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ABSTRACT 

Stricter regulations and evolving environmental concerns have been exerting ever-

increasing pressure on the automotive industry to produce low carbon vehicles that 

reduce emissions. As a result, increasing numbers of alternative powertrain architectures 

have been released into the marketplace to address this need. However, with a myriad of 

possible alternative powertrain configurations, which is the most appropriate type for a 

given vehicle class and duty cycle? To that end, comparative analyses of powertrain 

configurations have been widely carried out in literature; though such analyses only 

considered limited types of powertrain architectures at a time. Collating the results from 

these literature often produced findings that were discontinuous, which made it difficult 

for drawing conclusions when comparing multiple types of powertrains. 

The aim of this research is to propose a novel methodology that can be used by 

practitioners to improve the methods for comparative analyses of different types of 

powertrain architectures. Contrary to what has been done so far, the proposed 

methodology combines an optimisation algorithm with a Modular Powertrain Structure 

that facilitates the simultaneous approach to optimising multiple types of powertrain 

architectures. The contribution to science is two-folds; presenting a methodology to 

simultaneously select a powertrain architecture and optimise its component sizes for a 

given cost function, and demonstrating the use of multi-objective optimisation for 

identifying trade-offs between cost functions by powertrain architecture selection. 

Based on the results, the sizing of the powertrain components were influenced by the 

power and energy requirements of the drivecycle, whereas the powertrain architecture 

selection was mainly driven by the autonomy range requirements, vehicle mass 

constraints, CO2 emissions, and powertrain costs. For multi-objective optimisation, the 

creation of a 3-dimentional Pareto front showed multiple solution points for the 

different powertrain architectures, which was inherent from the ability of the 

methodology to concurrently evaluate those architectures. A diverging trend was 

observed on this front with the increase in the autonomy range, driven primarily by 

variation in powertrain cost per kilometre. 

Additionally, there appeared to be a trade-off in terms of electric powertrain sizing 

between CO2 emissions and lowest mass. This was more evident at lower autonomy 

ranges, where the battery efficiency was a deciding factor for CO2 emissions. 

The results have demonstrated the contribution of the proposed methodology in the area 

of multi-objective powertrain architecture optimisation, thus addressing the aims of this 

research. 
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1 INTRODUCTION 

Road transportation is still the leading choice for mobility of people and goods [1]. 

However, stricter regulations and evolving environmental concerns have been exerting 

ever-increasing pressure on the automotive industry to produce vehicles that are more 

fuel efficient and lower in emissions. This is also in line with changes in consumer 

demands due to perceived risks of climate change and fluctuation in fossil fuel costs [2]. 

Several advanced powertrain solutions are being used by vehicle manufacturers to 

address this, including increasing the efficiency of Internal Combustion Engines (ICE), 

electric powertrains, and hybrid powertrains. A hybrid powertrain is defined as having 

two or more power sources to propel a vehicle [3], and can be further broken down into 

the following architectures: series hybrid powertrains, parallel hybrid powertrains, and 

compound hybrid powertrains. 

Electric and hybrid powertrains are trending topics amongst academics and the industry. 

There are many possible topological combinations that constitute a hybrid powertrain, 

including but not limited to the following: 

 Hybrid Electric Vehicles (HEV) 

 Plug-in Hybrid Electric Vehicle (PHEV) 

 Mechanical Hybrid Vehicle (MHV) 

 Battery-Ultracapacitor HEV. 

Each powertrain topology has its own advantage and shortcoming. Various publications 

have compared and contrasted these topologies to identify the most promising 

configuration, chiefly for reducing emissions. However, literature survey carried out as 

part of this research has revealed conflicting findings because of variations in 

methodology, assumptions, and modelling techniques. 

Furthermore, the pressures are mounting for both industry and governments in deciding 

on powertrain developmental paths. Providing and allocating finite capital and 

technological investments for developing future advanced powertrain technology are 

crucial for decision makers at all levels. One approach that could be used to assist in this 

process is a flexible powertrain simulation environment that allows for simultaneous 

analysis of different powertrain topologies, in order to access the suitability of a given 

topology for a particular vehicle class and its target duty cycle. This would alleviate the 

need for carrying out individual simulations on each type of powertrain topology 

separately, thus saving time and minimising variations in the simulation environment. 

This research aims to investigate the feasibility of such an approach, by developing a 

methodology that would allow practitioners to identify the characteristics of each 

powertrain topology, and conduct insightful comparative analyses across various types 

of topologies. The proposed methodology lent itself to a simulation and optimisation 
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toolbox, which could ultimately be used to establish standards within the automotive 

modelling community. 

This toolbox is useful to obtain a first-hand approximation for the type of powertrain 

that is most appropriate for a given vehicle type and duty cycle. It is suitable for 

preliminary powertrain design analysis, rather than specific higher-fidelity powertrain 

design. It can be used to predict measures such as fuel consumption, emissions, and 

running costs, and this is demonstrated by way of case studies throughout this thesis. 

 

1.1 Research Motivation 

With increasing pressure from legislative bodies for reduction in CO2 emissions from 

road vehicles, alternative powertrain technologies are gaining considerable momentum. 

Apart from reducing emissions, the introduction of new powertrain technologies also 

helps bolster the image of the vehicle manufacturer and their commitment to 

environmental sustainability. Amongst the alternative powertrain architectures that are 

available on the market today include EVs, HEVs, and PHEVs. Another powertrain 

architecture that is gaining attention is the flywheel-based MHVs, derived from 

motorsports [4]. This architecture contains a flywheel that is mechanically coupled to 

the powertrain via a Continuous Variable Transmission (CVT). 

The ability of alternative powertrains to reduce emissions is a topic of discussion 

amongst academics and the industry. HEVs are becoming increasingly popular [5], 

driven by the notion of reduced running costs due to lower fuel consumption when 

compared to Conventional Vehicles (CV) with an ICE. However, the level of advantage 

that is gained from reduced fuel consumption is dependent on how the vehicle is used. 

Similarly, a pure Electric Vehicle (EV) also becomes less suitable if the consumer 

requires a vehicle with a relatively long travel range and minimal refuel times [2]. With 

a myriad of alternative powertrain configurations that currently exist within the 

automotive industry, choosing the most appropriate powertrain architecture for the 

target vehicle class and duty cycle can be challenging [6]. There are ongoing researches 

and debates on trying to identify which is the most promising powertrain architecture 

for future low carbon vehicle propulsion [7-10]. 

Additionally, several cost functions can be used to optimise the size of the components 

within the powertrain architecture, such as lowest Carbon Dioxide (CO2) emissions, 

lowest mass, component costs, or any combination of these attributes. However, in most 

literatures, such analyses were often carried out by comparing only limited types of 

powertrain architectures at a time [6; 11-15]. Hence, collating results from various 

literatures often produced findings that were discontinuous, thus making it difficult for 

drawing conclusions when comparing multiple types of powertrains. For example, An 

and Santini [16] compared the tank-to-wheel efficiencies of new powertrain 
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technologies by collating data from publications by MIT [17] and General Motors [18]. 

However, based on their findings, the analyses between the two publications 

demonstrated very different results and showed a wide range of uncertainties, primarily 

due to variations in the assumptions surrounding the powertrain models. 

This is one of the factors that influenced the direction of this research. By improving the 

methodology used to compare different types of powertrain architectures, practitioners 

can quantify the benefits that can be achieved from each type of architecture on a level 

playing field, thus making it easier to develop the reasoning for manufacturers to 

accelerate the implementation of alternative powertrain technology [19]. Additionally, 

the comparative methods need to be flexible enough to accommodate emerging 

powertrain technologies, such as newer battery chemistries, fuel cell configurations, and 

so forth. 

 

1.2 Research Hypothesis 

The magnitude of reduction in emissions when comparing different powertrain 

technologies is dependent on how the vehicle is used. Like-for-like, powertrains that are 

capable of energy recuperation display significantly higher fuel savings in urban driving 

than in highway driving, when compared to conventional powertrains. This is a result of 

increased braking occurrences and speed variations. A study carried out by Fontaras et 

al. [20] suggested that HEVs exhibited reduction in CO2 over CVs for urban duty 

cycles. However, this advantage is diminished as the duty cycle approaches that of a 

highway pattern, i.e. constant high-speed cruising. At this point, it could be argued that 

a CV could have similar overall fuel consumption to a HEV (for a given vehicle class) 

because of lower opportunities for regenerative braking and near steady-state operation 

of the ICE. 

In the case of a PHEV, its total mass is usually heavier than that of a comparable CV, as 

observed when comparing the mass of Jaguar Limo Green to the conventional Jaguar 

XJ (Appendix C). If the PHEV usage does not exceed its All-Electric Range (AER), 

then its Auxiliary Power Unit (APU) essentially becomes “dead weight”, because its 

contribution to propulsion power would be minimal. Similarly, a pure EV also becomes 

less suitable if the consumer requires a vehicle with a relatively long autonomy range 

and minimal refuel times [2]. Although the battery can be sized up to meet the 

requirements of a long autonomy range, this will add considerable mass to the vehicle, 

and may affect other attributes such as handling and tyre wear [21]. 

Therefore, selecting the most appropriate powertrain architecture for a given vehicle 

class and duty cycle is favourable. Additionally, several cost functions can be used to 

optimise the size of the components within the powertrain architecture, such as lowest 

CO2 emissions, lowest mass, component costs, or any combination of these attributes. 
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However, in most literatures, such analyses were often carried out by comparing only 

limited types of powertrain architectures at a time [6; 11-14]. Collating results from 

these literatures often produced findings that were discontinuous, thus making it 

difficult for drawing conclusions when comparing multiple types of powertrains. 

This has motivated the research hypothesis; is it possible to determine the most 

appropriate powertrain architecture for a given vehicle type and usage profile, based on 

a unified optimisation routine? Identifying the options available in terms of powertrain 

architectures and quantifying the benefits that can be achieved from each type of 

architecture makes it easier to develop the reasoning for manufacturers to accelerate the 

implementation of alternative powertrain technology [19]. To investigate this 

hypothesis, further understanding would be required in the areas of powertrain 

modelling techniques, current state of powertrain architectures, as well as the state of 

simulation tools. These will be explored further in the next chapter. 

 

1.3 Aims and Objectives 

This research aims to investigate this hypothesis, by proposing a methodology to 

critically evaluate different powertrain architectures. To achieve this, a robust 

simulation toolbox that would enable comparative analysis of multiple powertrain 

architectures will be developed. The output from this toolbox could be used as a first-

hand approximation for identifying the most appropriate powertrain topology depending 

on the vehicle class, duty cycle, and cost function, as demonstrated by the author in 

prior publications [22; 23]. To develop this toolbox, research was carried out in three 

different study areas, and this is represented by the Venn diagram in Figure 1. 

In Figure 1, the “Powertrain Architectures” circle encompasses the range of powertrain 

architectures considered in this research, several of which were mentioned in the 

Introduction. Within each architecture, there are several “topologies”. A powertrain 

topology is defined as a subset of powertrain architecture, and contains one or more 

combinations of energy storage and energy converter. The classification of Powertrain 

Architecture and Powertrain Topology is shown in Figure 2. 

Next, the “Vehicle Class” circle defines the type of vehicle that the powertrain will be 

simulated with, and contains parameters such as mass, aerodynamic drag, and rolling 

resistance. Finally, the “Duty Cycle” circle contains information on the usage profile of 

the vehicle, such as a representative drivecycle that it will encounter, as well as the 

required range that it has to travel before replenishing the on-board energy storage. 

An optimisation algorithm is employed to provide an objective approach to comparing 

different powertrain topologies. It allows powertrain topologies to be compared for a 

given vehicle class and duty cycle. As a result, this enables the most appropriate 

powertrain topology to be selected and sized for a given vehicle application. 
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Figure 1: PhD research scope 

 

 

Figure 2: Distinction between Powertrain Architecture and Powertrain Topology 

This research aims to compare hybrid powertrains in terms of: 

 Fuel economy and emissions 

 Estimated powertrain costs 

 Power and energy demands from duty cycles 

This list was drawn from literature review, and it is covered further in the next chapter. 

 

1.4 Claim of Novelty 

The original contribution to knowledge of this research is the following: 

1. A methodology to simultaneously select a powertrain topology and optimise its 

component sizes for a given cost function 

2. Utilising multi-objective optimisation for identifying trade-offs between cost 

functions by powertrain topology selection. 
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Each of the points above has been published by the author in [22] and [24] respectively. 

Over the last decade, a myriad of low carbon powertrain technologies have been 

launched into the market [2]. Additionally, several commercial computer simulation 

packages have been developed to analyse vehicle powertrains, with varying degrees of 

fidelity. Examples include ADVISOR [25], PSAT [26], and the QSS toolbox [27]. 

However, based on underlying literature review, there has been no published work on 

combining such simulation software with comparative analysis capabilities for different 

powertrain topologies. In most literatures, comparative analyses of powertrains were 

carried out manually by comparing only limited types of powertrain topologies at a time 

[6; 11-13] [28]. Collating results from these literatures often produce findings that were 

discontinuous, which made it difficult for drawing conclusions when comparing 

multiple types of powertrains. 

To address this, a novel methodology was developed that simultaneously optimises and 

compares powertrain topologies. Contrary to what has been done so far, the proposed 

methodology combines an optimisation algorithm with a Modular Powertrain Structure 

(MPS), which facilitates the simultaneous approach to comparing multiple types of 

powertrain architectures. The use of this methodology (in the form of a simulation 

toolbox) provides an objective evaluation of each type of powertrain architecture, and 

illustrates the potential impact of powertrain selection towards a given cost function, or 

multiple cost functions. 

Thus, similar to using the commercial software packages mentioned above, practitioners 

would be able to optimise powertrain component sizes for a given cost function using 

the proposed methodology. However, the methodology also extends this capability by 

automating the selection of the powertrain topology as part of the optimisation routine. 

This capability underscores the first novelty of this research. 

The application of multi-objective optimisation towards powertrain architecture 

selection and sizing also seems to be missing in the literature, and this will form the 

second novelty of this research. As mentioned in the introduction, the proposed 

approach could be used to establish standards within the automotive modelling 

community. Subsequent chapter will describe the implementation and results of this 

methodology by way of case studies. 

 

1.5 List of Publications 

The following are a list of publications that were produced over the course of this 

research to support its findings: 
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1.5.1 Conferences 

 Mohan, G., Assadian, F. and Marco, J. (2012), "Influence of Cost Function on 

EV Powertrain Sizing", Powertrain Modelling and Control, September 4, 

Bradford 

 Mohan, G., Assadian, F. and Longo, S. (2013), “Comparative analysis of 

forward-facing models vs backward-facing models in powertrain component 

sizing”, IET 4th Hybrid and Electric Vehicles Conference (HEVC13), 

November 6-7, London 

 Auger DJ, Groff MF, Mohan G, Longo S & Assadian F. (2013) The Impact of 

Battery Ageing on an Electric Vehicle Powertrain Optimisation., Dubrovnik, 

Croatia. 

 Mohan, G., Assadian, A., and Longo, S., "Comparative Analysis of Multiple 

Powertrain Architectures based on a Novel Optimisation Framework" SAE 

Technical Paper 2014-01-1105, 2014 

1.5.2 Journal Publication 

 Mohan, G., Assadian, F., Longo, S. An Optimisation Framework for 

Comparative Analysis of Multiple Vehicle Powertrains. Energies 2013, 6, 5507-

5537. 

 

1.6 Thesis Outline 

The complete layout of this thesis is presented as a flowchart in Figure 3. Having 

discussed the research motivation and objectives in this chapter, Chapter 2 covers the 

literature review and can be divided into three key areas: powertrain architectures, 

modelling techniques, and performance criteria. A slight discontinuity follows, where 

Chapter 3 discusses further on powertrain architectures specifically, and expands on the 

development of selected powertrain components. 

Chapter 4 then merges the discussions from Chapters 2 and 3, and describes the 

integration of the powertrain topologies and components into the MPS, along with their 

integration to the optimiser. The findings from this chapter then merge with the 

discussion of cost functions from Chapter 2, and leads to the study of the sensitivity of 

cost functions towards optimisation results, in Chapter 5. 

Chapters 6 and 7 highlight the first and second novelties of this research, by building 

upon the understanding gained from the previous chapters. This then finishes with 

Chapter 8, which covers the conclusions of this research as well as future work. 
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Figure 3: Layout and flow of this thesis 
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2 LITERATURE REVIEW 

2.1 Review of Powertrain Modelling Techniques 

The basic modelling technique for evaluating vehicle powertrains is the longitudinal 

dynamics simulation [29]. This technique involves dividing a given drivecycle into a 

number of time steps and calculating the characteristics of the vehicle at the end of each 

time interval. To achieve the desired longitudinal acceleration levels for a given 

drivecycle, powertrain components have to be sized appropriately to meet the desired 

performance levels. Assanis et al. stated that conventional powertrains are often 

oversized for the intended use of the vehicle, leading to the operating point deviating 

from the optimal operating range, and that a hybrid powertrain optimised for the 

intended usage could simultaneously improve vehicle performance at reduced emissions 

[30]. 

Backward-facing models, containing scalable powertrain components, are often used in 

the domain of powertrain size optimisation [31; 32]. Backward-facing models do not 

require a driver model, and the vehicle speed trace is obtained directly from the 

drivecycle. In a backward-facing model, the speed trace is imposed onto the vehicle 

model to calculate the angular velocity and torque at the wheels. Subsequently, the 

angular velocity and torque at the ICE (in the case of a CV) is determined “backwards” 

from the wheels through each drivetrain component, via efficiency models or maps. The 

efficiency maps are obtained from steady-state testing of real components, hence this is 

why backward-facing models are also considered as “quasi-static” models. These 

models also run with a relatively larger time step when compared to forward-facing 

models [32], resulting in quicker simulation times. These attributes have enabled 

backward-facing models to be used extensively in the area of powertrain component 

size optimisation [26; 33]. 

However, because of their quasi-static nature, backward-facing models give very 

limited information about measurable quantities in a vehicle such as throttle and brake 

position [32]. As a result, backward-facing models are less meaningful for 

implementation in hardware-in-the-loop (HIL) test systems [34]. 

In contrast, a dynamic system contains differential equations that describes the state of a 

system, and includes elements like inertia and inductance. As a result, dynamic systems 

are used in the forward-facing modelling approach, because forward-facing models deal 

with quantities that are measurable in real drivetrains and with the correct causality [35]. 

Forward-facing models also feature a driver model, which is typically a Proportional-

Integral (PI) controller [26; 32]. 
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2.1.1 Forward-facing Model 

Using a CV as an example, the driver model provides torque demand in the form of 

desired ICE torque and brake torque, to meet the speed trace from a drivecycle. The 

topology of a representative forward-facing model is shown in Figure 4. A basic driver 

model typically uses one or more Proportional-Integral (PI) controllers to achieve the 

torque demand, with reference to the desired speed trace. The torque produced by the 

ICE propagates through the transmission and final drive ratios, before ending up as 

torque applied at the wheels. This is then exerted to the vehicle mass via force on the 

tyre contact patch. The vehicle speed that results from the applied force is propagated 

back through the drivetrain, and returns to the ICE as angular velocity at the crankshaft. 

Brake torque is applied directly at the wheels. 

Unlike backward-facing models (Figure 5), the speed trace is not “imposed” onto the 

vehicle model in forward-facing models, and therefore there will inevitably be a small 

margin of error between the actual vehicle speed and the speed trace. It is the role of the 

driver model to minimise this margin of error. This is similar to the role of a real-world 

test driver carrying out an emissions test for vehicle type-approval. 

Forward-facing models provide insight into the vehicle model drivability, and it 

captures the limits of the physical system [32; 36]. It also facilitates control systems 

development and implementation on HIL systems [34]. However, with the presence of 

multiple state equations in a typical forward-facing model, the vehicle speed (and 

subsequently drivetrain angular velocity) is computed via multiple state integration, 

resulting in the need to run the simulation in smaller time steps. This results in longer 

simulation times when compared to backward-facing models. 

Furthermore, resizing the powertrain will alter the dynamics of the system. This 

potentially requires the driver model to be re-tuned to maximise the performance of the 

system in areas such as fuel economy and longitudinal acceleration. 

 

Figure 4: Forward-facing (dynamic) vehicle model 
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2.1.2 Backward-facing Model 

The ability of the vehicle model to meet the demands of the drivecycle is the principal 

assumption of a backward-facing model [32]. Based on the speed trace from the 

drivecycle, the vehicle acceleration and resistive forces are calculated to determine the 

resultant tractive force at the tyre contact patch. It is then converted into wheel torque 

and propagated back to the ICE via the drivetrain, along with angular velocity. 

Therefore, in backward-facing models, the power information is mono-directional 

(effort and flow are in the same direction), as seen in Figure 5. 

With both speed and torque imposed onto the powertrain components, a backward-

facing model can also be considered as non-causal (physically non-realisable), as 

described by Hauer and Moore [37]. In contrast, based on Figure 4, it was observed that 

the transfer of power information is bi-directional in the forward-facing model, i.e. the 

direction of effort (torque) is opposite to the direction of flow (speed). Additionally, 

driver model of the forward-facing model is also absent in the backward-facing model 

Backward-facing models rely on efficiency maps that were created based on torque and 

speed data, and usually produced during steady-state real-world testing. This results in 

the calculation being relatively simpler than forward-facing models (essentially lookup 

tables instead of state equations), and can therefore be run over relatively larger time 

steps. However, the use of steady-state maps also limits the ability of backward-facing 

models to accurately capture the transient performance of the powertrain. 

During the optimisation routine, the powertrain component sizing is determined by the 

ability of the component to address both the speed and torque imposed on the 

component (i.e. the power requirements). 

 

 

Figure 5: Backward-facing (quasi-static) vehicle model 
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2.1.3 Comparison of Forward-facing vs Backward-facing models 

The backward-facing modelling approach is well documented for the study of the fuel 

consumption and emissions of vehicle powertrains. Nevertheless, the computational 

costs remain relatively low because of the map-based modelling approach. The main 

drawback of this method is that the physical causality is not respected and the speed 

profile of the drivecycle has to be known apriori. Therefore, this method is not able to 

handle feedback control problems or to correctly deal with state events; neither which 

are required to address the aims of this research. 

In contrast, the forward-facing approach is desirable for hardware development and 

detailed control simulation, but the expense of the relatively high computational costs. 

A pure forward approach is therefore less suitable for preliminary powertrain design 

[38]. Table 1 summarises the key differences between the forward-facing and 

backward-facing modelling approach for the requirements of this research. 

Table 1: Comparison between forward-facing and backward-facing modelling methods 

Criteria 

Modelling approach 

Comment Forward-

facing 

Backward-

facing 

Simulation 

time step 
~1 millisecond ~1 second 

Backward facing have shorter 

simulation times 

Physical 

causality 
Causal Non-causal 

Backward facing models are not 

suitable for HIL implementation 

Model type Dynamic Quasi-static 
Backward-facing models are map based 

and quicker to compute 

Driver model Required Unnecessary 

Backward-facing models assumes ideal 

driver model and vehicle speed 

trajectory is known apriori 

 

2.2 Review of Powertrain Architectures 

Vehicle powertrains can be divided into two main categories; single source powertrain 

architecture and hybrid powertrain architectures. A hybrid powertrain is defined as 

having two or more power sources to propel the vehicle [3]. Hybrid powertrains can be 

broken down further into the following architectures: 

 Series hybrid powertrain architecture (Section 2.2.2) 

 Parallel hybrid powertrain architecture (Section 2.2.3) 

 Compound hybrid powertrain architecture (Section 2.2.4) 
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2.2.1 Single Source Powertrain Architecture 

CVs and EVs are examples of vehicles with single source powertrain architectures. 

These two powertrain architectures are represented as schematic diagrams in Figure 6 

and Figure 7 respectively. The abbreviations shown in Table 2 apply to these figures. 

In these schematic diagrams, the power flow is from left to right; it begins at the energy 

source and flows into the “wheel”. For simplicity, the energy source from the electrical 

grid (battery charger) has been omitted in Figure 7. 

 

Figure 6: Conventional ICE powertrain with transmission [39] 

 

 

Figure 7: Battery electric vehicle powertrain [39] 

 

Table 2: Abbreviations used in the powertrain schematic diagrams 

Term Definition 

C Chemical energy 

DC Direct Current 

AC Alternating Current 

T Torque 

Trn Transmission 

INV Inverter 

M Electrical Machine 

Batt Battery Pack 

 

2.2.2 Series Hybrid Architecture 

The series hybrid architecture is defined as having two (or more) power sources that are 

connected electrically, via a high-voltage electric bus or “DC bus” [40]. Similar to an 

EV powertrain, a series HEV usually has a battery and an Electrical Machine (EM) that 
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is mechanically connected to the wheels to provide tractive force. For the benefit of the 

discussion in this section, this will be referred to as the “primary” power source. 

However, unlike the EV powertrain, a series HEV also has a “secondary” power source, 

which generally consists of system that converts stored chemical energy into electrical 

power. This electrical power then feeds into the DC bus. Hence, the secondary power 

source usually comprises a fuel tank and an ICE. However, it is also possible to replace 

the ICE with a fuel cell, thus forming a new topology within the series hybrid 

architecture. It should be reiterated that the secondary power source is not mechanically 

connected to the wheels in a series HEV powertrain architecture. 

Figure 8 and Figure 9 show examples of possible topologies as part of the series hybrid 

architecture. In the first topology, the secondary power source comprises of a hydrogen 

tank (H2), and a fuel cell. In the second topology, the secondary power source comprises 

of a fuel tank with an ICE and a generator. 

Similarly, the primary power source also differs between those two topologies. In 

Figure 8, the primary power source contains an ultracapacitor (Cap) whilst in Figure 9 

the primary power source contains a battery. 

 

Figure 8: Fuel cell hybrid powertrain topology 

 

 

Figure 9: Petrol-electric series hybrid powertrain topology 

Nevertheless, the drive system for both these topologies (downstream of the DC bus) is 

an EM coupled with power electronics (INV). Figure 9 also includes a transmission. 

This is an optional component, but may be required for high-speed applications. 
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2.2.3 Parallel Hybrid Architecture 

Commonly, parallel hybrid architecture comprises of an ICE and an EM mounted to the 

output shaft, which draws power from a battery via power electronics. The combined 

torque is normally passed through a transmission, such as the topology shown in Figure 

10. An example of a vehicle that uses this topology is the Infiniti M35h [41]. 

A parallel hybrid architecture is defined as having two (or more) power sources that are 

connected mechanically, via a “torque bus” [39]. This is in contrast to the DC bus in the 

series hybrid configuration. 

One or more clutches are often required to implement this type of powertrain 

architecture. If the vehicle is in EV mode, the ICE would be switched off and 

disconnected from the torque bus (via an open clutch between the ICE and the EM). If 

the vehicle is at rest, the ICE can be run to charge the battery. In this instance, the 

transmission must be disconnected from the torque bus (via an open clutch upstream of 

the transmission). 

However, depending on the vehicle class and design requirements, the battery and EM 

could potentially be replaced with a mechanical flywheel [4], thus forming a new 

topology within the parallel hybrid architecture. This is shown in Figure 11. The 

mechanical flywheel system also contains a CVT to provide step-less torque arbitration 

between the flywheel and the drivetrain, and a clutch to disengage the system, for 

example when the vehicle is stationary. The CVT and clutch could also potentially be 

replaced by an Infinitely Variable Transmission (IVT) [42]. The IVT offers the ability 

to have a “geared neutral”, thus decoupling torque transfer between the input and output 

shafts without the use of a clutch. 

 

 

Figure 10: Petrol-electric parallel hybrid powertrain topology 
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Figure 11: Flywheel-based mechanical hybrid powertrain 

 

2.2.4 Compound Hybrid Architecture 

The compound hybrid architecture is sometimes referred to as a series-parallel 

architecture, because of its ability to emulate both layouts. This architecture contains 

two (or more) power sources that are connected both mechanically and electrically. In 

most instances there is one DC bus and one (or more) torque bus. 

Famous examples of the compound hybrid architecture include the Toyota Prius [43], 

and more recently, the Chevrolet Volt [44]. In the Toyota Prius, the core of the system 

comprises of a planetary gearset, which has three input/output shafts. The ICE is 

connected to the first shaft, and an EM (acting like a generator by directing ICE power 

into the battery) is connected to the second shaft. The third shaft is connected to the 

wheels together with a second EM, which propels the vehicle. This configuration is 

presented in Figure 12, where the torque bus on the left represents the power split 

device. In high demand scenarios both EMs can generate positive drive torque. 

Another potential compound hybrid topology is shown in Figure 13. This layout is 

similar to the Toyota system, but only utilises one EM, and includes a CVT and a clutch 

to completely decouple the ICE from the rest of the powertrain. The energy storages 

comprise of a battery and ultracapacitor to buffer the electrical power. A similar system 

was also proposed by Salisa et al. as the UTS PHEV [11]. 

 

Figure 12: Compound hybrid topology used by Toyota Prius 
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Figure 13: An alternative compound hybrid topology 

2.2.5 Powertrain Mass 

The mass of a hybrid powertrain will depend, among other factors, on its topology. For 

example, in a series hybrid topology, the EM has to be designed for peak power and the 

generator designed for peak ICE power [2]. Hence, this could potentially increase the 

mass of the system due to the need for a larger EM and ICE, for example. 

Conversely, the size of the ICE and EM could be made smaller for a similar vehicle 

with a parallel hybrid topology, as both these components work in tandem to provide 

peak power [2]. Hence parallel hybrid could potentially offer weight savings over a 

series hybrid topology. 

Powertrain mass contributes to the overall vehicle weight, and plays a vital role in fuel 

and energy consumption [45]. From a 1
st
 order of approximation point of view, Miller 

and Nicastri estimates that an extra 50kg of vehicle mass is equivalent to 100W of 

power losses [46]. 

 

2.3 Defining Performance Criteria 

Performance criteria provide a systematic and objective approach to comparing different 

hybrid powertrain topologies. It enables powertrain topologies to be compared based on 

criteria that are defined by vehicle class and usage profile. As a result, this potentially 

enables powertrain topologies to optimised for a given vehicle application. 

The following criteria have been used in literature for powertrain optimisation: 

 Fuel economy and emissions [47] 

 Powertrain mass [48; 49] 

 Estimated powertrain costs [50; 51] 

 Longitudinal acceleration performance [15; 50] 
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Fuel economy and emissions is a major driver for pushing alternative powertrain 

technologies. This is compounded by the rising costs in fuel and increased concern of 

global warming caused by CO2 emissions. In tandem with alternative powertrains, 

lowering the overall vehicle mass also aids in reducing emissions. Amongst the 

approaches that are being used to reduce vehicle mass includes using lighter materials, 

such as aluminium and composites. However, as the focus of this research is specific to 

powertrains, the investigation will be on optimising the powertrain to minimise its mass. 

There would also appear to be a trade-off between lowering emissions and powertrain 

costs; for example, EVs, which have lower tailpipe emissions when compared to CVs, 

are more expensive to manufacture. Therefore, this area will be investigated to identify 

such trade-offs. 

These performance criteria will form the basis of the cost functions and the constraints 

used in the powertrain optimisation routine, as demonstrated by way of case studies in 

the upcoming chapters. 

2.3.1 Tank-to-wheel Emissions 

Tank-to-wheel emissions is a measure of comparing only the tail-pipe emission of the 

vehicle. This criterion was largely driven by the goal set by the European Automobile 

Manufacturers Association (ACEA) with the European Commission (EC) in 1998. This 

goal called for manufacturers to produce more fuel-efficient and lower emission 

vehicles. They voluntarily agreed to limit the fleet specific CO2 emission produced by 

new passenger vehicles to 140g CO2/km by 2008 [52]. 

Additionally, EU CO2 targets are predicted to drive a dramatic shift in the types of 

powertrain produced over the next decade [53]. In the short term, a new European (EU) 

fleet average target for less than 130g/km of CO2 emission has been set for all new 

vehicles produced after 2015, as per the ACEA agreement [52]. This is a further 7% 

reduction from the 2008 levels. Hence, it can be assumed that tank-to-wheel emission 

performance will be a growing concern and therefore of high importance to compare 

various powertrain topologies. Additionally, if the fleet average CO2 emissions of a 

manufacturer exceeds this limit, a penalty is imposed on the excess emissions for each 

car registered. This penalty amounts to a premium of €5 for the first g/km that is 

exceeded, €15 for the second g/km, €25 for the third g/km, and €95 for each subsequent 

g/km thereafter. From 2019, the cost will increase to a flat rate of €95 for every g/km 

exceeded. 

There are also additional incentives given to manufacturers that to produce vehicles 

with extremely low emissions (below 50g/km). Each low-emitting car will be counted 

as 3.5 vehicles in 2012 and 2013, 2.5 in 2014, 1.5 vehicles in 2015 and then 1 vehicle 

from 2016 to 2019. This approach will help manufacturers further reduce the average 

emissions of their new car fleet [54]. 
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2.3.2 Well-to-wheel Emissions 

The tank-to-wheel analysis is a subset of the well-to-wheel analysis, which is used to 

determine the energy consumption and greenhouse gas (GHG) emission of a system 

[28]. The “system” is defined as every stage involved from fuel production (‘‘well’’) to 

its end use in a vehicle (‘‘wheel’’). Well-to-wheel studies in general form the basis for 

assessing the impacts of future fuel and powertrain options, particularly in terms of 

energy use and greenhouse gas emissions [28]. In order to assess the well-to-wheel CO2 

emissions of various powertrain topologies, it is necessary to consider CO2 emissions 

associated with production of the fuel/source of energy (well-to-tank). 

One example of well-to-wheel CO2 emission for various energy sources is summarised 

in Table 3. In this table, each energy source is paired with its respective powertrain type, 

such as CV, EV, and Fuel Cell EV (FCEV). Offer et al. estimated hydrogen CO2 

emissions to be 76.9g CO2 MJ
-1

, based upon a value of 11 kgCO2 kgH2
-1

 for steam 

reforming natural gas and a calorific value of 143MJ kgH2
-1

 [10]. Electricity CO2 

emissions are assumed to be 150 gCO2 MJ
-1

 based upon the 2008 UK average 

electricity emissions of 540 gCO2 kWh
-1

, which included 5.5% of electricity generation 

from renewable sources [10] (in 2011, this figure was increased to 594 gCO2 kWh
-1

, 

according the Department for Environment, Food and Rural Affairs (DEFRA), a public 

UK body [55]). Well-to-tank conversion factor for petrol is 14.10 gCO2/MJ [55]. 

The vehicle type used in the example shown in Table 3 is assumed to be a “medium 

vehicle” as defined by the National Travel Survey (NTS) [56]. After completing a 

drivecycle, the amount of electrical energy consumed by an EV or PHEV is determined 

by replenishing the charge in the battery back to its initial state from the electric grid. 

Subsequently, the amount of well-to-wheel CO2 emitted is then calculated by 

converting this consumed electrical energy into gram-CO2 using the data published by 

DEFRA. For a PHEV, its well-to-wheel CO2 output combines emissions from both its 

electrical and fossil fuel energy sources. 

The purpose of this example is to clarify distinctions and significance of the well-to-

tank, tank-to-wheel, and well-to-wheel CO2 emissions. The vehicle type is used to serve 

as an illustration, and won’t be used any further in this thesis. 

It ought to be mentioned that this estimate does not include the following: 

 emissions from construction and decommissioning of the infrastructure that is 

used to create and process the fuel 

 emissions that result from commissioning and decommissioning of the electrical 

power plant, transmission lines, and charging station [57] 

 manufacture and end-of-life disposal of the powertrain components within the 

vehicle. 

These factors, although important, are considered beyond the scope of this research. 
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Table 3: Example of well-to-wheel CO2 emissions for each fuel type (adapted from [10]) 

Powertrain Type CV FCEV EV 

Energy Source Petrol Hydrogen Electricity 

Well-to-tank emissions / gCO2 MJ
-1

 14.1 76.9 150 

Tank-to-wheel emissions / gCO2 MJ
-1

 77.6 - - 

Well-to-wheel emissions / gCO2 MJ
-1

 91.7 76.9 150 

Given fuel consumption / MJ mile
-1

 2.93 1.46 0.73 

Well-to-wheel emissions / gCO2 mile
-1

 267 112 110 

Well-to-wheel emissions / gCO2 km
-1

 167 70 68 

 

2.4 Review of Powertrain Simulation Tools 

To evaluate the performance of the powertrain architectures, modelling and simulation 

tools are indispensable. This is particularly true as prototyping and testing each design 

combination is cumbersome, expensive, and time consuming [26]. New hybrid 

powertrain configurations and controllers are also continuously being developed, thus 

the ability to simulate a powertrain before prototyping is important. 

Simulating vehicle powertrain requires dedicated simulation software [26]. To that end, 

this research was inspired by the work carried out by Argonne Labs and the National 

Renewable Energy Laboratory (NREL) in the area of powertrain simulation and 

optimisation. Advanced powertrain researches from these two institutes have resulted in 

the creation of two simulation tools respectively; PSAT (PNGV System Analysis 

Toolkit) and ADVISOR (Advanced Vehicle Simulator) 

Both tools have been frequently cited in literature for the purpose of system-level 

powertrain simulation and optimisation. Other powertrain simulation tools such as AVL 

Boost and GT-Suite are also available; however they have been noted to be more suited 

for simulation of detailed ICE attributes with the expense of greater computational time 

[58-60]. This includes the simulation of combustion mechanisms, exhaust after-

treatment systems, and acoustics, which are not the intent of this research. 

There are fundamental differences in the approach used by PSAT and ADVISOR; the 

former uses forward-facing models [61], whilst the latter uses a hybrid approach. In 

ADVISOR, the models are primarily backward-facing, with forward-facing methods 

only active when component performance limits are encountered; when they are not, 

ADVISOR operates strictly as a backward-facing model [32]. Another proponent of the 

backward-facing modelling method is the QSS toolbox, developed at ETH Zurich by a 
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team led by Lino Guzzella [27; 31; 62]. Unlike ADVISOR, the QSS toolbox is strictly 

backward-facing only. 

Table 4 shows a list of reviewed publications that have used these simulation tools for 

the purpose of powertrain size optimisation. This table summarises the simulation tools 

employed and the types of powertrains that were analysed. Findings revealed that each 

simulation tool has a modular approach to powertrain modelling, and therefore provided 

the flexibility of simulating a wide variety of topologies. This literature survey also 

gave insights to the functional aspects of each simulation toolbox, which will be 

discussed further. 

The development of PSAT was backed by the U.S. government [30] for the PNGV 

(Partnership for a New Generation of Vehicles) initiative. This initiative included a 

comprehensive forward-facing HEV simulation environment developed by a 

consortium of three U.S. automotive manufacturers: Ford, GM, and Daimler-Chrysler 

[61]. One fundamental strength of PSAT is the fact that it features modular 

implementation of powertrain components within a powertrain architecture. This 

provides the flexibility to scale the powertrain components, as well as replacing the 

models with different model blocks (such as proprietary blocks) if the need arises. This 

was made possible by strong reference to “power bonds” as seen in Bond Graph 

modelling techniques [63; 64]. 

In comparison, ADVISOR is a hybrid vehicle simulator which incorporates both 

forward-facing and backward-facing methods. ADVISOR compares the required values 

(backwards-facing results), with achievable values (forward-facing results). 

Nevertheless, this approach requires the definition of two models for each powertrain 

component, leading to larger programming overheads for introducing new components 

[65]. Finally, the QSS toolbox is a fully backward-facing model, and is capable of 

utilising a relatively larger time-step, generally in the order of 1 second. 

Similar to PSAT, both ADVISOR and the QSS toolbox also follow a modular approach. 

The user can alter both the model inside the block as well as the MATLAB m-files 

associated with the block to suit their modelling needs. For example, the user may need 

a more precise model for the electric motor subsystem [26]. A different model can 

replace the existing model as long as the inputs and the outputs are the same. On the 

other hand, the user may leave the model intact and only change the MATLAB m-file 

associated with the block diagram. This is akin to choosing a different manufacturer of 

the same powertrain component. Therefore, all three software packages provide 

modelling flexibility for the user. 
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Table 4: Review of utilisation of powertrain simulation software in literature 

 
References 

[49] [66] [67] [68] [69] [27] [70] [71] [72] 

ADVISOR  * *  *  *  * 

PSAT *   *    *  

QSS Toolbox      *   * 

Single source      * *   

Series Hybrid  * *   *  * * 

Parallel Hybrid *  * * *    * 

Compound 

Hybrid 
  *      * 

CV      * *   

HEV/PHEV *  * * *   * * 

HEV – Fuel Cell  *    *  *  

 

An example of component modularity was described by Assanis et al., who used 

ADVISOR for simulating a hybrid powertrain, but required a customised engine model 

instead of the one supplied by ADVISOR. Because of its modularity, they could swap 

the engine module with one of their own, which included a higher fidelity turbocharged 

model. In contrast, if ADVISOR were to have a fixed list of components, it may cause 

some difficulties for the design engineer who desires to evaluate the impact of using a 

different, non-existing component, or wants to continuously vary component sizes in 

search for an optimum combination. 

In addition to being modular, the powertrain components within ADVISOR are 

scalable. This was achieved by including routines that allow variation of component 

size through scaling of maps [30]. ADVISOR also follows an open-source model, and 

thus receives support from the industry and academia to validate and improve the model 

database [32]. Several publications have also used ADVISOR for powertrain simulation 

and validated its results favourably against real-world experiments [67; 73; 74], and 

ADVISOR itself has been used as a source for validation [75]. 

The key similarity in all three simulation tools is that they use MATLAB and Simulink 

as their underpinnings to run the simulations. According to Wipke et al., MATLAB and 

Simulink were chosen for their nearly self-documenting graphical programming 

environment and their wide acceptance by researchers in academia and industry [32]. 
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However, though modular, the powertrain architecture in all three simulations tools was 

fixed during simulation. As a result, trying to compare the results from optimising 

different powertrain architectures, such as a pure EV with a PHEV, would require 

running two sets of optimisations separately. This is because the structure of the 

powertrain architecture is fixed during the optimisation run. For example, ADVISOR 

requires reconfiguration when comparing series and parallel hybrid, as shown by Same 

et al. [38] for optimising a Formula Student vehicle. 

A similar modular powertrain simulation tool with aggregated powertrain components 

was developed by Imperial College London in 2002 [65]. It also compares a few other 

backward-facing simulation tools, and mentioned that one common trait of these tools 

were the fixed powertrain layouts. This meant that each powertrain type had to be 

optimised individually. The paper above also mentions the importance of powertrain 

component modularisation for the purpose of comparing different powertrain 

architectures, thus strengthening the aims of this research. 

 

2.5 Chapter Discussions and Conclusions 

The ability to compare multiple types of powertrain is important because a significant 

number of advanced vehicle configurations are available. Because of time and money 

constraints, it is impossible to build and test every one of these configurations. In 

addition, for each configuration, users need to be able to choose among different 

component models. To be able to make the right decisions, practitioners would benefit 

from a flexible simulation tool that allows for easier manipulation of different 

powertrain architectures and component size optimisations. 

Additionally, literature survey has indicated that there are no tools at present that has the 

ability to simultaneously select the most appropriate powertrain architecture from a list 

of components, and then optimising the size of the components within the architecture, 

for a given cost function. Therefore, to pursue the creation of a better methodology for 

comparing different powertrain architectures, a simulation toolbox will be created as 

part of this research. 

It has been identified that there are two methods for carrying out vehicle powertrain 

modelling: forward-facing and backward-facing models. Based on the literature, it is 

deduced that forward-facing models are is computationally more costly due to the need 

for smaller time-steps and higher order integration, and could be an issue in the context 

of iterative optimisation runs. 

Modularity is important because this toolbox will need to offer the flexibility for 

completely defining the layout of the powertrain configuration. One approach to this 

can be seen by Hofman et al. [33], who described the usage of the QSS toolbox and 

ADVISOR for the purpose of comparative analysis of three types of hybrid powertrain; 
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series, parallel and series-parallel, albeit running three independent simulations for 

achieving those results. 

Practitioners, who will ultimately use the toolbox developed in this research, will have 

specific requirements. Thus, the proposed toolbox will need to have an open 

architecture and provide availability of source code to allow a significant amount of 

customisation. Users can replace the existing component models with more detailed 

models if necessary. Additionally, using MATLAB/Simulink as the backbone makes it 

possible to link to other software packages for component models [64]. Proprietary 

models can be compiled and linked to Simulink to protect intellectual property. 

A deeper understanding of powertrains at the component level will need to be achieved. 

Therefore, discussions on fundamental understanding and underlying equations of the 

powertrain components will be carried out in the next chapter. 

Finally, it is important to reiterate that this proposed tool is used to obtain a first-hand 

approximation for the type of powertrain that is most likely suitable or a given vehicle 

type and duty cycle. Thus, this research aims to produce a tool suitable for powertrain 

analysis, rather than specific powertrain design. It can be used to predict measures such 

as fuel consumption and emissions; however, it cannot be used to study details that 

require smaller time-steps, such as vibrations and NVH. Nevertheless, based on the 

results of the simulation using this tool, practitioners can then incorporate the findings 

into more appropriate simulation software to pursue such investigations. 

Therefore, based on the finding of the literature survey, the aims of this research will be 

directed towards the following: 

 Develop a toolbox, which contains a novel methodology that combines both 

powertrain topology and component size optimisations 

 Utilise this toolbox to carry out novel comparative investigations, such as multi-

objective optimisations for identifying trade-offs between cost functions by way 

of powertrain topology selection. 
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3 MODEL DEVELOPMENT 

The previous chapter covered several simulations tools that are used for the purpose of 

powertrain simulation and optimisation. This chapter uses those findings to proceed 

with creating the powertrain component models, which will then be utilised in the 

forthcoming chapters for demonstrating the workings of the proposed methodology. The 

motivations behind developing the models in-house were two-folds; it enabled 

understanding of fundamental principles in powertrain modelling and it provided the 

flexibility to implement the models more intrinsically within the proposed powertrain 

optimisation algorithms. 

The models will be created in the MATLAB/Simulink environment, consistent with the 

modelling environment that were utilised by the commercial powertrain simulation 

tools discussed in the previous chapter. To address the hypothesis set forth in the 

introduction, this research will focus on developing a methodology that facilitates the 

comparative analysis of multiple powertrain architectures. The powertrain component 

models that are described in this chapter will be used to illustrate the workings of this 

methodology. Additionally, the use of uniform power-based interface between the 

models will allow for flexibility in incorporating other types of powertrain components 

that are not described here, such as different battery chemistries or different types of 

ICEs. 

To enable powertrain architectures to be categorised as shown in Section 2.2, the 

powertrain components will be modular in implementation, in order to allow for 

interchangeability across different topologies. To allow such levels of interchange-

ability, it is determined that the communication between each energy storage and energy 

converter device also has to be standardised. This is achieved using power bonds, 

similar to the concept of bond graphs [76]. The Modular Powertrain Structure (MPS), 

which then facilitates the interchangeability between powertrain components, is 

discussed further in Chapter 4. In addition to being modular, the powertrain models will 

also need to be scalable and have sufficient fidelity to capture the efficiency and 

operating envelops of the respective powertrain component. 

Therefore, each powertrain component is treated as a module and is designed to be both 

modular and scalable in implementation, an example of which was shown by Mason et 

al. [77]. Methodology for sizing powertrain components as a part of an optimisation 

routine has been covered in literature [66; 78], and a similar approach will be employed 

in this research. 

Powertrain components can be divided into three main categories [62]; energy storage, 

energy converter, and power transformers. The fundamental understanding and 

underlying equations of the powertrain models will be discussed in the rest of this 

chapter. 
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3.1 Energy Converters 

Energy converters are defined as devices that convert energy form one domain to 

another [62]. One such example is the ICE, which converts chemical energy from fossil 

fuel into mechanical energy, heat, and noise. The following energy converters will be 

investigated in more detail: 

 Internal Combustion Engines 

 Electrical Machines 

 Auxiliary Power Unit. 

This list of powertrain components has been narrowed down based on the availability 

and quality of data gathered from literature and work carried out by Cranfield 

University for the following funded projects: 

 Low Carbon Vehicle Technology Project (LCVTP) [40] 

 Smart Move Electric Vehicle Trial conducted by Cenex [79] 

 FUTURE Vehicle consortium (EPSRC grant number EP/I038586/1). 

 

3.1.1 Internal Combustion Engines 

The EU states that the ICE will remain as a significant feature of road transport for the 

foreseeable future [80; 81]. For this research, the aim of this model is to be scalable and 

sufficiently capture the operation and efficiency envelopes of an ICE. Developing a 

scalable ICE model, however, was challenging due to myriad of possible variations. In 

this research, a baseline ICE model that is naturally aspirated and spark ignited was 

selected, as it is widely available on the market today [28; 82]. Other configurations, 

such as forced induction and compression-ignited ICEs are possible; however they were 

not investigated further due to lack of experimental data. Nevertheless, as mentioned 

previously, the modular approach for the interface between powertrain models will 

allow practitioners to add further variations of ICEs as required. 

In the previous chapter, it was discussed that commercial software such as ADVISOR 

and PSAT give the option of scaling the powertrain components. In the case of the ICE, 

this was achieved by way of scaling the efficiency map and inertia of the engine. 

According to Bohac et al. [83], there are variations in the level of fidelity that can be 

applied to creating the scalable ICE model. In this research, the Willans ICE model, as 

proposed by Guzzella [62] and Rizzoni [31] was utilised. This approach was chosen 

because of the simplified formulations of the dependency of ICE efficiency, ηe with its 

rotation speed, ωe, and output torque, Te. The variables Te and ωe have a clear physical 

interpretation, which is suitable for the modular approach of creating the ICE model. 

Nevertheless, their range also depends on the type and size of the ICE that is modelled. 

Therefore, the normalised variables described below will allow the ICE size to be used 
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as an optimisation parameter. The background behind the Willans ICE model lies in the 

assumption that the piston mean effective pressure, pme, and the mean piston speed, cm, 

are similar for a given ICE type (in this case naturally aspirated and spark ignited). 

Table 5 shows the terms used as part of the calculation for engine power and 

instantaneous fuel consumption. 

 

Table 5: Terms used for ICE calculations 

Term Definition Units 

pme 

pmf 

ploss 

cm 

Te 

ωe 

ηe 

e 

S 

Nstroke 

Vd 

�̇�𝑓𝑢𝑒𝑙 

Piston mean effective pressure 

Fuel mean effective pressure 

Mean mechanical losses pressure 

Mean piston speed 

Engine torque 

Engine speed 

Overall engine efficiency 

Thermodynamic efficiency 

Piston stroke length 

Combustion cycle type (2/4 stroke) 

Engine displacement 

Fuel mass flow rate 

N/m
2
 

N/m
2
 

N/m
2
 

m/s 

Nm 

rad/s 

- 

- 

m 

- 

m
3 

kg/s
 

 

Equations relating pme and cm with ICE torque Te and ICE speed ωe are given in 

equations (3-1) and (3-2) respectively. 

𝑝𝑚𝑒 =  
𝑁𝑠𝑡𝑟𝑜𝑘𝑒 ⋅ 𝜋

𝑉𝑑
⋅ 𝑇𝑒 

(3-1) 

𝑐𝑚 =  
𝑆

𝜋
⋅ 𝜔𝑒 

(3-2) 

For a given mechanical power output (𝑇𝑒 ⋅ 𝜔𝑒) we can then calculate the fuel power 

(Pfuel) delivered for an overall engine efficiency of ηe, with equation (3-3). 
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𝑃𝑓𝑢𝑒𝑙 =  
𝑇𝑒 ⋅ 𝜔𝑒

𝜂𝑒
 

(3-3) 

To rewrite equation (3-3) in terms of mean pressures, ηe can be rewritten as equation 

(3-4), where pme is the mean effective pressure output per cylinder, and pmf is the input 

fuel mean effective pressure per cylinder. 

𝜂𝑒 =
𝑝𝑚𝑒

𝑝𝑚𝑓
 

(3-4) 

The term pme was calculated in equation (3-1). To calculate the value of pmf, the 

thermodynamic efficiency, e, and the mechanical losses, ploss, are used in equation (3-5). 

Both these terms are expressed in terms of mean piston speed, cm, shown in Figure 14. 

These values were obtained experimentally to capture the efficiency of the ICE at 

various operating points [62]; however, it ought to be mentioned that it is sourced from 

a particular engine, and will be used to demonstrate the workings of the proposed 

toolbox in the subsequent chapters. The applicability of this measurement for scaling 

into different engine sizes are demonstrated in Section 3.1.1.1. The relationship between 

mean piston speed and engine speed was given in equation (3-2). 

𝑝𝑚𝑓 =
𝑝𝑚𝑒 + 𝑝𝑙𝑜𝑠𝑠

𝑒
 

(3-5) 

 

Figure 14: Estimated thermodynamic efficiency (e) and mechanical losses (ploss) as a 

function of mean piston speed (cm) 

After calculating ηe, Pfuel was then calculated based on equation (3-3). Finally, the mass 

flow rate of the fuel, �̇�𝑓𝑢𝑒𝑙, is simply given as, 
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�̇�𝑓𝑢𝑒𝑙 =
𝑃𝑓𝑢𝑒𝑙

𝐻𝑙
 

(3-6) 

where Hl is the fuel’s lower heating value. The total fuel used in a drivecycle is the 

integration of �̇�𝑓 over time, and this calculation will be carried out in the fuel tank 

model, described later in Section 3.2.1. 

Figure 15 shows the efficiency ηe of the engine for various values of pme and cm. Figure 

16 shows the fuel map for the ICE model with a 1 litre displacement as an example. 

 

Figure 15: Efficiency of the Engine based on pme and cm 

 

Figure 16: Fuel flow map as a function of ICE torque and speed 
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3.1.1.1 ICE Scaling and Verification 

During the optimisation, the required ICE power is determined by specifying the engine 

displacement variable, Vd. The resultant mass of the engine is then calculated based on 

the work by Guzzella and Sciarretta [62], where a mass-to-displacement ratio of 

67.6kg/l was suggested. As mentioned previously, the data used to create the scalable 

ICE model is sourced from a particular engine type [62]; therefore, to verify its validity, 

it was compared to the fuel consumption of two vehicles that were made available to 

this research; the Smart ED and the Jaguar XJ. The ICE model was first verified by 

connecting it to the existing Smart ED vehicle model (described in Section 3.1.2.4), and 

then comparing the simulated fuel consumption with published data. To accomplish 

this, the EV powertrain was replaced with the ICE engine and conventional 

transmission. The transmission ratios are listed in Appendix C.2. The simulation was 

run using the New European Driving Cycle (NEDC), which is the same cycle used to 

carry out the tests for the official emissions figures. Therefore, the shift schedule of the 

transmissions was based on the shift point defined on the NEDC [84] and shown in 

Figure 31. 

Based on the simulation, the fuel consumption was 5.49 L/100km. The manufacturer’s 

published data for the Smart Fortwo is 5.64 L/100km, or 3% greater than the simulated 

value [85]. Similarly, another test was performed using the Jaguar XJ, which was the 

vehicle used as a case study for the LCVTP project. The vehicle data and transmission 

ratios are shown in Appendix C for the Jaguar XJ. The NEDC was again used in this 

test. Based on the simulated data, the fuel consumption was 12.1 L/100km, whist the 

published data was 11.3 L/100km [86], or about 6.6% lower than the simulated model. 

This discrepancy was attributed primarily to the following: 

 variation between the assumed efficiency of the Willans ICE model and the ICE 

used in the Jaguar XJ (5.0L). 

 assumption that the combustion constantly occurs at the stoichiometric ratio 

 Extra loads from ancillaries on the actual vehicle that were not considered. 

Nevertheless, as the focus of this research is not specific to detailed engine modelling, 

the scalable Willans line engine model was deemed sufficient for the purpose of 

demonstrating the functionality of the proposed methodology. Additionally, future work 

may wish to investigate on incorporating models that have more elaborate scaling 

functions. 
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3.1.2 Electrical Machines 

The EM is the only energy converter in this research that has reversible power flow. 

EMs are becoming a very common feature in the automotive industry and come in 

several types [87; 88]. The most common type of EM for vehicle traction applications is 

the Permanent Magnet (PM) brushless DC [89]. The other types of EM that are used for 

traction applications include the induction motor and the switched reluctance motor 

[90]. Each type of EM can be described by its dynamic response, its subsystem limits 

(power, torque, or speed) and efficiency. 

The EM is modelled based on a speed-torque curve, which defines its power and 

efficiency. The EM model was developed using data obtained from a Smart ED electric 

vehicle, as part of the Smart Move Electric Vehicle Trial [79]. A cut-away model of the 

Smart ED is shown in Figure 17, and technical specifications in Table 6. The powertrain 

of the Smart ED consists of a 16.5kWh Lithium-Ion Battery, which has a peak power 

rating of 30kW, and an EM with a peak power rating of 55kW and continuous power 

rating of 42.5kW. However, the peak power of the overall powertrain is limited to 

30kW. 

The goal of the EM model was to be scalable to meet varying power demands. The EM 

is a PM brushless DC type, and its model is based on data provided by Zytek 

Automotive [91], who supplies the EM for the Smart ED. 

 

Figure 17: The Smart Electric Drive (ED) [92] 



 

32 

Table 6: Data from the Smart ED 

Make Smart (Mercedes-Benz) 

Model Fortwo ED (Electric Drive) 

Electrical Machine Zytek Automotive 55kW (limited to 30kW propulsion, 

10kW regenerative braking) 

Battery Pack 16.5 kWh Li-ion (Panasonic NCR18650 cells) 

Top Speed 27.7 m/s (62 miles/hour) 

Weight 965 kg unladen weight 

Range 135 km (NEDC Drivecycle)  

 

3.1.2.1 The Smart ED 

The Smart ED was made available to Cranfield University during participation in the 

Smart Move Trial programme, which is managed by Cenex (the UK’s Centre of 

Excellence for low carbon and fuel cell technologies) and funded by the UK 

Department for Business, Innovation and Skills (BIS). 

The Smart ED was fitted with an on-board CAN logger that recorded the activities of 

the car. Data harvested from the CAN logger gave opportunities for analysing the 

performance of the EV in real-world usage, and provided information that is valuable 

for the purpose of this research.  

When the vehicle is being driven, key parameters are automatically recorded from the 

CAN bus and uploaded to a central database for analysis. Amongst the key parameters 

used in this study are vehicle speed, EM speed, EM torque, battery voltage, and battery 

current. 

The CAN logger has a sampling rate of 1 Hz. Recording of data is initiated as soon as 

the ignition key is switched on. Unfortunately, the sampling rate is fixed; therefore, it 

was not possible to increase the resolution of the data. However, drivecycles like the 

NEDC and ARTEMIS were also formulated based on sampling frequencies of 1 Hz 

[93]. Hence, it has been assumed that the data sampling rate is acceptable for the 

purpose of this research. The logged data on the vehicle is stored as Comma Separated 

Values (CSV) files. The CSV files were then imported into MATLAB for analysis. 

A schematic of the locations where some of the parameters are recorded on the vehicle 

is given in Figure 18. Each recorded parameter is assigned a channel number (shown in 

parentheses).  A summary of the channel numbers and associated parameters captured 
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by the CAN logger is given in Table 7 [94]. Some of the parameters are directly 

measured by sensors whilst others are calculated by the on-board ECU. The CAN 

logger also has an inbuilt GPS system which records the GPS coordinates of the vehicle. 

 

 

Figure 18: Location of measurement points for electrical voltages and currents 

 

The electrical currents and voltages were measured at three different points on the 

drivetrain. Figure 18 shows the points where they were measured. These measurements 

were then used to calculate the electrical power at these points. 

For calculating the battery power, the electrical current and voltage was measured at the 

battery terminals, where it connects to the high-voltage DC bus. It is the product of 

Battery Current (Table 7, channel 16) and Battery voltage (Table 7, channel 15). 

Similarly, the EM power was measured at the input side of the inverter terminals of the 

DC bus. It is the product of Motor Current (Table 7, channel 18) and Motor Voltage 

(Table 7, channel 17). 
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Table 7: List of channels and parameters captured by CAN logger 

 
Parameter Unit Description 

1 Segment ID 
 

  

2 IMEI 
 

International Mobile Equipment Identity number 
used to identify GSM device in logger 

3 Time 
 

YYYY-MM-DD HH:MM:SS 

4 Interval secs Time interval between current and previous point  

5 Latitude deg Decimal degree. Northern hemisphere is positive 

6 Longitude deg Decimal degree. Eastern hemisphere is positive 

7 Altitude m Height above mean sea level in meters 

8 Ignition  0/1 Ignition status 0 = Off 1 = On 

9 Temperature deg C Ambient temperature 

10 Speed kph Vehicle speed calculated from motor speed 

11 
Energy Transferred 
Key On 

kWh 
Total energy transferred during battery drive. Starts 
at key on. Stops at key off 

12 
Energy Transferred 
Charging 

kWh 
Total energy transferred during charging. Charging 
started - contactors closed. Charging finished - 
contactors opened 

13 SOC % State of charge of HV battery 

14 Charging Lead 0/1 Battery being charged by HV battery charger 

15 Battery Voltage volts 
HV battery voltage as measured by the BMS at the 
battery HV connection 

16 Battery Current amps 
HV battery current as measured by the BMS at the 
battery HV connection. Negative current is energy 
being delivered from the battery 

17 Motor Voltage volts 
HV battery voltage as measured by the drivetrain at 
the HV connector on the drivetrain 

18 Motor Current amps 

HV battery current as measured by the drivetrain at 
the HV connector on the drivetrain. This signal 
includes motor demands and DC-DC converter 
demands 

19 
Drive Battery 
Temperature 

deg C 
Maximum temperature within the HV Battery. 
Accuracy up to a degree 

20 Cooling Request % 
Cooling request from the battery to the EVCM. 0 % 
= No cooling / 100% = maximum cooling. The 
cooling of the system is provided by the AC system. 

21 Motor Speed rpm Motor speed at measured by the Drivetrain 

22 Motor Torque Nm Motor torque as requested from the Drivetrain 

23 Auxiliary Power kW 
Power used for cabin heating/cooling and battery 
cooling. This includes cabin heating and cooling plus 
battery cooling demands. 

24 Charger Voltage volts AC Mains voltage as measured by the charger 

25 Charger Current amps AC Mains current as measured by the charger 

 

  



 

35 

3.1.2.2 Obtaining the EM Efficiency Map 

The speed, torque, voltage, and current data of the EM were obtained from the 

Controller Area Network (CAN) interface of the Smart ED, and this data was used to 

construct an efficiency map for an EM with 30kW peak power. The values of the EM 

terminal voltage (UL(em)), the EM current (Iem), the rotational velocity of the EM (ωem), 

and the EM torque demand (Tem(dmd)) were recorded under a number of different 

operating conditions during the vehicle evaluation. This data was later verified using a 

hub dynamometer at the automotive lab in Cranfield University under steady-state 

conditions. The corresponding CAN messages were listed in Table 7 as channels 17, 18, 

21, and 22 respectively. 

The vehicle evaluation consisted of a predefined route between Cranfield University 

and Milton Keynes. The route is shown in Figure 19, where points A and C refer to the 

start/stop points in Cranfield University, and point B is a checkpoint in Milton Keynes. 

This route was devised such that a variety of different road types are encountered, 

including urban, A-road, B-road and motorway sections. 

Six volunteers from the Department of Automotive Engineering were asked to drive the 

Smart ED along this route at two-hour intervals; between 8:00 AM and 6:00 PM. This 

interval was chosen so that the vehicle would be driven in varying traffic conditions and 

there is sufficient time to recharge the battery. The total distance logged from this test is 

688 km. 

To verify the data logged from the real-world tests, the Smart EV was run in speeds 

between 10km/h and 80km/h (the limits of the dynamometer), in steps of 10 km/h. The 

road load was replicated by the dynamometer and includes rolling resistance and 

aerodynamic drag. The data for the road load was provided by Millbrook, which also 

participated in the Smart Move Trial [79]. 

The data acquired from the vehicle were used in Equation (3-7) to calculate the 

efficiency of the electric drive system and build the EM efficiency map, which is shown 

in Figure 20. 

𝜂𝑒𝑚 =
𝑇𝑒𝑚(𝑑𝑚𝑑) ∙ 𝜔𝑒𝑚

𝑈𝐿(𝑒𝑚) ∙ 𝐼𝑒𝑚
 

(3-7) 

The Smart ED consists of a single stage reduction gearbox coupled to a final drive unit 

with a combined gear ratio (ϕgb) of 8.67 [94]. The efficiency of this combined unit, ηgb, 

was estimated to be 0.95, which provided the closest correlation between the measured 

and simulated EM torque, as shown in Figure 22. 

To produce the comparison in Figure 22, the torque of the EM, Tem, was calculated from 

Tw using Equation (3-8), where Tw is the torque at the wheels (discussed further in 
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Section 3.4). Similarly, the EM speed is determined from the wheel speed (ωw) in 

Equation (3-9). 

𝑇𝑒𝑚 =
𝑇𝑤

𝜂𝑔𝑏 ∙ 𝜑𝑔𝑏
 

(3-8) 

𝜔𝑒𝑚 = 𝜔𝑤 ∙ 𝜑𝑔𝑏 (3-9) 

 

 

Figure 19: Route used to record the performance of the EM and battery 

 

The validity of the gear efficiency is checked by comparing the simulation with the data 

recorded form the CAN logger. It is noteworthy that the torque data obtained from the 

CAN logger is the “demand” torque (Tem(dmd)) sent to the EM, and therefore it is 

expected to have been filtered when it was recorded. 

The efficiency of the EM and its power electronics was combined, similar to the 

approach by Amrhein and Krein [95]. The combined EM and inverter are represented as 

an efficiency map and as a function of torque and speed, as shown in Figure 20.  
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3.1.2.3 EM Scaling 

As suggested by Guzzella and Sciarretta [62], a similar approach, as used for the ICE, 

can be applied for the scaling of the EM. Table 8 shows the terms used as part of the 

EM calculation. 

Table 8: Terms used for EM calculations 

Term Definition Units 

ωem 

Tem 

ηem 

Pem 

eem 

P0 

pme 

pma 

EM rotation speed 

EM torque 

Overall EM efficiency 

EM output power 

Indicated EM efficiency 

Mechanical and thermal losses 

Equivalent mean effective pressure 

Equivalent available mean pressure 

rad/s 

Nm 

- 

W 

- 

W 

N/m
2
 

N/m
2
 

 

For the EM, the Willans approach take the following form: 

𝑇𝑒𝑚 ∙ 𝜔𝑒𝑚 = {

𝑒𝑒𝑚 ∙ 𝑃𝑒𝑚 − 𝑃0, 𝑖𝑓 𝑃𝑒𝑚 > 0
𝑃𝑒𝑚

𝑒𝑒𝑚
− 𝑃0, 𝑖𝑓 𝑃𝑒𝑚 < 0

 

(3-10) 

Unlike the ICE, the EM has two separate equations to represent propulsion (Pem > 0) 

and power generation (Pem < 0). For a given EM speed and torque, its overall efficiency 

can then be calculated as Equation (3-11). 

𝜂𝑒𝑚(𝜔𝑒𝑚, |𝑇𝑒𝑚|) =
𝑒𝑒𝑚 ∙ 𝜔𝑒𝑚 ∙ |𝑇𝑒𝑚|

𝜔𝑒𝑚 ∙ |𝑇𝑒𝑚| + 𝑃0
 

(3-11) 

However, the value of P0 is also deemed to be relatively low compared to the overall 

power of the EM (less than 1kW for a 32kW permanent magnet EM [62]). Additionally, 

the EM efficiency, as derived from the data recorded from the vehicle, combines both 

the efficiency and losses from the EM and inverter. Therefore, it can be approximated 

that the indicated and overall EM efficiency is comparable in this instance, as shown in 

Equation (3-12). 

𝜂𝑒𝑚 ≈ 𝑒𝑒𝑚 (3-12) 
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Similar to the ICE, the overall EM efficiency is also a function of the equivalent “mean 

effective pressure” and “available mean pressure”, 

𝜂𝑒𝑚 =
𝑝𝑚𝑒

𝑝𝑚𝑎
 

(3-13) 

where pme in this instance is given as [62], 

𝑝𝑚𝑒 =  
𝑇𝑒𝑚

2 ∙ 𝑉𝑟
 

(3-14) 

while pma is given as [62], 

𝑝𝑚𝑎 =  
𝑃𝑒𝑚

2 ∙ 𝑉𝑟 ∙ 𝜔𝑒𝑚
 

(3-15) 

 

By solving Equations (3-10) to (3-15), the following relationship is derived, 

𝑃𝑒𝑚 = {

𝑇𝑒𝑚 ∙ 𝜔𝑒𝑚 ∙ 𝜂𝑒𝑚, 𝑖𝑓 𝑇𝑒𝑚 < 0
𝑇𝑒𝑚 ∙ 𝜔𝑒𝑚

𝜂𝑒𝑚
, 𝑖𝑓 𝑇𝑒𝑚 > 0

 

(3-16) 

where for a given EM rotational speed, the increase in EM output power is equal to the 

increase in EM torque multiplied by its overall efficiency. Therefore, the EM power can 

be approximately scaled up or down by extending or shortening the torque axis on its 

efficiency map. The speed axis remains the same, and the efficiency map is extrapolated 

as required. This approach has been successfully applied in a number of comparable 

optimisation studies reported in the literature [31; 96]. A case study using this 

approximation was also verified by Guzzella and Sciarretta ([62], page 91, Figure 4.19) 

for a permanent magnet EM between a relatively large range from 1kW to 32kW. 

The relation between ωem, Tem and ηem is given by the EM efficiency map. Equation 

(3-17) shows how the maximum torque (Tem(max)) of the EM can be scaled as a function 

of the peak power requirements of the powertrain (Pem(max)), where Tem(max)(base) is the 

maximum torque of the baseline EM (from the Smart ED), as shown in  Figure 20. This 

equation is represented as the EM scaling function, where 30 kW is the maximum 

power of the baseline EM. 

𝑇𝑒𝑚(𝑚𝑎𝑥) = 𝑇𝑒𝑚(𝑚𝑎𝑥)(𝑏𝑎𝑠𝑒) ∙
𝑃𝑒𝑚(𝑚𝑎𝑥)

30,000𝑊
 

(3-17) 
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Figure 20: Efficiency map from Simulink EM model 

When scaling the torque and efficiency characteristics of the EM, the ratio of the 

regenerative braking power (30% of the maximum propulsion power) is maintained. It 

is acknowledged that the regenerative braking strategy would affect the amount of 

recovered energy; however, sufficient knowledge of the braking system within the 

Smart ED, such as front to rear braking ratio or percentage of regenerative braking for a 

given demand was not known. It ought to be mentioned that the Smart ED is also a rear-

wheel drive vehicle, and therefore the EM is at a disadvantage for recuperating energy 

under braking due to the longitudinal weight transfer. Therefore, a sensitivity study with 

regards to the regenerative braking percentage will be carried out to identify its impact 

on component size optimisation. 

The mass of the Zytek system is given for different power ratings [91], as shown in 

Table 9. A linear trend line for mass was then formed by connecting these different 

power ratings, to estimate the EM mass, as shown in Figure 21. The mass values for two 

other manufacturer, YASA and EVO are also provided [97; 98] for comparison 

purposes. It is noteworthy that the increment of the EM mass as a function of its power 

is relatively small compared to the overall mass of a typical EV. This is shown in Figure 

62 and is discussed further in Chapter 6 under Section 6.2. 
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Table 9: EM data sourced from Zytek  

Model Name Power Rating 

(kW) 

EM Type Inverter Type Combined 

Mass (kg) 

Zytek 25kW 25 3-phase PM IGBT 3-phase bridge 20.4 

IDT-120-55 55 3-phase PM IGBT 3-phase bridge 62 

IDT-300-70 70 3-phase PM IGBT 3-phase bridge 105 

 

 

Figure 21: Trend line used to estimate EM mass 

 

3.1.2.4 EM Verification 

To verify the EM model, a backward-facing model of the Smart ED was created to 

simulate a driving cycle recorded from the actual car. The data for the Smart ED is 

listed in Table 6 and Table A2 (Appendix C). The torque measurements from the EM 

during that cycle was extracted from the CAN bus, and this was compared to the torque 

input to the EM on the backward-facing model. This comparison is shown in Figure 22. 

After calculating the cumulative error between the simulated and measured EM torque, 

it was determined that the accuracy of the simulated torque was 78%. This discrepancy 

was attributed primarily to the following: 

 assumed drivetrain efficiency 
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20 40 60 80 100 120 140 160
10

20

30

40

50

60

70

80

90

100

110

EM Power (kW)

M
a
s
s
 (

k
g
)

 

 

Zytek

YASA

EVO



 

41 

Road inclinations during the test drive were not included in the model because of 

inaccuracies in the on-board GPS measurements with regards to changes in elevation. 

Although the test was carried out on a calm day, any effects of cross-wind were also not 

captured in the simulated model, which could add to the error between the simulated 

model and measured data. The purpose of Figure 16 is to determine the accuracy of the 

vehicle model (which combines the resistance forces, inertial forces, and gear ratios) 

prior to calculating the output power of the EM. The accuracy of the output power of 

the EM is also a test for the accuracy of the combined EM and inverter efficiency map. 

Based on the simulated torque input into the EM model, a comparison of the power 

output between the measured data and the simulated data was compared for each time 

step, and the scatter of these various operating points are shown in Figure 23. 

 

Figure 22: Comparison of measured and simulated torque at the EM 
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Figure 23: Comparison of measured and simulated EM power 

 

3.1.3 Auxiliary Power Unit 

The APU (also called “Range Extender” [99]) is used in the series hybrid architecture, 

and it is formed by connecting an ICE to an EM [39]. The series hybrid architecture was 

covered in Section 2.2.2. A practical example of an APU is the Lotus Range Extender 

[100], which was investigated as part of the LCVTP project. This APU forms the basis 

of numerical analysis in LCVTP. It combines a 1.3L 3-cylinder petrol ICE with a 

permanent magnet EM. This APU has a power output between 15KW – 35KW. 

The Brake Specific Fuel Consumption (BSFC) is a measure of fuel efficiency for an 

internal combustion ICE [101]. It is the rate of fuel consumed for a given power output. 

As a power-specific measure, BSFC could be used to calculate emissions of an ICE 

according to the amount of power required to propel the vehicle based on the 

drivecycle. As the ICE within the APU is decoupled from the wheels of the vehicle, it 

can potentially be operated continuously along its best BSFC region. 

To create the best BFSC line, a discrete set of BSFC points were first identified over a 

spectrum of ICE power outputs. The specific ICE speed and the torque point (with the 

highest efficiency) that produced each level power output were then identified. Next, an 

EM is paired to the ICE with a power rating that is able to work across the entire BSFC 

line. Figure 25 shows the BSFC line for a 1 litre ICE. The overall efficiency of the APU 

is the combined efficiency of the ICE and the EM, as shown in Equation (3-18). 

𝜂𝑏𝑠𝑓𝑐(𝜔𝑎𝑝𝑢, 𝑇𝑎𝑝𝑢) = 𝜂𝑒𝑛𝑔(𝜔𝑒 , 𝑇𝑒) ∙ 𝜂𝑒𝑚(𝜔𝑒 , 𝑇𝑒) (3-18) 
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Figure 24: The Lotus Range Extender (left) for the Jaguar Limo Green (right) [100] 

 

 

Figure 25: Operating line for BSFC 

 

3.2 Energy Storages 

Energy storage devices are defined as a system that stores energy in one form, for 

example as a combustible liquid, electric charge, or potential energy [62]. This stored 

energy is then converted into kinetic energy by one or more energy converters to propel 

the vehicle. 
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3.2.1 Batteries 

Batteries are currently the most common form of mobile energy storage for low carbon 

vehicles. Lead acid, along with Nickel and Lithium-based chemistries, are the most 

common. Early electric vehicles, such as the GM EV1, utilised lead acid batteries, but 

this chemistry was considered too heavy [102]. Nickel Metal Hydride (NiMH) has been 

used for production in vehicles such as the Toyota Prius and the Honda Insight [103; 

104]. 

However, it is acknowledged that Lithium-based batteries provide the best power and 

energy density to weight (compared to the other chemistries), with cell costs declining 

in recent years [12]. Other battery technologies, such as Nickel-Chloride, Lithium-Air, 

and REDOX were considered in several publications, but were mostly deemed 

unfeasible for automotive applications [12; 103; 105]. Therefore, the battery model will 

be narrowed down to Lithium-based batteries, and this research will be based on this 

chemistry. 

For modelling purposes, the internal resistance of the battery can be approximated as a 

resistor in series with an Equivalent Electrical Circuit (EEC) model [106]. The 

advantage of the EEC battery model is that it provides good balance between accuracy, 

complexity, and runtime performance for automotive simulation applications [107]. The 

battery model was created based on the work by Tremblay et al. [108]. The schematic 

representation of a single Li-ion cell within the battery model is shown in Equation 

(3-19) and consists of the open circuit voltage, UOCV(cell), connected in series with a 

single resistor, R0. To calculate the cell terminal voltage, UL(cell), the following equation 

is used 

𝑈𝐿(𝑐𝑒𝑙𝑙) = 𝑈𝑂𝐶𝑉(𝑐𝑒𝑙𝑙) − 𝐼𝐿𝑅0 (3-19) 

where IL is the current flowing through the battery. This relatively simple layout, also 

known as the “Rint” battery model [109], was adopted because the higher transient 

characteristics of the battery (< 1 Hz) was not captured, given the comparatively large 

sampling rate when measuring the battery data from the Smart ED. This negates the 

necessity to include capacitive elements (such as those found in the Thevenin and 

PNGV battery models [109]), and hence reduces the overall simulation time. Figure 26 

shows the schematic diagram of the Rint battery model. 

Data for parameterisation of the battery model was also obtained from the CAN 

interface of the Smart ED. The Open Circuit Voltage (OCV) was estimated based on the 

battery terminal voltage, temperature, and State-of-Charge (SOC). Figure 27 shows the 

relationship between the OCV, SOC, and temperature. 
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Figure 26: The “Rint” battery model 

 

Figure 27: The battery OCV map derived from the Smart ED 

 

3.2.1.1 Battery Model Scaling 

The battery pack in the Smart ED is rated at 16.5 kWh and contains Panasonic 

NCR18650 cells [94]. According to the datasheet supplied by Panasonic, each cell has a 

capacity of 2.9Ah and mass of approximately 45g [110]. Each parallel string of cells has 

a capacity of approximately 1kWh. Therefore, a battery pack rated at 20kWh, for 

example, contains approximately 20 strings in parallel. It is estimated that each string 

contains 94 cells in series, after dividing the measured battery pack voltage from the 

Smart ED with the published cell voltage from Panasonic. 
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During simulation runtime, the SOC is quantified using the generic method of coulomb 

counting, in which SOCinit defines the initial condition of the battery SOC and Qb the 

capacity of the battery expressed in Ah: 

𝑆𝑂𝐶(𝑡) =
𝑆𝑂𝐶𝑖𝑛𝑖𝑡 ∙ 𝑄𝑏 ∙ 3600 − ∫ 𝐼𝑏 ∙ 𝑑𝑡

𝑡

0

𝑄𝑏 ∙ 3600
 

(3-20) 

where Ib is the current flowing through the battery pack. 

Figure 28 shows an example of the arrangement of cells in series and in parallel within 

a battery pack. In this example, there are two cells in series and three strings of cells in 

parallel. Referring to this example, and continuing on from Equation (3-19), the sum of 

the electrical currents in each string is shown in Equation (3-21), where I1, I2, and I3 are 

the electrical currents passing through each string respectively. 

 

Figure 28: Example of cell arrangements in a battery pack 

𝐼𝐿 = 𝐼1 + 𝐼2 + 𝐼3 (3-21) 

The electrical current passing through each string of cells (two per string in this 

example) can then be calculated as shown in (3-22), where Ustring is the potential 

difference for each string of cells. 

𝐼1,2,3 =
𝑈𝑠𝑡𝑟𝑖𝑛𝑔 

2𝑅0
 

(3-22) 

Expanding further to three strings in parallel, the following equation applies: 

𝐼𝐿 = 3 (
𝑈𝑠𝑡𝑟𝑖𝑛𝑔 

2𝑅0
) 

(3-23) 

Given that Rb, the total internal resistance of the battery, is based on the following, 

𝑅𝑏 =
𝑈𝑠𝑡𝑟𝑖𝑛𝑔

𝐼𝐿
 

(3-24) 

the following then applies by combining Equations (3-23) and (3-24), 
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𝑅𝑏 = 𝑅0

2 ∙ 𝑈𝑠𝑡𝑟𝑖𝑛𝑔 

3 ∙ 𝑈𝑠𝑡𝑟𝑖𝑛𝑔 
 

(3-25) 

Replacing “2” and “3” with ns (number of cells in series) and np (number of strings in 

parallel) respectively the following generalised equation is obtained: 

𝑅𝑏 = 𝑅0 ∙
𝑛𝑠

𝑛𝑝
 

(3-26) 

Equations (3-26) to (3-28) present how the battery is scaled by altering the number of 

parallel strings, np. This set of equations is executed to create the OCV map. The 

number of cells in series, ns, is fixed during simulation to maintain the bus voltage. In 

these equations, Rb is the battery internal resistance, UOCV(batt) is the battery OCV, and 

Qcell is the capacity of each cell. 

𝑈𝑂𝐶𝑉(𝑏𝑎𝑡𝑡) = 𝑈𝑂𝐶𝑉(𝑐𝑒𝑙𝑙) ∙ 𝑛𝑠 (3-27) 

𝑄𝑏 = 𝑄𝑐𝑒𝑙𝑙 ∙ 𝑛𝑝 (3-28) 

The value of Rb will be discussed in Section 3.2.1.2. The cells within the battery pack 

are assumed to be homogeneous in operation, which allowed for scaling the battery 

pack size by changing the number of parallel strings. In reality, temperature gradient 

and disproportionate aging may affect the performance of individual cells [111]. 

 

3.2.1.2 Battery Model Verification 

The value of the battery pack internal resistance, Rb, was estimated so that it performed 

as close as possible to the recorded SOC trajectory from the vehicle, during a charge-

depleting cycle. This is similar to the approach shown by Rodrigues et al., for 

measuring impedance of a Li-ion battery [112]. Using an optimisation routine, the value 

of Rb was identified, such that the SOC trajectory of the battery model and the measured 

data was as close as possible. A comparison of the measured SOC and the estimated 

SOC (from the battery model) is shown in Figure 29. 
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Figure 29: Comparison of measured and estimated battery SOC 

 

Based on this optimisation routine, the value for Rb was identified to be 0.43 ohms. The 

author acknowledges that variations in the resistance under charge and discharge 

conditions, as well as in different thermal operating conditions, were inherently 

averaged using this approach. Furthermore, any additional resistances from the battery 

contactors have also been lumped using this approach. However, without a controlled 

test environment on a battery test rig, it was difficult to extract the specific resistance 

values. Future work could investigate on improving this area. 

 

3.2.2 Fuels 

Fuels represent liquid or compressed gaseous fuels stored in sealed tanks, and to be later 

used as part of a combustion or chemical reaction process to produce energy that 

propels the vehicle. 

At present, fossil fuels are the dominant energy source for ground transportation, 

primarily as petrol and diesel [113; 114]. Alternative fuels, such as hydrogen, are also 

available. However, the ability of hydrogen production and utilisation to remain 

sustainable in the long term is being debated [115; 116]. 

The tank’s volume and mass is parameterised to compute sizing. The fuel tank connects 

to the ICE or the APU and calculates the amount of fuel consumed. Table 10 shows the 

terms used for calculating the amount of fuel used when the tank is connected to the 

ICE or the APU. 
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Table 10: Terms used for fuel tank calculations 

Term Definition Units 

𝑚𝑓𝑢𝑒𝑙 

�̇�𝑓𝑢𝑒𝑙 

TtW_CO2 

WtW_CO2 

WtT_CO2 

Hl 

Fuel mass 

Fuel mass flow rate 

Tank-to-Wheel CO2 

Well-to-wheel CO2 

Well-to-tank CO2 

Fuel calorific heating value 

kg 

kg/s 

kg 

kg 

kg/J 

J/kg 

 

To calculate the total amount fuel used, the mass flow rate of the fuel consumed by the 

ICE or the APU is integrated over the length of the simulation time: 

 

𝑚𝑓𝑢𝑒𝑙 = ∫ �̇�𝑓𝑢𝑒𝑙 𝑑𝑡
𝑡𝑒𝑛𝑑

0

 
(3-29) 

The tank-to-wheel CO2 emission is then calculated, where 𝑚𝑎𝑠𝑠_𝑟𝑎𝑡𝑖𝑜𝐶𝑂2
 is the mass 

of CO2 emitted per unit mass of petrol that undergoes combustion at the stoichiometric 

ratio (3.17 kgCO2/kg petrol) [117; 118]: 

𝑇𝑡𝑊_𝐶𝑂2 = 𝑚𝑎𝑠𝑠_𝑟𝑎𝑡𝑖𝑜𝐶𝑂2
× 𝑚𝑓𝑢𝑒𝑙 (3-30) 

Finally, the well-to-wheel CO2 emission is calculated based on the well-to-tank 

conversion factor of 14.10 kgCO2/MJ of petrol used [55]: 

𝑊𝑡𝑊_𝐶𝑂2 = 𝑚𝑓𝑢𝑒𝑙(𝐻𝑙 × 𝑊𝑡𝑇_𝐶𝑂2) + 𝑇𝑡𝑊_𝐶𝑂2 (3-31) 

 

3.2.3 Flywheel 

A flywheel is a mechanical storage medium, with energy and power density figures 

comparable to ultracapacitors [119]. The flywheel model is based on the mechanical 

flywheel system by Flybrid Automotive Limited [120]. In this system, the flywheel is 

connected to the final drive via a CVT and a clutch. This arrangement classifies the 

vehicle as a parallel hybrid. The flywheel system is only used to provide power assist 

during vehicle acceleration and to recover energy during vehicle braking. 
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The rotary inertia of the flywheel is used to store energy. The higher the rotational 

velocity, the more energy is stored. This energy, Ef, is defined by, 

𝐸𝑓 =
1

2
𝐽𝑓𝜔𝑓

2 
(3-32) 

where Jf is the rotary inertia and ωf the rotational speed. In order to maximise the energy 

stored, it is more efficient to raise ωf (because it is squared) than to increase Jf. For this 

reason, many flywheel systems utilise Carbon Fibre Reinforced Plastic (CFRP) to limit 

mass and rotational inertia, but increase rotational speed up to 64000 rpm [4]. CFRP 

also has the advantage of being a low density material with high stiffness, and therefore 

has minimal expansion at high rotational speeds (around 1 mm at 64000 rpm in the 

example given by Cross and Hilton [4]). 

Figure 30 shows the flywheel system investigated in this research, which is 

manufactured by Flybrid. They produce a range of flywheel systems with energy 

storage capacities from 150 kJ to 600 kJ [4]. 

To size the flywheel, the maximum required energy, Ef(max), has to be decided first. The 

maximum energy of the flywheel is obtained when 𝜔𝑓 = 𝜔𝑓(𝑚𝑎𝑥), where ωf(max) is the 

maximum flywheel speed limit at 64,000 rpm. 

The flywheel can then be sized by determining the required inertia given by, 

𝐽𝑓 =
1

2
𝑚𝑓(𝑟𝑖

2 + 𝑟𝑜
2) 

(3-33) 

where mf is the mass of the flywheel, and ro and ri are the outer and inner radii of the 

flywheel respectively. The energy capacity of the flywheel is defined by scaling the 

outer radius. 

The flywheel system’s losses are contributed by the friction torque from bearing (Tloss) 

and the efficiency of the CVT (ηCVT). For each time increment of the simulation, the 

energy dissipated due to these losses, Eloss, can be calculated as, 

𝐸𝑙𝑜𝑠𝑠 = [𝑇𝑙𝑜𝑠𝑠𝜔𝑓 + 𝑃𝑓(1 − 𝜂𝐶𝑉𝑇)] ∙ 𝑡𝑠 (3-34) 

where ts is the time increment of the simulation and Pf is the power demand to the 

flywheel system. The value of Tloss is based on a lookup table, which was made 

available to the authors by Flybrid, whilst the efficiency of the CVT is fixed at 85% 

[121]. The net energy content of the flywheel system is then provided by the equation, 

𝐸𝑘
𝑡 = 𝐸𝑘

𝑡−1 − 𝐸𝑙𝑜𝑠𝑠 (3-35) 

Where 𝐸𝑘
𝑡  is the flywheel energy at time t. The flywheel model was validated using data 

provided by Flybrid. 
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Figure 30: Flywheel energy storage from Flybrid [122] 

 

3.3 Power Transformers 

Power transformers are defined as devices that convert the ratio of the efforts and flows 

within a power domain. For example, a mechanical transmission will multiply the input 

torque and divide the input speed by a given ratio (or vice-versa). Ignoring losses, the 

power in will be equal to the power out of a mechanical transmission. 

3.3.1 Mechanical Transmission 

For the purposes of this research, a simple discrete controllable transmission was 

utilised [123]. The final drive offers a further gear reduction, and will be lumped into 

the overall ratio. The implementation of the mechanical transmission models in 

Simulink are shown in Appendix D. 

In this research, the 8-speed transmission from the Jaguar XJ saloon is utilised when the 

ICE is the prime mover. This transmission was chosen because of the familiarity with 

the vehicle as a result of the work carried out for the LCVTP project. Due to the lack of 

experimental data, a nominal efficiency value of 0.9 was assumed for the transmission, 

using the work by Irimescu et al. [124] as a guideline. In contrast, when the EM is the 

primary mover, the single-speed transmission ratio from the Smart ED is utilised. The 

data for all gear ratios are shown in Appendix C.2. 

The equation for the mechanical transmission is given by Equations (3-36) and (3-37), 

𝑇𝑔𝑏 =
𝑇𝑤

𝜂𝑔𝑏 ∙ 𝜑𝑔𝑏
 

(3-36) 



 

52 

 

𝜔𝑔𝑏 = 𝜔𝑤 ∙ 𝜑𝑔𝑏 (3-37) 

where ηgb is the transmission efficiency, ϕgb is the gear ratio, Tgb and Tw are the input 

and output torque of the transmission shafts, and ωgb and ωw  are the input and output 

speeds of the transmission shafts. The output torque of the transmission shaft is also the 

torque at the wheels, as will be discussed in Section 3.4. Likewise, the output speed of 

the transmission shaft is the same as the wheel speed. 

For the NEDC, the gear shift schedule is based on the procedures laid out by the 

Economic Commission for Europe [84]. The shift points are shown in Figure 31. 

 

Figure 31: Gear shift points on the NEDC [84] 

 

For other drivecycles, the shift schedules for the transmission are controlled by a rule-

based strategy such that the engine speed is maintained between 200 and 400 rad/s for a 

given vehicle speed. This range was chosen because it contains a region of higher BSFC 

points based on the Willans ICE model and also based on the suggestions by [125]. In 

the forward-facing model, an further rule is added such that the transmission shifts into 

a lower gear if the torque demand is more than 90% of the maximum ICE torque 

(Te(max)) and if the ICE speed limits are not exceeded. This is akin to the kick-down 

switch in an automatic transmission. 

The author would like to make an assertion that the transmission shift strategies 

proposed here, though simple, are sufficient for the purpose of this research. Further 

research on optimal shift strategies, as proposed by Viet [126], could be implemented as 

part of future work. 
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3.3.2 Power Electronics 

Power electronics mainly comprise of buck-boost converters that step voltage up or 

down, and inverters that convert DC electrical power to AC electrical power [127]. 

Similar to mechanical transmissions, the magnitude of power flowing in and out of the 

system is constant (ignoring losses). 

Electrical interfaces with energy storages will be at power levels to simplify calculations 

within the proposed simulation tool. Therefore, the power electronics will not be 

explicitly modelled for the purpose of this research; instead, the efficiency of such 

converters will be lumped with the efficiency maps of the respective energy converters 

and storages. 

 

3.4 Vehicle Model 

The vehicle model is described by the following information: 

 Glider mass (mass of the vehicle without powertrain components) 

 Aerodynamic properties 

 Tyre rolling resistance characteristics. 

The opposing forces to the motive effort provided by the powertrain are calculated 

based on the sum of the aerodynamic drag, rolling resistance, inertial forces, and road 

inclination. These are shown in Equations (3-38) to (3-41) respectively, where CD is the 

drag coefficient, Af is the frontal area of the vehicle, v is the velocity of the vehicle, μRR 

is the rolling resistance coefficient of the tyre, mv is the mass of the vehicle, g is the 

acceleration due to gravity, ρ is the density of air, a is the acceleration of the vehicle, 

and θ is the angle of road inclination. 

𝐹𝐷 =
1

2
𝜌𝐶𝐷𝐴𝑓𝑣2 

(3-38) 

𝐹𝑅𝑅 = 𝜇𝑅𝑅𝑚𝑣𝑔 (3-39) 

𝐹𝐴 = 𝑚𝑣𝑎 (3-40) 

𝐹𝑖𝑛𝑐 = 𝑚𝑣𝑔 𝑐𝑜𝑠𝜃 (3-41) 

Therefore, the total force at the contact patches of the tyres, FT, is, 

𝐹𝑇 = 𝐹𝐷 + 𝐹𝑅𝑅 + 𝐹𝐴 + 𝐹𝑖𝑛𝑐 (3-42) 

And the torque at the wheels, Tw, is then given as, 

𝑇𝑤 = 𝐹𝑇 ∙ 𝑟𝑤 (3-43) 
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where rw is the rolling radius of the tyre. Detailed information of the relevant vehicle 

parameters is included in Appendix C. A small test case was carried out in Section 6.4.4 

to investigate the influence of road inclination on the optimisation results. 

 

3.5 Estimating Financial Costs of Components 

Including monetary costs into this research was challenging due to the diversity of 

factors involved. From a powertrain component standpoint, this encompassed the 

following [69; 78]: 

 manufacturing costs 

 operating costs 

 residual values at the end of the vehicle’s life. 

Based on the quality of data from literature and to maintain focus on the aims of this 

research, a decision was made to simplify the costs of the components based on the 

financial costs at the point of sale to the consumer. To that end, research published by 

the NREL [128-130] was utilised to quantify system costs of the battery, EM, and ICE, 

whereas data from Flybrid was used to quantify the system cost of the flywheel. A full 

derivation of the financial weightings was discussed by the NREL [128]; therefore, it 

will not be repeated here. However, it is noteworthy that factors such as market 

segmentation, vehicle class, and the expected profitability were included within their 

analysis. Validations of the empirical relationships were provided, where the authors 

verified the financial cost equations for EVs and HEVs that are currently on the market. 

This validation has been reproduced in Figure 32. 

Equation (3-44) defines the installed cost of the battery pack as a function of peak 

power, Pb(max), and capacity, Qb(max). Equations (3-45) and (3-46) define the financial 

cost of both the EM and the ICE as a function of their respective peak power 

requirements, Pem(max) and Pe(max). Equation (3-47) is used for the flywheel, where Ef(max) 

is the maximum energy capability of the flywheel. 

𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝐶𝑜𝑠𝑡 =  
$22.00

𝑘𝑊
⋅ 𝑃𝑏(max) + 

$700.00

𝑘𝑊ℎ
⋅ 𝑄𝑏(𝑚𝑎𝑥) + $680.00 

(3-44) 

𝐸𝑀 𝐶𝑜𝑠𝑡 =  
$21.70

𝑘𝑊
⋅ 𝑃𝑒𝑚(𝑚𝑎𝑥) +  $480.00 

(3-45) 

𝐼𝐶𝐸 𝐶𝑜𝑠𝑡 =  
$14.50

𝑘𝑊
⋅ 𝑃𝑒(𝑚𝑎𝑥) +  $531.00 

(3-46) 

𝐹𝑙𝑦𝑤ℎ𝑒𝑒𝑙 𝐶𝑜𝑠𝑡 =  
$4.40

𝑘𝐽
⋅ 𝐸𝑓(𝑚𝑎𝑥) +  $1833.00 

(3-47) 
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Figure 32: Validation of the estimated costs [128] 

 

It ought to be mentioned that at the point of developing the models for running the 

simulations, validation was carried out using data published by the NREL in 2010 

[128]. Component prices, particularly newer battery chemistries, will have variations in 

their costs. Additionally, based on equations (3-44) to (3-47), the battery plays a 

significant role in the overall costing of the vehicle powertrain (estimated to be $12,320 

for the Smart ED based on equation (3-44)). In 2013, the state of Lithium-ion battery 

cost has been reported to be $500 per kWh [131]. 

 

3.6 Modelling Assumptions and Limitations 

The models of the powertrain components described in Sections 3.1 and 3.2 were 

developed to be scalable for inclusion into the optimisation framework contained within 

the proposed toolbox. It ought to be mentioned that the models will not be able to 

capture certain variations in efficiency of the system, particularly with regards to 

external factors such as changes in operating temperature. Sensitivity analyses will be 

carried out where necessary to ascertain the severity of the model assumptions towards 

the optimisation results. 

Data for the scalable model of the ICE was obtained from previously published research 

[62]. While the data in [62] have been experimentally validated, it is acknowledged that 

ICE technology in general has continued to advance [132]. Hence, if more complex 

models were included within the proposed toolbox, it is envisaged that the ICEs would 

operate at higher efficiencies, thus leading to further downsizing. 

The methods for scaling the powertrain components were demonstrated within literature 

[62; 69; 133], and these studies have provided experimental validation for those 
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methods.  However, one assumption made with the models is the near-linear 

relationship between the powertrain component mass and its capacity (or peak power). 

In practice, the addition or removal of relevant ancillary devices may cause a 

compounding effect and result in further non-linearity in this relationship. Nevertheless, 

the aim of this research is to demonstrate the framework of simultaneous powertrain 

optimisation, in which powertrains are assessed at the system level. Focus is given to 

the transition from one powertrain to the other, as opposed to the absolute accuracy of 

the model. In this respect, the models have to be sufficiently valid to demonstrate this 

capability, and further research may wish to explore the integration of higher-fidelity 

models into the toolbox. As discussed previously, the use of uniform power-based 

interface between the models will allow practitioners to incorporate other types of 

powertrain components as needed. 

Additionally, further considerations may need to be given for the physical size and 

volume of the powertrain components and the associated packaging constraints within 

the vehicle. The vehicle glider mass is assumed to remain constant although the 

powertrain component sizes will be varied during the optimisation routine. 

For hybrid powertrains, it should also be noted that the output of the proposed tool is 

independent of level of hybridisation, (such as micro, mild and full hybrid). 

Additionally, EVs and PHEVs will require inclusion of an on-board charger which has 

not been explicitly modelled, but will be included in the overall CO2 emission 

calculations for replenishing the battery to its initial SOC at the end of the drivecycle. 

 

3.7 Drivecycles 

Drivecycles are used to simulate the driving conditions that the vehicle will encounter. 

In this research, only the longitudinal speeds and acceleration will be evaluated. To that 

end, three types of drivecycles were used as examples of vehicle duty cycles; the NEDC 

[134], the combined ARTEMIS cycle [93; 135], and the “Cranfield cycle” [136]. 

Drivecycles can be classified into two categories based on their formulation; modal 

cycles and transient cycles [137]. A modal cycle is created using a repetitive series of 

vehicle operating conditions [138]. The NEDC, developed by the Economic 

Commission of Europe, is an example of a modal cycle. Based on Figure 33, it is 

observed that there are a number of repeating smaller cycles and constant speed 

sections. The NEDC represents the test cycles for Europe, and it is the first type of 

drivecycle considered for this research. 
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Figure 33: The NEDC (repeated twice) 

Modal cycles are often adopted by legislative bodies because of the ease of performing 

standardised emission tests on vehicles using a dynamometer. However, modal cycles 

do not adequately describe the underlying distribution of speeds and acceleration which 

would be encountered in real-world driving scenarios. The NEDC, for example, was 

formulated when the average power output of the engine was relatively lower, therefore 

the acceleration rates on the NEDC is comparatively lower than the acceleration rates 

encountered in the real-world [52]. The acceleration levels encountered in real-world 

scenarios are higher, thus implying higher power and energy requirements. The work 

done by Lund University [139] suggests that real-world acceleration levels would lead 

to increased fuel consumption and emissions between 20 to 40 percent in a conventional 

vehicle. 

Conversely, transient cycles contain actual simulation of typical road routes. Legislative 

bodies in the USA, Canada, Australia, and Switzerland use such cycles. Since the test 

cycle emulates real-world driving, it has more speed variations when compared to 

modal cycles. As transient cycles are more representative of real-world driving, tests 

performed with these drivecycles give a better representation of fuel consumption and 

emission figures [140]. In Europe, an example of a representative transient cycle is the 

ARTEMIS drivecycle. This cycle is represented in Figure 34. A background on 

formulation of these representative cycles can be found in the work by André [93]. The 

ARTEMIS is the second drivecycle considered for this research. 
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Figure 34: The ARTEMIS cycle 

The third drivecycle considered for this research was derived from series of real-world 

usage studies undertaken by Cranfield University and recorded with the Smart ED, as 

discussed in Section 3.1.2.2. It combines speed traces from usage in urban, A-road, B-

road and motorway sections. This cycle, called the “Cranfield cycle” is shown in Figure 

35. 

 

Figure 35: The Cranfield cycle 

The detailed characteristics of these drivecycles will be discussed further in Chapter 5. 

 

3.8 Sensitivity Analysis 

Several assumptions were made during the creation of the powertrain component 

models. One such example is the regenerative braking strategy, which was derived from 

the rear-wheel driven Smart ED and limited to 30% of the maximum propulsion power, 

as seen in Figure 20. Therefore, a sensitivity analysis was carried out to identify the 

severity of variation in the vehicle parameters towards energy consumption for each of 

the drivecycle. The sensitivity equation is given by the following [62]: 
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where B is a given vehicle parameter, ΔB is the change in that parameter for sensitivity 

analysis, and ETraction is the energy consumed to complete the drivecycle. 

An EV powertrain was used as a case study for this sensitivity analysis. It uses the 

following parameters as nominal points, which are similar to a Nissan Leaf, a typical 

EV [141]: 

 EM peak power: 80kW 

 Battery size: 24kWh 

 Glider Mass: 1000kg 

 Drag coefficient: 0.3 

 Cross sectional area: 2.3 m
2
  

The sensitivity analysis was based on the variation of the following parameters: 

 Glider mass (potential variation caused by passenger and luggage) 

 Aerodynamic drag (open window, sunroof, or retracted convertible roof) 

 Regenerative braking % (change based on front-wheel drive, rear-wheel drive, 

or variation in brake blending configuration). 

The first two points were included based on similar investigations by Guzzella and 

Sciarretta [62]. The last point was included due to the uncertainty in the assumptions for 

the regenerative strategy, as discussed in Section 3.1.2.1. The effects of the changes of 

these parameters are shown in Figure 36. 

It is observed that at the nominal points (shown by the black circles), the ARTEMIS 

cycle demands the highest energy usage per 100km, followed by the Cranfield cycle and 

then the NEDC. This was expected, given the variations in acceleration levels between 

those drivecycles. The variations in acceleration are also made more evident with the 

sensitivity result of the regenerative braking strategy. The energy consumed in the 

ARTEMIS cycle almost constantly declines when more braking energy is recuperated. 

For the Cranfield cycle, there is a sharper decline up to the nominal point, and then it 

tapers off thereafter. This is because the regenerative braking percentage is oversized 

after the nominal point for the Cranfield cycle, and therefore energy recuperation hits a 

point of diminishing returns. For the NEDC, there was hardly a variation in the energy 

consumption with respect to changes in the regenerative braking strategy. Being a 

modal cycle, as described previously, the NEDC does not saturate the limits of the 

energy recuperation due to its lower deceleration levels. Detailed analysis of the cycles 

will be covered further in Section 5.1. 
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: Nominal point 

Figure 36: Change in energy consumption as a function of parameter changes 

Figure 37 shows the normalised sensitivity based on Equation (3-48). Here, the relative 

sensitivities of the different parameters are more evident. The sensitivity for each 

parameter from each drivecycle is obtained by taking the derivative at the nominal 

points in Figure 36. 

 

Figure 37: Sensitivity at the nominal point for each drivecycle 
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It can be deduced that changes in vehicle mass has the highest effect towards overall 

energy consumption, followed by drag coefficient and regenerative strategy. The ratio 

between the sensitivity of the glider mass and drag coefficient also parallels the trend 

seen in the same analysis carried out by Guzzella and Sciarretta [62]. The regenerative 

braking percentage is the least sensitive in comparison to the other parameters. 

 

3.9 Chapter Conclusions 

This chapter described the creation of powertrain components that will be used in 

subsequent chapters for simulating and optimising various powertrain topologies. To 

allow the proposed toolbox to switch between different types of powertrain 

architectures, the powertrain components had to be modularised. This entailed 

classifying the components into three main types: energy converters, energy storages, 

and power transformers. These components and their classifications are shown in Table 

11. 

Table 11: Classification of powertrain components 

Energy Converters 
ICE 

EM 

Energy Storages 

Fuel Tank 

Battery Pack 

Flywheel 

Power Transformers 
Mechanical Transmission 

Power electronics 

 

This list of powertrain components was narrowed down based on the availability and 

quality of data gathered from literature and work carried out by Cranfield University for 

funded projects. Whilst the components were verified against data from real vehicles, 

several assumptions were made with regards to their scaling for peak power. 

Additionally, the scaling of financial costs and component mass was based on linear 

functions. Nevertheless, this level of fidelity was deemed sufficient for the purpose of 

this research. The modularity of the toolbox will allow for higher fidelity models to be 

included as part of future work. 

The financial cost equations presented in this chapter represents the installed cost of the 

main powertrain components. While the underlying financial cost trends between the 
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respective components were discussed, it is noteworthy that the absolute values may 

vary amongst manufacturers and across different component technologies. 

The duty cycles that will be used to simulate the various powertrain will consist of three 

drivecycles. They are the: 

 NEDC 

 ARTEMIS 

 Cranfield cycle 

Lastly, a sensitivity analysis was carried out to identify the severity of the uncertainties 

of several parameters in the model. Based on the EV powertrain that was analysed, it 

was found that changes in glider mass had the most pronounced effect towards changes 

in energy consumption. The trends from the sensitivity analysis were noted and will be 

taken into account during the optimisation study later in this thesis. 

 



 

63 

4 MODULAR POWERTRAIN STRUCTURE 

The MPS was developed to facilitate the switching of powertrain topologies and 

scalable powertrain components during optimisation runtime. The MPS forms one half 

of the framework within the proposed toolbox; the other half is the optimisation 

algorithm. The high-level structure of this framework is shown in Figure 38. In this 

chapter, the novel methodology within the proposed toolbox, which is built upon the 

backward-facing method, is discussed. Sections 4.1 to 4.3 will address the first claim of 

novelty by discussing the workings of the MPS. Section 4.4 will partly address the 

second claim of novelty by discussing the implementation of multi-objective 

optimisation with the MPS. 

 

4.1 Framework of the Proposed Toolbox 

As discussed previously, all powertrain architectures have at least one type of energy 

storage and energy converter respectively [39]. Using the powertrain components that 

were discussed in Chapter 3, the energy storages and energy converters are organised 

within the MPS, and based on the arrangement shown in Figure 38. The optimiser, 

interfaced with the MPS, selects and sizes the powertrain components. The optimiser 

utilises a Genetic Algorithm (GA), which will be elaborated later. The MPS also holds 

information on the various configurations of the powertrain architectures and 

topologies. If the “MPS” block in Figure 38 (highlighted in red) were to be expanded 

further, it will relate back to the powertrain architectural hierarchy shown in Figure 2 on 

page 5. 

4.1.1 Modular Powertrain Structure 

The key feature of the MPS is the layout of the powertrain component placeholders, 

which can be seen in the high-level block diagram in Figure 39. This feature allows 

permutations of different energy converters and energy storages. This was made 

possible by having a clear distinction between the energy storage, energy converter, and 

power transformer. Using the CV and PHEV as examples, the full implementation of 

the MPS in Simulink can be found in Appendix D. 
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Figure 38: The structure of the framework within the proposed toolbox 

 

 

Figure 39: High-level block diagram for layout of the powertrain component placeholders 

in the MPS 

 

To investigate the workings of the MPS, several powertrain topologies were created 

based on the available powertrain components that were discussed in Chapter 3. These 

topologies are shown in Table 12. As seen in the last row of this table, each powertrain 
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topology is assigned a “Powertrain Variant”, which is an integer used by the optimiser 

to select the appropriate powertrain during the optimisation runtime. 

Table 12: Powertrain architectures to investigate the model framework 

Architecture Single Power Source Series Hybrid Parallel Hybrid 

Topology CV EV PHEV MHV 

Energy Converter #1 ICE EM EM ICE 

Energy Storage #1 Fuel Tank Battery Battery Fuel Tank 

Energy Converter #2 - - APU - 

Energy Storage #2 - - Fuel Tank Flywheel 

Powertrain Variant 1 2 3 4 

 

However, it ought to be mentioned that the layout of the MPS will allow the 

implementation of many more types of powertrain components (and thus creating a 

larger selection of powertrain topologies), as long as the power “bond” between each 

powertrain component is observed. The power “bond” is essentially the communication 

line between the energy storage, energy converter, and power transformer. Each power 

bond is modelled in terms of effort and flow. This is based on the same distinctions used 

for Bond Graph modelling, as discussed in Chapter 3. 

The following are examples of efforts and flows for their respective energy domains: 

 Mechanical: torque and angular velocity 

 Electrical: voltage and current 

 Hydraulic: pressure and volume flow rate. 

The switching mechanism within the framework is facilitated by the “Variant 

Subsystem” feature of Simulink [142]. Each energy storage and energy converter 

subsystem acts as a placeholder which contains a library of components. When the 

optimiser assigns a powertrain variant to the MPS, the respective energy converters and 

energy storages are populated. Depending on the powertrain configuration selected by 

the optimiser, the variant subsystem selects the correct energy converter and energy 

storage, as defined by the respective Powertrain Variant shown in Table 12. 

For example, when the optimiser selects “Variant 1” as the desired powertrain topology, 

the corresponding energy converter and energy storage is the ICE and fuel tank. 

Similarly, if the optimiser selects “Variant 2” as the desired powertrain topology, the 

respective energy converter and energy storage is EM and battery. This is shown in 

Figure 40 and Figure 41 respectively. In both these non-hybrid topologies, only the 
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primary energy converter and storage are activated; the secondary energy converter and 

storage are not applicable and subsequently greyed out. The placeholders for the 

switching components are outlined in red, and the differences in the components 

between Variants 1 and 2 can be seen here. 

Variants 3 and 4 are the series and parallel hybrid architectures, shown in Figure 42 and 

Figure 43 respectively. In Variant 3, both sets of energy converters and storages are 

enabled. The switchable component placeholders are once again highlighted in red to 

aid clarity when comparing the different topologies. For Variant 4, however, the 

secondary energy converter is once again greyed-out, because there is no conversion of 

energy domain between the flywheel and the ICE (both in the mechanical domain). 

Another key enabler for the modular powertrain structure is the power split junction 

box, which can be seen located between the primary and secondary energy converters 

and storages. The purpose of this junction box it to regulate the power flow between 

these two systems, depending on the prevailing hybrid powertrain type. For example, in 

a series hybrid configuration (Variant 3, Figure 42), the junction box switches into 

series mode, and the power connection between the EM and the battery is enabled. 

Therefore, the APU supplements electrical power to the EM, in addition to the battery, 

in this configuration. 

Similarly, in a parallel hybrid configuration (Variant 4, Figure 43), the junction box 

switches into parallel hybrid mode, and the power connection between the gearbox and 

ICE is enabled instead. Therefore, the flywheel supplements mechanical power between 

the gearbox and ICE. By controlling the state of the junction box or by disabling it 

entirely, the modular powertrain structure is capable of simulating series, parallel, and 

compound hybrid powertrains, as well as non-hybrid powertrains. 

The modular structure described so far ensures that the energy domains between the 

storage and converters are compatible. For example, the EM will only connect to a 

battery, and not to a fuel tank. The parameterisation of each powertrain component is 

stored in individual MATLAB m-files. Although not considered in this thesis, Appendix 

B shows other possible powertrain topologies that could be created using the MPS for 

future work. 

Structures, which are MATLAB arrays with data fields, are used to store information 

regarding the inputs and outputs of the simulation. The fields of a structure can contain 

any kind of data. For example, one field might contain a text string representing a name, 

another might contain a scalar representing a fuel economy result, and so on. The use of 

structures allowed the toolbox to be better organised and, consequently, provided 

convenient access to information. The use of structures in handling data is shown in the 

m-file in Appendix F, which also details the link between powertrain topology and 

component parameterisation in MATLAB and the MPS in Simulink. 
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Figure 40: MPS layout switched to a CV (Variant 1) 

 

 

Figure 41: MPS layout switched to an EV (Variant 2) 
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Figure 42: MPS layout switched to a series PHEV (Variant 3) 

 

 

Figure 43: MPS layout switched to a parallel MHV (Variant 4) 
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4.1.2 Optimiser 

Discontinuities and non-linarites will inevitably be present during the optimisation 

problem because of switching between different powertrain topologies. For instance, 

when considering an optimal size between a conventional powertrain and an EV 

powertrain with regards to minimisation of well-to-wheel CO2 for a given drivecycle, 

there are two possible solutions or minima. A gradient–based method is less suitable for 

handling discontinuities in the optimisation problem. Analysis of the existing literature 

has evidenced that evolutionary computing-based optimisation techniques, such as GA 

[143] and swarming theory [144], are widely applied to solve complex engineering 

problems characterised by non-linear and non-convex objective functions [145-147]. 

As automotive researches are varied, many different kinds of optimisation problems 

have been successfully approached by employing a genetic-based methodology. These 

include control of active suspension systems [148], autonomous guidance [149], and 

automated vehicle control [150]. In the context of powertrain optimisation in particular, 

GA has been observed to be used for such complex constrained non-linear problems 

[13; 151-154]. The main advantage of using GA in this application is that, unlike the 

traditional calculus-based search techniques, GA does not require strong assumptions 

for the objective function, such as continuity and differentiability. Therefore, based on 

these findings, a GA-based optimiser was utilised for this purpose. It is noteworthy that 

other methods, such as simulated annealing, could have also been used in place of GA; 

however, the aim of this research is on the application of optimisation techniques in the 

domain of simultaneous optimisation of multiple powertrain architectures, rather than 

finding the best optimisation algorithm for the problem at hand. 

 

4.2 Implementation of the Genetic Algorithm 

The optimisation routine can be represented in a standard form [155; 156]. Given a set 

of decision variables, X, and a cost function, ϕ(X), the optimiser aims find X
*
 to 

minimise ϕ(X), within bounds of G, where G represents a set of design constraints. This 

can be represented as,  

min
𝑋𝑖,𝐺

∅(𝑋) (4-1) 

where Xi contains the decision variables and can be represented. The GA will be used 

for optimising the size of the powertrain components and for selecting the most 

appropriate powertrain architecture to minimise a given cost function. A description of 

the GA was covered in detail by Goldberg [145], and this technique will be extended for 

the use of powertrain selection and sizing. 

This algorithm was inspired by Darwin’s theory of evolution and natural selection, 

where weak individuals are eliminated, leaving only the fittest ones to survive [145; 
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157]. Using the optimisation of an EV powertrain as an example, the same technique 

will be applied, where inferior EV powertrain configurations are discarded, leaving only 

good and feasible configurations to be selected. The GA initiates by seeding a 

population of a predetermined number of “individuals”, spread homogenously over a 

solution space that is bounded by the constraints of the decision variables. Each 

individual can therefore be represented in the form of  

𝑋𝑖 ≡ [

𝑋1

𝑋2

⋮
𝑋𝑛

] (4-2) 

where “i” represents each decision variable. For example, in an EV powertrain, there are 

two decision variables per individual: 

 EM power (kW) 

 Battery size (kWh) 

Additionally, each decision variable Xi will have its own bound such that, 

𝑋𝑖𝑙𝑜𝑤𝑒𝑟
< 𝑋𝑖 < 𝑋𝑖𝑢𝑝𝑝𝑒𝑟

 (4-3) 

Based on Equation (4-2), if the index i1 represents the EM and the index i2 represents 

the battery, the array form for each individual in the EV powertrain optimisation 

problem will look like, 

𝑋𝑖 ≡ [
𝐸𝑀 𝑝𝑜𝑤𝑒𝑟

𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑠𝑖𝑧𝑒
] (4-4) 

Therefore, each individual can be denoted as an array such as [
55 𝑘𝑊

25 𝑘𝑊ℎ
], [

40 𝑘𝑊
60 𝑘𝑊ℎ

], 

and so on. 

Each “population” will then be a collection of individuals. Each “generation” contains 

one population. Over each passing generation, inferior powertrain configurations are 

discarded, leaving only good and feasible configurations to be selected into the next 

generation, thus adhering to the principles of evolution and natural selection in the GA. 

Beginning with an initial population, the GA solver then imposes a string of functions 

such as “mutation” and “crossover”. In mutation, an individual is altered to form a new 

individual. In crossover, two individuals from the initial pool (parents) are reproduced 

to form two new individuals (children). The inferior individuals are then eliminated 

from the population, leaving the good individuals ready for the next generation of 

population. This process continues for subsequent generations to improve the fitness of 

the individuals towards minimising the cost function. The process terminates after a 

predefined number of generations, or when the variation of the fitness amongst the 

individuals is very small (the solution converges). For the EV powertrain example that 
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will follow in the subsequent sections, the maximum number of generations has been 

specified as 50 generations for this instance. 

 

4.2.1 The Initial Population Generator 

The initial population generator is an algorithm used to create an initial population of 

individuals for the GA solver. In this research, a custom initial population generator was 

written. This custom generator will be used in lieu of the default one supplied by the 

MATLAB Global Optimisation toolbox. There are two reasons for this: 

 Creating a homogenous spread of individuals within the initial population space 

 Verifying that each individual is feasible, and therefore can complete a 

drivecycle. 

In this research, the following distinctions are made: 

 A population space is defined as the area between the largest and smallest 

bounds for the powertrain configuration. In the case of an EV powertrain, it is 

essentially the solution space for the component sizes between the upper and 

lower limits of the scalable EM and battery. 

 A feasible individual is defined as an individual that is able to complete a given 

drivecycle successfully. For example, a heavy vehicle with a large EM may not 

be able to complete a vigorous drivecycle with a small battery pack, due to the 

possibility of exceeding the battery’s power limits. Hence, each individual from 

the initial population undergoes a simulation run to ensure that they are feasible. 

By ensuring that each initial individual is feasible, the entire population spread can be 

used in the GA solver, thus maximising on the solution space and minimising on the 

potential for the solution tending towards a local minima. This will be verified in 

Section 4.5.4 by way of repeatability tests in the optimisation results and comparison 

against an exhaustive search method. 

4.2.2 Initial Homogeneous Spread of Individuals 

To achieve this, the lower and upper bounds of the EM power and battery size are 

defined. This results in the following inequalities: 

40𝑘𝑊 ≤ 𝐸𝑀 𝑠𝑖𝑧𝑒 ≤ 100𝑘𝑊 (4-5) 

10𝑘𝑊ℎ ≤ 𝑏𝑎𝑡𝑡𝑒𝑟𝑦 𝑠𝑖𝑧𝑒 ≤ 150𝑘𝑊ℎ (4-6) 

Another constraint is also imposed within the optimiser, which is the maximum vehicle 

mass, 
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0 < 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑚𝑎𝑠𝑠 ≤ 2000𝑘𝑔 (4-7) 

Furthermore, the resolution of the spread of each decision variable across the population 

space has to be defined. This can be denoted as: 

𝑖𝑛𝑖𝑃𝑜𝑝𝐷𝑖𝑠𝑡 = [𝑁𝑖1 𝑁𝑖2] (4-8) 

where “iniPopDist” is an array containing the resolution of spread for each decision 

variable (denoted by N). If the resolution of the EM size were to have a nominal value 

of 5 and the resolution of the battery size were to have a nominal value of 10, the array 

iniPopDist will now look like: 

𝑖𝑛𝑖𝑃𝑜𝑝𝐷𝑖𝑠𝑡 = [5 10] (4-9) 

The population size can now be defined as: 

𝑖𝑛𝑖𝑃𝑜𝑝𝐷𝑖𝑠𝑡(𝑖1) × 𝑖𝑛𝑖𝑃𝑜𝑝𝐷𝑖𝑠𝑡(𝑖2) × 𝑖𝑛𝑖𝑃𝑜𝑝𝐷𝑖𝑠𝑡(𝑖3) × 𝑖𝑛𝑖𝑃𝑜𝑝𝐷𝑖𝑠𝑡(𝑖𝑛) (4-10) 

Therefore, in this example, the population size would be: 

𝑖𝑛𝑖𝑃𝑜𝑝𝐷𝑖𝑠𝑡(𝑖1) × 𝑖𝑛𝑖𝑃𝑜𝑝𝐷𝑖𝑠𝑡(𝑖2) = 5 × 10 = 50 (4-11) 

The matrix for population space, IP, is then defined as: 

𝐼𝑃(𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑠𝑖𝑧𝑒, 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠) (4-12) 

In this example, “IP” will return a matrix the size of 50 rows and 2 columns, as shown 

in 8.1A.2.1. 

This allows the initial population to have a homogenous spread of individuals between 

the upper and lower bounds of each decision variable, and with the resolution specified 

in iniPopDist. The homogeneous spread of individuals in the population space is further 

illustrated in Figure 44. 
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Figure 44: Initial population spread 

 

4.2.3 Ensuring Each Individual is Feasible 

To ensure that each individual is feasible, a vehicle model containing each individual is 

simulated over the specified drivecycle. If the particular vehicle is unable to complete 

the drivecycle (for example, because maximum EM power is exceeded) or meet the 

vehicle constraints (for example, exceeding the mass limit), then the individual is 

tagged with an “inf” value. 

However, if the vehicle is able to complete the drivecycle successfully, then the result of 

the simulation is returned, and this result is the “fitness” of that individual. Individuals 

that have a fitness value are deemed feasible. Conversely, individuals that have been 

tagged with an “inf” value are regenerated using a “mutation” function, and are re-

evaluated. This process repeats until all individuals in a given population are feasible. 

The mutation function is discussed further in Section 4.5.2. 

With the example being used so far, the initial population now looks like Figure 45. 
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Figure 45: Initial feasible population spread 

 

When observing the differences between Figure 44 and Figure 45, there is a noticeable 

limit with regards to the maximum battery size. The reason for this is that the vehicle 

mass limit of 2000 kg was exceeded with certain combinations of EM power and 

battery size. 

This initial population can now be input into the GA optimiser, which will further alter 

the population for up to 50 generations, to estimate the global minimum with respect to 

the cost function. A flowchart of the complete workings of the GA, as implemented into 

the proposed framework, is shown in Figure 46. 

The m-file script for the generating the initial population is shown in Appendix A, 

Section A2. 
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Figure 46: Flowchart of the implementation of GA in the proposed framework 

 

4.3 Extending the Optimiser to Support Multiple Powertrain 

Topologies 

As discussed in Section 4.2.1, the GA initiates by seeding a homogeneous population of 

“individuals”, spread over a solution space that is bounded by the constraints of the 

decision variables. In the example of the EV powertrain optimisation shown previously, 

the decision variables were the EM power and battery size.  

In order to extend the optimiser to support more than one type of powertrain topology, 

the representation of the decision variables will have to be more generic. Therefore, 

instead of specifying “EM power” and “battery size”, the decision variables will now be 

“energy converter size” and “energy storage size” respectively. This will allow the 
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inclusion of powertrain topologies that do not contain an EM or a battery, such as the 

CV powertrain. 

Additionally, a third decision variable will need to be added to the individual; the 

“Powertrain Variant”. Hence, the new set of decision variables is: 

 Energy converter size (normalised into an integer scale from 1 to 100) 

 Energy storage size (normalised into an integer scale from 1 to 100) 

 Powertrain variant (discrete selection of 1 to 4, as shown in Table 12). 

Therefore, each individual, X, now contains three decision variables, which can be 

denoted by, 

X = [energy converter size, energy storage size, powertrain variant] (4-13) 

By normalising the energy converter and energy storage sizes into a scale from 1 to 100, 

the optimiser will be able to handle different types of powertrain topologies during a 

single optimisation routine, while preserving the scaling limits of the associated 

powertrain components. An example of the normalisation of the powertrain components 

are shown in Table 13. 

Table 13: Normalisation of the scalable powertrain component sizes for the optimiser 

Powertrain component Dimension 
Minimum size 

(scaled to 1) 

Maximum size 

(scaled to 100) 

ICE displacement 0.5L 3L 

EM power 40kW 100kW 

Battery capacity 10kWh 150kWh 

APU power 10kW 100kW 

Fuel Tank capacity 10L 100L 

 

The value of the decision variable “Powertrain Variant” determines the topology of the 

powertrain during the optimisation runtime. This interfaces with the MPS, which 

switches to the appropriate powertrain topology according to this value. Hence, by 

adding the powertrain variant as a decision variable in the individual (in addition to the 

components sizes), both the powertrain topology and powertrain components can be 

optimised simultaneously to minimise a given cost function. This addresses the first 

novelty of this research, of creating a methodology to simultaneously select a 

powertrain topology and optimise its component sizes for a given cost function. 
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4.4 Multi-objective Optimisation 

For the purpose of multi-objective optimisation, a Non-dominated Sorting-based 

Genetic Algorithm (NSGA-II) is utilised. This algorithm was developed by Srinivas and 

Deb [158]. Unlike the single-objective optimisation algorithm discussed so far (i.e. 

single cost function), it is possible to have more than a single optimal solution in a 

multi-objective optimisation routine. This is true if the solution to the objectives is in 

conflict. Therefore, improving one objective (i.e. minimising one of the cost functions) 

may deteriorate another. A balance in trade-off solutions is achieved when a solution 

cannot improve any objective without deteriorating one or more of the other objectives. 

These solutions are called the Pareto optimal solutions. When plotting these solutions, 

the Pareto optimal curve is created, as shown in Figure 47. Identifying the solutions 

lying on or near the Pareto-optimal front allows, for example, finding the trade-offs 

between cost and CO2 emissions. 

 

 

Figure 47: Pareto solutions example (adapted from [153]) 

The use of multi-objective optimisation will be demonstrated in Chapter 7. To carry out 

the multi-objective optimisation routines, the Global Optimisation toolbox for 

MATLAB was used via the function gamultiobj and is based on the NSGA-II 

algorithm. This Similar to the single-objective optimisation routine, NSGA-II the sorts 

the population according to its ranking, where the ranking attribution is performed by 

comparing the solutions with each other regarding its non-domination level [158]. The 

objective is to “build” a non-dominated solution set. Further discussions on the NSGA-

II algorithm were carried out by Srinivas and Deb [158]; therefore, it will not be 

repeated here. 
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4.5 Further Additions to the MATLAB Toolbox 

In addition to the initial population generator discussed in Section 4.2.1, several 

modifications were performed to the MATLAB toolbox to cater for the needs of the 

powertrain selection and sizing optimisation routine. This included the custom rounding 

function, custom mutation function, and additional considerations for parallel 

computing. 

4.5.1 Custom Rounding Functions 

Given the variety of the powertrain topologies and corresponding powertrain 

components, the numerical value of each decision variable may have different 

significant figures. For example, when optimising the size of the battery pack, the 

number of strings in parallel will have to be a round number. Conversely, when sizing 

an ICE, its displacement is rounded to the nearest 0.1 litres. A custom rounding function 

was created to address the need for each decision variable to have different rounding 

requirements. By default, MATLAB does not apply any rounding to decision variables. 

With the inclusion of the rounding function, the GA will be able to achieve convergence 

in the fitness of the individuals quicker, and hence terminate the simulation with fewer 

generations. This is shown in Figure 48, where the optimisation run with the custom 

rounding function achieves convergence in the fitness function at an earlier generation 

when compared to the optimisation run using the default MATLAB GA toolbox 

settings. The fitness values in this example refer to well-to-wheel CO2 per kilometre, for 

an EV running one increment of the ARTEMIS cycle. The m-file script for the custom 

rounding function is shown in Appendix A.3. 

 

 

(a)      (b) 

Figure 48: Convergence of solution to obtain the global minimum: (a) Using custom 

rounding function; (b) Using default MATLAB settings 
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4.5.2 Custom Mutation Function 

The average distance between the individuals of a population is called “diversity”. The 

populations would have a larger diversity in the initial generations than in the final 

generations. The reduction in diversity as the generation progresses is an indication of 

the optimiser converging to a solution. 

In each generation, five of the best individuals are carried forward to the next generation 

unaltered. These individuals are called the “elite” individuals. The purpose of this is to 

reduce the simulation time (increase the performance of the GA), and also to prevent 

loss of good solutions once they are found [159]. 

The remaining individuals are then mutated to find a new individual that will potentially 

offer a solution that is closer to the optimal. Some individuals will also be eliminated, 

while other stronger individuals could be allowed to create two or more mutated 

“children”. 

The children are created via a random number generator. With each passing generation, 

the size of the “window” on how different the children are with respect to their parents 

becomes smaller (the diversity reduces). 

The reason for pursuing a custom mutation function is to ensure that more of the 

solution space is searched. Similar to the initial population generator, each child is also 

regenerated until a feasible individual is formed. If no feasible individuals are found 

after 10 regenerations, the original child is returned to the MATLAB GA function 

discarded from the next generation. The m-file script for the custom mutation function 

is shown in Appendix A.4. 

4.5.3 Considerations for Parallel Computing 

To maximise the use of the supercomputer at Cranfield University, called “Astral”, the 

optimiser had to be able to utilise parallel computing. The Astral supercomputer has 32-

processor cores. However, the MATLAB GA function only runs on a single core by 

default. 

To enable support for parallel processing, the parallel for-loop (“parfor” function) was 

implemented in the code to splice the optimisation into running one individual per 

processor core. Each individual then runs the respective drivecycle determine its fitness, 

and the MATLAB GA function will determine if it will be considered an elite 

individual, mutated, or discarded for the next generation. In the case of the Astral 

supercomputer, the optimisation tool is able to evaluate the fitness of 32 individuals 

concurrently. 

 



 

80 

4.5.4 Verification of Modified GA 

The custom GA functions were verified against the default functions in the MATLAB 

GA toolbox in order to compare the differences in simulation times, and to compare the 

accuracy and repeatability of the solutions. This is summarised in Table 14, where the 

results of the optimisation of the EV powertrain are shown.  

Table 14: Verification of custom GA functions 

 
Optimisation 

run 

Value of Decision Variables Time taken 

(seconds)  EM Power (kW) Battery Size (kWh) 

With Custom 

GA Functions 

1 58.0 26.0 1000 

2 59.0 26.0 900 

3 58.0 26.0 1250 

Without 

Custom GA 

Functions 

1 58.3 26.0 1900 

2 60.2 26.0 2000 

3 59.5 27.0 2050 

Exhaustive 

search 

- 58.0 26.0 12600 

 

It is observed that the optimisation runs that include the custom GA functions achieve 

conversion quicker than that of the standard MATLAB GA functions. Additionally, the 

results of the optimisation across the three independent runs were more repeatable. 

However, it ought to be mentioned that the customisations introduced in the GA is 

applicable for a particular application; in this instance, the optimisations of powertrain 

components that have a limited and discrete range of values. 

 

4.6 Chapter Conclusions 

A methodology was created to facilitate the ability to simultaneously optimise the 

powertrain topology and components sizes. The MPS encapsulates this methodology, 

and when combined with the optimiser, forms the framework within the proposed 

toolbox. This framework underscores the first novelty of this research. 

The two key enablers for this methodology were the creation a modular powertrain 

structure and the addition of the extra decision variable called “Powertrain Variant”. 

The creation of a modular powertrain structure facilitated the support of multiple types 

of powertrain topologies and allow for the switching of different powertrain 
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components. The extra decision variable, “Powertrain Variant”, is incorporated into 

each individual to select the desired powertrain topology during optimisation runtime. 

For the purpose of this research, the GA function that is included as part of the 

MATLAB Global Optimisation toolbox was utilised. However, the following 

customisations had to be carried out to adapt the GA for optimising powertrain topology 

selection and component sizing: rounding function, mutation function, and initial 

population generator. 

The optimisation results from using these custom functions were compared against the 

exhaustive search method and showed negligible variations. The NSGA-II algorithm for 

multi-objective optimisation was also adapted for use into the framework, thus partly 

underscoring the second novelty of this research. 
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5 SENSITIVITY OF POWERTRAIN OPTIMISATION 

RESULTS TOWARDS VARIATIONS IN COST FUNCTION 

In this chapter, an EV powertrain will be optimised for each of the three drivecycles 

discussed in Section 3.7 while utilising the optimiser that was discussed in the previous 

chapter. The objective of this chapter is to investigate the sensitivities of the 

optimisation results with respect to different cost functions [23], and in doing so, 

improve the understanding of the workings of the optimiser for the benefit of Chapters 6 

and 7. 

Two optimisation routines were carried out using the following cost functions [31]: 

 well-to-wheel CO2 

 total vehicle mass. 

Within the EV powertrain topology, the EM (energy converter) and the battery (energy 

storage) will be scaled to minimise those cost functions. Each cost function will be 

evaluated in a separate investigation, and the optimisation results from each will then be 

compared. The optimisation parameters are summarised in Table 15. 

 

Table 15: Decision variables (X) and constraints (G) 

Term Definition Units 

ϕ1(X) 

ϕ2(X) 

 

X1 

X2 

 

G 

well-to-wheel CO2 

total vehicle mass 

 

10 ≤ EM power ≤ 100 

8 ≤ battery size ≤ 80 

 

Drivecycle speed constraints 

kg 

kg 

 

kW 

kWh 

 

m/s 

 

After completing the simulations, there were differences observed in the powertrain 

sizing as a result of the two different cost functions. This will be discussed at the end of 

this chapter. 
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5.1 Drivecycle Speed and Acceleration Analysis 

As discussed previously, there are three types of drivecycles that are being used to 

evaluate the powertrain architectures. Each drivecycle has a different range: 

 NEDC (11 km); 

 Cranfield (29.8 km); 

 ARTEMIS (73 km). 

To evaluate the vehicle performance over an extended range, each drivecycle was 

repeated back-to-back. An example was shown in Figure 33 (page 57), where the 

NEDC was repeated twice. 

Based on Figure 49(a), the ARTEMIS cycle has the highest top speed whist the 

Cranfield cycle has the highest average speed. The NEDC has the largest discrepancy 

between top speed and average speed. 

 

  

(a) (b) 

Figure 49: Comparison of speed and acceleration in each drivecycle: (a) maximum and 

average speeds; and (b) peak accelerations 

When observing the acceleration profiles in Figure 49(b), the Cranfield cycle has the 

highest acceleration level, whilst the ARTEMIS cycle has the highest deceleration level. 

The NEDC has the lowest peak accelerations, but has similar average acceleration and 

deceleration levels to the Cranfield cycle, seen in Figure 50(a). 

Based on these acceleration data, it was deduced that the average acceleration of the 

ARTEMIS cycle varies by more than 8 % when compared to the NEDC, whilst the peak 

acceleration varies by more than 104 %. This drastic variation in acceleration is one of 

the primary causes for variation in emissions between the real-world and legislative 

cycles. From further comparison to the NEDC, it can be argued the ARTEMIS cycle is 

also more representative of real-world driving conditions. 
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Figure 50(b) shows the spread of acceleration occurrences for the three drivecycles. It is 

observed that the NEDC is less transient than the Cranfield and ARTEMIS cycles. 

Based on Figure 50(b), the Cranfield cycle would require a powertrain with an energy 

converter (EM or ICE) that has a relatively higher power output when compared to the 

other drivecycles. This is to allow the vehicle to sustain a larger spread of positive 

acceleration. In any case, both Cranfield and ARTEMIS cycles provide more 

opportunity for regenerative braking when compared to the NEDC, due to the larger 

spread of deceleration events. 

 

  

(a) (b) 

Figure 50: Analysis of accelerations in each drivecycle: (a) average accelerations; and (b) 

spread of acceleration occurrences 

 

5.2 EV Powertrain Optimised for Lowest Well-to-Wheel CO2 

In this investigation, the cost function ϕ1(X) is well-to-wheel CO2. The results of the 

optimisation are shown in Figure 51 and Figure 52. It is noteworthy that for a given 

battery pack size, the shortest travel range is achieved during the ARTEMIS drivecycle. 

Similarly, the highest well-to-wheel CO2 emission also points to the ARTEMIS 

drivecycle. 
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(a) (b) 

Figure 51: Optimisation results for lowest well-to-wheel CO2: (a) battery pack size; and 

(b) EM size. 

 

  

(a) (b) 

Figure 52: (a) CO2 emission per km; and (b) vehicle mass when optimised for lowest well-

to-wheel CO2. 

 

The battery sizes between the Cranfield cycle and the NEDC were comparable because 

of similarities in the net amount of energy required to complete these drivecycles for a 

given range (approximately 600 kJ/km). This correlates with the observation made in 

Figure 50a, where the NEDC has similar average acceleration and deceleration levels to 

the Cranfield cycle. Conversely, the size of the EM is different due to higher absolute 

acceleration level in the Cranfield drivecycle when compared to the NEDC, as seen in 

Figure 49a. 
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5.3 EV Powertrain Optimised for Lowest Vehicle Mass 

In this investigation, the cost function ϕ2(X) is vehicle mass. The two most significant 

results are shown in Figure 53; battery pack size (a) and total vehicle mass (b). It is 

noteworthy that the battery start at a lower size in Figure 53a, when compared to that 

shown in Figure 51a. This will be discussed in the next section. Other trends are 

observed to be similar between the two cost functions, such as when the vehicle 

optimised for the ARTEMIS drivecycle once again having the lowest travel range for a 

given battery size. 

 

  

(a) (b) 

Figure 53: Optimisation results for lowest vehicle mass: (a) battery pack size; and (b) total 

vehicle mass. 

 

5.4 Comparing the Results of the Two Cost Functions 

The first comparison aims to identify the differences observed in the optimised EM size 

for the two cost functions, using the ARTEMIS cycle as an example. Figure 54a shows 

the EM sizes with respect to increments in travel range, with blue and red lines 

reflecting optimised sizes for lowest well-to-wheel CO2 and lowest vehicle mass 

respectively. When taking a travel range of 200 km as an example (green line in Figure 

54a), the resultant efficiency map and scatter of EM power usage over the drivecycle is 

created (Figure 55). Figure 54b shows the difference in brake regeneration ability 

between the two different EM sizes. The EM optimised for well-to-wheel CO2 has a 

higher power rating, and therefore recovers more braking energy when compared to the 

EM optimised for vehicle mass. This is further illustrated in Figure 55. 
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(a) (b) 

Figure 54: Comparison of EM characteristic over the ARTEMIS drivecycle: (a) EM size; 

and (b) Percentage of recovered braking energy. 

 

The white scatters in the negative torque region are braking points encountered during 

the drivecycle. To minimise well-to-wheel CO2, the EM has to recover as much braking 

energy as possible. Given the regenerative braking strategy imposed, this necessitated a 

larger EM to accommodate as much of the regenerative energy as possible. 

Conversely, when optimised for smaller mass, the EM was sized just large enough to be 

able to handle the positive torque demands of the drivecycle, at the expense of 

regenerative braking abilities. This can be observed in Figure 55b, where the white 

scatter plots in the positive torque region are closer to the power limits of the EM. 

 

  
(a) (b) 

Figure 55: Comparison of EM efficiency and usage over the ARTEMIS drivecycle: (a) 

optimised for lowest well-to-wheel CO2; and (b) optimised for lowest mass. 
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The second comparison aims to identify the differences observed in the optimised 

battery size for the two cost functions, using the NEDC as an example. For a travel 

range of 66 km (green line in Figure 56a), it is observed that the vehicle that was 

optimised for well-to-wheel CO2 features a larger battery pack compared to the vehicle 

that was optimised for mass. This is further validated in Figure 56b for the same travel 

range, where the vehicle that was optimised for mass has a higher CO2 output per 

kilometre, despite having the smaller battery (and therefore lighter) of the two vehicles. 

 

  
(a) (b) 

Figure 56: Comparison of battery pack size and CO2 emission over the new European 

drivecycle (NEDC) drivecycle: (a) battery pack size; and (b) well-to-wheel CO2 per 

kilometre. 

 

The reasoning to support this finding can be inferred from the histograms in Figure 57. 

In Figure 57a, a smaller battery pack encounters higher C-rate levels to provide the 

same amount of propulsion power. Therefore, although the battery pack is lighter, it is 

less efficient because of higher power losses, Pb(loss), as given by,  

𝑃𝑏(𝑙𝑜𝑠𝑠) = 𝐼𝑏
2 ∙ 𝑅𝑏 (5-1) 

where Ib is the current flowing through the battery, and Rb is the battery internal 

resistance. This difference in efficiency is reflected in Figure 57b, where the efficiency 

of the battery, ηb, is defined as . 

𝜂𝑏 =
𝑃𝑏

𝑃𝑏 + 𝑃𝑏(𝑙𝑜𝑠𝑠)
 

(5-2) 

where Pb is the power demand from the battery. 
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(a) (b) 

Figure 57: (a) Battery C-rate; and (b) efficiency histogram for EV sized for 66 km of 

NEDC. 

 

However, for travel range greater than 150 km, the influence of the battery pack’s mass 

becomes more dominant. Therefore, the resultant battery pack sizes from both cost 

functions converge and yield almost identical CO2 emissions, as observed in Figure 

56b. Here, it is also noteworthy that the lowest point for CO2 output per kilometre 

occurs at around 175 km. This finding is discussed in the next section. 

The results so far has given some insight on EV powertrain sizing according to cost 

functions, drivecycles, and range. In the next chapter, this method of optimisation will 

be extended to other powertrain architectures, as well as giving the optimiser the ability 

to select the most appropriate powertrain topology to minimise a cost function, given 

the drivecycle and range. 

 

5.5 Further Discussion on Behaviour of Normalised Well-to-Wheel 

CO2 Emission per Kilometre 

To aid this discussion, Figure 58a shows the well-to-wheel CO2 emissions for the 

EV. The EV was optimised for lowest well-to-wheel CO2 for different increments of 

the NEDC (the NEDC was repeated up to thirty-five times, to simulate varying 

autonomy ranges, as discussed in Section 3.7). In Figure 58a, the blue line represents 

the normalised well-to-wheel CO2 output in grams per kilometre, whereas the green line 

represents the accumulated (total) well-to-wheel CO2 output in kilograms The x-axis 

represents the incremental autonomy range that the EV was optimised for. 
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(a) (b) 

Figure 58: (a) Well-to-wheel CO2; and (b) end-of-journey battery state of charge (SOC) as 

a function of travel range. 

 

Referring to Figure 58a, the lowest point for the normalised CO2 output occurs when the 

EV is optimised for a travel range of approximately 175 km. When the EV is optimised 

for a larger travel range (more than 175 km), the normalised CO2 emission rises 

accordingly. This is caused by the increase in vehicle mass, which is mainly driven by 

the increase in battery size to satisfy the larger travel range (therefore, the battery is 

energy limited in this instance). Consequently, the increase in vehicle mass creates a 

compounding effect where more energy is required to propel the EV over the 

drivecycle. Hence, the larger the travel range that the EV is optimised for, the greater 

the amount of CO2 is emitted per kilometre. 

However, it is also noticeable that the normalised CO2 output rises again when the EV 

is optimised for travel ranges smaller than 175 km. In this scenario, the battery is 

considered to be “oversized” for travel ranges below 175 km (the battery has more 

energy capacity than needed to cover the travel range). This is validated in Figure 58b, 

where it is observed that the remaining battery SOC at the end of the trip increases for 

shorter travel ranges. If the battery were made smaller, its electrical current limit will be 

approached or exceeded, because the peak power demand from the drivecycle is almost 

constant, regardless of travel range (therefore, the battery is power limited in this 

instance). 

Consequently, although the accumulated well-to-wheel CO2 emission is lower for 

shorter travel ranges, the normalised CO2 emissions is inevitably higher because the 

battery is underutilised and its extra capacity is considered as “dead weight”. However, 

it is noteworthy that the characteristics shown in Figure 58 could vary depending on the 

battery C-rate capability and vehicle glider mass, along with other assumptions made in 

this investigation such as the regenerative braking strategy. 
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5.6 Chapter Conclusions 

In this chapter, the optimisation framework, as discussed in the previous chapter, was 

used to demonstrate influence of different cost functions towards powertrain sizing. The 

following cost functions were used to optimise the EV powertrain: 

 well-to-wheel CO2 

 total vehicle mass 

Interestingly, results have revealed that the EV with the lightest powertrain may not 

necessarily emit the lowest well-to-wheel CO2. The discrepancies between the sizing of 

the battery and EM were more evident at lower autonomy ranges, where the battery 

efficiency was a deciding factor for CO2 emissions. However, at higher travel ranges, 

the effect of overall powertrain mass dominated the energy consumption, and therefore 

the results between the two cost functions converged. 

For each of the cost functions, the EV powertrain optimised for an incremental 

autonomy range. This variation in autonomy range was achieved by multiplying the 

drivecycles, a trait that will be followed in the next chapters for optimising powertrain 

topologies based on different autonomy range requirements. 
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6 SIMULTANEOUS OPTIMISATION OF POWERTRAIN 

TOPOLOGY AND COMPONENT SIZING 

This chapter demonstrates the main findings and the first novelty of this research; the 

ability to simultaneously optimise powertrain component sizing with powertrain 

topology selection [22]. In the interest of brevity, only a selection of the powertrain 

topologies that were shown in Table 12 will be used to evaluate the core functionality of 

this toolbox. These selected topologies are listed in Table 16. Similarly, the cost 

function ϕ(X) that will be evaluated is on minimising well-to-wheel CO2 only. This cost 

function was selected to follow on from the understanding gained with the optimisations 

carried out in the previous chapter. 

Table 16: List of powertrain topologies investigated 

Architecture Single Power Source Series Hybrid 

Topology CV EV PHEV 

Energy Converter #1 ICE EM EM 

Energy Storage #1 Fuel Tank Battery Battery 

Energy Converter #2 - - APU 

Energy Storage #2 - - Fuel Tank 

Powertrain Variant 1 2 3 

 

The interface to the proposed toolbox, where the various optimisation parameters are 

specified, is shown in Appendix A.1. Having discussed the results and workings of the 

toolbox from this chapter, the next chapter will then include all of the powertrain 

topologies seen in Table 12, along with additional cost functions. 

For this chapter, the optimisation parameters are summarised in Table 17. The decision 

variable called “Powertrain Variant” relates to the selection of powertrain topology, and 

corresponds to the last row in Table 16. The normalisations of the components are then 

shown in Table 18. The framework’s role is to simultaneously optimise the powertrain 

component sizing and topology selection, while meeting the power and energy demands 

of the respective drivecycle. In this case study, a total vehicle mass limit of 1600 kg is 

imposed, as the target vehicle class is an E-segment vehicle [160]. The rest of the 

vehicle parameters were based on the Jaguar XJ, as shown in Appendix C. Similar to 

the previous chapter, the optimisation is run in multiples of each drivecycle, up to a 

maximum range of about 450 km. In each run, the vehicle is required to complete the 

designated autonomy range using only the energy stored on-board (no 
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refuelling/recharging). The vehicle starts with a full tank of fuel and/or 90% battery 

SOC. 

Table 17: Decision variables (X) and constraints (G) 

Term Definition Units 

ϕ(X) 

 

X1 

X2 

X3 

X4 

X5 

 

G1 

G2 

well-to-wheel CO2 

 

1 ≤ Energy Converter 1 ≤ 100 

1 ≤ Energy Storage 1 ≤ 100 

1≤ Energy Converter 2 ≤ 100 

1 ≤ Energy Storage 2 ≤ 100 

1 ≤ Powertrain Variant ≤ 3 

 

1000 ≤ total vehicle mass ≤ 1600 

Drivecycle speed constraints 

kg 

 

- 

- 

- 

- 

- 

 

kg 

m/s 

 

Table 18: Normalisation of the scalable powertrain component sizes for the optimiser 

Powertrain component Dimension 
Minimum size 

(scaled to 1) 

Maximum size 

(scaled to 100) 

ICE displacement 0.5L 3L 

EM power 10kW 100kW 

Battery capacity 8kWh 80kWh 

APU power 10kW 100kW 

Fuel Tank volume 10L 100L 

 

6.1 Energy Supervisory Controller 

In Chapter 5, the CV and EV powertrains were used as part of the case studies for 

comparing modelling techniques and investigating cost function sensitivities 

respectively. In this chapter, those two architectures will be investigated concurrently, 

with the addition of a third powertrain topology, the series PHEV, as shown in Table 

16. 



 

95 

Whilst the CV and EV powertrain had a single power source each, the PHEV has two 

power sources; the EM and the APU. Therefore, a supervisory controller is required to 

arbitrate those two power sources. In this research, a thermostatic controller is used as 

the energy supervisory controller because of its simplicity and well documented use in 

PHEVs [161; 162]. The thermostat controller allows the battery to deplete from 90% to 

20% SOC during charge-depleting mode, and then regulates the battery SOC between 

20% and 30% during charge-sustaining mode. An example of these modes is shown in 

Figure 59. In this example, the vehicle runs for ten increments of the NEDC. 

The following are the inputs and outputs of the controller: 

 SOC of battery (input) 

 Power demand (input) 

 Power split (output). 

However, this standardised interface allows more sophisticated controllers to be 

implemented, such as an Equivalent Consumption Minimisation Strategy (ECMS) 

controller [163; 164]. The implementation of the supervisory controller for the PHEV 

can be seen in Figure 42 (page 68). 

Additionally, optimal power split trajectories from Dynamic Programming can be added 

as a subroutine within the optimisation algorithm [165; 166]. This subroutine can be 

encapsulated within the energy supervisory module. 

 

Figure 59: Operation of the thermostatic controller for the PHEV powertrain 

 

6.2 Optimisation Results 

Based on Figure 60, the EV powertrain was selected by the optimiser for travel range 

increments of up to 230 km on the NEDC. In the Cranfield and ARTEMIS drivecycle 

however, this reduces to about 210 km and 140 km, respectively. 
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(a) (b) 

 

(c) 

Figure 60: Well-to-wheel CO2/km emission: (a) NEDC; (b) Cranfield; and (c) ARTEMIS 

 

The EV powertrain offers the lowest well-to-wheel CO2/km when compared to the CV 

and PHEV powertrains, for a given drivecycle and range. As a result, the optimiser has 

selected the EV powertrain for the initial increments of each drivecycle. The crossover 

from EV powertrain to a different type of powertrain occurred when the vehicle mass 

limit of 1600 kg was reached or exceeded. The EV powertrain could no longer support a 

battery large enough to cover the necessary range within the mass limit. This is 

observed in Figure 61, which shows the total vehicle mass of the respective powertrain 

and for the range that it was sized for. 

To cater for a travel range of over 140 km in the ARTEMIS cycle, for example, a 

vehicle with an EV powertrain would exceed the mass limit of 1600 kg. Additionally, 

the increase in vehicle mass as a function of travel range is steeper for the EV when 

compared to the CV and PHEV. This is because the energy density per unit mass of 

batteries is smaller than that of fossil fuels by two orders of magnitude [167]. Similarly, 
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the mass of the battery as a percentage of the total vehicle mass is greater than that of 

the fuel tank. This is observed in Figure 62, which shows the breakdown of the vehicle 

masses from Figure 61. The definitions of the respective energy converters and energy 

storages for each type of powertrain architecture in Figure 61 were covered in Table 16. 

In the previous chapter, where only the EV powertrain was optimised, the results 

indicated that the vehicle had a longer travel range on the NEDC than the ARTEMIS 

cycle for a given battery size, as observed from Figure 52b. This is because the overall 

power and energy requirements of the NEDC are lower than those of the ARTEMIS 

cycle. Referring back to Figure 61, it can be inferred that this is the reason for the 

transition to happen at a longer range in the NEDC than in the ARTEMIS and Cranfield 

cycles. 

  

(a) (b) 

 

(c) 

Figure 61: Total vehicle mass for the respective architectures selected by the optimiser. (a) 

NEDC; (b) Cranfield; and (c) ARTEMIS. 
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(a) NEDC (b) Cranfield 

 

(c) ARTEMIS 

Figure 62: Breakdown of vehicle mass for each powertrain architecture 

 

6.3 Power and Energy Analysis 

As mentioned in Section 3.1.1, the current regenerative braking strategy limits the 

maximum amount of regenerative power of the EM to 30% of its maximum propulsion 

power. The regenerative power is also phased out at low EM speeds (under 200 rad/s), 

as was seen in Figure 20. Additionally, the EM size is a decision variable for the 

optimiser, and it is scalable between 10 kW and 100 kW. 

To minimise well-to-wheel CO2, the EM has to recover as much braking energy as 

possible. Any deceleration event on the drivecycle that exceeds the maximum 

regenerative power of the EM will be blended with the friction brakes, which dissipate 

the energy to the environment as heat. 
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At minimum, the EM has to be sized just large enough to be able to handle the positive 

power demands of the drivecycle. This would result in an EM with the lowest possible 

mass, and subsequently allow the use of a smaller battery, due to the lower electrical 

current loads. However, as discussed in Section 5.4, the disadvantage of this approach is 

that a smaller EM would not be able to capture all of the deceleration events, thus 

sacrificing energy that could have been recovered via regenerative braking. Therefore, 

one of two outcomes can be expected from the optimiser: 

 sizing the EM for lowest overall powertrain mass; 

 sizing the EM for maximising energy recovery via regenerative braking. 

In Figure 63, a combination of this decision can be seen. For the Cranfield cycle, the 

EM has been sized to maximise on the regenerative braking, which resulted in an EM 

with higher power rating than the maximum propulsion power encountered in the 

drivecycle. This is indicated by the blue dotted lines in Figure 63b. 

Conversely, the EM was sized just enough to meet the propulsion power demands on 

the ARTEMIS cycle, thus sacrificing on recuperated braking energy (indicated by the 

blue dotted lines in Figure 63c). A consequence of this can be observed in Figure 64b,c, 

where the percentage of recovered braking energy in the Cranfield cycle is higher than 

that of the ARTEMIS cycle. 

For the NEDC, the result was mixed; the EM was sized for maximum regenerative 

braking for travel range of up to 120 km, and then it was sized for maximum propulsion 

power thereafter, as seen in Figure 63a. After the EV powertrain transitioned to 

conventional powertrain, however, there was no more regenerative braking, and the ICE 

was sized to minimise its fuel consumption instead. 
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(a) (b) 

 

(c) 

Figure 63: Drivecycle and energy converter power: (a) NEDC; (b) Cranfield; and (c) 

ARTEMIS 

EV CV 

EV PHEV 
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(a) (b) 

 

(c) 

Figure 64: Percentage of recovered braking energy: (a) NEDC; (b) Cranfield; and (c) 

ARTEMIS 

 

One reason to suggest the tendency of the optimiser to scale the EM for minimising 

mass or maximising regenerative braking can be inferred from Figure 65. The total 

energy (propulsion and regeneration) required by the ARTEMIS cycle (Figure 65c) is 

higher than the NEDC (Figure 65a) cycle for a given range. This correlates back to 

Figure 50b, where there is a larger spread of acceleration events (evident from the 

longer distance between 25th and 75th percentile lines on the box plot). Therefore, 

sizing the EM (and subsequently the battery) to maximise brake energy recuperation in 

the ARTEMIS cycle would have resulted in a powertrain that is heavier, and this would 

have caused the vehicle to emit more well-to-wheel CO2 per km, despite the increase in 

regenerative braking capability. 
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(a) (b) 

 

(c) 

Figure 65: Total energy from drivecycle and recovered braking energy: (a) NEDC; (b) 

Cranfield; and (c) ARTEMIS 

 

It ought to be mentioned that the results presented here are based on the assumptions 

made during the development of the powertrain components, as discussed in Chapter 3. 

These results may vary if further uncertainties are introduced into the model, such as 

component degradation and performance variation caused by changes in operating 

temperature. Whilst these effects were not considered in this research, the sensitivity of 

two parameters, the regenerative braking strategy and glider mass, will be investigated 

in the next section to ascertain their influence in the simulation results. 

Additionally, the well-to-wheel CO2 data used for the generation of electrical energy 

was based on data from the UK grid, and therefore the results will vary based on the 

grid mix in different countries. 
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6.4 Sensitivity Towards Variations in Parameters 

Similar to the study carried out in Section 3.8 for parameter sensitivity at the 

powertrain-level, this investigation uses the same approach but applied at the topology 

optimisation-level. The following effects were investigated: 

 Variation in regenerative braking strategy 

 Change in vehicle glider mass 

 Change in vehicle mass limits 

 Effects of road inclination 

 Variation in electricity grid CO2 emissions. 

6.4.1 Change in Mass limits 

Referring back to Table 17, the constraint for total vehicle mass, G1, was explored 

further with the limits of 1300kg and 1900kg respectively. The rest of the optimisation 

parameters, including the vehicle glider mass, were unchanged. The resultant 

powertrain selection and optimisation from these two different constraints are shown in 

Figure 66 (NEDC cycle). 

For the mass constraint of 1300kg, it is observed that the transition from EV to CV 

occurs just after the autonomy distance of around 150km. This is because an EV with 

high autonomy range would require a larger battery, and therefore exceed the vehicle 

mass constraint of 1300kg. Similarly, for the mass constraint of 1900kg, the transition 

from EV to CV occurred at a higher autonomy range of about 300km. 

 

  
(a) (b) 

Figure 66: Optimisation sensitivity towards chance in mass limits: (a) 1300kg; (b) 1900kg 
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powertrain to a different type of powertrain occurred when the vehicle mass constraint 

of 1300kg or 1900kg was exceeded, respectively. 

  
(a) (b) 

Figure 67: Total vehicle mass for optimisation mass limits of (a) 1300kg, and (b) 1900kg 

 

6.4.2 Variation in Regenerative Strategy 

Figure 68 shows the effects of varying the regenerative braking strategy towards 

powertrain topology selection and size optimisation. Given its close approximation to 

real-world usage, the ARTEMIS cycle was selected for this study. Additionally, the 

ARTEMIS cycle was shown to have the largest effects towards changes in the 

regenerative braking strategy, as was evident from both Figure 36 and Figure 37. 

 

Figure 68: Optimisation sensitivity towards regenerative braking strategy 
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Based on the analysis carried out, the increase in the regenerative power of the EM (as a 

percentage of the maximum propulsion power) resulted in reduced emissions, which is 

to be expected. However, the increase in recuperated energy had no effect on the 

selection of the powertrain topologies in this instance. Other constraints, such as mass 

limits and energy density of the storage elements, were observed to be more dominant 

in the selection of the powertrain topology. The transition from the EV to the PHEV 

still occurred when the mass constraints of the vehicle (1600kg) was exceeded by the 

EV in order to satisfy the autonomy range for three increments of the ARTEMIS cycle 

(approximately 210 km). Therefore, the PHEV topology was selected instead as it was 

able to satisfy the range requirements but within the vehicle mass limits and with lower 

well-to-wheel emission when compared to the CV powertrain. 

 

6.4.3 Change in Glider Mass 

In line with the results seen in Section 3.8, the change in glider mass had a more 

pronounced effect when compared to the change in regenerative braking strategy. This 

was evident from Figure 69, where the glider mass was increased by 300kg (estimated 

by adding three more adults and luggage) from the nominal. For the purpose of the 

optimisation routine, the added mass of the occupants and luggage was incorporated 

into the glider mass. As a result, the glider mass is now assumed to be 1300kg, and the 

mass limit of the vehicle was also increased accordingly by 300 kg to a new value of  

1900 kg. 

 

Figure 69: Optimisation sensitivity towards change in glider mass 
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With the increase in glider mass, the optimised sets of component sizes also increased 

consequently to cope with the bigger power demands from the drivecycle. However, the 

transition from EV to PHEV was maintained, similar to the sensitivity study of the 

regenerative strategy. Therefore, although the variations in the parameters affected the 

sizing of the powertrain at the components-level, the transition at the topology-level was 

insensitive to the change in glider mass for the ARTEMIS cycle. 

6.4.4 Effects with Road Inclination 

A small test case was carried out to investigate the effects of road inclination on the 

optimisation results. Since the drivecycles considered in this research lack any 

information on road inclinations, further customisation was carried out to the NEDC to 

incorporate such effects. This is seen in Figure 70, where the NEDC was modified to 

incorporate inclinations between two and five percent gradient. This included both 

ascending and descending slopes. 

 

Figure 70: Modified NEDC with road inclinations 

The gradients were selected based on the observation of the elevation changes around 
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However, when road inclination is imposed onto the NEDC, the reverse is observed; the 

PHEV was selected by the optimiser over the CV for autonomy distances above 250km. 

The larger mass of the PHEV was outweighed by the ability of this powertrain to 

recuperate energy during hill descents. Therefore, it was able to emit lower well-to-

wheel CO2 when compared to the CV, causing it to be selected by the optimiser for 

autonomy distances over 250km. 

It is interesting to note that the increase in CO2 emissions is approximately 8% for the 

EV and the PHEV but 15% for the CV when road inclinations were included. The lower 

increments for the CV and PHEV can be attributed to the ability to recuperate energy 

during hill descend. Therefore, considering that the emissions of the CV was just below 

that of the PHEV on a flat road, it is noteworthy that the effects of inclination has tipped 

the balance towards the PHEV. 

 

  
(a) (b) 

Figure 71: Results of optimisation (a) without inclination (b) with inclination 
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mass constraints of 1600kg will be exceeded if an EV was selected for autonomy ranges 

of over 250km on the NEDC. 

Unlike the results seen in Figure 60a, however, it is observed that the PHEV is selected 

over the CV for autonomy range over 250km. This is because the contribution of CO2 

from the electricity grid is much lower, and therefore lowered the overall well-to-wheel 

CO2 emissions of the PHEV, to the point where it is preferred over the CV in this 

instance. 

  
(a) (b) 

Figure 72: Results from using French electricity grid mix (a) well-to-wheel CO2 (b) 

powertrain mass 

 

6.5 Chapter Conclusions 

Using the methodology proposed in this research, investigations have identified the 

transition points between powertrain topologies based on the duty cycle and required 

travel range. This chapter highlighted the core novelty of this research, which is to 

simultaneously optimise both the powertrain topology and its component sizes for a 

given vehicle class, duty cycle, and cost function. Although this investigation was 

limited to three types of powertrain architectures, the flexibility of the MPS will enable 

additional types of energy converters and energy storages to be included, thus creating 

further permutations of powertrain architectures. 

In this chapter, only one cost function was used to illustrate the workings of the 

optimisation framework. It was interesting to note that the CV powertrain was selected 

instead of the PHEV for autonomy ranges of above 250 km on the NEDC cycle. The 

NEDC is a less demanding cycle when compared to the Cranfield and ARTEMIS 

cycles, and does not offer as good an opportunity for regenerative braking. As a result, 

using a PHEV would have resulted in a heavier vehicle without the benefits of reduced 

emissions. 
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It ought to be mentioned that the results presented in this chapter are constrained to the 

power and energy demands of drivecycle. Vehicle manufacturers may also use other 

measures such as minimum standing start acceleration times to size the powertrain 

components. These attributes can also be included into the framework by 

supplementing the drive cycle to include such power demands. Additionally, the 

well-to-wheel CO2 data used for the generation of electrical energy was based on data 

from the UK grid, and therefore the results will vary based on the grid mix in different 

countries, as seen in the case study using the electricity grid mix from France. 

Therefore, the aim of this chapter, which is to understand the workings of the toolbox 

regarding powertrain topology optimisation, was achieved.  The insights gained from 

the results of the optimisation presented in this chapter will be expanded further in the 

next chapter, with the inclusion of all powertrain topologies discussed in Table 12, as 

well as additional cost functions to conduct a more rigorous test on the toolbox. 
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7 MULTI-OBJECTIVE OPTIMISATION OF 

POWERTRAIN TOPOLOGY AND COMPONENT SIZING 

In the previous chapter, the core ability of the proposed framework to simultaneously 

select and optimise powertrain topologies based on a given selection of powertrain 

components, vehicle parameters, and drivecycle, was investigated. The aim of this 

chapter is to extend this methodology to include multi-objective powertrain topology 

optimisation. This addresses the second novelty of this research [24]. 

Table 19 lists the combination of powertrain architectures that will be investigated, 

along with the associated energy converters and energy storages. The description for 

each powertrain component in this table was covered in Chapter 3. 

Table 19: List of powertrain topologies investigated 

Architecture Single Power Source Series Hybrid Parallel Hybrid 

Topology CV EV PHEV MHV 

Energy Converter #1 ICE EM EM ICE 

Energy Storage #1 Fuel Tank Battery Battery Fuel Tank 

Energy Converter #2 - - APU - 

Energy Storage #2 - - Fuel Tank Flywheel 

Powertrain Variant 1 2 3 4 

 

The cause-and-effect relationship between the drivecycle and powertrain optimisation 

were investigated and discussed in Chapter 5 (for single powertrain topology) and 

Chapter 6 (for multiple powertrain topologies). The use of three drivecycles gave an 

opportunity to understand the variation in topology selection and components sizing 

because of differing power and energy demands from each drivecycle. For example, the 

NEDC, being a modal cycle, has lower power demands than the ARTEMIS cycle, and 

therefore resulted in comparatively smaller powertrain component sizes (for a given 

topology). 

Having established the ability of the framework to simultaneously select and optimise 

powertrain topologies, the purpose of this chapter is to specifically investigate the area 

of multi-objective powertrain topology optimisation. Therefore, to keep the 

investigation concise and to maintain focus on the aims of this chapter, only the 

ARTEMIS cycle will be used as a case study. Given the vehicle parameters and 

drivecycle, the toolbox will evaluate the powertrain topologies and create Pareto fronts 

to show the trade-offs between two cost functions. This will provide insights to 
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manufacturers and practitioners on the influence of powertrain design targets, such as 

emissions and powertrain costs. 

The normalisations of the powertrain components are shown in Table 20. 

Table 20: Normalisation of the scalable powertrain component sizes for the optimiser 

Powertrain component Dimension 
Minimum size 

(scaled to 1) 

Maximum size 

(scaled to 100) 

ICE displacement 0.5L 3L 

EM power 10kW 100kW 

Battery capacity 8kWh 80kWh 

APU power 10kW 100kW 

Fuel Tank 

Flywheel 

volume 

energy 

10L 

100kJ 

100L 

600kJ 

 

7.1 Case Study 1: Tank-to-Wheel vs Well-to-Wheel CO2 

The definitions of the cost functions that are evaluated in this case study are shown in 

Table 21. The powertrain optimisation was carried out for each increment of the 

ARTEMIS cycle, and the results were recorded at the end of each increment. As before, 

the toolbox’s role is to simultaneously optimise the powertrain sizing and architecture 

selection, while meeting the power and energy demands of the drivecycle. 

Three types of optimisation routines were carried out in this case study: 

 Single-objective optimisation for well-to-wheel CO2 emission 

 Single-objective optimisation for tank-to-wheel CO2 emission 

 Multi-objective optimisation combining both the cost-functions above. 

For the multi-objective optimisation, the cost function, ϕmulti, is formulated as a 

weighted sum of the two individual costs as follows, 

𝜙𝑚𝑢𝑙𝑡𝑖 = 𝛽𝜙1 + (1 − 𝛽)𝜙2 (7-1) 

where parameter β is used to weigh the two costs, and follows the relationship: 

𝛽 ∈ [0,1] (7-2) 
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Table 21: Decision variables (X) and constraints (G) 

Term Definition Units 

ϕ1(X) 

ϕ2(X) 

 

X1 

X2 

X3 

X4 

X5 

 

G1 

G2 

tank-to-wheel CO2 

well-to-wheel CO2 

 

1 ≤ Energy Converter 1 ≤ 100 

1 ≤ Energy Storage 1 ≤ 100 

1≤ Energy Converter 2 ≤ 100 

1 ≤ Energy Storage 2 ≤ 100 

1 ≤ Powertrain Variant ≤ 4 

 

1000 ≤ total vehicle mass ≤ 1600 

Drivecycle speed constraints 

kg 

kg 

 

- 

- 

- 

- 

- 

 

kg 

m/s 

 

7.1.1 Lowest well-to-wheel CO2 emission 

Figure 73 shows the results for optimising the powertrains for lowest well-to-wheel CO2 

emission. The optimisation was carried out for each increment of the ARTEMIS 

drivecycle. Based on Figure 73, the EV powertrain was selected by the optimiser for the 

first two increments of the drivecycle (autonomy range of up to 150km). 

This was because the EV powertrain achieved the lowest well-to-wheel CO2/km when 

compared to the CV, PHEV, and MHV powertrains. The transition from EV to PHEV 

then occurred when the vehicle mass limit of 1600kg was reached or exceeded. The EV 

powertrain could no longer support a battery large enough to cover the necessary range 

within this mass limit. This is observed in Figure 74, which shows the total vehicle mass 

of the respective powertrain and for the range that it was sized for. 
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Figure 73: Well-to-wheel emission 

To cater for an autonomy range of over 150km on the ARTEMIS cycle, a vehicle with 

an EV powertrain would exceed the mass limit of 1600kg. Additionally, the rate of 

increase in vehicle mass as a function of autonomy range is steeper for the EV when 

compared to the other powertrains. This is because the energy density per unit mass of 

batteries, as discussed previously, is smaller than that of fossil fuels by two orders of 

magnitude [167]. 

Another transition occurred between the fourth and fifth increments of the drivecycle, 

where the MHV is selected instead of the PHEV. In this scenario, it was more efficient 

to use the lighter mechanical hybrid for the longer travel range instead of the heavier 

plug-in hybrid. Since the well-to-wheel CO2 encapsulates the total energy used by the 

vehicle to cover the drivecycle, the heavier PHEV would have emitted higher well-to-

wheel CO2 than the comparatively lighter MHV. 

 

Figure 74: Total vehicle mass for the respective architecture selected by the optimiser 
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7.1.2 Lowest tank-to-wheel CO2 emission 

Figure 75 shows the results for optimising the powertrains for lowest tank-to-wheel CO2 

emissions instead. 

 

Figure 75: Tank-to-wheel emission 

 

When comparing Figure 75 with Figure 73, there are a couple of similarities and 

differences that can be observed with regards to the selection of powertrain architecture 

between the two cost-functions. Although not visible in Figure 75, the optimiser has 

once again selected the EV powertrain for the first two increments of the ARTEMIS 

cycle. This was not reflected in Figure 75 because the EV powertrain emits no tank-to-

wheel CO2 (zero tail-pipe emissions). 

In contrast, the PHEV was selected instead of the MHV for the fifth and sixth 

increments of the ARTEMIS drivecycle. In this scenario, a portion of the energy used to 

propel the PHEV was sourced “externally” from the electrical grid, as compared to the 

MHV, which only has a single source of energy from the fossil fuel in its tank. 

Therefore, the PHEV emitted lower tank-to-wheel CO2 when compared to the MHV in 

this scenario. 

 

7.1.3 Multi-objective optimisation 

Unlike the single-objective optimisations carried out previously, there is no single 

optimal solution for a multi-objective optimisation. For a sweep of the value of β, as 

shown in Equations (7-1) and (7-2), there will be a set of points that fit the definition of 

an “optimum” solution called the Pareto front. Further discussions on multi-objective 

optimisation and the Pareto front can be found in the work by Marler and Arora [169]. 
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In this investigation, the multi-objective optimisation produced Pareto fronts for well-

to-wheel CO2 versus tank-to-wheel CO2. To illustrate the workings of the optimiser, the 

Pareto fronts from a single increment and from quadruple increments of the ARTEMIS 

drivecycle are shown in Figure 76 and Figure 77 respectively. In each of these figures, 

five particular Pareto-optimal points were shown for clarity. These five points 

correspond to: 

𝛽 = [0, 0.25, 0.5, 0.75, 1] (7-3) 

As a test, based on Figure 76, there was no Pareto front formed after carrying out a 

multi-objective optimisation on a single increment of the ARTEMIS cycle. This was 

because the resultant tank-to-wheel CO2 of the selected powertrain (EV) was always 

zero, regardless of the ratio between the two cost functions. This was also reflected in 

Figure 75, where the EV powertrain was emitting zero tailpipe emissions. 

As a result, the simulation has basically “reverted” to a single-objective optimisation 

because the tank-to-wheel emission was always equal to zero, and therefore the 

optimiser only optimised the powertrain for well-to-wheel CO2, thus producing the 

same results over the entire sweep of β. Therefore, the optimised EV powertrain 

produced the same well-to-wheel CO2 output regardless of the value of β. 

 

 

Figure 76: Pareto front for single increment of the ARTEMIS drivecycle 

 

In contrast, Figure 77 shows the Pareto front for four increments of the ARTEMIS cycle 

(around 400km of autonomy range). As discussed previously, the EV powertrain was 

not selected for higher increments of the ARTEMIS cycle because the vehicle would 

exceed the mass limit of 1600kg. The remaining powertrain options (CV, PHEV, and 
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MHV) produce both tank-to-wheel and well-to-wheel CO2 emissions, and therefore 

generated a Pareto front across different values of β, as observed in Figure 77. 

 

 

Figure 77: Pareto front for quadruple increments of the ARTEMIS drivecycle 

 

Figure 78 combines the Pareto fronts from all six increments of the ARTEMIS cycle. 

The numbers in circles denote the Pareto front for each specific drivecycle increment. 

As observed from the single-objective optimisations previously, the EV powertrain was 

selected for the first two increments of the ARTEMIS cycle regardless of the cost 

function, because it produced the lowest tank-to-wheel and well-to-wheel emissions. 

This is also reflected in Figure 78. 

For increments 3 – 6 of the ARTEMIS cycle, the powertrain selection is dominated by 

the PHEV. However, as the ratio of the optimisation favours well-to-wheel CO2 (i.e. as 

β approaches zero), it can be seen that the MHV is selected instead of the PHEV. This 

relates back to transition seen in Figure 73. It is also noteworthy that the ratio between 

the selection of the MHV over the PHEV rises as the autonomy range in which the 

vehicle is optimised for (i.e. drivecycle increments) increases. The shaded regions in 

between each drivecycle increment are the interpolation of the powertrain topology 

selected in each Pareto front. 
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Figure 78: Sweep of Pareto fronts and powertrain selection for multiple increments of the 

ARTEMIS cycle (the numbers in circles denote the cycle increment) 

 

The results shown in Figure 78 highlight the second novelty of the framework by 

showing the trends of powertrain architecture selection given the travel range and trade-

offs from two cost functions. The use of this toolbox lends itself naturally to identifying 

the transitions between powertrain topologies. Practitioners intending to use this toolbox 

will be able to generate such comparisons by defining their own cost function(s), along 

with the relevant vehicle parameters, powertrain components, and drivecycle. 

 

7.2 Case Study 2: Powertrain Cost vs Well-to-Wheel CO2 

In this case study, the trade-offs between powertrain cost and well-to-wheel CO2 are 

investigated, using the same powertrain topologies shown in Table 19. The definition 

and justifications of these two cost functions were carried out in Section 2.3. 

The optimisation parameters for this case study are shown in Table 22. Based on these 

parameters, the multi-objective optimisation produced Pareto fronts as shown in Figure 

79. The results shown in Figure 79 are for a single increment of the ARTEMIS cycle. 
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Table 22: Decision variables (X) and constraints (G) 

Term Definition Units 

ϕ1(X) 

ϕ2(X) 

 

X1 

X2 

X3 

X4 

X5 

 

G1 

G2 

Estimated powertrain cost 

well-to-wheel CO2 

 

1 ≤ Energy Converter 1 ≤ 100 

1 ≤ Energy Storage 1 ≤ 100 

1≤ Energy Converter 2 ≤ 100 

1 ≤ Energy Storage 2 ≤ 100 

1 ≤ Powertrain Variant ≤ 4 

 

1000 ≤ total vehicle mass ≤ 1600 

Drivecycle speed constraints 

USD $ 

kg 

 

- 

- 

- 

- 

- 

 

kg 

m/s 

 

 

Figure 79: Pareto front for single increment of the ARTEMIS drivecycle 
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Between the powertrain topologies considered in this case study, the EV arguably has 

the highest powertrain cost relative to its autonomy range. Therefore, although it 

obtained the lowest well-to-wheel CO2 emissions, it was at the expense of higher 

powertrain costs. Conversely, the CV produced the highest emissions but has the lowest 

powertrain costs. It is also observed that the CV does not have a Pareto front. Based on 

the Willans ICE model used in this research, a more expensive ICE will result in a 

larger displacement, and hence produce more emissions. Therefore, there is no trade-off 

as such when optimising the CV for those two cost functions, resulting in only one 

solution point instead of a Pareto front. 

The Pareto fronts for each powertrain in Figure 79 is shown in Figure 80.  

 

(a)      (b) 

 

(c)      (d) 

Figure 80: Pareto fronts for individual powertrain topologies: (a) CV; (b) EV; (c) PHEV; 

and (d) MHV 
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powertrain with a smaller battery (and thus lower powertrain cost) will produce more 

well-to-wheel CO2 for a single increment of the ARTEMIS because the higher power 

losses within the battery (from higher current rates) than compared to a larger battery. In 

contrast, an EV with a larger battery (and thus more expensive), will produce lower 

well-to-wheel CO2 emissions for a single increment of the ARTEMIS cycle, which 

supports the Pareto front seen in Figure 80(b). 

Additionally, it is observed that there is a bigger spread of solution points on the Pareto 

fronts for the hybrid powertrains (both the PHEV and MHV). This is inherent from the 

larger solution space offered by the hybrid powertrains, due to the greater permutation 

of component size combinations gained from having more energy converters and 

storages when compared to the single-source powertrains (CV and EV). 

By combining several increments of the ARTEMIS cycle, a 3-dimentional Pareto plot is 

created, as shown in Figure 81. It is observed that in the first two increments of the 

cycle, all four powertrain topologies are present on the Pareto front. However, the 

PHEV powertrain was eliminated from the third increment of the cycle onwards. The 

reason for this is that to achieve a higher autonomy range, the PHEV has to either have 

a larger battery, where it approaches the cost of the EV powertrain, or a larger fuel tank, 

where it approaches the emissions of the MHV (because of its comparatively higher 

mass coupled with lower efficiency when running in charge-sustaining mode). 

Therefore, the region on the Pareto front that was once populated by the PHEV is now 

overlapped by the EV and the MHV, thus eliminating the need for a PHEV altogether. 

Although this may seem counter-intuitive, it should be stressed that the emission metric 

used in this case study is well-to-wheel CO2; it is envisaged that the results would 

favour a PHEV over an MHV if it were tank-to-wheel CO2, such as indicated in Figure 

75. 

After four increments of the cycle, the EV powertrain then gets eliminated as well 

because all of its possible solutions points would exceed the vehicle mass constraints of 

1600kg in order to achieve the autonomy range on a single charge. This leaves the 

MHV and CV powertrains on the Pareto front for the fifth and sixth increments of the 

cycle. 

The creation of a 3-dimentional Pareto plot such as Figure 81 is a natural output of the 

proposed toolbox. If the same results were to be replicated using the existing 

optimisation methods seen in the literature, it is envisaged that it would take 

significantly longer because each powertrain topology would have to be optimised 

separately to create the individual Pareto fronts. Additionally, some of the optimisation 

routines would be computationally wasteful because the particular powertrain topology 

may no longer be cost-effective for the levels of CO2 produced, such as the PHEV in 

this case study, which was eliminated from the third increment of the ARTEMIS cycle. 
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Figure 81: Combination of Pareto fronts for all increments of the ARTEMIS cycle 

Additionally, with the increase in autonomy range, there is a divergence observed 

between the powertrain architectures, particularly between EV and MHV. The cost of 

the EV is highly sensitive to its range, with an increment of approximately $171 per 

kilometre of autonomy. However, the cost increment of the MHV and CV remain 

relatively constant, as the cost of extra fossil fuel to cover additional autonomy is 

insignificant. The reason for the EV’s high sensitivity is due to the battery costs, and 

this relates back Equation (3-44) on page 54. For the PHEV, a mixture of this effect can 

be seen when comparing its spread of powertrain cost between the first and second 

increment of the ARTEMIS cycle. 

 

7.3 Implementation in the FUTURE Vehicle Project 

The FUTURE Vehicle project is an ongoing collaboration between six universities from 

the UK with the aim of improving the fundamental understandings of key powertrain 

components that are used in low carbon vehicles. This project began in 2011, and is 

being funded by the Engineering and Physical Sciences Research Council (EPSRC) 

[170]. The project contains six work packages that are running in parallel, with one 

work package allocated to each university. The following powertrain components are 

being investigated by this project: 
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 EMs (University of Oxford) 

 Power electronics (University of Sheffield) 

 Fuel cells (Loughborough University) 

The role of Cranfield University is on integrating the reduced-order models of these 

powertrain components, and developing control strategies that aim to minimise their 

degradation. To that end, the proposed toolbox is being utilised to accommodate these 

powertrains components. The powertrain topologies that result from the inclusion of 

these components are shown in Appendix B. 

An area that is currently being investigated in this project is the multi-objective 

optimisation of the battery-ultracapacitor EV powertrain. In this investigation, the 

battery model includes a degradation mechanism, where battery gradually loses its 

capacity when the following happens: 

 Change in electric current direction (from charge to discharge and vice-versa) 

 Magnitude of the current draw imposed on the battery. 

The role of the ultracapacitor is to minimise these effects on the battery. To achieve this, 

the high transients in charge and discharge power demands is taken up by the 

ultracapacitors, thus “smoothening” the current load on the battery. Compared to the 

battery, the ultracapacitor is assumed to have negligible degradation. 

Nevertheless, ultracapacitors are also an added cost to implement into an EV 

powertrain. However, supplementing the battery pack with ultracapacitors will also 

allow for downsizing the pack, and thus achieve a net weight reduction. This potentially 

leads to lower electricity consumption and hence lower well-to-wheel CO2 emissions. 

Therefore, a multi-objective optimisation study is being carried out to find the trade-offs 

between the size of the battery and the ultracapacitor with respect to powertrain costs 

and emissions. 

 

7.4 Chapter Conclusions 

This chapter highlighted the second novelty of this research, which is on multi-objective 

optimisation of powertrain topologies with component sizing. The case studies put forth 

in this chapter was made possible using the proposed toolbox in this research. 

Three cost functions were then evaluated over two case studies to identify their trade-

offs with respect to the powertrain topologies and mass constraints. The cost functions 

were well-to-wheel CO2, tank-to-wheel CO2 and estimated powertrain costs. These cost 

functions were chosen based on their recurring use in the literature for powertrain 

analysis. 
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It is noteworthy that the PHEV powertrain was eliminated from the third increment of 

the cycle onwards. The reason for this is that to achieve a higher autonomy range, the 

PHEV has to either have a larger battery, where it approaches the cost of the EV 

powertrain, or a larger fuel tank, where it approaches the emissions of the MHV 

(because of its comparatively higher mass coupled with lower efficiency when running 

in charge-sustaining mode). Additionally, a divergence was observed between the 

powertrain as the autonomy range increased. This was driven by the cost of the 

powertrain, with the EV exhibiting the highest cost sensitivity per kilometre of 

additional autonomy range. 

The proposed methodology, supported by these findings, opens a way for practitioners 

to quantify the benefits and trade-offs from each type of powertrain architecture in a 

multi-objective optimisation environment. 
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8 CONCLUSIONS 

Through the literature review, it was identified that different powertrain topologies have 

a variety of trade-offs in their performances with regards to emissions, autonomy range, 

and costs. However, collating data from literature for analysing such trade-offs 

produced findings that were discontinuous, thus making it difficult for drawing 

conclusions when comparing multiple types of powertrain topologies. This led to the 

research hypothesis; is it possible to determine the most appropriate powertrain 

architecture for a given vehicle type and usage profile, based on a unified optimisation 

routine? 

To prove this hypothesis, it was determined that a methodology that combines an 

optimisation algorithm with a multi-architecture powertrain simulation environment 

was required. This then led to the two novel areas of research: creating a methodology 

to simultaneously select a powertrain topology and optimise its component sizes for a 

given cost function, and utilising multi-objective optimisation for identifying trade-offs 

between cost functions by way of powertrain topology selection. 

To support this research, powertrain topologies for the following types of vehicles were 

created: Conventional Vehicle (CV), Electric Vehicle (EV), Series Plug-in Hybrid 

Electric Vehicle (PHEV), and Flywheel-based Mechanical Hybrid Vehicle (MHV). This 

list was narrowed down based on the availability and quality of data gathered from 

literature and from work carried out by Cranfield University with partners and funded 

projects. Whilst the powertrain component performances were verified against data 

from real vehicles, several assumptions were made with regards to their scalability for 

peak power. Additionally, the scaling of financial costs and component mass was based 

on linear functions. Nevertheless, this level of fidelity was deemed sufficient for the 

purpose of demonstrating the functionality of the proposed methodology. 

The drivecycles that were used to simulate the powertrains were the NEDC, ARTEMIS 

cycle, and Cranfield cycle. The first two cycles were selected based on their recurring 

use in literature, whereas the last cycle was developed at Cranfield University though a 

series of real-world tests using a Smart ED electric vehicle. 

Lastly, a sensitivity analysis was carried out to identify the severity of the uncertainties 

of several parameters in the model. Based on the EV powertrain that was analysed, it 

was found that changes in glider mass had the most pronounced effect towards changes 

in energy consumption. The trends from the sensitivity analysis were noted and were 

subsequently investigated in the optimisation study. However, based on the 

investigations carried out, it was revealed that whilst the change in parameters affected 

the sizing of the powertrain components, it did not affect the selection of the powertrain 

topology. 
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It was identified that there are two methods for carrying out vehicle powertrain 

modelling: forward-facing and backward-facing models. Each method has its 

advantages and disadvantages. For the purpose of iterative optimisation routines, 

coupled with the knowledge of the vehicle speed profile apriori, it was deemed that the 

backward-facing model was the most suitable option for the purposes of this research, 

with its comparatively faster simulation times. However, given the relatively larger time 

step of the backward-facing approach, the proposed toolbox is more suited to obtain a 

first-hand approximation for the type of powertrain topology that is most appropriate for 

a given vehicle type and duty cycle. Hence, the toolbox is suitable for powertrain 

analysis, rather than specific powertrain design, and it can be used to predict measures 

such as fuel consumption and emissions; however, it cannot be used to study details that 

require smaller time-steps, such as vibrations and harshness. Additionally, backward-

facing models do not adhere to physical causality which is important when developing 

control system algorithms; however this is not part of the aims of this research. 

The switching between powertrain topologies within the Modular Powertrain Structure 

(MPS) was made possible because of the modular approach to encapsulating the various 

powertrain components. The powertrain components within a given topology were 

classified as energy converter, energy storage, and power transformers. This 

classification provided modularity in the implementation of powertrain topologies in the 

toolbox. Modularity is important because this toolbox will need to offer the flexibility 

for completely defining the layout of the powertrain configuration.  

A methodology was created to facilitate the ability to simultaneously optimise both the 

powertrain topology and components sizes within the toolbox. The MPS encapsulates 

this methodology, and when combined with a Genetic Algorithm, forms the 

optimisation framework within the proposed toolbox. This framework underscores the 

first novelty of this research.  The NSGA-II algorithm was also included into the 

framework to support multi-objective optimisations, and supports the second novelty of 

this research. 

Using the proposed toolbox, investigations have identified the transition points between 

powertrain topologies based on the optimisation cost functions and a given set of 

constraints. In Chapter 6, the results showed the trends in the selection of powertrain 

topologies when optimising purely for well-to-wheel CO2. For the initial increments of 

the drivecycles, the EV powertrain was chosen because it emitted the lowest well-to-

wheel CO2 when compared to the other topologies. However, when the EV exceeded 

the mass constraints for increased autonomy range, the transition into a different 

powertrain was dependant on the power and energy requirements of the individual 

drivecycles. For higher autonomy ranges, the PHEV was selected for transient cycles 

such as the ARTEMIS and Cranfield cycles, whereas the CV was selected for the 

NEDC instead. 
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For a given powertrain architecture, it was interesting to note that that the lightest 

configuration may not necessarily yield the lowest well-to-wheel CO2 emissions. In the 

case of the EV, a smaller EM, though lighter, would not be able to capture all of the 

deceleration events, thus sacrificing energy that could have been recovered via 

regenerative braking. Therefore, one of two outcomes were observed from the optimiser 

when sizing powertrain components: sizing the component for lowest overall 

powertrain mass, or sizing the component for maximising energy recovery via 

regenerative braking. This decision was observed to vary according to the drivecycle; 

for the Cranfield cycle, the EM was sized to maximise on regenerative braking 

capability (resulting in a heavier EM with higher power rating), whereas for the 

ARTEMIS cycle, the EM was sized just enough to meet the propulsion power demands 

(lighter but sacrificing on recuperated braking energy). This was attributed to the 

acceleration levels seen in the drivecycles, with the higher acceleration levels in the 

ARTEMIS favouring a lighter vehicle than one which is heavier but with greater 

regenerative braking capabilities. 

To probe the optimisation results from the toolbox further, several sensitivity analyses 

were carried out, including varying the amount of regenerative braking, glider mass, 

vehicle mass constraints, and electricity grid CO2 emissions. For the ARTEMIS cycle, 

whilst the increase in the regenerative power of the EM resulted in reduced emissions, it 

was interesting to note that it had no effect on the selection of the powertrain topologies. 

Other constraints, such as mass limits and energy density of the storage elements, were 

observed to be more dominant in the selection of the powertrain topology. The 

transition from the EV to the PHEV powertrain still occurred when the mass constraints 

of the vehicle was exceeded. Varying the vehicle mass constraints, however, did have 

an effect on the switching point between powertrain depending on the autonomy range. 

For the effects in road inclination, the main difference observed was the selection of 

PHEV instead of the CV for higher autonomy ranges on the NEDC. This was attributed 

to the ability of the PHEV to utilise regenerative braking during hill descents. A test 

case was also carried out to study the effects of variation in CO2 emissions from the 

electricity grid mix. In this test case, France was used an example because of its 

substantially lower CO2 emission per kWh when compared to the UK. As a result, the 

well-to-wheel CO2 outputs were also observed to be much lower. 

In Chapter 7, the use of multi-objective optimisation was included as part of the 

powertrain topology selection and components sizing routine. Whilst the optimisations 

were limited to the ARTEMIS cycle, several cost functions were evaluated and the 

trade-offs in these cost functions were evident from the Pareto fronts of the various 

powertrain topologies. The creation of a 3-dimentional Pareto plot that showed the 

various solution points from different powertrain topologies is inherent from the ability 

of the toolbox to concurrently evaluate different topologies during the optimisation. 

Therefore, is it envisaged that practitioners using this toolbox would be able to perform 



 

128 

multi-objective powertrain topology optimisations more directly and quickly than using 

conventional methods. 

These aims of this research were addressed by creating a toolbox that provided the 

ability to simultaneously optimise both the powertrain topologies and components sizes, 

given a set of constraints and cost function(s). The ability to compare multiple types of 

powertrain is useful because of the significant number of advanced powertrain 

topologies that are available. 

Using the novel methodology proposed in this research, investigations have identified 

the transition points between powertrain topologies, given the drivecycle, desired 

autonomy range, and associated cost function(s). If the results from these simulations 

were to be replicated using conventional methods, it is envisaged to take significantly 

longer to produce, because each powertrain would have to be individually optimised. 

Additionally, some of the optimisation would be computationally wasteful because the 

particular powertrain topology may no longer be suitable for the design targets, 

although this may not be realised until the optimisation routine is completed. 

It is important to reiterate that this methodology is used to obtain a first-hand 

approximation for the type of powertrain that is most likely suitable or a given vehicle 

type and duty cycle. Thus, this research aims to produce a tool suitable for powertrain 

analysis, rather than specific powertrain design. It can be used to predict measures such 

as fuel consumption and emissions; however, it cannot be used to study details that 

require smaller time-steps, such as vibrations and harshness.  

Although this research covered four types of powertrain topologies, the flexibility of the 

MPS will enable additional types of energy converters and energy storages to be 

included, thus creating further permutations of powertrain topologies. In conclusion, the 

hypothesis of this research has been addressed; it is indeed possible, by way of a unified 

optimiser and a modular powertrain framework, to determine the most appropriate 

powertrain architecture for a given vehicle type and usage profile. Practitioners would 

benefit from a flexible toolbox that facilitates simultaneous optimisation of both 

powertrain topology and component sizing, and the proposed toolbox could ultimately 

be used to establish standards within the automotive modelling community. 
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8.1 Future Work 

There were several assumptions made with regards to the creation of the powertrain 

components, especially in the implementation of scalability. Future work may wish to 

investigate the use of discreet component selection for different peak power 

requirements. For example, instead of using just one EM model to scale across a large 

range, there can be several discrete EM models to choose from during the optimisation, 

such that each EM now caters for a smaller window of peak power scaling. 

The results of the optimised powertrain component sizes are based on drivability 

measures that are defined by the drivecycle. During the optimisation, the powertrain 

selection and sizing are constrained to the power and energy demands of that particular 

drivecycle. However, vehicle manufacturers also use other measures such as minimum 

0 – 100 km/h times and overtaking manoeuvre times to optimise the size of their 

powertrain components. These attributes could also be included into the toolbox as part 

of future work by supplementing the drivecycle to include such power demands. 

The battery model was parameterised such that its internal resistance value was 

optimised to minimise the RMS of the cumulative SOC error between the simulated 

model and the measure data. Unfortunately, variations in the resistance under charge 

and discharge conditions, as well as in different thermal operating conditions, were 

inherently averaged using this approach. Future work could investigate this area by 

parameterising the model from data obtained using a battery test rig in a controlled test 

environment. 

For the hybrid powertrains, a rule-based supervisory controller was used. However, an 

optimal trajectory for the split in power between the two power sources could be created 

as part of future work and included into the optimisation. This can potentially be 

achieved using two optimisation loops. The larger “outer” optimisation loop performs 

the powertrain topology selection and sizing. For each topology selected, an “inner” 

loop then calculates the ideal power split amongst the hybrid power systems. 

Finally, this research is an early part of a long term vision for developing a toolbox that 

utilises artificial intelligence to create the optimal powertrain topology from a mix of 

powertrain components. At present, powertrain topologies have been pre-defined as 

variants, as seen in Chapter 4. The ability to automatically define the powertrain 

topology based on a selection of powertrain components will be very valuable to 

manufacturers as part of their design process. 
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APPENDICES 

Appendix A M-file Codes for Optimiser 

The following subsections in this Appendix lists key MATLAB m-files used in the 

proposed toolbox to carry out simultaneous optimisation of the powertrain topology and 

component sizing. Section A.1 is the shows the interface script of this toolbox, where all 

the key parameters of the optimisation, such as drivecycle type, cost function, and mass 

and cost limits of the vehicle are specified. Section A.2 then lists the codes for the 

Initial Population Generator, which was discussed in page 71, followed by sub-section 

A.2.1 which shows a sample of the output from this code. Sections A.3 and A.4 then 

follow by showing the codes for the Custom Rounding function and Custom Mutation 

function, which were discussed in pages 78 and 79 respectively. 

A.1 Initialising the Optimisation Run 

 
%% Drivecycle to Use 
% 0 - Blank 
% 1 - NEDC 
% 2 - Cranfield 
% 3 - Artemis 
% 4 - Constant Speed where type is speed value 

  
dcType = 3; 
dcIncrement = 1; 
dcLowerLimit = 1; 
dcUpperLimit = 6; 

  
%% Minimisation Function 
% 1 - Well-to-Wheel CO2 
% 2 - Tank-to-Wheel CO2 
% 3 - Mass 
% 4 - WtW CO2 and Mass (Multi-objective) 
% 5 - WtW CO2 and Cost (Multi-objective) 
% 6 - Mass of Battery vs Mass of UCap (Multi-objective) 

  
costFunction = 6; 

  
%% Simulation Limits 

  
massLimit = 1600; 
costLimit = 1e8; 

  
%% Powertrain Selection 
% 1 - Conventional Powertrain 
% 2 - EV 
% 3 - Series PHEV 
% 4 - Fuel Cell + Ultracap 
% 5 - Parallel Flywheel + CVT 
% 6 - Battery + Ultracap 
% 7 - EV (with SOH) 
% 8 - Battery (with SOH) + Ultracap 
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powertrainSelection = [8];  %Please ensure selection array is in 

ascending order! 
powertrainSelection = sort(powertrainSelection); 

  
%% Launch Simulation 

  
[resultArray] = 

runDCRange(dcType,dcIncrement,dcLowerLimit,dcUpperLimit,massLimit,cost

Limit,costFunction,powertrainSelection); 

  
save('Result_Final'); 

 

A.2 MATLAB code for Initial Population Generator 

The following m-file codes support the discussion in Section 4.2.1. 
 

function IP = getIniPop(LB,UB,popDist,type) 

  
% Type 
% 1 - Random 
% 2 - Uniform 

  
nP = length(UB); 

  
if type == 1 
    popSize = popDist; 
    IP = repmat(LB,popSize,1) + rand(popSize,nP).*repmat((UB-

LB),popSize,1); 
end 

  
if type == 2 
    popSize = 1; 
    for i = 1:nP; 
        popSize=popSize*popDist(i); 
    end 

     
    axesValues = zeros(max(popDist),nP); 

     
    for i = 1:nP 
        axesValues(1:popDist(i),i) = 

linspace(LB(i),UB(i),popDist(i))'; 
    end 

     
    IP = zeros(popSize,nP); 

     
    for i = 0:popSize-1 
        idx = i; 

         
        for j = 1:nP 
            idxAxes = mod(idx,popDist(j))+1; 
            idx = floor(idx/popDist(j)); 
            IP(i+1,j) = axesValues(idxAxes,j); 
        end 
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    end 
end 
% keyboard; 
IP = roundMe(IP,[1 1 1 1 1]); % Force individual to be integer only 
IP = conditionIndividual(IP); % Condition individual based on 

powertrain type 
end 

A.2.1 Results for Initial Population Generator 

The following list is the output from the Initial Population Generator, as discussed in 

Section 4.2.2. 

Table A1: The list of individuals created by the Initial Population Generator 

Individual 

No. 

EM Power 

(kW) 

Battery 

Size (kWh)   

Individual 

No. 

EM Power 

(kW) 

Battery Size 

(kWh) 

1 40 10   26 40 88 

2 55 10   27 55 88 

3 70 10   28 70 88 

4 85 10   29 85 88 

5 100 10   30 100 88 

6 40 26   31 40 103 

7 55 26   32 55 103 

8 70 26   33 70 103 

9 85 26   34 85 103 

10 100 26   35 100 103 

11 40 41   36 40 119 

12 55 41   37 55 119 

13 70 41   38 70 119 

14 85 41   39 85 119 

15 100 41   40 100 119 

16 40 57   41 40 134 

17 55 57   42 55 134 

18 70 57   43 70 134 

19 85 57   44 85 134 

20 100 57   45 100 134 

21 40 72   46 40 150 

22 55 72   47 55 150 

23 70 72   48 70 150 

24 85 72   49 85 150 

25 100 72   50 100 150 
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A.3 MATLAB code for Custom Rounding Functions 

The following m-file codes support the discussion in Section 4.5.1 
 

function rounded = roundMe(IP,roundReq) 

  
try 
    if isempty(IP) 
        rounded = IP; 
    else 
        if length(IP(1,:)) == length(roundReq) 
            rounded = zeros(size(IP)); 
            for i = 1:length(IP(:,1)) 
                for j = 1:length(roundReq) 
                    rounded(i,j) = 

roundReq(j)*(round(IP(i,j)*(1/roundReq(j)))); 
                end 
            end 
        else 
            disp('Population rounding error - individual size and 

rounding requirements mismatch') 
            rounded = IP; 
        end 
    end 
catch RoundError 
    disp('Population rounding error - function aborted') 
    rounded = IP; 
end 
end 
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A.4 MATLAB code for Custom Mutation Function 

The following m-file codes support the discussion in Section 4.5.2 
 

function newIndividual = 

findNearIndividual(individual,y,UB,LB,funHdl,multiObj,toPlot) 
scaleVal = (UB-LB).*y; 
LowB = individual-scaleVal; 
UpB = individual+scaleVal; 
LowB = max(LB,LowB); 
UpB = min(UB,UpB); 
res = inf; 
count = 0; 

  
while isinf(res) 
    count = count + 1; 
    newIndividual = getIniPop(LowB,UpB,1,1); 
    if count == 10 
        newIndividual = individual; 
    end 

     
    if multiObj == 0 
        res = feval(funHdl,newIndividual); 
    else 
        resTemp = feval(funHdl,newIndividual); 
        if isinf(resTemp(1)) %== 1e12 
            res = inf; 
        else 
            if isinf(resTemp(2)) %== 1e12 
                res = inf; 
            else 
                res = 1; 
            end 
        end 
    end 
end 

  
if toPlot 
    figure(20) 
    plot(individual(1),individual(2),'.k') 
    hold on; 
    rectangle('Position',[LowB(1),LowB(2),UpB(1)-LowB(1),UpB(2)-

LowB(2)]) 
    scatter(newIndividual(1),newIndividual(2),res,'.r') 
    xlim([LB(1) UB(1)]); 
    ylim([LB(2) UB(2)]); 
end 

  
end 
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Appendix B Other Possible Powertrains Topologies for 

Inclusion into the MPS 

The following are examples of other powertrain topologies that can be included into the 

MPS. The topologies shown in Figure A1 and Figure A2 are being investigated as part 

of the FUTURE Vehicle project [170]. This appendix supports the discussions carried 

out in Section 4.1.1 and Section 7.3. 

 

Figure A1: Fuel Cell – Ultracapacitor Hybrid 

 

Figure A2: Battery - Ultracapacitor Hybrid 
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Figure A3 shows the Ford C-Max power-split hybrid powertrain incorporated into the 

MPS. This was made possible by encapsulating the powertrain components into the 

respective energy converters and energy converters. The high-level schematic of this 

powertrain is shown in Figure A4. This powertrain topology was created to support a 

technical presentation that was delivered at the Ford Technical Centre in Dearborn, 

USA by the author. 

 

Figure A3: The Ford C-Max power-split hybrid powertrain 

 

Figure A4: High-level schematic of the Ford C-Max power-split powertrain [171] 
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Appendix C Vehicle Data 

Table A2 contains data for the vehicle models referenced throughout this thesis. A 

majority of the data was sourced internally from work carried out for the following 

funded projects: 

 Low Carbon Vehicle Technology Project (LCVTP) [40] 

 Smart Move Electric Vehicle Trial conducted by Cenex [79] 

 FUTURE Vehicle consortium (EPSRC grant number EP/I038586/1). 

However, where possible, published references are provided for verification of these 

data. These are indicated in square brackets inside each applicable cell. 

Table A2: List of vehicle data 

Vehicle Smart ED 
Smart Fortwo 

(Petrol) 

Jaguar 

Limo Green 

Jaguar XJ 

(Petrol) 

Nissan 

Leaf 

Dry Mass (kg) 965 750 [172] 2036 1755 [172] 
1525 

[172] 

Frontal Area (m
2
) 2.06 [173] 2.06 [173] 2.4 2.4 

2.27 

[172] 

Coeff of Aero 

Drag 
0.35 [173] 0.35 [173] 0.29 [172] 0.29 [172] 

0.29 

[172] 

Battery Capacity 

(kWh) 
16.5 [79] - 17.6 - 24 [172] 

Battery Power 

(kW) 
30 [79] - 247 - 90 

Driven Axle Rear Rear Rear Rear Front 

Tyre Rolling 

Radius 
0.25 0.25 0.35 0.35 0.32 

Coeff of Rolling 

Resistance (total) 
0.006 0.006 0.008 0.008 0.007 

EM Peak Power 

(kW) 

55 (limited 

to 30) 
- 145 - 80 

ICE Type - 

1.0L 3-

cylinders  

[172] 

1.3L 3-

cylinder 

[100] 

5.0L V8 [172] - 

ICE Peak Power 

(kW) 
- 

 
35 [100] 283 [172] - 
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The tyre rolling radii were measured directly from the vehicles during the project. The 

coefficients of aerodynamic drag and rolling resistance for the Smart was derived from 

the coastdown curve provided by Millbrook, who also participated in the Smart Move 

Trial [79]. Similarly, the coefficients of aerodynamic drag and rolling resistance for the 

Jaguar Limo Green was derived from the coastdown curve provided by Ricardo, and the 

same values were assumed for the Jaguar XJ (petrol). 

C.1 Transmission Ratios 

Table A3 shows the list of ratios used in the mechanical transmission for the CV and 

MHV topologies, based on the ZF 8-speed transmission from the Jaguar XJ saloon. 

Transmission data is soured from [174] and from work carried out for the LCVTP 

project. The reverse gear is not considered in this research, and is therefore excluded 

from this list. The gear ratio for the Smart Fortwo (petrol 1.0L model) is also shown in 

Table Table A4 [85]. 

For the EV and PHEV powertrain, where the EM is the primary mover, the gear ratio is 

fixed at 8.67, which is the same as that on the Smart ED vehicle. 

Table A3: Gear ratio for ZF 8-speed transmission 

Gear No. Ratio 

1 

2 

3 

4 

5 

6 

7 

8 

4.70 

3.13 

2.10 

1.67 

1.29 

1.00 

0.84 

0.67 
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Table A4: Gear ratio for Smart Fortwo (petrol) transmission 

Gear No. Ratio 

1 

2 

3 

4 

5 

13.912 

8.664 

5.697 

4.271 

3.456 
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Appendix D Full Implementation of MPS in Simulink 

D.1 Conventional Vehicle 
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D.2 Plugin Series Hybrid Electric Vehicle 
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Appendix E List Of Inputs and Outputs for Powertrain 

Topologies 

This Appendix lists the Simulink models for the energy converters and energy storages 

considered in this thesis. 

E.1 Vehicle Model 

 

 

 

E.2 Internal Combustion Engine 
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E.3 Electrical Machine 

 

 

E.4 Battery Model 

 

 

E.5 Mechanical Transmission 
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E.6 Thermostatic Controller 

 

 

E.7 Flywheel 
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Appendix F Scripts for Powertrain Topology Switching 

The following script shows the interface between powertrain topology parameterisation 

and initialisation in MATLAB with the MPS in Simulink. It supports the discussion that 

was carried out in Section 4.1.1. Each topology initialises its respective components in 

MATLAB, and this information is then passed on to the “Variant subsystem” block in 

Simulink to create the desired topology for inclusion into the optimisation routine. 

 
function [in simu] = 

runModel(vehMass,massLimit,drivecycleType,drivecycleRepeat,fdRatio,con

Scale,stoScale,conScale2,stoScale2,costLimit,powertrainVariant,powertr

ainSelection) 

  
if ~nargin 
    vehMass = [];   % Vehicle mass 
    massLimit = []; 
    drivecycleType = []; 
    drivecycleRepeat = []; 
    fdRatio = []; 
    conScale = [];  % Scale of primary energy converter from 0 - 100 
    stoScale = [];  % Scale of primary energy storage from 0 - 100 
    conScale2 = []; % Scale of secondary energy converter from 0 - 100 
    stoScale2 = []; % Scale of secondary energy storage from 0 - 100 
    costLimit = []; 
    powertrainVariant = []; 
    powertrainSelection = []; 
end 

  

  
%% *** INITIALISE SIGNATURE *** 

  
if isempty(vehMass) 
    vehMass = 1000; 
end 

  
if isempty(massLimit) 
    massLimit = 10000; 
end 

  
% Drivecycle to Use 
% 0 - Blank 
% 1 - NEDC 
% 2 - Cranfield 
% 3 - Artemis 

 
if isempty(drivecycleType) 
    drivecycleType = 1; 
end 

  
if isempty(fdRatio) 
    fdRatio = 5; 
end 
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if isempty(conScale) 
    conScale = 50; 
end 

  
if isempty(stoScale) 
    stoScale = 50; 
end 

  
if isempty(conScale2) 
    conScale2 = 50; 
end 

  
if isempty(stoScale2) 
    stoScale2 = 50; 
end 

  
if isempty(costLimit) 
    costLimit = 1e9; 
end 

  
if isempty(powertrainSelection) 
    powertrainSelection = 1:8; % Adjust maximum powertrain variants 

here 
end 

  
if isempty(powertrainVariant) 
    powertrainVariant = 1; 
end 

  
if checkRoundNumbers([conScale stoScale conScale2 stoScale2 

powertrainVariant]) == 0 
    keyboard; 
end 

  

  
%% *** MAP POWERTRAIN SELECTION TO POWERTRAIN VARIANTS *** 

  
initVariant; % Remember to adjust maximum powertrain variants here 
Powertrain = powertrainSelection(powertrainVariant); 

  

  
%% *** INITIALISE VARIABLES *** 

  
in = getDrivecycle(drivecycleType,[],drivecycleRepeat); 
in.vehMass = vehMass; 

  
in.sim_stoptime = max(in.dc_time); 

  
in.batIniSOC = 89;  % Initial battery SOC (%) 
in.batIniSOH = 100; % Initial battery SOH (%) 
in.fd = fdRatio; 
in.mu_aero = 0.3; 
in.veh_wheelr = 0.3704; 
in.sim_ts = 1; 
in.busVoltage = 400; 
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in.thermoControlPoint = 30; 
in.vehMode = 0; % Used for EV to switch between charge/running a 

drivecycle 

  

  
%% *** INITIALISE COMPONENTS *** 

  
% Powertrain Selection 
% 1 - Conventional Powertrain 
% 2 - EV 
% 3 - Series PHEV 
% 4 - Fuel Cell + Ultracap 
% 5 - Parallel Flywheel + CVT 
% 6 - Battery + Ultracap 
% 7 - EV (with SOH) 
% 8 - Battery (with SOH) + Ultracap 

  
switch Powertrain 
    case 1 
        inA = initEngine(conScale,1); 
        inB = initTank(stoScale,1); 
        inC = initGearbox(in.dc_speed.*3.6,1); 

         
    case 2 
        inA = initMachine(conScale,1,[]); 
        inB = initBattery(stoScale,in.batIniSOC,1,0,[]); 
        inC = initGearbox(in.dc_speed.*3.6,2); 

         
    case 3 
        inA = initMachine(conScale,1,[]); 
        inB = initBattery(stoScale,in.batIniSOC,1,0,[]); 
        inC = initGearbox(in.dc_speed.*3.6,2); 
        inD = initGenSet(conScale2); 
        inE = initTank(stoScale2,2); 

         
    case 4 
        inA = initMachine(conScale,1,[]); 
        inB = initUltraCap(stoScale); 
        inC = initGearbox(in.dc_speed.*3.6,2); 
        inD = initFuelCell(conScale2); 
        inE = initTankFC(stoScale2); 

         
    case 5 
        inA = initEngine(conScale,1); 
        inB = initTank(stoScale,1); 
        inC = initGearbox(in.dc_speed.*3.6,1); 
        inD = initCVT(conScale2); 
        inE = initFlywheel(stoScale2); 

         
    case 6 
        inA = initMachine(conScale,1,50); 
        inB = initUltraCap(stoScale); 
        inC = initGearbox(in.dc_speed.*3.6,2); 
        inD = initNull_con(conScale2); 
        inE = initBattery(stoScale2,in.batIniSOC,2,0,[]); 
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    case 7 
        inA = initMachine(conScale,1,[]); 
        inB = initBattery(stoScale,in.batIniSOC,1,1,in.batIniSOH); 
        inC = initGearbox(in.dc_speed.*3.6,2); 

         
    case 8 
        inA = initMachine(conScale,1,50); 
        inB = initUltraCap(stoScale); 
        inC = initGearbox(in.dc_speed.*3.6,2); 
        inD = initNull_con(conScale2); 
        inE = initBattery(stoScale2,in.batIniSOC,2,1,in.batIniSOH); 

         
    otherwise 
        disp('Invalid powertrain selection'); 
end 

  
inTemp = in; 
switch Powertrain 
    case {1,2,7} 
        in = mergeStruct(inTemp,inA,inB,inC); 
        in.costT = in.costA + in.costB + in.costC; 
        in.massT = in.vehMass + in.massA + in.massB + in.massC; 
        in.hybridType = 0; 
    case 5 
        in = mergeStruct(inTemp,inA,inB,inC,inD,inE); 
        in.costT = in.costA + in.costB + in.costC + in.costD + 

in.costE; 
        in.massT = in.vehMass + in.massA + in.massB + in.massC + 

in.massD + in.massE; 
        in.hybridType = 1; 
    otherwise 
        in = mergeStruct(inTemp,inA,inB,inC,inD,inE); 
        in.costT = in.costA + in.costB + in.costC + in.costD + 

in.costE; 
        in.massT = in.vehMass + in.massA + in.massB + in.massC + 

in.massD + in.massE; 
        in.hybridType = 0; 
end 

  

  
%% *** RUN SIMULATION *** 

  
if in.costT < costLimit 
    if in.massT < massLimit 
        simu = runSimu(in,Powertrain); 
    end 
end 

  

  
%% *** POST-PROCESSING *** 
% keyboard; 

  
if in.costT < costLimit 
    if in.massT < massLimit 
        simu.distance = trapz(simu.t,simu.speed); 

         
        switch Powertrain 
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            case 1 
                simuA = simuEngine(in,simu); 

                 
            case {2,6} 
                simuA = simuMachine(in,simu,Powertrain); 

                 
            case 3 
                simuA = simuGenSet(in,simu,Powertrain); 

                 
            case 4 
                simuA = simuFuelCell(in,simu,Powertrain); 

                 
            case 5 
                simuA = simuFlywheel(in,simu); 

                 
            case {7,8} 
                simuA = simuSOH(in,simu,Powertrain); 

                 
            otherwise 
                disp('Invalid powertrain post-processing'); 
        end 

         
        simuTemp = simu; 
        simu = mergeStruct(simuTemp,simuA); 
    else 
        simu.wtw_CO2 = inf; 
        simu.ttw_CO2 = inf; 
    end 
else 
    simu.wtw_CO2 = inf; 
    simu.ttw_CO2 = inf; 
end 

  
% keyboard; 
end 

  

  
function confirmRound = checkRoundNumbers(inputArray) 
% Redundant check to ensure that inputs are round numbers 
confirmRound = 1; 

  
for i = 1:length(inputArray) 
    if inputArray(i) ~= round(inputArray(i)) 
        disp('Error: inputs are not integer values!'); 
        confirmRound = 0; 
    end 
end 
end 
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