471 research outputs found

    Simulation of Electric Vehicles Combining Structural and Functional Approaches

    Get PDF
    In this paper the construction of a model that represents the behavior of an Electric Vehicle is described. Both the mechanical and the electric traction systems are represented using Multi-Bond Graph structural approach suited to model large scale physical systems. Then the model of the controllers, represented with a functional approach, is included giving rise to an integrated model which exploits the advantages of both approaches. Simulation and experimental results are aimed to illustrate the electromechanical interaction and to validate the proposal.Fil: Silva, Luis Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rio Cuarto. Facultad de Ingeniería. Grupo de Electronica Aplicada; ArgentinaFil: Magallán, Guillermo Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rio Cuarto. Facultad de Ingeniería. Grupo de Electronica Aplicada; ArgentinaFil: de la Barrera, Pablo Martin. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rio Cuarto. Facultad de Ingeniería. Grupo de Electronica Aplicada; ArgentinaFil: de Angelo, Cristian Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rio Cuarto. Facultad de Ingeniería. Grupo de Electronica Aplicada; ArgentinaFil: Garcia, Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rio Cuarto. Facultad de Ingeniería. Grupo de Electronica Aplicada; Argentin

    Modeling and Performance Analysis of Plug-In Split Hybrid Electric Vehicle

    Get PDF
    Regarding increasing of concern over the environment and ever stringent emissions regulations, the electric vehicle has been investigated as an alternative form of transportation. However, the electric vehicle suffers from relatively short range and long charging times and consequently has not become an acceptable solution to the automotive consumer. The addition of an internal combustion engine to extend the range of the electric vehicle is one method of exploiting the high efficiency and lack of emissions of the electric vehicle while retaining the range and convenient refuelling times of a conventional gasoline powered vehicle. The term that describes this type of vehicle is a hybrid electric vehicle. Many configurations of hybrid electric vehicles have been designed and implemented, namely the series, parallel and power-split configurations. This project discusses the modelling and simulation of split plug-in hybrid electric vehicles. Modelling methods such as physics-based Resistive Companion Form technique and Bond Graph method are presented with powertrain component and system modelling examples. The modelling and simulation capability of existing tools such as ADvanced VehIcle SimulatOR (ADVISOR) is demonstrated through application examples. Since power electronics is indispensable in hybrid vehicles, the issue of numerical oscillations in dynamic simulations involving power electronics is briefly addressed

    Unified backwards facing and forwards facing simulation of a hybrid electric vehicle using MATLAB Simscape

    Get PDF
    This paper presents the implementation of a vehicle and powertrain model of the parallel hybrid electric vehicle which can be used for several purposes: as a model for estimating fuel consumption, as a model for estimating performance, and as a control model for the hybrid powertrain optimisation. The model is specified as a multi-domain physical model in MATLAB Simscape, which captures the key electrical, mechanical and thermal energy flows in the vehicles. By applying hand crafted boundary conditions, this model can be simulated either in the forwards or backwards direction, and it can easily be simplified as required to address specific control problems. Modelling in the forwards direction, the driver inputs are specified, and the vehicle response is the model output. In the backwards direction, the vehicle velocity as a function of time is the specified input, and the engine torque, and fuel consumption are the model outputs. The model represents a parallel hybrid vehicle, which is being developed in the TC48 project. The project goal is to produce a prototype of a plug-in parallel hybrid system which is integrated into existing front wheel drive powertrains with modest additional engineering, cost, volume, and mass requirements. This paper explains the motivation for the project, and presents examples of the simulations which were used to guide the design. The vehicle simulation models used to evaluate the layout options are described and discussed. Sensitivity analyses are presented which informed the design decisions. A novel use of the Simscape component of MATLAB/Simulink which allows the same model structure to be used for both forwards and backwards simulations is demonstrated. This method has the possibility for more general application, and a toolbox is being developed which assists the generation of mathematical models of this type

    Analysis of Hydrogen Fuel Cell Powerplant Architectures for Future Transport Applications

    Full text link
    [ES] A la luz de la crisis medioambiental y del creciente interés en el uso del H2 para avanzar hacia la Economía del Hidrógeno, esta tesis tiene como objetivo analizar y optimizar nuevas arquitecturas de sistemas propulsivos de FCV para aplicaciones en turismos y vehículos pesados en términos de rendimiento, durabilidad e impacto medioambiental. Para ello, se ha desarrollado una plataforma de modelado de FCV multifísica y flexible que integra un modelo de pila de combustible validado junto con los componentes del BoP, los componentes mecánicos y eléctricos del vehículo y el sistema propulsivo, un modelo de degradación de FC semi-empírico informado por tendencias físicas diseñado para ser utilizado en condiciones de conducción y un optimizador de EMS en tiempo real que ofrece el mejor rendimiento dado un diseño de sistema propulsivo y un ciclo de conducción, de tal forma que todas las arquitecturas propuestas para una aplicación determinada sean comparables en términos justos. La discusión de los resultados puede dividirse en tres partes diferentes. La primera está orientada a la optimización del rendimiento del FCS. Los resultados de esta parte ayudaron a identificar la estrategia de gestión del aire que, dado un conjunto de restricciones impuestas en los componentes del BoP, maximizaba la potencia neta del FCS (eficiencia) para cada valor de densidad de corriente. El balance energético resultante, que comprende la potencia producida por la pila de combustible, las perdidas electroquímicas y el consumo de los componentes del BoP, fue analizado y utilizado para determinar y diseñar la estrategia de control de los actuadores del BoP para condiciones de conducción. La segunda parte se centra en la evaluación y optimización, cuando es posible, de la arquitectura FCREx para aplicaciones de turismos y la configuración multi-FCS para aplicaciones de vehículos de transporte pesado. Desde el punto de vista del rendimiento, la arquitectura FCREx ofrecía un consumo mínimo de H2 con una elevada potencia de la pila de combustible y una gran capacidad de la batería, pero este diseño podría ser prohibitivo en términos de costes. Podía ofrecer hasta un 16.8-25% menos de consumo de H2 y un 6.8% menos de consumo de energía. La limitación en la dinámica de esta arquitectura aumento la durabilidad de la FC en un 110% con una penalización en el consumo de H2 del 4.7%. La arquitectura multi-FCS para aplicaciones pesadas podría funcionar con una dinámica aún menor, con un aumento de la durabilidad de la pila del 471% con una penalización en el consumo de H2 del 3.8%, ya que el perfil de conducción de los vehículos pesados suele ser menos dinámico. El control y el dimensionamiento diferencial solo podrían aportar beneficios en términos de impacto ambiental o de coste, pero no de rendimiento. La última parte considera los resultados obtenidos en términos de rendimiento y durabilidad para analizar el impacto medioambiental de cada arquitectura. La estrategia de producción de H2 afecta significativamente a las emisiones del ciclo de vida en ambas aplicaciones sobre cualquier otra elección de diseño. El diseño óptimo para la arquitectura FCREx que minimiza las emisiones tiene una alta potencia de la pila de combustible y una capacidad moderada de la batería. En el caso de la aplicación para vehículos pesados, se identificó la dinámica de control óptima para cada diseño y estrategia de producción de H2, y se determinó que la estrategia de diseño de dimensionado diferencial solo proporcionaba beneficios si se consideraba una tecnología de pila de combustible diferente para las distintas pilas integradas en el sistema propulsivo.[CA] A la llum de la crisi mediambiental i del creixent interés en l'ús de l'H2 per a avançar cap a l'Economia de l'Hidrogen, aquesta tesi té com a objectiu analitzar i optimitzar noves arquitectures de sistemes propulsius de FCV per a aplicacions en turismes i vehicles pesants en termes de rendiment, durabilitat i impacte mediambiental. Per a això, s'ha desenvolupat una plataforma de modelatge de FCV multifísica i flexible que integra un model de pila de combustible validat juntament amb els components del BoP, els components mecànics i elèctrics del vehicle i el sistema propulsiu, un model de degradació de pila de combustible semi-empíric informat per tendències físiques dissenyat per a ser utilitzat en condicions de conducció i un optimitzador d'EMS en temps real que ofereix el millor rendiment donat un disseny de sistema propulsiu i un cicle de conducció, de tal forma que totes les arquitectures proposades per a una aplicació determinada siguen comparables en termes justos. La discussió dels resultats pot dividir-se en tres parts diferents. La primera està orientada a l'optimització del rendiment del FCS. Els resultats d'aquesta part van ajudar a identificar l'estratègia de gestió de l'aire que, donat un conjunt de restriccions imposades en els components del BoP, maximitzava la potència neta del FCS (eficiència) per a cada valor de densitat de corrent. El balanç energètic resultant, que comprén la potència produïda per la pila de combustible, les pèrdues electroquímiques i el consum dels components del BoP, va ser analitzat i utilitzat per a determinar i dissenyar l'estratègia de control dels actuadors del BoP per a condicions de conducció. La segona part se centra en l'avaluació i optimització, quan ¿es possible, de l'arquitectura FCREx per a aplicacions de turismes i la configuració multi-FCS per a aplicacions de vehicles de transport pesat. Des del punt de vista del rendiment, l'arquitectura FCREx oferia un consum mínim d'H2 amb una elevada potència de la pila de combustible i una gran capacitat de la bateria, però aquest disseny podría ser prohibitiu en termes de costos. Podia oferir fins a un 16.8-25% menys de consum d'H2 i un 6.8% menys de consum d'energia. La limitació en la dinàmica d'aquesta arquitectura va augmentar la durabilitat de la pila en un 110% amb una penalització en el consum d'H2 del 4.7%. L'arquitectura multi-FCS per a aplicacions pesades podria funcionar amb una dinàmica encara menor, amb un augment de la durabilitat de la pila del 471% i una penalització en el consum d'H2 del 3.8%, ja que el perfil de conducció dels vehicles pesants sol ser menys dinàmic. El control i el dimensionament diferencial només podrien aportar beneficis en termes d'impacte ambiental o de cost, però no de rendiment. L'última part considera els resultats obtinguts en termes de rendiment i durabilitat per a analitzar l'impacte mediambiental de cada arquitectura. L'estratègia de producció d'H2 afecta significativament a les emissions del cicle de vida en totes dues aplicacions sobre qualsevol altra elecció de disseny. El disseny òptim per a l'arquitectura FCREx que minimitza les emissions té una alta potència de la pila de combustible i una capacitat moderada de la bateria. En el cas de l'aplicació per a vehicles pesants, es va identificar la dinàmica de control `optima per a cada disseny i estratègia de producció d'H2, i es va determinar que l'estratègia de disseny de dimensionament diferencial només proporcionava beneficis si es considerava una tecnologia de pila de combustible diferent per a les diferents piles integrades en el sistema propulsiu.[EN] In light of the environmental crisis and the growing interest in the use of H2 to advance toward the Hydrogen Economy, this thesis aims at analyzing and optimizing novel FCV powerplant architectures for passenger car and heavy-duty vehicle applications in terms of performance, durability, and environmental impact. For that purpose, a multi-physics flexible FCV modeling platform was developed integrating a validated FC stack model together with the BoP components, the mechanical and electrical components of the vehicle and powertrain, a semi-empirical physics-informed FC degradation model designed to be used in driving conditions and a real-time EMS optimizer that offers the best performance given a powerplant design and driving cycle so that all the proposed architectures for a given application are comparable. The discussion of the results can be divided into 3 different parts. The first one is oriented towards the FCS performance optimization. The results in this part helped to identify the air management strategy that, given a set of constraints imposed in the BoP components, maximized the FCS net power output (efficiency) for each value of current density. The resulting energy balance comprising the FC stack power produced, the electrochemical losses, and the consumption of the BoP components was analyzed and used to determine and design the control strategy of the BoP actuators for driving cycle conditions. The second part is focused on the evaluation and optimization, when possible, of the FCREx architecture for passenger car applications and the multi-FCS configuration for heavy-duty vehicle applications. Performance-wise the FCREx architecture offered minimum H2 consumption with high FC stack power and high battery capacity, but this design could be prohibitive in terms of costs. It could offer up to 16.8-25% lower H2 consumption and 6.8% lower energy consumption. Limiting the dynamics of this architecture increased the FC durability by 110% with a penalty in H2 consumption of 4.7%. The multi-FCS architecture for heavy-duty applications could operate with even lower dynamics, with an increase in the FC durability of 471% with a penalty in H2 consumption of 3.8%, since the driving profile of heavy-duty vehicles is usually more steady. Differential control and sizing could only provide benefits in terms of environmental impact or cost, not performance. The last part considers the results obtained in terms of performance and durability to analyze the environmental impact of each architecture. The H2 production pathway affected significantly the life cycle emissions of both applications over any other design choice. The optimum design for FCREx architecture that minimized emissions had high FC stack power and moderate battery capacity. In the case of heavy-duty application, the optimum control dynamics for each design and H2 production pathway were identified, and the differential sizing design strategy was determined to only provide benefits if different FC stack technology was considered for the various stacks in the powerplant.López Juárez, M. (2022). Analysis of Hydrogen Fuel Cell Powerplant Architectures for Future Transport Applications [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/18921

    A toolbox for multi-objective optimisation of low carbon powertrain topologies

    Get PDF
    Stricter regulations and evolving environmental concerns have been exerting ever-increasing pressure on the automotive industry to produce low carbon vehicles that reduce emissions. As a result, increasing numbers of alternative powertrain architectures have been released into the marketplace to address this need. However, with a myriad of possible alternative powertrain configurations, which is the most appropriate type for a given vehicle class and duty cycle? To that end, comparative analyses of powertrain configurations have been widely carried out in literature; though such analyses only considered limited types of powertrain architectures at a time. Collating the results from these literature often produced findings that were discontinuous, which made it difficult for drawing conclusions when comparing multiple types of powertrains. The aim of this research is to propose a novel methodology that can be used by practitioners to improve the methods for comparative analyses of different types of powertrain architectures. Contrary to what has been done so far, the proposed methodology combines an optimisation algorithm with a Modular Powertrain Structure that facilitates the simultaneous approach to optimising multiple types of powertrain architectures. The contribution to science is two-folds; presenting a methodology to simultaneously select a powertrain architecture and optimise its component sizes for a given cost function, and demonstrating the use of multi-objective optimisation for identifying trade-offs between cost functions by powertrain architecture selection. Based on the results, the sizing of the powertrain components were influenced by the power and energy requirements of the drivecycle, whereas the powertrain architecture selection was mainly driven by the autonomy range requirements, vehicle mass constraints, CO2 emissions, and powertrain costs. For multi-objective optimisation, the creation of a 3-dimentional Pareto front showed multiple solution points for the different powertrain architectures, which was inherent from the ability of the methodology to concurrently evaluate those architectures. A diverging trend was observed on this front with the increase in the autonomy range, driven primarily by variation in powertrain cost per kilometre. Additionally, there appeared to be a trade-off in terms of electric powertrain sizing between CO2 emissions and lowest mass. This was more evident at lower autonomy ranges, where the battery efficiency was a deciding factor for CO2 emissions. The results have demonstrated the contribution of the proposed methodology in the area of multi-objective powertrain architecture optimisation, thus addressing the aims of this research

    Advanced Control and Estimation Concepts, and New Hardware Topologies for Future Mobility

    Get PDF
    According to the National Research Council, the use of embedded systems throughout society could well overtake previous milestones in the information revolution. Mechatronics is the synergistic combination of electronic, mechanical engineering, controls, software and systems engineering in the design of processes and products. Mechatronic systems put “intelligence” into physical systems. Embedded sensors/actuators/processors are integral parts of mechatronic systems. The implementation of mechatronic systems is consistently on the rise. However, manufacturers are working hard to reduce the implementation cost of these systems while trying avoid compromising product quality. One way of addressing these conflicting objectives is through new automatic control methods, virtual sensing/estimation, and new innovative hardware topologies

    Automated Topology Synthesis and Optimization of Hybrid Electric Vehicle Powertrains

    Get PDF
    This thesis presents a framework to automate the process of designing Hybrid Electric Vehicle (HEV) powertrain architectures. An algorithm was developed to assemble and compare all possible configurations of powertrain components. Combinatorics was used to discover all possible combinations of: an internal combustion engine, high-torque low-speed electric motor, low-torque high-speed electric motor, planetary gearset, and five-speed discrete gearbox. The Graph Theoretic Method was used to generate the powertrain models. The powertrain models were comprised of steady-state equations in symbolic form. An optimal control strategy is required to fairly compare the different topologies because a powertrain control strategy is dependant on the configuration. Dynamic Programming was used to determine the control law that minimizes the energy consumption for a given drivecycle. Evaluating every possible topology would take an extremely long time, so topologies were evaluated using a multi-stage screening process. The first stage examined the structure of the powertrain and used heuristics to eliminate infeasible topologies; 512 topologies were feasible. The second stage eliminated topologies that could not meet basic driving performance; 193 topologies were feasible. Basic driving performance was tested using a section of the US06 drivecycle. The sizes of three components were optimized to ensure the topology is feasible independent of the size of the components. The third stage eliminated topologies which could not achieve driving performance design goals; 159 could achieve the performance requirements, but only 119 were reasonably fuel efficient. The driving performance goals were implemented with a drivecycle based on the Partnership for a New Generation of Vehicles (PNGV) goals. The sizes for five components were optimized at this stage. The 20 most fuel efficient powertrains were selected for further evaluation. Additionally, 4 common powertrains were evaluated for reference. The size of the components were optimized for a combination of the PNGV drivecycle and the HWFET drivecycle. The most fuel efficient topology was found to be a Powersplit hybrid which has a discrete gearbox between the final drive and the powersplit device. The electric motor, planetary carrier gear, and gearbox were connected in parallel. It was found that Parallel-like, Powersplit-like, and Complex-like topologies were were the most efficient powertrain configurations. Powertrains containing two gearboxes were more efficient because the geartrain models ignored mechanical inefficiencies

    Energy-based modelling and simulation of a series hybrid electric vehicle propulsion system

    Get PDF
    This paper presents an energy-based model of a series hybrid electric vehicle. The proposed propulsion system has a new configuration using a wound-rotor synchronous generator (WRSM) and a doublyfed induction machine (DFIM). From the classic dq dynamical equations of the WRSM and DFIM the port-controlled Hamiltonian models of each machine is described. One of the abilities of the port-based models is that the complete model is easy to obtain by means of interconnection rules. Following this, the Hamiltonian model of the whole system is obtained. Similarly, the bond graph approach allows to build a complex model by interconnecting several subsystems. This paper also contains bond graph models of the machines and the propulsion system. Numerical simulations are also presented in order to validate the proposed models.Peer ReviewedPostprint (author’s final draft

    Direct synchronous-asynchronous conversion system for hybrid electrical vehicle applications: an energy-based modeling approach

    Get PDF
    This paper presents a proposal for a series hybrid electric vehicle propulsion system. This new configuration is based on a wound-rotor synchronous generator (WRSM) and a doubly-fed induction machine (DFIM). The energy-based model of the whole system is obtained taking advantage of the capabilities of the port-based modeling techniques. From the dq port-controlled Hamiltonian description of the WRSM and DFIM, the Hamiltonian model of the proposed Direct Synchronous-Asynchronous Conversion System (DiSAC) is developed. Subsequently, the bond graph models of the DiSAC and associate systems are also provided. Numerical simulations are also presented in order to validate the proposed system.Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señale

    Simulation of hybrid electric vehicle based on a series drive train layout

    Get PDF
    This paper provided a validated modeling and a simulation of a 6 degree freedom vehicle longitudinal model and drive-train component in a series hybrid electric vehicle. The 6-DOF vehicle dynamics model consisted of tire subsystems, permanent magnet synchronous motor which acted as the prime mover coupled with an automatic transmission, hydraulic brake subsystem, battery subsystem, alternator subsystem and internal combustion engine to supply the rotational input to the alternator. A speed and torque tracking control systems of the electric power train were developed to make sure that the power train was able to produce the desired throttle torque in accelerating the vehicle. A human-in-the-loop-simulation was utilized as a mechanism to evaluate the effectiveness of the proposed hybrid electric vehicle. The proposed simulation was used as the preliminary result in identifying the capability of the vehicle in terms of the maximum speed produced by the vehicle and the capability of the alternator to recharge the battery. Several tests had been done during the simulation, namely sudden acceleration, acceleration and braking test and unbounded motion. The results of the simulation showed that the proposed hybrid electric vehicle can produce a speed of up to 70 km/h with a reasonable charging rate to the battery. The findings from this study can be considered in terms of design, optimization and implementation in a real vehicle
    corecore