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Abstract. JavaBIP allows the coordination of software components by
clearly separating the functional and coordination aspects of the sys-
tem behavior. JavaBIP implements the principles of the BIP component
framework rooted in rigorous operational semantics. Recent work both on
BIP and JavaBIP allows the coordination of static components defined
prior to system deployment, i.e., the architecture of the coordinated sys-
tem is fixed in terms of its component instances. Nevertheless, modern
systems, often make use of components that can register and deregis-
ter dynamically during system execution. In this paper, we present an
extension of JavaBIP that can handle this type of dynamicity. We use
first-order interaction logic to define synchronization constraints based
on component types. Additionally, we use directed graphs with edge
coloring to model dependencies among components that determine the
validity of an online system. We present the software architecture of our
implementation, provide and discuss performance evaluation results.

1 Introduction

We have previously introduced JavaBIP [9,10] that allows coordinating soft-
ware components exogenously, i.e., without requiring access to component source
code. JavaBIP relies on the following observations. Domain specific components
have states (e.g., idle, working) that are known to component users with domain
expertise. Furthermore, components always provide APIs that allow programs to
invoke operations (e.g., suspend or resume) in order to change their state, or to
be notified when a component changes its state spontaneously. Thus, component
behavior can be easily represented by Finite State Machines (FSMs).

JavaBIP brings the BIP principles into a more general software engineering
context than that of embedded systems, in which code generation might not be
desirable due to continuous code updates. Thus, to use JavaBIP, instead of gener-
ating Java code from the BIP modeling language, developers must provide—for
the relevant components—the corresponding FSMs in the form of annotated
Java classes. The FSMs describe the protocol that must be respected to access
a shared resource or use a service provided by a component. FSM transitions
are associated with calls to API functions, which force a component to take an
action, or with event notifications that allow reacting to external events.
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For component coordination, JavaBIP provides two primitive mechanisms:
1) multi-party synchronizations of component transitions and 2) asynchronous
event notifications. The latter embodies the reactive programming paradigm. In
particular, JavaBIP extends the Actor model [1], since event notifications can be
used to emulate asynchronous messages, while providing the synchronization of
component transitions as a primitive mechanism gives developers a powerful and
flexible tool to manage coordination. The synchronization of component transi-
tions is managed by a runtime called JavaBIPEngine, which, for simplicity, we
call “engine” in the rest of the paper. Notice that in a completely asynchronous
system the engine is not needed.

JavaBIP clearly separates system-wide coordination policies from compo-
nent behavior. Synchronization constraints, defining the possible synchroniza-
tions among transitions of different components i.e., the set of possible com-
ponent interactions, are specified independently from the design of individual
components in dedicated XML files. This separation of functional and coordina-
tion aspects greatly reduces the burden of system complexity. Finally, integration
with the BIP framework, through a JavaBIP-to-BIP code generation tool, allows
the use of existing deadlock-detection and model checking tools [7,8] ensuring
the correctness of JavaBIP systems.

The previous implementation of JavaBIP [10] was static. To coordinate a
system, the full set of components had be registered before starting the engine.
No components could be added on-the-fly and, most importantly, if a failure oc-
curred in a single component, the engine execution had to stop and the full set of
constraints had to be computed anew. Notice that none of the current BIP im-
plementations [5,6,11] allows to add or remove components on-the-fly, including
DyBIP presented in [12] that allows dynamically changing the set of interactions
among a fixed set of components at runtime. This might be problematic, since
modern systems, e.g., large banking systems or modular smartphones, make use
of components that can register and deregister during system execution.

To allow dynamicity in JavaBIP, we use first-order interaction logic to de-
scribe synchronization constraints on component types. As a result, a developer
can write synchronization constraints without knowing the exact number of com-
ponents in the system. Thus, component instances of known types, i.e., types
for which synchronization constraints exist, can register at runtime without any
additional input from the developer. To optimize JavaBIP performance, we have
introduced a notion of system validity: a system is valid if and only if its set of
possible interactions is not empty. The notion of validity allows the engine to
be started and stoped automatically at runtime by just checking the status of
the system. By stopping the engine if the system is invalid, we eliminate any
processing time needed by the engine. To check system validity, we use directed
graphs with edge coloring to model component synchronization dependencies.
Notice that the introduced notion of validity is only relevant for the engine: in
an invalid system components can still communicate asynchronously.

We have extended the interface and implementation of the engine to register,
deregister, and pause a component at runtime. The difference between pausing



Fig. 1. Modular phone architecture.

and deregistering a component is as follows. If a component deregisters, then
the engine clears all the associated data and references to this component; other
components cannot synchronize with the deregistered component unless it reg-
isters anew. If a component is paused, other components cannot synchronize
with it but the engine keeps all associated data and references to it; the paused
component can start synchronizing with other components by simply informing
the engine that it is back on track.

The rest of the paper is structured as follows. Section 2 describes our moti-
vating case study. Section 3 presents the JavaBIP framework and the macro-
notation used to specify JavaBIP synchronization constraints on component
types. Section 4 presents the notion of JavaBIP system validity and the con-
struction of validity graphs. Section 5 describes the implemented software ar-
chitecture and presents performance results. Section 6 discusses related work.
Section 7 summarizes the results and future work directions.

2 Motivating case study

Modular phones require application layer specifications that can handle dynamic
device insertion and removal at runtime. In the rest of the paper, we refer to the
phone’s devices as modules. In this case study, we model in JavaBIP some of the
application layer protocols offered by Google’s Greybus specification4.

Figure 1 illustrates the composite component types, of the case study. Grey-
bus requires that exactly one application processor (AP) is present in the system
for storing user data and executing applications. We consider two types of mod-
ules that can be inserted on the phone’s frame at runtime: 1) power supply
modules, e.g., batteries and 2) cameras. Any number of instances of these two

4 https://github.com/projectara/greybus-spec



Application Layer ::= (AP Message Handler).(Controller)+.(Driver)∗

AP Message Handler ::= (AP Request Worker).(AP Response Worker).

(AP Message Worker).(AP Receiver Fifo)
Controller ::= (Control Protocol Controller).(Log Protocol Controller).

(Camer Protocol Controller).(Power Supply Protocol Controller)

Driver ::= (Battery Driver)∗.(Camera Driver)∗

Camera Driver ::= (Control Connect Handler).(Control Disconnect Handler).

(Log Handler).(Camera Capture Handler).(Camera Stream Handler)
Battery Driver ::= (Control Connect Handler).(Control Disconnect Handler).

(Log Handler).(Power Supply Handler)

Fig. 2. Hierarchical decomposition of the Application Layer into components.

types can be inserted or removed from the phone at runtime. Figure 1 presents
an example configuration of a phone, in which two battery and one camera mod-
ules are connected. These modules communicate with the AP through dedicated
device class connection protocols: the camera, power supply, and log protocols.
The latter can be used by any module to send human-readable debug log mes-
sages to AP. Additionally, AP uses the control protocol to perform basic ini-
tialization and configuration actions with other modules. If no power supply
or camera modules are connected, the system configuration would consist of
the AP Message Handler, Control Protocol Controller, the Log Protocol

Controller, Camera Protocol Controller, and the Power Supply Protocol

Controller composite components. The grammar in Fig. 2 shows how to obtain
the desired systems as the incremental composition of components. Operators
. (dot), ·∗ and ·+ are used as usual to denote composition and repetition. No-
tice that Fig. 1 illustrates only one of the possible system configurations that
are described by the grammar in Fig. 2. A detailed description of the system’s
componentization and interaction model can be found in [31].

A Greybus protocol defines a number of Greybus operations, which are
request-response pairs of remote procedure calls from one module to another.
The bi-directional arrows in Fig. 1 represent Greybus operations. For instance,
the AP very often needs to retrieve information from other modules. This re-
quires that a message requesting information be paired with a response message
containing the information requested. In many cases, Greybus operations need
to be performed in a specific order. Additionally, the access to shared resources
such as memory and logging services needs to be controlled among modules. We
enforce action flow of Greybus operations, as well as controlled access to the
phone’s shared resources with JavaBIP. We developed the case study using the
WebGME-BIP design studio5, the complete system exceeds 2000 lines of code.

5 https://github.com/anmavrid/webgme-bip



3 The JavaBIP component framework

JavaBIP implements the BIP (Behavior-Interaction-Priority) coordination mech-
anism [5], for coordination of concurrent components. In BIP, the behavior of
components is described by Finite State Machines (FSMs) having transitions
labeled with ports and extended with data stored in local variables. Ports form
the interface of a component and are used to define its interactions with other
components. They can also export part of the local variables, allowing access to
the component’s data. Component coordination is defined in BIP by means of
interaction models, i.e., sets of interactions. Interactions are sets of ports that
define allowed synchronizations among components.

JavaBIP takes as input the system specification, which is provided by the
user and consists of the following:

– A behavior specification for each component type, which is an FSM extended
with ports and data provided as an annotated Java class.

– The glue specification, which is the interaction model of the system, is pro-
vided as an XML file. It specifies how the transitions of different component
types must be synchronized, i.e., synchronization constrains.

– The optional data-wire specification, which is the data transfer model of the
system, is provided as an XML file. It specifies which and how data are
exchanged among component types.

For property analysis, the system specification can be automatically trans-
lated into an equivalent model of the system in the BIP language. This model
can then be verified for deadlock freedom or other properties, using DFinder [7],
ESST or nuXmv [8]. Other analyses can be performed using any tool for which
a model transformation from BIP is available.

3.1 Glue specification

The glue specification is defined in JavaBIP through a macro-notation, similar
to the one introduced in [12], based on first-order interaction logic. This notation
imposes synchronization constraints based on component types rather than on
component instances, which allows a developer to write a glue specification with-
out knowing the exact number of components in the system. Instances of com-
ponent types for which synchronization constraints exist in the glue specification
can be dynamically registered or deregistered at runtime without requiring addi-
tional input or changes in the glue specification. We briefly present the JavaBIP
Require/Accept macro-notation used for the glue specification. The JavaBIP Re-
quire/Accept macro-notation was previously presented in [10]. We also refer the
interested reader to [31], where we present in detail the propositional interaction
logic, the first-order extension and the Require/Accept macro-notation.

Consider a port p of a component type T , which labels one or more transitions
of T . The associated synchronization constraint to all transitions of T labeled by
p is the conjunction of two constraints: the causal and acceptance constraints.



Two macros are used: 1) the Require macro and 2) the Accept macro to define
the causal and acceptance constraints, respectively. Next, we describe the mean-
ing of the two macros through representative examples. The generalization of the
above definitions to more complex macros is straightforward, but cumbersome.
Therefore we omit it here.

The Require macro is used to specify ports required for synchronization. Let
T 1, T 2 ∈ T be two component types. The macro

T1.p Require T2.q

means that, to participate in an interaction, each of the ports p of component
instances of type T1 requires synchronization with precisely one of the ports
q of component instances of type T2. Notice that the cardinality of required
component instances is explicit: should two instances of the same port type be
required, this is specified by explicitly putting the required port type twice, e.g.,

T1.p Require T2.q T2.q ,

and so on for higher cardinalities. We call effect what is specified in the left-hand
side of Require (e.g., T1.p) and cause what is specified in the right-hand side
(e.g., T2.q T2.q). A cause consists of a set of OR-causes, where each OR-cause is
a set of ports. For p to participate in an interaction, all the ports belonging to
at least one of the OR-causes must synchronize. For instance,

T1.p Require T2.q T2.q ; T2.r

means that p requires either the synchronization of two instances of q or one
instance of r. Notice the semicolon that separates the two OR-causes.

The Accept macro defines optional ports for synchronization, i.e., it defines
the boundary of interactions. This is expressed by explicitly excluding from in-
teractions all the ports that are not accepted. Let T 1, T 2 ∈ T be two component
types. The following:

T1.p Accept T2.q

means that p accepts the synchronization of instances of q but does not accept
instances of any other port types.

4 Defining system validity

In the previous, static JavaBIP implementation, a developer had to first register
all components to the engine and then start the engine manually. Since, in the
presented implementation, components may register or deregister on-the-fly, we
introduce a notion of validity so that depending on whether there are enough
registered components, the engine can automatically start or stop its execution.
We start by formally defining components, BIP systems and valid BIP systems.



Definition 1 (BIP Component). A BIP component B is an FSM represented
by a triple (Q,P,→), where Q is a set of states, P is a set of communication
ports, →⊆ Q× P ×Q is a set of transitions, each labeled by a port.

Below, we use the common notation, writing q
p→ q′ instead of (q, p, q′) ∈→ .

Definition 2 (BIP System). A BIP system is defined by a composition oper-
ator parameterized by a set of interactions γ ⊆ 2P . Bn = γ(B1, . . . , Bn) is an
FSM represented by a triple (Q, γ,→), where Q =

∏n
i=1Qi and → is the least

set of transitions satisfying the following rule:

a = {pi}i∈I ∈ γ ∀i ∈ I : qi
pi→ q′i ∀i /∈ I : qi = q′i

(q1, . . . , qn)
a→ (q′1, . . . , q

′
n)

The inference rule says that a BIP system, consisting of n components, can
execute an interaction a ∈ γ, iff for each port pi ∈ a, the corresponding com-
ponent Bi, can execute a transition labeled with pi; the states of components
that do not participate in the interaction remain the same. The set of possible
interactions of a BIP system is defined in JavaBIP by the glue specification, i.e.,
the set of Require and Accept macros. We write B :T to denote a component B
of type T . We denote by T the set of all component types of a BIP system.

Definition 3 extends Def. 2 to describe a valid BIP system. System validity is
defined from the perspective of starting/stopping the engine execution. Notice
that even if a system is not valid according to Def. 3, JavaBIP components can
communicate in an asynchronous manner.

Definition 3 (Valid BIP System). A BIP system (Q, γ,→) is valid iff γ 6= ∅.

Remark 1. In Def. 1 and Def. 2, for the sake of simplicity, we omit the presen-
tation of data-related aspects. However, it should be noted that the full Jav-
aBIP [10] allows data variables within components. In such cases, component
transitions can be guarded by Boolean predicates on data variables. Notice that
in Def. 3 we do not consider guards. This is a design choice that we made. The
result of guard evaluation might easily change multiple times throughout the
system lifecycle, e.g., based on the components internal state, on component in-
teraction, etc. , and thus, it is undesirable to base engine execution on such often
recurring changes that could actually result in increasing the engine’s overhead.

Definition 3 says that a BIP system is valid if and only if there are enough
registered components such that the interaction set of the system is not empty.
To determine the validity of a system, we use directed graphs with edge coloring
to model dependencies among components. The generation of the validity graph
is based on the Require macros of the glue specification, since these define the
minimum number of required interactions among the components. The complete
glue specification is used by the engine for orchestrating component execution.

Definition 4 (Validity graph). A labelled graph G = (T , E, c) is the validity
graph of a set of Require macros iff:



Fig. 3. Validity graph of the Modular Phone case study.

1. the vertex set T is the set of component types defined in the Require macros;
2. the edge set E contains a directed edge (T1, T2) iff there exists a Require

macro that contains T1 in the effect and T2 in an OR-cause;
3. for each edge (T1, T2) ∈ E, the counter c : E → Z is initialized with the

cardinality of T2 in the corresponding OR-cause.

The edges of the graph are colored such that: 1) all edges corresponding to an
OR-cause of a Require macro are colored the same; 2) edges corresponding to
different OR-causes are colored differently.

Clearly, there always exists a validity graph for any set of Require macros.
Note that the outgoing edges of two different vertices may have the same color.

Fig. 3 shows part of the validity graph of the case study (the full graph
can be found in [31]). There are 13 vertices, each one representing an atomic
component type from Fig. 2. Due to space limitations, we substituted the full
names with their acronyms. For instance, we substituted AP Message Handler

by APMW. In case of acronym conflicts, we added more letters, e.g., we substituted
AP Request Worker by APReqW, and AP Response Worker by APResW.

Let us now consider two of the Require macros of the case study (the full set
of Require and Accept macros can be found in [31]).

PSPC.snd Require PSH.rcv PSH.rcv

APRF.snd Require ConPC.rvc; CamPC.rcv; PSPC.rcv; LPC.rcv



Since, component type Power Supply Protocol Controller requires syn-
chronization with two instances of component type Power Supply Handler,
there is an edge from vertex PSPC to vertex PSH labeled by a counter initialized
to 2. Furthermore, component type AP Receiver Fifo requires synchronization
either with an instance of component type Control Protocol Controller or
an instance of component type Camera Protocol Controller or an instance
of Power Supply Protocol Controller or an instance of Logger Protocol

Controller. Thus, there are four outgoing edges from vertex APRF, each labeled
by a counter initialized to 1 and colored by a different color, to vertices ConPC,
CamPC, PSPC, and LPC, respectively. In Fig. 3, edges with different colors are also
represented by different line styles.

Definition 5 (Dynamic change in validity graph). In the event of a dy-
namic change, a validity graph is updated as follows:

1. If a component instance of type T is registered, the counters of all incoming
edges of vertex T are decremented by 1.

2. If a component instance of type T is deregistered or paused, the counters of
all incoming edges of vertex T are incremented by 1.

Proposition 1 (Determining system validity). Consider a BIP system and
a corresponding validity graph. The BIP system is valid iff for at least one vertex
of the validity graph, an instance of the vertex’s corresponding type is registered
and the counters of all outgoing edges of at least one color are equal to or less
than 0.

Example 1. Figure 4 presents the changes in the validity graph of Fig. 3, when
an instance of each of the APMW, APResW, APRF, and PSH component types has
been registered. Notice that the system is still not valid; to become valid after
the registration of exactly one component, it requires that at least one instance
of a component type contained in one of the red dashed boxes to be registered.
That is if a component instance of type ConPC or CamPC or PSPC or LPC or ApReqW
gets registered, then the system becomes valid.

To start and stop the engine, we determine first whether the system is valid
by using Prop. 1. Nevertheless, we do not need to check system validity every
time a component registers/deregisters/pauses. Corollaries 1 and 2 define such
cases. The proofs of Prop. 1 and Cor. 1 and 2 can be found in [31].

Corollary 1. If a BIP system Bn is valid and a component is registered, then
the new BIP system Bn+1 is also valid.

Corollary 2. If a BIP system Bn is invalid and a component is deregistered or
paused, then the new BIP system Bn−1 is also invalid.



Fig. 4. Changes in validity graph when adding/removing components.

5 Implementation

Next, we discuss the implementation of the dynamic JavaBIP extension, during
which the implementation of the JavaBIP engine has significantly changed. Let
us consider first the interface of the JavaBIP engine, i.e., BIPEngine. In the static
implementation, BIPEngine consisted of the following functions: 1) register

used by a developer to register a component to the engine; 2) inform used by
a component to inform the engine of its current state and enabled transitions;
3) specifyGlue used by a developer to send the glue specification to engine;
4) start used by a developer to start the engine thread and 5) stop used by a
developer to stop the engine.

We updated BIPEngine as follows. Function start was removed, since the
engine thread is now started automatically based on whether enough components
are registered to form a valid system. We added two functions: 1) deregister

used by a developer or the component itself (e.g., in the case of a failure) to dereg-
ister from the engine and 2) pause used by a developer or the component (e.g.,
in the case that the component is going to communicate asynchronously with
other components for an amount of time) to pause synchronizations with other
components. Function register was considerably updated, as well as function
stop which can also be called internally by the engine in the case of an invalid
system. The remaining functions were not modified. Figure 5 shows the software



architecture of the JavaBIP engine. The arrows labeled register, deregister,
stop, specifyGlue, and pause represent calls to the BIPEngine functions.

Fig. 5. Dynamic JavaBIP Engine software architecture.

The ComponentPool object was added, which is used as an interface to the
validity graph described in Def. 4. The ComponentPool starts the core engine
(comprising a stack of coordinators and the engine kernel), when the system
becomes valid, and stops it, when the system becomes invalid. System validity is
checked whenever a component is registered, deregistered or paused, excluding
the cases described in Cor. 1 and 2. Whenever a component is registered or
deregistered without affecting the validity of the system, the Component Pool

sends an update registration/deregistration event to the core engine.
The engine composes and solves the various constraints of the system. Its

implementation is based on Binary Decision Diagrams (BDDs) [2], which are
efficient data structures to store and manipulate Boolean formulas.6 The imposed
constraints encode information about the behavior, glue, data, and current state
of the components. Current state constraints allow us to compute the enabled
transitions of the component. For each type of constraints, we discuss which
parts must be recomputed when registering components at runtime. There is no
need to recompute these constraints when a component is paused or deregistered.
Whenever constraints are recomputed, the Coordinators send these to the kernel.

The formulas that define the behavior, glue, data, and current state con-
straints were presented in [10]. Figure 6 summarizes the constraint computation.
The white color indicates that the constraint is computed only once at system
initialization. The light gray indicates that the constraint is recomputed when
a component is registered. The dark gray color indicates that the constraint is
recomputed during each execution cycle.

The behavior constraint of a component includes the ports and states of
the component. For each port, a Boolean port variable is created. Similarly, for

6 We have used the JavaBDD package, available at http://javabdd.sourceforge.net

http://javabdd.sourceforge.net


Fig. 6. Constraint computation phases.

each state, a Boolean state variable is created. Behavior constraints are built
using these port and state variables. The total behavior constraint is computed
as the conjunction of all component behavior constraints. When a component
is registered, its behavior constraint is computed and conjuncted to the total
behavior constraint. When a component is deregistered, its port variables are
set to false.

The glue constraint is computed by interpreting the Require and Accept
macros of the glue specification. The same Boolean port variables that were
previously created for the behavior constraints are used for the glue constraint
as well. The glue constraint must be recomputed, in a valid system, every time
a new component is registered.

For the data constraint, additional data variables have to be created. The
data constraints represent how data is exchanged among components, i.e., which
components are providing data and which components are consuming data. For
each pair of components exchanging data, a data variable is created. When a
component is registered, the data constraints that involve the newly arrived
components are recomputed. Components exchange data at the beginning of
each execution cycle of the system. Based on the exchanged data, components
may disable some of the possible interactions. As a result, a subset of data
constraints is recomputed at each execution cycle.

The current state constraint of a component is computed when a component
informs of its disabled transitions due to guard evaluation. The total current
state BDD is the conjunction of the current state constraints of all registered
components. During engine execution, i.e., in a valid system, the total current
state constraint is computed at each execution cycle of the engine and is further
conjuncted with the total behavior constraint, the glue constraint, and the total
data constraint.

The execution of a JavaBIP valid system is driven by the engine kernel ap-
plying the following protocol in a cyclic manner:

1. Upon reaching a state, all component constraints are sent to the kernel;
2. The kernel computes the total constraint, which is the conjunction of the

total behavior, glue, current state and data constraints. Thus, it computes
the possible interactions satisfying the total system constraint and picks one
of them;



3. The kernel notifies the Coordinators of its decision by calling execute, which
then notify the components to execute the necessary transitions.

Notice that a component can be registered during any step of the engine
protocol. The engine, however will only include the newly registered component
in the BDD computation at the beginning of the next cycle. System validity
is checked, when a component is paused or deregistered. If the system remains
valid and the engine is executing the second or third step of the engine protocol,
the engine sets the port variables of this component to false and recomputes the
possible interactions.

5.1 Performance results

We show performance results for the modular phone case study. The experiments
were performed on a 3.1 GHz Intel Core i7 with 8GB RAM. We started with
5 registered components and registered up to 45 additional components. The
JavaBIP models are available online7. Table 1 summarizes the engine’s compu-
tation times and the BDD Manager peak memory usage for various numbers of
components. We present and discuss three different engine times: 1) the time
needed to perform a complete engine execution cycle (three-step protocol run
by the Engine kernel); 2) the time needed to (partially) recompute the behavior,
glue, and data BDD constraints due to the registration of a new component; 3)
the time needed to add or remove a component from the component tool and
check the validity of the system.

The first column shows the number of components in the system, after the
registration or deregistration of a component. For instance, 10 means that a new
component was registered and the total number of components in the system is
now 10. The number of components is also decreased in two cases, when it is equal
to 11 and equal to 29. This means that a component was deregistered or paused
and the total number of components in the system is 11 or 29, respectively.

The second column shows the average engine execution time of the first
1000 engine cycles after a component registration or deregistration. The system
becomes valid and the engine is started upon the registration of the 12th compo-
nent. As a result, the engine execution times are equal to 0 for the first two rows
of the table. If the engine had been started, for instance, after the registration
of the 5th component (without the system being valid), the engine would have
needed < 1 ms per execution cycle. This means that an overhead of seconds or
minutes could have been added in the system’s execution if more than a certain
number of engine execution cycles (e.g., 100000) had been performed by the time
the system became valid.

The third column of Table 1 shows the amount of time needed to (partially)
recompute the behavior, glue, and data constraints of the system due to a com-
ponent registration. It is interesting to note that more than 60% of this time is
needed just for the computation of the glue constraints. The first two rows are

7 https://github.com/sbliudze/javabip-itest



equal to 0 since the system is not valid and thus, no BDD computation is re-
quired. If the engine had been started before the system became valid, the BDDs
would have been recomputed upon the registration of each new component. For
instance, after the registration of the 5th component, the engine would have
needed 13 ms and after the registration of the 11th component, the engine would
have needed additional 49 ms to recompute the BDDs. The fifth column shows
the peak memory usage of the BDD manager after a component registration or
deregistration.

Finally, the fourth column of Table 1 presents the amount of time needed
to add or remove a component from the component pool and check for system
validity. The time needed is very low, in some cases even less than 1 millisecond.
These were the cases that system validity was not checked due to the results of
Cor. 1 and 2. The system became valid when the 12th component was registered.
This required the maximum amount of time (3.654 ms), since the full graph
was checked for validity, and then the core engine thread was started. Next, a
component was deregistered, the system became invalid again, and the engine
thread was stopped. The amount of time needed was 2.908 ms.

Table 1. Engine times and BDD Manager peak memory usage. Times are in millisec-
onds and memory usage is in Megabytes.

Number of
components

Time: Engine
execution cycle

Time: BDD
(re)computation

Time:
Component pool

Memory

5 0 0 2.078 0
10 0 0 2.186 0
12 <1 63 3.654 0.059
11 0 0 2.908 0.057
20 <1 151 <1 0.083
25 1.149 194 <1 0.099
30 1.247 239 <1 0.129
29 1.241 0 2.451 0.121
40 1.399 283 <1 0.199
50 1.896 337 <1 0.254

6 Related work

Dynamicity in BIP has been studied by several authors [12,15,20]. In [12], the
authors present the Dy-BIP framework that allows dynamic reconfiguration of
connectors among the ports of the system. They use history variables to allow
sequences of interactions with the same instance of a given component type.
JavaBIP can emulate history variables using data. In contrast, our focus is on
dynamicity due to the creation and deletion of components that is often encoun-
tered in modern software systems that are not restricted to the embedded sys-



tems domain. Additionally, the interface-based design and the modular software
architecture of JavaBIP allow us to easily extend the JavaBIP implementation.

Our approach is closest to [15] and [21]. In [15], two extensions of the BIP
model are defined: reconfigurable—similar to Dy-BIP—and dynamic, allowing
dynamic replication of components. They focus on the operational semantics of
the two extensions and their properties, by studying their encodability in BIP
and Place/Transition Petri nets (P/T Nets). Composition is defined through
interaction models, without considering structured connectors. In contrast, our
work focuses mostly on the connectivity among components, defined by Re-
quire/Accept relations. In [21], the BIP coordination mechanisms are imple-
mented by a set of connector combinators in Haskell and Scala. Functional BIP
provides combinators for managing connections in a dynamically evolving set of
components. However, as in [15], such evolution must be managed by explicit
actions of existing components. In contrast, the JavaBIP approach allows com-
ponents to be created independently, only requiring that they be subsequently
registered with the JavaBIP engine.

The Reo coordination language [33]—which realizes component coordination
through circuit-like connectors built of channels and nodes—provides dedicated
primitives for reconfiguring connectors by creating new channels (Ch), and ma-
nipulating channel ends and nodes (split, join, hide and forget). A number
of papers study reconfiguration of Reo connectors. In particular, [18] provides a
framework for model checking reconfigurable circuits, whereas [26] and [27] take
the approach based on graph transformation techniques. The main difference
between connector reconfiguration in Reo and dynamicity in JavaBIP is that,
in Reo, reconfiguration operations are performed on constituent elements of the
connector. Thus, in principle, such operations can affect ongoing interactions.
This is not possible in JavaBIP, since interactions are completely atomic.

In [16,34], the authors study adaptation of open component-based systems.
The underlying component and composition model inherits from the work of
Arnold on synchronisation vectors [4] and thereby is very close to that of BIP
and other frameworks, e.g., [23]. The authors focus on fixing several types of mis-
match situations, among which name mismatch, which occurs when the names of
the sending and receiving events do not coincide (CCS and π-calculus are used to
describe component behaviour), and independent evolution, which occurs when
an event on a particular interface does not have an equivalent in its counterparts
interface. Contrary to BIP, synchronisation and data transfer concerns are not
fully separate in [16,34], since they rely on send and receive primitives. Thus,
they use multiparty synchronisation exclusively to allow broadcasting. The goal
of both static and dynamic adaptation is to resolve the mismatches, based on
a user-specified mapping, while avoiding deadlocks. Our work in this paper dif-
fers insofar as the BIP synchronisation mechanism is blocked anyway8 as long
as the necessary components have not registered. Thus, our main concern is
not avoiding deadlock, but reducing the coordination overhead induced by the
engine.

8 Communication through direct message passing can still proceed.



Three main types of formalisms have been studied in the literature for the
specification of dynamic architectures and architecture styles [13]: 1) graph gram-
mars, 2) process algebras, and 3) logics. Graph grammars have been used to spec-
ify reconfiguration in a dynamic architecture through the use of graph rewriting
rules. Representative approaches include the Le Métayer approach [28], where
nodes plus CSP-like behavior specifications are components and edges are con-
nectors. A different way of representing software architectures with graph gram-
mars can be found in [24], where hyperedges with CCS labels are components and
nodes are communication ports. Other graph-based approaches are summarized
in [14]. None of these approaches offers tool support.

Additionally, process algebras have been used to define dynamic architec-
tures as part of several architecture description languages (ADLs). For instance,
π-calculus [32] was used in Darwin [29] and LEDA [17], CCS was used in Pi-
Lar [19], and CSP was used in Dynamic Wright [3]. In comparison with our
approach, Darwin and PiLar support only binary bindings (connectors), while
in Dynamic Wright and LEDA there is no clear distinction between behavior
and coordination since connectors can have behavior.

Logic has also been used for the specification of dynamic software architec-
tures and architecture styles. Alloy’s first-order logic [25] was used in [22] for the
specification of dynamic architectures, while the Alloy Analyzer tool was used
to analyze these specifications. JavaBIP specifications can also be analyzed [7,8],
however, the main focus of JavaBIP is runtime coordination, which is not offered
in [22]. Configuration logics [30] were proposed for the specification of architec-
ture styles, which however, in their current form do not capture dynamic change.

7 Conclusion and future work

We presented an extension of the JavaBIP framework for coordination of soft-
ware components that can register, deregister and pause at runtime. To handle
this type of dynamicity, JavaBIP uses a macro-notation based on first-order
interaction logic that allows specifying synchronization constraints on compo-
nent types. This way, a developer is not required to know the exact number of
components that need to be coordinated when specifying the synchronization
constraints of a system. Additionally, we introduced a notion of system validity,
which we use to start and stop the JavaBIP engine automatically at runtime
depending on whether there are enough registered components in the system so
that there is at least one enabled synchronization among them. In the previous,
static JavaBIP implementation, developers had to manually start and stop the
engine. Starting and stopping the engine in an automatic way helps optimize
JavaBIP performance since it eliminates the engine’s overhead in the case of an
invalid system.

JavaBIP implements the principles of the BIP component framework rooted
in rigorous operational semantics. Notice, however, that none of the current BIP
engine implementations can handle dynamic insertion and deletion of compo-
nents at runtime. The functionality of pausing a component at runtime makes



the implementation of the JavaBIP engine more incremental. In our previous,
static implementation, the engine had to wait for all registered components to
inform in each cycle before making any computations. As a result, a single com-
ponent could introduce a long delay in the system execution. In the current
implementation, when a component is paused, the engine does not wait for it to
inform, but rather computes the set of enabled interaction in the system that
involve only the non-paused components. JavaBIP is an open-source tool9.

In the future, we plan to work towards increasing the incrementality of the
engine in the following way: the engine does not have to wait for all non-paused
components to inform but rather checks whether there is an enabled interaction
among the components that have already informed and orders its execution.
To check the enableness of interactions we plan to reuse the notion of validity
graphs introduced in this paper and extend it with additional information on
component ports. Additionally, we plan on extending the engine functionality to
handle registration of new component types and synchronization patterns.
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