of the different components of the specification, thus to
ensure a coherent coordination of their simulation, as it is
done in Ptolemy by means of directors.

2.4. SystemC extensions for
heterogeneous specification

Several reasons lead research community to propose C++
based extensions for heterogeneous system-level specifica-
tion, which make use of the object-orientated features of
C++. Executable specifications using such extensions are

compilable and do not rely on a virtual machine, which can
lower the simulation performance, a key aspect in system-
level design activities. In addition, C++ syntax is familiar to
many embedded system and HDL designers.

Talking about C++ extensions for system-level specifi-
cations has become almost synonymous to talking about
SystemC extensions. SystemC is an IEEE standard lan-
guage that has started to play a role as unifying system-
level language for embedded system design. The SystemC
language reference manual [20] states a syntax and an
unambiguous semantic for the language constructs, which is
a strong basis for SystemC-based methodologies supporting
heterogeneous specification.

2.4.1. SystemC-H

SystemC-H [21] is a methodology that proposes a general
extension of the SystemC kernel for the support of different
MoCs. The extension would include a solver for each
supported MoC. The current scope of the SystemC-H library
covers the SDF and communicating sequential processes
(CSPs) untimed MoCs. For instance, SystemC-H provides
a solver for static scheduling of SDF graphs which enables
schedulability analysis and provides a 75% speedup with
respect to the DE MoC [21]. Another result of this work is
that the addition of a specific solver is not always worthwhile,
since the simulation speedup for some abstract MoCs can be
negligible [22]. In addition, similar speedups were reported
for the dynamic approach to SDF for large-grain SDF
specifications [3]. Finally, the combination of MoCs, can
also spoil the speedup gained by using a specific MoC. For
instance, the speedup decreases to 13% for a mixed DE-SDF
example [21]. A major drawback of SystemC-H is that it is
implemented by modifying the SystemC standard library.

2.4.2. Analogue extensions of SystemC

SystemC-A [23] proposes a general approach to provide
analogue extensions in SystemC which is able to handle
a wide range of nonlinear dynamic systems. SystemC-A is
a superset of SystemC which provides support for several
abstraction levels, with a special focus on a higher abstraction
level. However, it also supports circuit-level descriptions.
SystemC-A proposes a general-purpose analogue solver cou-
pled with the DE kernel of SystemC by means of pessimistic
(lock-step) synchronisation. However, this synchronisation
requires the modification of the SystemC kernel.

The SystemC-WMS [24] library provides basic electronic
components and blocks for analogue macromodelling, such
that the specification of analogue models can combine parts
at low- and high-abstraction levels. Analogue blocks can
communicate by exchanging energy waves using wavechan-
nel interfaces. Thus the methodology enables the definition
of a standard analogue interface. In [24], it is also claimed
that SystemC-WMS can support simple types of nonlinear
DAEs.

HetSC and SystemC-AMS are proposals for extending
SystemC for heterogeneous specification which are directly

6 EURASIP Journal on Embedded Systems

involved in our work. They will be reviewed in detail in the
following chapter.

3. HetSC AND SystemC-AMS

The task of using HetSC together with SystemC-AMS for
system modelling and simulation came up due to the project
ANDRES (ANalysis and Design of runtime REconfigurable
heterogeneous Systems [25]). ANDRES explores design
methodologies for heterogeneous systems which are able
to adapt themselves during runtime to changing user
requirements as well as varying environmental constraints.
The project encompasses the development of

(i) a theoretical framework for the specification of such
adaptive heterogeneous systems (AHESs);

(ii) a SystemC-based modelling framework where the
different domains are represented by specific MoCs;

(iii) means to automatically synthesise the components
and interfaces of AHES regarding the digital hard-
ware and the software.

The work presented here is an integral part of ANDRES.
While the key concern of ANDRES is the consideration of
adaptivity in all the domains involved, it is obvious that the
integration of the MoCs and methodologies involved in the
project is essential. The SystemC extensions used are the
following.

(i) SystemC-AMS [2] targets modelling and simulation
of analogue and signal processing systems. It provides
the MoCs (timed) SDF and continuous time (with
respect to linear electrical networks (CT-NET)).

(ii) HetSC [3] is intended to model systems using
different MoCs (e.g., Kahn process networks (KPN)
and synchronous reactive (SR) systems), and also
provides an entry point for software synthesis.

(iii) OSSS+R [26] is a library for object-oriented mod-
elling of run-time reconfigurable hardware, which
will provide direct hardware synthesis capabilities
targeting dynamically reconfigurable FPGAs.

The difficulty lies in getting the three libraries to work
together with respect to the different MoCs involved. Since
the modules in OSSS+R are basically clocked synchronous,
which is a MoC provided by SystemC directly via its discrete
event (DE) kernel, this is a challenge which mainly concerns
HetSC and SystemC-AMS.

3.1. HetSC

HetSC [3] is a methodology for enabling heterogeneous
specifications of complex embedded systems in SystemC.
MoCs supported include untimed MoCs, such as KPN, its
bounded FIFO version bounded Kahn process networks
(BKPNs), communicating sequential processes (CSPs), and
synchronous dataflow (SDF). Synchronous MoCs, such as
synchronous reactive (SR), clocked synchronous (CS), and

Untimed Synchronous

SDF
(dynamic)

Other
MoCs

KPN
BKPN
CSP

· · ·

SR
CS

RTL
beh.

DE kernel (SystemC 2.X)

Figure 2: HetSC MoCs over the DE strict-time kernel of SystemC.

the timed MoCs already supported in SystemC are also
included (see Figure 2). HetSC aims at a complete system-
level HW/SW codesign flow. Indeed, the methodology has
been used together with other system-level profiling and
software generation methodologies [27].

The HetSC methodology defines a set of specification
rules and coding guidelines for each specific MoC, which
makes the designer task more systematic. The support of
some specific MoCs requires new specification facilities
providing the specific semantic content and abstraction level
required by the corresponding MoCs. The HetSC library,
associated with the HetSC methodology, provides this set
of facilities to cover the deficiencies of the SystemC core
language for heterogeneous specification. In addition, some
facilities of the HetSC library help to detect and locate
MoC rule violations and assist the debugging of concurrent
specifications. One of the main contributions of HetSC is
the efficient support of abstract MoCs (untimed and syn-
chronous). This is because they are directly supported over
the underlying discrete event (DE) strict-time simulation
kernel of SystemC. New abstract MoCs do not require
additional solvers since the new MoC semantic is embedded
in the implementation of the new specification facilities
(usually channels) related to the abstract MoC. In [3], a
simulation speedup similar to that of kernel extension was
reported for large grain specifications. It was argued too that
once analogue parts are connected to the model, usually
more critical in terms of simulation time, the consideration
of Amdahl’s law, can make almost undistinguishable the
differences between the speedups got by the different imple-
mentations of abstract MoCs, independently on whether
such implementations extends the kernel, like in [21], or
to the contrary, it is layered over the strict-time DE kernel
of SystemC, like HetSC does. HetSC provides the strategical
advantage of not requiring the modification of the standard
SystemC kernel, since the new features are provided by the
HetSC library, what makes it a more decoupled approach.

3.2. SystemC-AMS

SystemC-AMS [2] is a specification methodology devel-
oped by the open SystemC Initiative (OSCI) SystemC-AMS
working group. The main goal is to extend the HW/SW-
oriented SystemC towards a framework that supports

Markus Damm et al. 7

De modeling
SC METHOD
SC THREAD
sc signal< · · · >
· · ·

Synchronization layer

Other views

Other solvers

(Linear)
networks

(Linear)
DAEs

(Linear) DAE
solver

T-SDF

T-SDF
solver

DE kernel (SystemC 2.X)

Figure 3: SystemC-AMS layers over the strict time DE kernel of
SystemC.

functional modelling, architecture exploration, system inte-
gration, verification and virtual prototyping of embedded
Aanalogue/mixed-signal (E-AMS) systems. The most impor-
tant MoCs (in addition to the DE-MoC) required for this
purpose are

(a) continuous time electrical networks (CT-NET);

(b) continuous time differential equations/transfer func-
tions (CT);

(c) timed synchronous data flow (T-SDF).

Due to the interaction between the SDF and the other
timed MoCs, SystemC-AMS attaches time semantics to SDF
by settings fixed time steps to SDF cluster execution times.
We therefore refer to the SystemC-AMS SDF MoC as “timed
SDF” (T-SDF). For modelling asynchronous systems, time
steps can also be triggered by events.

A major challenge is gaining sufficient simulation
performance while accurately modelling the architecture’s
behaviour at the same time. At least for electrical networks,
no mature and dependable approaches are available that
allow us to stay in the SystemC 2.2 framework without
kernel extensions. Simulation of electrical networks requires
a structural analysis, setup of equation systems, and numer-
ical methods for solving them. For T-SDF, measurements
indicate that the use of extended kernel capabilities provides
a factor 4 speedup for DSP functions frequently found in
E-AMS such as FIR filters [28]. Therefore, SystemC-AMS
provides kernel extensions for CT-NET, CT, and also T-SDF
simulation.

The benefit of using T-SDF regarding simulation speed
is twofold. Since it is SDF, it is possible to compute a static
schedule for the T-SDF processes before the simulation starts
(like in the current SystemC-AMS prototype), such that the
scheduling overhead during the simulation is minimised.
Additionally, using large data rates leads to schedules where
certain processes might be computed repeatedly in a row,
such that the number of context switches reduces also.

To synchronise the kernel extensions with the SystemC
DE-kernel, SystemC-AMS uses T-SDF with discrete time
steps and/or controlled time steps. This has the advantage
that all modules are executed in signal flow’s direction.
Partitions of a model, simulated by one kernel extension, are
encapsulated in a SDF module. The partition communicates

with other components that use other kernel extensions
only via directed (T-SDF) signals. For convenience, however,
electrical networks can also interface DE directly.

The implementation of SystemC-AMS is organised in
three layers. The top layer (view layer) includes the classes
visible directly by a designer, and is used directly for
specifying models. It provides, for example, an SDF-module
class together with SDF-signals and port. The middle solver
layer has kernel extensions that are used by the view layer.
To couple different solvers, SDF with constant time and with
user defined synchronisation events is used in the solver layer.
Figure 3 shows the overall organisation of the SystemC-AMS
extensions.

3.3. Connecting HetSC and SystemC-AMS

In [29] the connection of SystemC-AMS and HetSC was
explored. It was shown, that both methodologies can collab-
orate to support a wide spectrum of MoCs. Moreover, the
collaboration of these methodologies provides an efficient
balance between MoCs directly supported over the DE strict-
time kernel, and MoCs relying on additional synchronisation
and solver layers. The idea is that specific solvers are provided
only for a set of MoCs where the simulation speed up is
significant. In this approach, this set corresponds to analogue
MoCs where the simulation speed ups can be of several
orders of magnitude, while untimed and synchronous MoCs
can be satisfactorily supported directly over the SystemC
kernel. The exception would be fine grain SDF specifications,
where the speed up of a static SDF compared to a dynamic
SDF could be significant. Thus, in these cases, the static
scheduling provided by the T-SDF solver of SystemC-AMS
should be favoured.

In [29] the ways in which HetSC and SystemC-AMS
enable MoC connection was also explored. HetSC provides
the concept of border processes and border channels for the
connection of the various MoCs. In this way, common
SystemC elements are employed in MoC interfaces. Border
processes are similar to Metropolis adapters in that it
requires from the user to explicitly write the adaptation
code. In contrast, border channels hide this adaptation code.
Border channels make a syntactical adaptation. For instance,
on one side they can offer a FIFO like interface, while
on the other side, they offer a rendezvous-like interface.
Moreover, border channels can also adapt different semantics
of connected MoCs. HetSC border channels mainly focus on
the adaptations performed in the time domain. SystemC-
AMS also provides similar ways for MoC connection. It
provides converter ports and facilities to enable communi-
cation between different MoCs (i.e., DE with T-SDF, T-SDF
with CT-NET, etc.). In other cases, MoCs, such as transfer
function models, are actually embedded in T-SDF modules.

For SystemC-AMS, polymorphic signals [30] were devel-
oped to connect modules modelled under different MoCs
(CT-NET, T-SDF or SystemC-DE). Like the HetSC border
channels, they have to do a syntactical and semantical
adaptation. An important benefit of polymorphic signals
is that they are able to select the right MoC connection
automatically. This is done before the simulation starts

8 EURASIP Journal on Embedded Systems

Synchronization layer

Other
views

Other
solvers

(Linear)
networks

(Linear)
DAEs

(Linear) DAE
solver

T-SDF
models

T-SDF
solver

DE kernel (SystemC 2.X)

KPN
PN
CSP

· · ·

SR
CSSDF

(dynamic) RTL
beh.

Analogue Timed Untimed Synchronous

Figure 4: Integration of SystemC-AMS and HetSC.

(at elaboration time). The polymorphic signal detects the
MoCs of the modules it is connected to and provides
the appropriate conversion means without the designer’s
assistance who only sets different options.

4. CONVERTER CHANNELS

Converter channels, first introduced in [29], are meant to
unify the approaches of polymorphic signals and border
channels, while providing adaptation in the data type
domain. Converter channels can connect modules specified
using different MoCs, and automatically adapt their different
handling in the semantic of time, communication, and data
types. In this way, converter channels provide an advanced
facility for the automatic syntactical and semantical connec-
tion in heterogeneous specification, refinement and design
exploration methodologies based on SystemC.

Before we describe how a converter channel works,
we demonstrate its use, that is, how they appear to the
designer. The internal structure and conversion semantics
will be covered in the next chapter. A converter channel is
instantiated with up to six template parameters:

converterchannel < DT W, DT R1, . . . ,DT R5 > name;
(1)

the first parameter, DT W, is mandatory and denotes the data
type of the writing port the signal is going to be attached
to; it can also be used as a data type of a reading port.
The parameters DT R1 to DT R5 are optional and denote
additional data types on the reading side.

The choice of the number of additional reading side data
types to be five is somewhat arbitrary, but since the use
of an unlimited number of template parameters in C++ is
not possible, a number had to be fixed. It is reasonable to
assume five additional data types to be more than sufficient
for any reasonable application. However, if the compilation
overhead proves to be to large, we might reduce this number.

The connection of the converter channel to module
ports has to be done by named mapping and works like
in Algorithm 1, where a T-SDF-module producing double
values is connected to a T-SDF-module reading integer
values and an ordinary SystemC-module (DE) reading
double values (see also Figure 5).

As Algorithm 1 shows, the usage of a converter chan-
nel differs a little from the usage of an sc signal

sca sdf out<double>

prod sdf cons sdf

cons sc

sca sdf in<int>

sc in<double>

Converterchannel
<double, int>

Figure 5: Illustration for Algorithm 1.

converterchannel < double, int > sig;

producer sdf double prod sdf (“prodsdf”);
prod sdf.out (sig.source sdf());

consumer sc double cons sc(“conssc”);
cons sc.in (sig);

consumer sdf int cons sdf (“conssdf”);
cons sdf.in (sig);

Algorithm 1: Connecting a converter channel.

regarding the connection to the writing port, which
contains a declaration of the MoC used on the writ-
ing side: instead of prodsdf.out (sig), the code line
prodsdf.out (sig.source MOC()) has to be used, where
MOC denotes the MoC on the writing side. In contrast, the
connection to ports of reading modules works as usual; in
particular there is no need to declare the MoC of the reading
module.

The need for MoC-declaration on the writing side has
technical reasons. In principal, MoC and sense of the signal
flow of a port (i.e. in- or output port) can be recognised
automatically by the port’s interface type. Unfortunately, for
the sca sdf port <> class of SystemC-AMS, both the in-
and output ports happen to implement the same interface.
Therefore, we can recognise the MoC here, but not the
signal flow sense. Since there is only one writer for each
converter channel, using a MoC-specific binding method for
the writing side has the least coding overhead. Additionally,

Markus Damm et al. 9

sca sdf out<int>
sc out<double>

Converterchannel <double, int>

SCA SDF MODULE

Input signal Output signal

sc signal<double> sca sdf signal<int>

sca scsdf in<double>
(converter port)

sca sdf in<int>

SC MODULE SCA SDF MODULE

DE→SDF
double→int

Converter module

m write m read

Figure 6: Example of the internal structure of a converter channel.

this approach offers the opportunity to pass additional
MoC specific parameters to the converter channel using the
binding method.

The designer has to make manual changes at a converter
channel only if

(i) the MoC of the writing module is changed; then the
connection of the converter channel to the port has
to be changed, for example from

module.out (signal.source sdf ()) (2)

to

module.out(signal.source sc ()) (3)

(sc represents the standard SystemC DE MoC).

(ii) the data type of a port of a reading module is
changed and is not already a template parameter in
the instantiation of the converter channel; then it
has to be added. So, for example, the code of the
instantiation could change to

converterchannel < double, int, sc bv < 8 >> sig;
(4)

furthermore, it is possible to set options on the converter
channel, for example, to control the data type conversion
semantics. If, for example, the writing side of a converter
channel is of type double, with a sc uint < N > port on the
reading side, this situation has the potential for information
loss if N is too small or if the writing side provides negative
values. For such a case, the converter channel offers a method

sig.setRangeScaling (min, max) (5)

to adapt the value range of the writing side to those of the
reading side. For applying this function, the designer has to
know (or has to have at least an idea of) the range of the
input signal. Therefore, if the values of the writing side turn
out to exceed the interval [min, max] during the simulation,
warnings are produced.

This example also illustrates the potential risks of the
automated data type conversion capabilities of a converter
channel. We will not, however, go into detail on data type
conversion issues in this article. More on this can be found
in [31].

5. INTERNAL STRUCTURE AND OPERATION

In this section, we provide details on how the code described
above is processed, that is, handled internally in terms of
signals and converter modules. Let us assume that a converter
channel connects two modules m write and m read having
a port out and in respectively. Four cases can occur:

(1) The MoCs of the modules as well as the data types of
the ports mismatch.

(2) The MoCs of the modules are different, but the data
types are the same.

(3) The MoCs of the modules match, but the data types
of the ports do not.

(4) Both MoCs and port data types match.

In case 1, the converter channel instantiates two appro-
priate signals (the input and the output signal), which
then are connected to the ports of m write and m read
respectively. These, in turn, are connected to an appropriate
converter module. An example is shown in Figure 6: m write
is a SystemC DE module having a port out of type
sc out < double > and m read is a SystemC-AMS T-SDF
module having a port in of type sca sdf in < int >.

To achieve conversion between SystemC-DE modules
and SystemC-AMS T-SDF modules, the SystemC-AMS
library provides sca scsdf in and sca scsdf out ports,
which can be used within T-SDF-modules to connect to DE-
signals (i.e., sc signals). Therefore, a converter module
from DE to T-SDF can be realised by a T-SDF-module
having an sca scsdf in input and an sca sdf out output.
Then it can be connected to m write and m read with
an sc signal and sca sdf signal respectively. We will
discuss the related conversion semantics shortly.

After reading the input signal, the value is converted to
the desired target data type and written to the output of the
converter module. The data type conversion function here
is inherited by a special data type conversion class which
has templated specialisations for each data type pair. Hence,
the conversion modules are implemented using two separate
levels: MoC conversion and data type conversion.

In case 2, the procedure is similar; there is no need for
data type conversion, and the converter module just passes
the value of the input signal to the output.

Case 3 is also fairly similar, with the difference that all
ports and signals used are of the same type with respect to

10 EURASIP Journal on Embedded Systems

Module
MoC1

Module
MoC1

Module
MoC2

Module
MoC2

Module
MoC3

Module
MoC1

Data type DT1

Data type DT2

Data type DT1

Data type DT1

Data type DT1

Data type DT3

Input signal

C
on

ve
rt

er
ch

an
n

el
<

D
T

1
,D

T
2
,D

T
3
>

Converter
MoC1→MoC1

DT1→DT2

Converter
MoC1→MoC2

DT1→DT1

Converter
MoC1→MoC3

DT1→DT31

2

4

3

Output signal1

Output signal2

Output signal3

Figure 7: Internal structure of a converter channel connected to multiple reading modules.

the MoC; in particular the converter module belongs to the
same MoC as the two modules to be connected. As in case 1,
the input signal is read and the converted value is written to
the internal output signal.

Obviously, the simplest case is case 4, where there is
no need for any conversion at all. Here, the converter
channel simply generates only the appropriate input signal,
and connects it to m write and m read directly without a
converter module in between.

In general, a converter channel will be connected to
several readers. Here, apart from the input signal, several
converters and output signals are created. Each converter
module is then connected to the input signal and to its
own output signal. Each reading module is connected to the
appropriate output signal. If a reading module happens to
agree to the writing module regarding MoC and data type,
it is directly connected to the input signal. Figure 7 shows an
example (the numbers refer to the four cases stated above).
The capability of the converter channel to have readers with
several data types is also an extension of the concept of
polymorphic signals [30], where data type conversion was
also included, but the reading modules had to share the same
data type.

In the next section, we show how MoC conversion is
handled in the case of DE↔T-SDF and KPN/BKPN↔T-SDF
conversion.

5.1. DE↔T-SDF conversion

The conversion between T-SDF of SystemC-AMS and the
SystemC DE MoC is basically straightforward, due to
the strict time semantics of T-SDF. SystemC-AMS already
provides conversion facilities for this, which are used by the
converter channels, while also resolving potential semantical
issues.

In the T-SDF→DE case, the converter channel instan-
tiates an internal converter module which is connected
to the writing side via an sca sdf signal < DT W >, and
which makes use of the SystemC-AMS sca scsdf out <>

converter port to connect to the reading side via an internal
sc signal < T >.

A token which is written to the internal sca sdf
signal < DT W > by the writing side at SystemC-AMS time
t is converted such that the internal sc signal < T > holds
the value of that token from SystemC time t on. Note that
there is a value change event on the reading side only if there
is an actual value change of one token to the next one, which
might be a semantical problem in certain models, when the
DE side is supposed to read every token. For these cases, the
converter channel offers a clock signal running with the pace
of the T-SDF side, which can be accessed using the method
sdf clock ().

With respect to the previous case, the DE→T-SDF case
is exactly mirrored regarding the use of internal signals and
converter ports (see Figure 6). The conversion semantics
is such that a value which is written to the internal
sc signal < DT W > by the writing side constitutes a current
value for the signal. This current value is then sampled by
the T-SDF side with a frequency determined by its sampling
period.

There is, however, a potential for loss of information.
If the DE side changes the value twice or more in between
two sampling instances by the T-SDF side, these interim
values will be lost. Therefore, the converter channel pro-
vides warnings in this case with the help an internal DE-
module which is sensitive to the value changes of the
internal sc signal < DT W >. At each sampling instance,
the internal converter module asks this module how many
value changes occurred since the last sampling instance. If
this value exceeds one, it raises a warning or a runtime
error respectively, depending on the designer’s choice. This
behaviour can also be switched off completely.

5.2. KPN/BKPN↔T-SDF conversion

In [32], several types of MoC connections were distinguished
with regard to the time domain. The basic observation is
that when two MoCs are connected which handle time at a

Markus Damm et al. 11

different detail level, there is an effect of time information
injection from the more detailed MoC to the less detailed
MoC. The way by which time is handled is often related to
other aspects associated to communication semantics. For
instance, it is common to associate consuming reads and
nondestructive writes to untimed MoCs, while destructive
write and nonconsuming reads semantic of HDL signals
(e.g., the sc signal channel semantic in SystemC) is
suitable for timed-clocked MoCs.

In previous works, semantical issues dealing with
untimed-untimed [32] and untimed-synchronous [33] MoC
connection have been addressed. We will consider a first
approach to the untimed-timed and the timed-timed MoC
connections, where the untimed-timed case refers to the
connection of untimed Kahn process network (KPN) and
bounded Kahn process network (BKPN) MoCs of HetSC
with the timed synchronous dataflow MoC (T-SDF) of
SystemC-AMS. The timed approach of T-SDF can actually
be considered as a discrete time MoC, since each cluster
execution has a specific SystemC time stamp. The timed-
timed case occurs when the addition of of strict-time
information to the KPN/BKPN network connected to the
T-SDF part has to be considered. We have four cases to
consider:

(1) KPN/BKPN→T-SDF;

(2) T-KPN/T-BKPN→T-SDF;

(3) T-SDF→KPN/BKPN;

(4) T-SDF→T-KPN/T-BKPN.

For each case, we give the semantic of the converter channel
for the writing and the reading sides. This includes the prob-
lem of time information injection for the timed-untimed
connections. If the overlap of untimed/timed write and
untimed/timed read semantics generate any inconsistency,
the converter channel has to perform appropriate actions.

We start with the KPN/BKPN→T-SDF connection. From
the writing side, the KPN/BKPN characteristics of the
untimed network does not carry semantical problems. The
converter channel can be either configured as an unbounded
FIFO (as the HetSC uc inf fifo channel), such that the
untimed part will never block. Or it can be configured as a
bounded FIFO (as the HetSC uc fifo channel), such that
the untimed part can block. In any case, there is no loss of
data. Syntactically, this is achieved by connecting the port
out of a writing module module with the code line

module.out(sig.source fifo (size)); (6)

to a converter channel sig. If the integer parameter size is
omitted, the internal buffer of the converter channel will be
unbounded.

The time-domain and communication-domain adapta-
tions are closely related. The KPN/BKPN not only expects
to do a nondestructive write, but also a destructive read
which frees space in the internal buffer. Therefore, data
consumption is needed on the reading side. This might
appear like a contradiction, since, from the T-SDF side, the
read is nonconsuming (as well as nonblocking). However, the

read is nonconsuming only for the reads done at the same
time stamp (t). From a sampling time stamp (t) to the next
sampling time stamp (t+T), after a sampling period T , a data
token is deallocated and frees space in the internal buffer,
establishing a semantical coherence.

On the T-SDF reading side, a token is indeed consumed,
but can be read as many times as wanted, during a
sampling period T . That way, time information is injected
in the untimed part. If, for instance, the converter channel
has internal buffer size 2, and the sampling period is
1 millisecond, then the original untimed part will be able to
initially write up to 2 tokens and compute until the point
when it tries to write the third token. Then, it has to wait for
1 millisecond.

However, corner conditions can still lead to inconsis-
tencies. In the KPN/BKPN→T-SDF case, the inconsistency
comes when the internal buffer is empty and the read access
of the T-SDF part has to consume a token. The converter
channel offers several options for this case.

(i) Error: an error is raised and the simulation is stopped.

(ii) Constant: a prefixed value is returned. This value
remains constant during the simulation. A default
value is defined for each data type (i.e., false for
Bool or SC LOGIC X for sc logic), but can be
overwritten by the designer.

(iii) Hold: the last value read is returned. It can be seen as
a variation of the previous one, where the returned
value, instead being constant, is the last token which
could be consumed.

In the last two cases, warnings are raised. The designer can
choose the desired behaviour by calling the method

converterchannel.setFIFO2SDFemptybuffer
(< option >); (7)

where < option > stands for either error, constant or
hold, where error is set by default. This ensures that the
designer will be aware of this corner situation resulting from
the specification and/or simulation.

The timed-timed T-KPN/T-BKPN→T-SDF connection
can be treated basically like the KPN/BKPN→T-SDF case,
including the handling of empty internal buffers. In partic-
ular, there is no difference regarding the syntax. There is,
however, a subtle semantical difference regarding the empty
FIFO corner case. In the untimed case, there are basically two
causes for empty FIFOs:

(i) The writing process is finite, thus producing only
a finite number of token. This will cause an empty
FIFO if the simulation time is long enough. Depend-
ing on the application, choosing the consume &
constant option here can make sense.

(ii) A (partial) deadlock in the KPN/BKPN side involving
the process which writes the converter channel. This
case is probably treated best with the default consume
& error behaviour.

12 EURASIP Journal on Embedded Systems

d0 d1 d2 d3

0 0 0 0

KPN/BKPN

Finite process
or deadlock

t (ms)

MoC
conversionT-KPN/T-BKPN

d0 d1 d2 d3 d4

0 2 12 18 30 t (ms)

d0 d1 d2 d3 x ?

5 10 15 20 25 t (ms)

T-SDF
sample period T = 5 ms

Option Value of x

Hold d3
Constant 0∗

Error None∗∗

∗: Or other previously
defined constant

∗∗: Runtime error

Figure 8: Time-domain behaviour for the KPN→T-SDF and BKPN→T-SDF conversion.

In the timed case, we have a third cause, namely the
production rate of the writing side being insufficient com-
pared to the consumption throughput of the T-SDF part.
In fact, this is a case where the consume & hold behaviour
makes perfect sense.

Note that reasons for the KPN/BKPN part to become
timed may also be subtle. On one hand processes involved
could contain explicit wait() statements. On the other hand,
there is also the possibility of a timing injection from a third
system part communicating with the, originally untimed,
KPN/BKPN part. The variety of reasons for empty internal
buffers makes it obvious that there is no a-priori intuitive
solution to this problem, and the designer has to decide
which of the three options offered by the converter channel
suits best.

Figure 8 illustrates the conversion process described
with an example showing the result depending on the
chosen option. The untimed part, either KPN or BKPN,
produces the sequence of tokens {d0,d1,d2,d3}. The order
information, that is, the indexing of the values, is the only
relevant time information. For instance, the specification of
the untimed part only forces token d1 to appear before token
d2, but forces nothing else about their SystemC time tags. In
Figure 8, a possible time tag assignment consisting in all the
tokens having the 0 millisecond time stamp is shown. Note
that this is consistent since this order can be reflected by
different deltas of the SystemC simulation. After producing
d3, the KPN/BKPN part stops producing tokens.

Assuming that the T-SDF part has a consumption rate
1 with a cluster time of T = 5 ms, the converter channel
semantic consists in consuming each new token present
in the inner buffer of the converter channel at a T pace.
Since this pace of T-SDF cluster execution is unstoppable,
in this example, a point in time is found (SystemC time
tag of 25 seconds) when the T-SDF part needs to consume
a data but the inner buffer is empty. In this situation the
converter channel exhibits its flexibility. In order to still
enable automatic conversion, the converter channel presents
the default behaviour, that is, it raises an error. This could
coincide with the designers intention, for instance, to detect
a deadlock situation in the untimed part.

However, let us assume that the timed part models the
sourcing of a kind of irregular pulse signal composed first

by the finite subsequence {d0,d1,d2,d3}, followed by the
infinite subsequence {’0’, ’0’, ’0’, . . .}. In this case, it makes
sense to configure the converter channel to adopt the constant
semantic for the corner case (X = ’0’), instead of stopping the
simulation and raising an error.

On the left bottom side of Figure 8, a similar case where
the KPN/BKPN part suffered a time annotation, becoming a
T-KPN/T-BKPN part, is shown. In this case, the empty buffer
condition is not caused by a deadlock, but is the result of slow
data token generation by the T-KPN/T-BKPN part. Token
d4 is generated at 30 seconds, too late to avoid the corner
situation given at t = 25 seconds. In a case like this, the hold
semantic for the corner case (X = d3) is useful to model a
sampling and hold behaviour.

Let us now turn to the timed-untimed T-SDF→KPN/
BKPN conversion, where we have to introduce the FIFO
semantic from the reading side. Here, the T-SDF cluster
behaves as a kind of master which transfers tokens to the
untimed part at the pace of the sampling time. We decided
to use an unbounded internal buffer as the default case, but
the designer can also limit its size by calling the method.

converterchannel.setReadingFIFOSize (int size).
(8)

The modification of the sense of data transfer changes
the location of the semantic inconsistency. While the empty
buffer does not represent a problem because the KPN/BKPN
part remains blocked till the next data arrival, the full
buffer condition is problematic, since the T-SDF has to write
at its unstoppable pace. This inconsistency only appears
when using a bounded internal buffer, and can appear due
to several causes, similar to the ones presented for the
KPN/BKPN→T-SDF case and the T-KPN/T-BKPN→T-SDF
case. Namely, the KPN/BKPN part can be a finite process that
finishes its execution after having consumed a finite number
of tokens. It can also present a deadlock or partial deadlock
preventing the consumption of tokens. For the case of a
timed KPN/BKPN part, the consuming task can also present
a throughput slower than the production throughput of the
T-SDF part.

Therefore, in a T-SDF→(timed or untimed) KPN/BKPN
connection, the write access semantic of the converter

Markus Damm et al. 13

channel allocates a new token in the internal buffer whenever
there is room for it. If the internal buffer is full, the following
options are available:

(i) error: an error is raised and the simulation is stopped;

(ii) discardOldest: the next token to be read by the
consumer (at the “beginning” of the buffer) is
removed, the buffer content is shifted forward and
the current token (passed as parameter of the write
access) is added to the “end” of the buffer;

(iii) discardCurrent: the current token is discarded and the
internal buffer remains untouched.

The error option is again set by default. Figure 9 shows
an example of a T-SDF→KPN/BKPN conversion, where the
T-SDF writing side faces a full internal FIFO at t = 25 ms.
This example also demonstrates, how the T-SDF side injects
timing into the KPN/BKPN part: After unblocking at t =
27 ms, the KPN/BKPN part consumes all the token in the
internal FIFO. After that, it is blocked until the next writing
access of the T-SDF part.

6. APPLICATION EXAMPLE

In this section, we give an example on how converter
channels can be used with respect to mixed level simulation
and design space exploration. The example deals with the
evaluation of a software-defined radio (SDR). An overview
of the system is shown in Figure 10, and is basically a
simplification of the example given in the introduction. The
RF input signal is mixed with a sine wave which has the same
frequency as the carrier signal and the result is processed
by a lowpass filter. After that, the demodulation is done
by software and an analogue demodulator, to compare the
results. The input of the software demodulator is an integer
with fixed bit width. Algorithm 2 shows the corresponding
top-level SystemC code using two converter channels.

Regarding design space exploration and mixed level
simulation, this example gives rise to the following tasks (the
numbers refer to those in Figure 10):

(1) realising the lowpass filter either as a (behavioral) T-
SDF-module or as an electrical network;

(2) realising the software demodulator either as a process
network or as a DE module;

(3) varying the bit width of the input of the software
demodulator;

(4) realising the analogue demodulator either as a
(behavioral) T-SDF-module or as an electrical net-
work.

To make the matter more complicated, any subset of these
tasks can be done in parallel. It is obvious that the effort for
manual inserting (and adapting) the appropriate converters
would be significant. Let us assume an initial model with the
lowpass filter and the analogue demodulator modelled as T-
SDF modules and the software demodulator modelled within
the BKPN MoC, taking sc int < bitwidth > inputs. We

then would need a T-SDF→BKPN converter from the output
of the lowpass filter to the software modulator, which would
also convert double values to sc int < bitwidth > values.
Now, executing the tasks above would cause the need for the
following respective manual conversion activities.

(1) Realising the lowpass filter as an electrical network:
Insert a T-SDF→CT-NET converter between the
mixer and the lowpass filter. Replace the initial T-
SDF→BKPN converter by a CT-NET→BKPN con-
verter, which also converts double to sc int <
bitwidth >. Instantiate appropriate signals to con-
nect them.

(2) Realising the software demodulator as a DE module:
Replace the initial T-SDF→BKPN converter by a T-
SDF→DE converter, which also converts double to
sc int < bitwidth >. Note that using a SystemC-
AMS converter port makes no sense here, since the
analogue demodulator is still in the T-SDF domain.
Instantiate appropriate signals to connect them.

(3) Varying the bit width of the input of the soft-
ware demodulator: Change the output of the T-
SDF→BKPN converter and the type of the signal
which connects it to the software demodulator to
sc int < new bitwidth >. The data type conver-
sion algorithm of the converter must also be altered
slightly. Of course, using a parametrisable converter
regarding the bit width would make things easier
here. In that case this design space exploration task
could be steered similar to Algorithm 2.

(4) Realising the analogue demodulator as an electri-
cal network: Insert a T-SDF→CT-NET converter
between the lowpass filter and the analogue demod-
ulator. Instantiate an appropriate signal to connect
them.

By using converter channels, however, the code for each
of the possible variants would be very similar to Algorithm 2.
The value of the variable bitwidth would change, and
the class names of the respective modules (e.g., changing
lowpass behavioural to lowpass electrical). This
very simple example shows the convenience converter chan-
nels offer to the designer.

7. CONCLUSION AND FUTURE WORK

In this article, an overview on the ongoing work on converter
channels has been given. Converter channels will provide
the designer with a convenient tool to connect system parts
using different MoCs and data types. They will quickly
and safely solve the syntactical and semantical adaptations
that are required by mixed-level simulation and design
space exploration. Specifically, the syntactical solution of
converter channels will save the manual refinement of those
connections. In addition, converter channels provide suitable
conversion semantics, which are not always straightforward,
since they deal with adaptations in the time, communication,
and data type domains. Thus, manual coding for adaptation

14 EURASIP Journal on Embedded Systems

KPN/BKPN

MoC
conversion

Blocked process
resumes reading

d0 d1 d2 d3 d4 d5 d6

t (ms)5 10 15 20 25 30 35
Write access fills internal
fifo of size 4 completely.

d0 d1 d2 d3 d5 d6

∗
∗∗

d1 d2 d3 d4 d5 d6?

27 27 27 27 30 35 t (ms)

T-SDF
sample period T = 5 ms

∗: Result if using option

“discardOldest”
∗∗: Result if using option

“discardCurrent”

Figure 9: Time-domain behaviour for the T-SDF→KPN and T-SDF→BKPN conversion.

rf in

Mixer Lowpass filter
(T-SDF or CT-NET) Network (CT-NET)

or behavioural
model (T-SDF)

demodulate an

Software (DE or PN)
demodulate sw

Sine

Converterchannel
SDF-signal

1

2
3

4

Figure 10: SDR application example.

bitwidth = 8;

sca sdf signal < double > rf in; // incoming RF-signal
sca sdf signal < double > sine; // sine waverf in

converterchannel < double > mixedsig;
// RF-signal multiplied with sine-wave

converterchannel < double, sc int < bitwidth >> lp out;
//output of lp-filter

lp out.setRangeScaling (0.,1.);
// assuming the value range within [−1,1]

mixer mix(“mix”); // multiplies the two input signals

mix.in1 (rf in);
mix.in2 (sine);
mix.out (mixedsig);

lowpass behavioural lp (“lp”); // lowpass filter, either

T-SDF-module
lp.in (mixedsig); // or electrical network

lp.out (lp out);

demodulate sw dem sw (“dem sw”, bitwidth);
rec sw.in (lp out);
// software demodulator with sc int < bitwidth > input

demodulate an dem an (“dem an”);
rec sw.in (lp out);
// analogue demodulator

Algorithm 2: SW-defined radio with converter channels.

Markus Damm et al. 15

would be quite time consuming for the system designer, who
is usually more interested in the semantic of each system
part, than in the glue semantic. The adaptations have been
illustrated through several details on the usage of a converter
channel and its internal structure, as well as, through a
detailed explanation of the semantical issues of the (untimed
and timed) KPN/BKPN↔T-SDF connection.

Future work will include finalising the support for fur-
ther MoC connections, for example, the connection to linear
electrical networks (CT-NET). Regarding the connection of
CT-NET to T-SDF and DE modules, this is a straightforward
task since SystemC-AMS provides many converter facilities
for this. Another focus will be the use of converter channels
to connect T-SDF models to TLM models.

Despite of ANDRES focussing on run-time reconfig-
urable systems, converter channels are not meant to adapt to
changing communicating facilities during simulation time,
for example, to react to a port which changes its bit width.
This would go beyond the capabilities of SystemC itself in
its current state. Nevertheless, this is an aspect which could
be of interest in the future, since this also would allow for
an automatic support of a dynamic brand of mixed-level
simulation. In this case, the abstraction levels of certain
system parts could even be changed during simulation time
if the level of detail needed changes in certain situations.

ACKNOWLEDGMENT

This work is supported by the FP6-2005-IST-5 European
project.

REFERENCES

[1] Open SystemC Initiative (OSCI), http://www.systemc.org.
[2] A. Vachoux, C. Grimm, and K. Einwich, “Towards analog and

mixed-signal SOC design with systemC-AMS,” in Proceedings
of the 2nd IEEE International Workshop on Electronic Design,
Test and Applications (DELTA ’04), pp. 97–102, IEEE Com-
puter Society, Perth, Australia, January 2004.

[3] F. Herrera and E. Villar, “A framework for heterogeneous
specification and design of electronic embedded systems
in SystemC,” ACM Transactions on Design Automation of
Electronic Systems, vol. 12, no. 3, article 22, pp. 1–31, 2007.

[4] L. Cai and D. Gajski, “Transaction level modeling in system
level design,” Tech. Rep. 03-10, Center for Embedded Com-
puter Systems, University of California, Irvine, Calif, USA,
2003.

[5] C. Grimm, “An introduction to modeling embedded ana-
log/mixed-signal systems using SystemC ams extensions,” June
2008.

[6] T. Grötker, S. Liao, G. Martin, and S. Swan, System Design
with SystemC, Kluwer Academic Publishers, Dordrecht, The
Netherlands, 2002.

[7] C. Grimm, R. Schroll, K. Waldschmidt, and F. Brame,
“Mixed-level-simulation heterogener systeme,” in Proceedings
of the ITG/GI/GMM-Workshop: Multi-Nature Systems, Erfurt,
Germany, February 2007.

[8] E. A. Lee and A. Sangiovanni-Vincentelli, “A framework for
comparing models of computation,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol.
17, no. 12, pp. 1217–1229, 1998.

[9] A. Jantsch, Modeling Embedded Systems and SoC’s, Morgan
Kaufmann, San Francisco, Calif, USA, 2004.

[10] I. Sander, “The ForSyDe standard library,” Tech. Rep., Royal
Technical School, KTH, Kista, Stockholm, April 2003.

[11] Accellera, “Verilog-AMS: Language Reference Manual,” ver-
sion 2.2, November 2004.

[12] P. Frey and D. O’Riordan, “Verilog-AMS: mixed-signal simu-
lation and cross domain connect modules,” in Proceedings of
the IEEE/ACM International Workshop on Behavioral Modeling
and Simulation (BMAS ’00), pp. 103–108, Orlando, Fla, USA,
October 2000.

[13] IEEE, “IEEE Standard 1076.1: VHDL-AMS Language Refer-
ence Manual,” 1999.

[14] L. Geppert, “Electronic design automation,” IEEE Spectrum,
vol. 37, no. 1, pp. 70–74, 2000.

[15] C. Brooks, E. A. Lee, X. Liu, S. Neuendorffer, Y. Zhao, and
H. Zheng, “Heterogeneous concurrent modeling and design
in java (volume 1: Introduction to ptolemy II),” Tech. Rep.
UCB/EECS-2007-7, Department of Electrical Engineering and
Computer Science, University of California, Berkeley, Calif,
USA, January 2007.

[16] T. Weilkiens, Systems Engineering with SysML/UML, Morgan
Kaufmann, San Francisco, Calif, USA, 2008.

[17] OMG, OMG SysML Specification, March 2007.
[18] T. A. Jhonson, C. J. J. Paredis, J. M. Jobe, and R. Burkhart,

“Modeling continuous system dynamics in SysML,” in Pro-
ceedings of the ASME International Mechanical Engineering
Congress and Exposition (IMECE ’07), Seattle, Wash, USA,
November 2007.

[19] A. Davare, D. Densmore, T. Meyerowitz, et al., “A next-
generation design framework for platform-based design,” in
Proceedings of the Conference on Using Hardware Design and
Verification Languages (DVCon ’07), San Jose, Calif, USA,
February 2007.

[20] Open SystemC Initiative, SystemCTM, http://www.systemc
.org.

[21] H. D. Patel and S. K. Shukla, SystemC Kernel Extensions for
Heterogeneous System Modeling, Springer, New York, NY, USA,
2004.

[22] H. D. Patel, D. Mathaikutty, and S. K. Shukla, “Implementing
multi-moc extensions for SystemC: adding CSP and FSM
kernels for heterogeneous modelling,” Tech. Rep., FERMAT
Research Laboratory, Virginia Tech, Blacksburg, Va, USA, June
2004.

[23] H. Al-Junaid and T. Kazmierski, “An Analogue and Mixed-
Signal Extension to SystemC,” http://eprints.ecs.soton.ac.uk/
10644.

[24] S. Orcioni, G. Biagetti, and M. Conti, “SystemC-WMS: mixed
signal simulation based on wave exchanges,” in Applications
of Specification and Design Languages for SoCs, pp. 171–185,
Springer, New York, NY, USA, 2006.

[25] A. Herrholz, F. Oppenheimer, P. A. Hartmann, et al.,
“ANDRES-analysis and design of run-time reconfigurable,
heterogeneous systems,” in Proceedings of the Design, Automa-
tion and Test in Europe (DATE ’07), pp. 64–71, Nice, France,
April 2007.

[26] A. Schallenberg, F. Oppenheimer, and W. Nebel, “Designing
for dynamic partially reconfigurable FPGAs with SystemC and
OSSS,” in Advances in Design and Specification Languages for
SoCs: Part III, The Chip Design Languages (ChDL) Series,
pp. 183–198, Springer, Dordrecht, The Netherlands, 2005,
C/C++-Based System Design.

[27] H. Posadas, F. Herrera, V. Fernández, P. Sánchez, E. Villar, and
F. Blasco, “Single source design environment for embedded

http://www.systemc.org
http://www.systemc.org
http://www.systemc.org
http://eprints.ecs.soton.ac.uk/10644
http://eprints.ecs.soton.ac.uk/10644

16 EURASIP Journal on Embedded Systems

systems based on SystemC,” Design Automation for Embedded
Systems, vol. 9, no. 4, pp. 293–312, 2004.

[28] N. Savoiu, S. K. Shukla, and R. K. Gupta, “Efficient simulation
of synthesis-oriented system level designs,” in Proceedings of
the 15th International Symposium on Systems Synthesis (ISSS
’02), pp. 168–173, Kyoto, Japan, October 2002.

[29] F. Herrera, E. Villar, C. Grimm, M. Damm, and J. Haase,
“A general approach to the interoperability of HetSC and
SystemC-AMS,” in Proceedings of the Forum on Design Lan-
guages (FDL ’07), Barcelona, Spain, September 2007.

[30] R. Schroll, Design komplexer heterogener Systeme mit Polymor-
phen Signalen, Ph.D. thesis, Institut für Informatik, Universität
Frankfurt, Frankfurt, Germany, 2007.

[31] M. Damm, F. Herrera, J. Haase, E. Villar, and C. Grimm,
“Using converter channels within a top-down design flow in
SystemC,” in Proceedings of the 15th Austrian Workshop on
Microelectronics (Austrochip ’07), Graz, Austria, October 2007.

[32] F. Herrera, P. Sanchez, and E. Villar, “Heterogeneous system-
level specification in SystemC,” in Advances in Design and
Specification Languages for SoCs, P. Boulet, Ed., CHDL Series,
Springer, New York, NY, USA, 2005.

[33] F. Herrera and E. Villar, “Mixing synchronous reactive and
untimed mocs in SystemC,” in Applications of Specification and
Design Languages for SoCs, A. Vachoux, Ed., CHDL Series,
Springer, New York, NY, USA, 2006.

	Introduction
	MoC-conversion

	Related work
	Metamodels
	Extension of HDLs: Verilog-AMS and VHDL-AMS
	Extensions of high-level languages
	Ptolemy II
	SysML
	Metropolis

	SystemC extensions forheterogeneous specification
	SystemC-H
	Analogue extensions of SystemC

	HetSC and SystemC-AMS
	HetSC
	SystemC-AMS
	Connecting HetSC and SystemC-AMS

	Converter channels
	Internal structure and operation
	DET-SDF conversion
	KPN/BKPNT-SDF conversion

	Application example
	Conclusion and future work
	ACKNOWLEDGMENT
	References

