
Automated Topology Synthesis and
Optimization of Hybrid Electric

Vehicle Powertrains

by

Adam H. Ing

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Systems Design Engineering

Waterloo, Ontario, Canada, 2014

c© Adam H. Ing 2014

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

This thesis presents a framework to automate the process of designing Hybrid Electric
Vehicle (HEV) powertrain architectures. An algorithm was developed to assemble and
compare all possible configurations of powertrain components. Combinatorics was used
to discover all possible combinations of: an internal combustion engine, high-torque low-
speed electric motor, low-torque high-speed electric motor, planetary gearset, and five-
speed discrete gearbox. The Graph Theoretic Method was used to generate the powertrain
models.

The powertrain models were comprised of steady-state equations in symbolic form. An
optimal control strategy is required to fairly compare the different topologies because a
powertrain control strategy is dependant on the configuration. Dynamic Programming
was used to determine the control law that minimizes the energy consumption for a given
drivecycle. Evaluating every possible topology would take an extremely long time, so
topologies were evaluated using a multi-stage screening process.

The first stage examined the structure of the powertrain and used heuristics to eliminate
infeasible topologies; 512 topologies were feasible.

The second stage eliminated topologies that could not meet basic driving performance;
193 topologies were feasible. Basic driving performance was tested using a section of the
US06 drivecycle. The sizes of three components was optimized to ensure the topology is
feasible independent of the size of the components.

The third stage eliminated topologies which could not achieve driving performance
design goals; 159 could achieve the performance requirements, but only 119 were reasonably
fuel efficient. The driving performance goals were implemented with a drivecycle based
on the Partnership for a New Generation of Vehicles (PNGV) goals. The sizes for five
components were optimized at this stage.

The 20 most fuel efficient powertrains were selected for further evaluation. Additionally,
4 common powertrains were evaluated for reference. The size of the components were
optimized for a combination of the PNGV drivecycle and the HWFET drivecycle.

The most fuel efficient topology was found to be a Powersplit hybrid which has a dis-
crete gearbox between the final drive and the powersplit device. The electric motor, plan-
etary carrier gear, and gearbox were connected in parallel. It was found that Parallel-like,
Powersplit-like, and Complex-like topologies were were the most efficient powertrain config-
urations. Powertrains containing two gearboxes were more efficient because the geartrain
models ignored mechanical inefficiencies.

iii

Acknowledgements

I would like express appreciation to my supervisor, Professor John McPhee for providing
guidance, financial support and the opportunity to do this project. When things weren’t
going as planned, and everything seemed like it was falling apart, he remained confident
in my abilities. Being available for meetings, small words of encouragement, and timely
feedback made this all possible. Thank you.

My gratitude also extends to Professor Azad for being a great body of knowledge in
the field of automotive and controls development. Without his help, I would keep myself
up at night questioning every assumption. I acknowledge Professor Gordon Savage for
volunteering his time to be on my thesis committee and being a helpful resource for linear
graph theory.

I give my sincere thanks to Dr. Sam Dao of Maplesoft. If I hadn’t met you before coming
to Waterloo I might not have ended up in the MoRG. Thank you for the troubleshooting
sessions, math models, and support with Maple/MapleSim. I thank Dr. Chad Schmitke
for guidance on the limitations with Maple software.

None of this would be possible without my fellow MoRG-ians. Without Joydeep I
would have not been able to decipher Maple code or learn linear graph theory. Without
help from Andrew and Naser, coursework would have taken all my time and I would have
never gotten to do any research. Thank you Amir for being teaching me how to Dynamic
Program; I had never learned anything like that before! Thank you Aden (and later Dan!)
for always being available to help with Linux problems. Xinxin, Asaad and Tony; you
came after I did, but totally made my time in Waterloo a whole lot more fun ;)

Although I’ve never met you in person, I’d like to thank acer, Carl Love, and Joe Riel
on the MaplePrimes website. You guys really spent a lot of time reading a total strangers’
code. You have no idea how much you all have helped me, but without you all I would not
have been able to complete this thesis on time.

I acknowledge my parents for birthing and raising me. I’m dedicating this thesis to
you, so that’s all the acknowledgement you get here.

iv

Dedication

This thesis is dedicated to my family, for being a constant source of emotional support and
chaos in my life.

I dedicate this thesis to Ma: for encouraging my curiosity, ensuring I was raised in a
nurturing environment, packing my lunches when I was busy with exams, and proofreading
20 years of school work. I cannot promise this will be the last time you proofread my work.

I dedicate this thesis to Ba: for continuously challenging me to push my own boundaries,
serving as an ideal role model and mentor, and encouraging me to take risks while still
having fun. You better finish your PhD before I get bored of working and start my own.

I dedicate this thesis to my brothers because you are all so different than me. To me,
you all are a constant source of inspiration, emotional support and questions.

v

Table of Contents

List of Tables ix

List of Figures x

1 Introduction 1

1.1 Problem Statement . 1

1.2 Research Objective . 2

1.3 Approach . 2

1.4 Document Overview . 3

2 Literature Review 4

2.1 Hybrid Electric Vehicles . 4

2.1.1 Degrees of Powertrain Hybridization 4

2.1.2 Hybrid Electric Powertrain Architectures 5

2.2 Modelling Methodology . 9

2.2.1 Model Classification . 9

2.2.2 Model Representations . 11

2.2.3 Graph Theoretic Method . 14

2.3 Topology Search Methods Applied to Hybrid Electric Powertrain Architecture 15

2.4 Summary . 17

vi

3 Hybrid Electric Vehicle Components 18

3.1 Component Models . 18

3.1.1 Longitudinal Dynamics . 18

3.1.2 Final Drive . 20

3.1.3 Internal Combustion Engine . 21

3.1.4 Electric Motor / Generator . 21

3.1.5 Discrete Gearbox . 23

3.1.6 Powersplit Device . 25

3.1.7 Battery . 26

3.2 Component Masses and Scaling . 27

3.3 Summary . 28

4 Hybrid Electric Vehicle System Representation and Modelling 30

4.1 Graph-Theoretic Method . 30

4.1.1 Incidence Matrix Representation 32

4.1.2 Equation Generation . 34

4.1.3 Terminal Equations . 37

4.1.4 Driver Equation Selection . 38

4.2 Heuristics for Valid Vehicle Topologies . 41

4.2.1 Genomes . 41

4.2.2 Heuristics . 42

4.3 Summary . 44

5 System Model Validation 45

5.1 Verification of Powersplit Architecture versus Autonomie 45

5.2 Verification of Parallel Architecture versus Autonomie 52

5.3 Summary . 57

vii

6 Methodology 58

6.1 Topology Simulation and Evaluation . 59

6.2 Dynamic Programming . 63

6.2.1 Dynamic Program Pseudocode . 63

6.2.2 Dynamic Program Settings . 68

6.3 Objective Score . 73

6.4 Pattern Search . 75

6.5 Summary . 76

7 Results and Discussion 77

7.1 Multi-Stage Topology Screening . 77

7.2 Topology Optimization Results for the PNGV goals 82

7.3 Topology Optimization Results for the PNGV-HWFET drivecycle 90

7.4 Discussion and Interpretation of Results 93

7.5 Summary . 94

8 Conclusion 95

8.1 Contributions . 96

8.2 Lessons Learned . 96

8.2.1 Maple Toolbox Implementation . 97

8.2.2 Curve-fitting Toolbox . 97

8.2.3 Genetic Algorithm . 97

8.3 Future Work . 98

8.3.1 Mechanical Inefficiencies . 98

8.3.2 Genetic Algorithm . 98

References 101

viii

List of Tables

3.1 Baseline Mass and Scaling Equations for HEV Components. 28

4.1 Number of Unique Genomes per ’1’ picked in Mechanical Graph 44

5.1 Model Differences Between Autonomie and ASHev 46

5.2 Powersplit Model Parameters . 47

5.3 Parallel Model Parameters . 53

6.1 Values and Calculations for Objective Score 74

7.1 Pattern Search Settings . 82

7.2 PNGV drivecycle results: Description of Top 20 Genomes Seen in Figure
7.4 and Notable Genomes in Figure 7.5. 87

7.3 HWFET-PNGV drivecycle results: Description of Top 20 Genomes Seen in
Figure 7.4 and Notable Genomes in Figure 7.5. 91

ix

List of Figures

2.1 Common Hybrid Electric Vehicle Architectures. 7

2.2 Uncommon Hybrid Electric Vehicle Architectures. 8

2.3 Mechanical schematic and Block Diagram of Spring-Mass-Damper system,
adapted from [1]. 12

2.4 Electromechanical schematic and Bond graph of a shunt motor [2]. 13

2.5 Electromechanical Diagram and Energetic Macroscopic Representation an
Elevator with Counterweight [3]. 13

2.6 Electromechanical Schematic and Power Oriented Graph of a DC Motor
Adapted from [4]. 14

2.7 Mechanical geargrain and Linear Graph Representation. 15

3.1 Free Body Diagram of Vehicle Linear Dynamics. 19

3.2 Final Drive is Modeled as a Reduction Gear. 20

3.3 Brake Specific Fuel Consumption Hot Map for 57kW Internal Combustion
engine. Data source from Autonomie 2012 [5]. 22

3.4 Electric Motor Efficiency Map. Data source from Autonomie 2012 [5]. . . . 23

3.5 Diagram of a 5 Speed Sequential Gearbox with Reverse. 24

3.6 Diagram of a Planetary Gearset. 25

3.7 Equivalent Circuit Battery Model. 27

4.1 Linear Graph Representing a Series Hybrid. The Left Graph is the Mechan-
ical Graph and the Right Graph is the Electrical Graph. 33

x

5.1 Architecture of a Powersplit Vehicle . 46

5.2 Validation Results for Powersplit Architecture: ICE 48

5.3 Validation Results for Powersplit Architecture: Electric Motor and Genera-
tor . 50

5.4 Validation Results for Powersplit Architecture: Electric Motor and Genera-
tor Error . 51

5.5 Validation Results for Powersplit Architecture: Battery 52

5.6 Architecture of a Parallel Hybrid Vehicle 53

5.7 Valiation Results for Parallel Architecture: ICE and electric motor 55

5.8 Valiation Results for Parallel Hybrid: Gearbox and Battery 56

6.1 Cluster Computer Configuration . 59

6.2 Flow Chart for Simulating Vehicle States and Inputs. 62

6.3 Flow Chart for Dynamic Programming . 66

6.4 Forward Solve Flow Chart for Dynamic Programming 67

6.5 Code Vectorization method for Dynamic Programming 69

6.6 Solver Time versus Number of Discretized Inputs and Number of Dynamic
Program (Battery SOC) Grid Points. 70

6.7 SOC Error versus Number of Discretized Inputs and Number of DP (Battery
SOC) Grid Points. 71

6.8 Comparison of Autonomie Control Strategy versus Dynamic Program Strat-
egy. Both Simulations were Performed Using the ASHev model. 72

6.9 Comparison of Autonomie Control Strategy versus Dynamic Program Strat-
egy. Both Simulations were Performed Using the ASHev model. 73

7.1 Flow Chart of the Topology Screening Process. 79

7.2 Drivecycles. Top: US06 drivecycle. Highlighted Area is Used to Screen
Topologies. Middle: Drivecycle based on PNGV Design Guidelines. Bot-
tom: Drivecycle based on PNGV Design Guidelines with HWFET. 81

7.3 Results from the PNEV Screening. 83

xi

7.4 Top 20 Topologies Obtained from the PNGV drivecycle. Legend can be
found in 7.5. 84

7.5 Notable Topologies. 85

7.6 Dynamic programming results for Genome #1. Top: (left, solid line) battery
State-Of-Charge vs time, (right, dotted line) vehicle velocity vs time. Second
from top: cumulative fuel consumption vs time. Third from top: Internal
Combustion Engine torque output. Bottom: discrete gearbox ratios. . . . 88

7.7 Brake Specfic Fuel Consumption Map with operating points for Genome #1
on the PNGV drivecycle. 89

7.8 Optimization statistics for PNGV drivecycle. 89

7.9 Optimization statistics for PNGV-HWFET drivecycle. The numbering for
the topologies correspond to the genome number in table 7.2. 92

8.1 Genetic Algorithm Topology Search Results 99

xii

Chapter 1

Introduction

1.1 Problem Statement

Conventional transportation vehicles use combustion engines for propulsion because fossil
fuels are energy dense and relatively inexpensive. Rising fuel prices, depletion of fossil
fuels, and public environmental awareness have made electric vehicles an attractive alter-
native. Electric vehicles use electricity instead of gas for propulsion. Electric propulsion is
more efficient, quieter, and does not create tailpipe emissions. Unfortunately, conventional
electric vehicles are heavily reliant on batteries for energy storage. Batteries are expen-
sive, heavy, and require special charging equipment to charge quickly. Fuel cells have been
proposed as an alternative to batteries, but hydrogen fuelling infrastructure is not widely
available, and high pressure hydrogen storage technology is not mature. As an intermittent
step from gasoline to electric vehicles, Hybrid Electric Vehicles (HEVs) have emerged in
the marketplace.

Hybrid Electric powertrains combine elements from traditional gasoline powertrains and
electric powertrains. This is advantageous because they operate 10-20% more efficiently,
and can still refuel at any gasoline station [6, 7, 8]. Including additional powertrain com-
ponents create challenges. Complex controllers are required to ensure the components are
operating efficiently. Cost and weight also increase with the number of components.

As the number of components increase, the number of possible powertrain configura-
tions increase exponentially. Powertrain architectures can be identified through human
judgement or numerical enumeration. Human judgement relies on experience, but is sub-
ject to human error and cognitive bias. Enumerative methods involve numerically gener-
ating all possible permutations, then testing each one. This potentially requires a lot of

1

computing power to solve in a practical amount of time. As computing power becomes
cheaper, enumeration becomes a more attractive option. Evaluating topologies involve
building prototypes or performing modelling and simulation. Mathematical models are
faster and cheaper to create than building physical prototypes, but in the words of George
E. P. Box, “essentially, all models are wrong, but some are useful”. Thus, prototypes
will still need to be created and iterated. Math models allow us to reduce the number of
prototypes built by identifying optimal starting points.

1.2 Research Objective

The objective of this research is to create a tool can be used to: (i) compare Hybrid Electric
powertrains, and (ii) identify novel Hybrid Electric powertrains. Due to time constraints,
this research shows proof of concept by limiting the components to: 1 large electric motor,
1 small electric motor, 1 engine, 1 planetary gearset, and 1 5-speed gearbox. The resultant
tool is an open ended framework, in which any number of components could be added.

1.3 Approach

This thesis proposes a method to automate the synthesis and optimization of Hybrid
Electric Vehicle powertrains. Liu [9], first proposed similar work focusing on the automated
synthesis of planar mechanisms, and named this computer implementation ’AutoSyn’. As
tribute, this work will be known as ASHev — AutoSyn for Hybrid Electric Vehicles.

In ASHev, each topology is represented as a ‘genome’. A genome is a string of ‘1s’ and
‘0s’ that contains all the topological information for a powertrain. Enumerating a genome
string yields a impractically large set of genomes. Heuristics are employed to reduce this
set to a practical number. These genomes will be parsed into an Incidence Matrix which
describes the topology of the powertrain. The Graph Theoretic Method (GTM) [10, 11, 12]
can then be used to generate the system equations for the given genome.

GTM is used to generate the system interconnection equations, and is augmented by
the appropriate component equations to create the system equations. Using GTM is ad-
vantageous because the acausal nature of the equations is flexible for solving topological
equations. This system of equations is then systematically analysed for appropriate con-
trol variables, and the system is solved symbolically in terms of these variables. This
symbolic solution is a backwards (system behaviour is defined first, then the corresponding
component behaviour is calculated) steady-state model of the Hybrid Electric powertrain.

2

Using this backwards steady-state model, the vehicle powertrain is simulated using
a drivecycle (experimentally determined average driving behaviour). As a powertrains’
efficiency is highly dependant on its controller, an optimal control law approach is used to
ensure the topologies compared fairly. Dynamic Programming [13, 14, 15, 16] is used to
find the optimal control law which minimizes the energy consumption for each topology.

The powertrain is further improved by optimizing the component sizes. The Pattern
Search optimization algorithm is used because it is a global optimization method that does
not require gradient information. As an initial screening step, the powertrain is optimized
for a drivecycle based on the Partnership for the New Generation of Vehicles (PNGV) goals
[17, 18, 19]. The top 20 topologies are chosen, as well as some reference topologies, the
optimized for a combination of the PNGV and HWFET drivecycle.

1.4 Document Overview

This is the first chapter which introduces the thesis. The second chapter contains a liter-
ature review of: Hybrid Electric Vehicles powertrains, modelling techniques, and topology
search methods. The third chapter discusses the equations that govern the powertrain com-
ponents. The fourth chapter explains the process of assembling the component equations
into a system model using the Graph Theoretic Method; an example of a Powersplit Hy-
brid powertrain is given. The fifth chapter validates two system models assembled with the
GTM by comparing them to the Autnonmie software package. The sixth chapter describes
the overall methodology and implementation of ASHev, including: Dynamic Programming,
cluster computing, and the Pattern Search optimization algorithm. The seventh chapter
describes the screening processes, and presents 24 efficient topologies. The final chapter
concludes the thesis, provides lessons learned, and possible future work.

3

Chapter 2

Literature Review

This chapter starts by defining the degrees of of powertrain hybridization. Common Hybrid
Electric Vehicle powertrain topologies are described, and a few examples of unique topolo-
gies are given. Modelling methods previously applied to HEV powertrains are explained.
Finally, methods for generating and evaluating new hybrid powertrain configurations are
reviewed.

2.1 Hybrid Electric Vehicles

HEV powertrains can be comprised of different components in different configurations.
Certain configurations have multiple operating modes; they can achieve propulsion, brak-
ing, or charge the battery in multiple ways. A powertrain with more operating modes
generally will operate have a higher overall efficiency. Also, a powertrain with more oper-
ating modes will have a higher the ‘degree of hybridization’. The size of the components
can also affect the number of operating modes; generally, larger components allow for ad-
ditional functionality. This section will describe the difference between micro, mild, full
and plug-in hybrids, as well as describe a few common and commercially available HEV
architectures.

2.1.1 Degrees of Powertrain Hybridization

While the minimum requirement for a powertrain to be considered a hybrid powertrain is to
have both gasoline powered and electric components, there are many levels of hybridization.

4

This section will highlight the differences between the degrees of hybridization.

Micro-Hybrids are the lowest level of hybridization, characterized by engine stop-
start operation and limited regenerative braking. Engine stop-start operation enables
the engine to stop when idling (the vehicle is not moving), then immediately resume by
using the small electric motor (powered by the battery) to crank the engine. The greatest
fuel savings are achieved when there are frequent stops, such as in urban driving scenarios.
Regenerative braking can be achieved by using the eletric motor to capture the kinetic
energy from braking an converting it to electrical energy which can be stored in the battery
[20, 21]. The cost of implementing a micro-hybrid system is comparatively small; a typical
motor is 2.5kW and can operate on a standard 12V battery. In city driving, Micro-HEVs
typically reduce energy consumption by 5-10% [8]. The Citroen C3 is an example of a
micro hybrid.

Mild and Medium Hybrids can operate as a Micro-HEVs, but the electric motor
can provide substantial tractive power. For a sedan passenger vehicle, a typical electric
motor peak output is 10-20kW. Mild hybrids provide tractive power only at low speeds.
Medium hybrids can provide tractive power at low and high speeds and most braking
energy is done regeneratively [21]. Mild and Medium hybrids require more power, thus
their batteries operate at higher voltages of 100-200V. In city driving, energy savings are
typically 20-30%. Vehicle cost will also increase 20-30%. Honda Civic Hybrid and Honda
Insight are examples of Mild hybrids [8].

Full or Power Assist Hybrids can operate as fully electric vehicles for short dis-
tances. Operating as an electric vehicle requires a larger motor and a high voltage battery.
Typical electric motors are 50kW [8], which use batteries that operate at 100-300V. Full
Hybrids are 30-50% more fuel efficient, but cost 30-40% more than a conventional gasoline
vehicle. Full Hybrid powertrains can be tuned for improved fuel efficiency, as (i.e. the
Toyota Prius), or for improved driving performance, (i.e. the Toyota Highlander) [8, 21].

Plug-in Hybrids can operate as an electric vehicle for 30-60km. Like all hybrids, they
can use any gasoline station to refuel. However, they can also recharge their batteries at a
home or commercial charging stations [8]. Driving long distances requires large batteries.
If only short distances were driven, one could potentially never use gasoline [21].

2.1.2 Hybrid Electric Powertrain Architectures

As previously mentioned, HEVs have both electric and gasoline powertrain components.
These components can be connected in different configurations to create architectures,
each with unique properties and operating modes. Shown in figure 2.1 are three common

5

HEV architectures: Parallel, Series, and Powersplit. This section will compare and con-
trast the differences between hybrids, as well as introduce a few commercially available
configurations.

Common Hybrid Electric Powertrain Architectures

Parallel Hybrids (figure 2.1 A) have the simplest powertrain architecture because they
have the fewest components, and structure a structure simular to a traditional gasoline
vehicle. The powertrain coupling in this hybrid is mechanical; the engine is connected
through a gearbox to the wheels, which shares a drive shaft with an electric motor. This
allows the engine and/or electric motor to provide tractive force to the wheels. The en-
gine will burn gasoline to create tractive force, and the electric motor can assist by using
energy from the battery. The main advantage of this architecture is its simplicity; there
are few added components making this a cheap, light alternative. In certain cases, Par-
allel powertrains can be more efficient than other hybrid powertrains because there is no
transformation of energy from mechanical to electric power. However, there is less control
over the engine operating conditions because the engine is mechanically connected to the
wheels, and therefore the engine speed which minimizes fuel consumption can not always
be selected.

Series Hybrids (figure 2.1 B) are also known as range extended electric vehicles. This
type of hybridization can be found in diesel-electric locomotives and Hybrid Electric buses.
The coupling in this hybrid is electrical; the Series hybrid effectively runs as an electric
vehicle by powering the electric motor with the battery. When the battery’s State-Of-
Charge is low, the gasoline engine will crank the generator to recharge the battery. The
main advantage of this architecture is that the engine can operate at the most efficient
speed at all times.

Powersplit Hybrids (figure 2.1 C) are also known as Series-Parallel Hybrids because
they can operate both as a Series Hybrid or a Parallel Hybrid. The Toyota Prius is built
upon this architecture. The Powersplit Hybrid uses a planetary gearset which allows mul-
tiple degrees of freedom during operation. For example, in a Prius-like architecture, if the
sun gear is locked, the planetary gearset will act as a single speed gear, and the engine will
provide traction out of the ring gear to the final drive, like a Parallel Hybrid. Conversely,
if the sun gear is not locked, the engine will turn the generator to generate electricity
like a Series Hybrid [22, 23]. This flexibility makes the Powersplit Hybrid powertrain very
efficient and thus has been adopted, with some modifications, for commercial application
by Toyota, General Motors and Ford.

6

Gba

GBb

EMEM

FD

ICEFuel

BAT CONV

S

PC

R

GENGEN

EMEM

FD

ICEFuel

BAT CONV

EMEM

FD

ICEFuel

BAT CONV

GENGEN

Legend

Mechanical

Electrical

Transmission

Assumed

Electrical
Connection

Mechanical
Connection

C) Powersplit Hybrid

A) Parallel Hybrid B) Series Hybrid

EM = Electric Motor
GEN = Generator
ICE = Engine
R/S/PC = Planetary Gearset:
 Ring/Sun/Planet Carrier
Gbx = Discrete gearbox

side x

Figure 2.1: Common Hybrid Electric Vehicle Architectures.

Specific Hybrid Electric Powertrain Architectures

Individual automotive manufacturers have made improvements to the original common
hybrid powertrain architectures. Shown in figure 2.2 are the architectures created by Ford,
GM-Allison, as well a ‘complex’ architecture.

Shown in figure 2.2 A, the Ford Hybrid System (FHS) is very similar to the Toy-
ota Hybrid System I & II [23] (Powersplit architecture) developed by Toyota. The main
difference is the presence of additional reduction gears (N1, N2, N3) at the final drive
transmission [24].

Shown in figure 2.2 B, the GM-Allsion Hybrid system (AHS) contains two planetary
gears mechanically joined by the planetary carrier and three clutches. The ring gears are
connected in parallel with a electric generator, and separated by two clutches connected

7

S

PC

R

GENGEN

EMEM

ICEFuel

BAT CONV

N2

N3

N1

FD

S

PC

R

EMEM

ICEFuel

BAT CONV

S

PC

R

GEN

GEN

FD

A) Ford Hybrid System B) GM-Allison Hybrid System

S

PC

R

EM1EM1

EM2EM2

ICEFuel

BAT CONV

FD

C) Complex Hybrid

Legend

Mechanical

Electrical

Transmission

Assumed

Electrical
Connection

Mechanical
Connection

FD = Final Drive
Reduction Gear

EM = Electric Motor
GEN = Generator
ICE = Engine
R/S/PC = Planetary Gearset:
 Ring/Sun/Planet Carrier
Gbx = Discrete gearbox

side x
Nx = Gear

= Clutch

= Grounded Clutch

CONV

CONV

Figure 2.2: Uncommon Hybrid Electric Vehicle Architectures.

to ground. More operating modes are made available by opening and closing the clutches,
and thus this architecture can achieve higher overall efficiency than the Powersplit Hybrid
architecture. This system is advantageous because it has many operating modes, including:
stationary charging, a Series-like low speed and reverse mode, and a high speed mode.
However, the increased number of components leads to higher controller complexity and
cost [24, 23, 22].

The Complex hybrid in 2.2 C, is similar to the Series-Parallel architecture in many
ways; the key difference is that the generator is typically used both as a motor and gener-
ator. This requires the electric motor and the generator to have separate converters. This
architecture has been adopted by some 4 wheel drive systems [18].

8

2.2 Modelling Methodology

Vehicles can be modelled at various levels of detail. A model’s fidelity is dependent on the
application; for conceptual design, a low fidelity model is sufficient, whereas a high fidelity
model is usually required for control design and detailed vehicle performance. The most
suitable modelling methodology is dependent on the model application. For example, Chan
et al. [25] has suggested that a backwards, functional, quasi-static, causal model may be
appropriate for global energy management problems (i.e., minimizing the fuel consumption
of a vehicle for a drivecycle). Conversely, it has been suggested that a forward, functional,
dynamic, acausal model may be appropriate for local energy management problems, such
as subsystem power optimization [25]. A low fidelity model that solves quickly with few
errors is best suited for topology optimization of a hybrid electric powertrain because
many different configurations must be examined. In this section, model classification is
explained, a number of modelling approaches are described, and approaches to modelling
HEV powertrains are introduced.

2.2.1 Model Classification

Steady-state Dynamic and Quasi-static models

A model’s fidelity is dependant on the equation structure and how time is represented.
Models can be represented in steady-state, dynamic and quasi-static form. Steady-state
models are simple because the system behaviour is captured as discrete snapshots in time.
Transient behaviour is assumed to be negligible, and is often based on empirical data in
the form of lookup tables. The equations in steady-state models are often linear functions.
Dynamic models are more complex; the model assumes that time is continuous, and will
capture all dynamic behaviour. Dynamic models often employ differential equations, which
require more computational power to solve.

Quasi-static models combine dynamic and static models; the system model includes
both steady-state and differential equations [25]. Engine operation is extremely complex,
and thus a simplified model that approximates fuel consumption using a steady-state map
is commonly used. The vehicle dynamics and engine speed are modelled with differential
equations. Together the differential equations describing vehicle dynamics and the steady-
state fuel consumption approximations create a quasi-static system model.

9

Structural and Functional Models

Structural and functional models use mathematics to predict the behaviour of a system
but are implemented in different ways. Most systems can be modelled using a structural
or functional model, so the choice is dependant on the application and user preference.
Structural models focus on the relationships between components, rather than the indi-
vidual components. Structural models can be used to quickly create systems by defining
the relationship between components. The software will interpret the structure and auto-
matically generate the system equations. Most ‘drag-and-drop’ software packages, such as
Autonomie [5] and MapleSim [26], use structural modelling.

Functional models focus on mathematical equations (or code) to represent the com-
ponents and their connections. Functional models model are written using mathematical
relationships, will solve quicker, and allow more flexible relationships [25]. However, it is
often difficult to discern or change a system structure by looking at mathematical relation-
ships, and errors can be made because there are no constraints to what relationships can
be made.

Forward and Backwards Models

Forward and backward models refer to the direction in which the dynamics are calculated.
Forward models, also known in the automotive industry as ‘engine-to-wheel’ models, start
with a component generating a force/torque, and the system behaviour is subsequently
observed. For example, a forward model of a traditional ICE automobile would start by
specifying the engine torque, and subsequently calculating the vehicle acceleration. For-
ward models better represent the reality of the system, and can be useful for controls
development. Backwards models, also known as ‘wheel-to-engine’ models, start with a
specified behaviour of the system, and the required input from the components to create
that behaviour is back-calculated. For example, if a backward model of the same automo-
bile was created, the vehicle speed would be specified and subsequently the engine torque
to achieve that speed would be calculated. As it is simpler to know the expected outcome
of the system, backward models are popular for conceptual system design [25]. Autonomie
is an example of software that generates both forward and backward models [5].

Causal and Acausal Models

Causal models use the principle of cause and effect. Causal models always have an output
which is a function of the system input. Conversely, acausal models assume that rela-

10

tionships are bidirectional; inputs and outputs are easily interchangeable. For this reason
software packages such as Modellica [27], MapleSim[26], or Mathworks SimScape [28] that
use structural models often use acasual relationships [25].

2.2.2 Model Representations

Models are simplifications of reality. Different simplifications yield different model rep-
resentations. Some model representations, such as block diagrams, are focused on the
computation of the model and neglect the physical structure real system. Other model rep-
resentations such as bond graphs and linear graphs focus on the structure of the physical
system and use computer algorithms to generate the system equations. Each representation
has a different graphical appearance and equation formulation.

Block Diagrams

Block diagrams are often used for controls development, especially for linear time-independent
systems [1, 29]. Block diagrams are shown in the order in which they are executed and not
the physical structure of the system. The components of the system are often mathemati-
cally described using state-space notation. Block diagrams are casual; there is no feedback
between components unless a feedback loop is specifically designed into the model [2].
Transfer functions are derived from differential equations to linearize the system, resulting
in a causal model. Mathworks Simulink is an industry accepted software package that uses
block diagram to represent models.

Bond Graphs

Bond graphs can be used to model multi-domain systems, but are best suited for elec-
tromechanical systems. Bond graphs are causal models, and have a structured procedure
for assigning causality [2].

Bond graphs describe energy interchange as effort and flow variables, which have the
product of power. For example, in an electrical system, the effort variable would be voltage
and the flow variable would be current. In a mechanical system, force would be the effort
variable and velocity would be the flow variable.

Sources and Sinks (S) add or remove effort (Se) and flow (Sf). Resistance is a dissi-
pative (R) element that energy and relates effort to flow. Similar to how a capacitor can

11

m

k

b y(t)

u(t)

Mechanical Schematic

u(t) m-1

bm-1

km-1

∫ ∫ +
-

+
+

Block Diagram

y(t)

Figure 2.3: Mechanical schematic and Block Diagram of Spring-Mass-Damper system,
adapted from [1].

accumulate a charge, flow and effort (C and I) can be stored. Transformers (TF) and
Gyrators (GY) transform effort and flow from one domain to another. Some sources can
be modulated (M) by an external signal, meaning the value is a predetermined user value
[30, 2].

Junctions are used to build a model structure. There are two types of junctions: 0
junctions and 1 junctions. 0-junctions have their flows sum to zero. 1-junctions have their
efforts sum to zero. A schematic and bond diagram for an electromechanical DC motor is
shown in figure 2.4.

Energetic Macroscopic Representation

Energetic Macroscopic Representation (EMR) is a causal method for modelling electrome-
chanical systems [31, 3]. Compared to Bond Graphs, EMR is focused more on the system
function.

EMR is based on the action-reaction principle. The product of an action and its reaction
is power regardless of the domain. Power is transmitted between connected elements by
a combination of action and reaction. In an example given by Chen [32]: “if a current
source (s1) is connected to a capacitor (s2), the action of s1 is its current and the voltage
is its reaction by s2”. The action-reaction principle can be described using most causal

12

E

v1 v2 v3

v0

Rf Jm

Rm

+
-

ω

Mload

LaRa

Se

E
0 1

Ra

La

ia
va

vR

K

1

1

Rf

Jm

M Mload MSe

Rm

M

R

Electrical Mechanical

MGY

Figure 2.4: Electromechanical schematic and Bond graph of a shunt motor [2].

modeling tools such as transfer functions. Shown in figure 2.5 is a simplified EMR of an
elevator with a counterweight, adapted from Barrade et al. [3].

E

E
Power
Source

v

i

Fpc

v

vc

Fpe

mc

me+mp

v

vc

FT

FTc

Tm

Ωm

Motor

v

i

Power
Source

me

mp

mc

Electro-mechanical Diagram Energetic Macroscopic Representation

Figure 2.5: Electromechanical Diagram and Energetic Macroscopic Representation an El-
evator with Counterweight [3].

EMR has been adapted by Chen et al. [6, 33] to create a framework which could model
Powersplit/Series/Parallel/BEV/ICEV topologies by changing a set of Boolean values,
which represented the interconnections between components. The system was represented
using a backward-dynamic quasi-static model.

13

Power Oriented Graphs

Power Oriented Graphs (POG) were developed from Bond Graphs, but have different
graphical notation and terminology [4]. Bond graphs are well suited for systems represented
in state-space form. This form is particularly well suited for implemented using Simulink.

Like Bond Graphs, the principle of power being exchanged between connected compo-
nents is applied, and there are two “conjugate variables” who have the product of power
flow [34]. Elaboration blocks are used to store and dissipate energy (for example: springs,
masses and dampers), and connection blocks are used to transform energy (for example:
gear reduction or electrical inverter) [25, 35, 4]. An example POG of a DC motor is shown
in figure 2.6.

(R+Ls)-1

Kτ

(b+Js)-1

ωr

Kτ

E
V

τeτm

+
- J

L R
Ia

V E

τm τe

ωr b

Electromechanical Schematic POG Model

Figure 2.6: Electromechanical Schematic and Power Oriented Graph of a DC Motor
Adapted from [4].

POG has been used to model many automotive systems, such as: transmission, control
systems, and electric motors [36, 37, 35, 4].

2.2.3 Graph Theoretic Method

The mathematician Euler used Linear Graphs to represent system topologies in the 1700s.
In this thesis, Graph Theoretic Method (GTM) is applied and will be described in greater
detail in section 4.1. Electrical, mechanical, hydraulic, and electrochemical domains have
been modelled using the GTM. DynaFlex Pro and MapleSim are examples of software
packages that use the Graph Theoretic Method to generate equations. The GTM was used
to model tire dynamics for various topologies in Dynaflex pro, and was validated against
a verified model in MSC.ADAMS [38].

14

Briefly, the topology of a system can be described using a linear graph that pictorially
represents the structure using lines and circles; circles are called nodes, and lines are called
edges. Edges represent components, and circles represent the component terminals. The
direction of measurements are defined by specifying a direction in the graph; the direction
of the relationship is represented with an arrowhead. Shown in figure 2.7, a mechanical
gear train is represented as a linear graph [39].

System equations are obtained by describing the linear graph as an incidence matrix,
then applying the GTM [40, 41, 12, 11]. The GTM is applied to incidence matrix to gen-
erate interconnection equations which describe the relationships between measurements.
Component behaviour is described by including constitutive equations which are dependant
on the physical domain. The system equations can be obtained by combining the constitu-
tive equations and the interconnection equations. The result is an acausal symbolic system
of equations.

b

c

g

4

6

a

ω1 G

G G

A B

K2

B3

G4,5
τ6

Figure 2.7: Mechanical geargrain and Linear Graph Representation.

2.3 Topology Search Methods Applied to Hybrid Elec-

tric Powertrain Architecture

Heuristics or selective human judgement can be applied to assess the feasibility of a topol-
ogy [22]. Heuristics use ‘rules of thumb’ to constrain the design space. It can be difficult to
create heuristics that are general enough to reduce the number of topologies to a practical

15

number but not accidentally eliminate feasible solutions. Heuristics that can be described
using mathematics are well suited for computer-based enumerative approaches. Selective
processes rely on human judgement to asses a topology, thus are prone to error and cogni-
tive bias. If a powertrain architecture is feasible, it can be further improved by optimizing
the size of its components. This section will describe a few methods used by other authors
to generate and evaluate HEV powertrain topologies.

Multiple Planetary Gearsets

As various automotive manufacturers hold patents for specific powertrain architectures,
research has been done to identify and evaluate novel concepts. Since planetary gearsets
can connect 3 components together, multiple planetary gearsets can results in many dif-
ferent powertrain configurations. Bayrak et al. [22] described a systematic method to
select the optimal powertrain configuration containing two planetary gearsets, one engine,
and two electric motors. The topology is represented using bond graphs, and the system
equations are generated in state space form. An adjacency matrix is used to describe the
connections in the bond graph. A heuristic search is applied to find valid topologies, and
eigenvalue information is used to eliminate isomorphs. Equivalent Consumption Minimiza-
tion Strategy (ECMS) is used to determine the optimal control law which minimizes fuel
consumption. ECMS assumes the objective score is a function of the fuel consumed, and
the energy discharged from the battery [42]. An architecture was found that uses 8% less
fuel than a Prius-like configuration.

Liu et al. [43] proposed an exhaustive search to discover all HEV configurations in-
volving two planetary gears, an ICE, and two electric motors. The powertrain is designed
for a military vehicle (Humvee), with a curb weight of approximately 5000kg. Once a
configuration is structurally feasible, the component sizes are optimized (including gear ra-
tio, but not battery), and its drive performance is evaluated. Dynamic Programming was
used to evaluate the fuel consumption for each configuration. 288 kinematically feasible
designs were found, but only 2 were able to meet both low speed and high speed driving
performance.

Ma et al. [44] used an enumerative approach to discover HEV geartrains comprised of
two planetary gear sets, and two clutches. All configurations are evaluated for top speed
and torque. It was found that the second planetary gearset can act as a variable reduction
gear, thus better accelerations can be achieved at higher velocities.

16

Clutches and Gearboxes

Mechanical clutches can increase the number of degrees of freedom a powertrain by al-
lowing/disallowing the transfer of rotational energy. Clutches can connect and disconnect
rotating bodes. If one end of the clutch is connected to ground, it will prevent the other
end from rotating when closed. These additional operating modes can potentially improve
system efficiency. Zhang et al. [45] used an enumerative approach to compare variations of
Prius-like and Volt-like HEV powertrains. The configurations are comprised of: one plane-
tary gear, one ICE, two electric motors, and any number of clutches. The topology design
space is enumerated then evaluated manually for realism. Dynamic programming is used
to minimize the fuel consumption for comparison of configurations. Simulations ignore:
gear efficiency, acceleration performance, and stationary charging operation (ICE charging
battery at standstill). Adding a clutch to the Prius configuration (originally no clutches)
improved fuel economy for urban driving, but not for highway driving. Removing a clutch
from the Volt configuration (originally 3 clutches) resulted in similar fuel consumption for
both drive cycles, and therefore can theoretically be removed to simplify the system.

In addition to clutches, the position of various gearboxes can have an effect on the
overall system efficiency. Hofman et al. [46] used an enumerative approach to optimize
powertrains consisting of: a transmission, electric motor, and ICE. Numerous transmissions
were evaluated. Component sizes were also optimized. Topology feasibility was manually
assessed, then the equations were assembled manually. Dynamic programming was used
to find the optimal control law that minimizes carbon dioxide emissions. It was found
that the optimal topologies were: an automatic transmission with electric motor between
ICE/transmission; or a continuously-variable transmission with an electric motor between
transmission/differential.

2.4 Summary

There is a significant body of literature regarding HEV powertrain modelling. Of the
reviewed work, Linear Graphs and the Graph Theoretic Method have yet to be applied to
HEV topology optimization. This thesis will report the effectiveness of applying the GTM
to exploring and optimizing HEV topology.

17

Chapter 3

Hybrid Electric Vehicle Components

This chapter describes the equations which govern the vehicle powertrain components. The
models described in this chapter are: vehicle dynamics, final drive reduction gear losses,
internal combustion engine, electric motor/generator, powersplit device, and battery. The
components are described using steady-state models, thus all the equations in algebraic
form. Where possible, data was collected from the Autonomie 2012 software package [5]
for use in the ASHev model. The steady-state powertrain model assumes any component
can reach any operation point within 1 second, regardless of its original operating condi-
tion; however, penalties are applied during Dynamic Programming to prevent unrealistic
behaviour (described in section 6.2). The method for scaling component sizes is described
at the end of the chapter.

3.1 Component Models

3.1.1 Longitudinal Dynamics

The vehicle is described only by its longitudinal dynamics [47, 7, 13, 48, 49]. These equa-
tions assume the vehicle is: (i) driving forward, (ii) in a straight line, (iii) on a flat plane,
(iv) of variable slope. Lateral effects such as turning and crosswinds are ignored. The
free body diagram for the vehicle is shown in figure 3.1. The equation for longitudinal
dynamics is described in equation 3.1.

Ft = mv
d

dt
v(t) + Fa + Fr + Fg + Fd (3.1)

18

where mv is the vehicle mass, v(t) is the vehicle velocity, Fa is aerodynamic friction, Fr
is the rolling friction, Fg is the component of weight parallel to the (sloped) road, and Fd
is the inertial force of the driveline. Ft is the traction force generated by the powertrain,
which is transmitted through the final drive to the wheels.

Fd
Fa

Ft

Fg

mv· gFr

v

α

Figure 3.1: Free Body Diagram of Vehicle Linear Dynamics.

Aerodynamic forces are described in equation 3.2.

Fa =
1

2
ρAfcdv

2 (3.2)

where ρ is the density of air, Af is the frontal area of the vehicle, and cd is the constant
coefficient of drag.

Rolling friction is defined as the normal component of weight multiplied by the coeffi-
cient of rolling friction, and is described by equation 3.3.

Fr = crmvg cos(α) (3.3)

19

where cr is the coefficient of rolling friction (assumed to be constant), g is the acceleration
due to gravity, and α is the slope of the road.

The force of gravity is described equation 3.4.

Fg = mvgsin(α) (3.4)

Where g is the acceleration due to gravity (9.81m/s2), mv is the vehicle mass, and α is the
road slope.

The inertial driveline force is described by equation 3.5.

Fd = λmv
dv

dt
(3.5)

Where λ is the rolling inertia of the driveline.

3.1.2 Final Drive

The final drive model is a simple reduction gear assuming a 3% power loss [5]. The equation
for torque and speed are shown in equation 3.6.

τFD =
τWheel

0.97i0
ωFD = ωWheeli0

(3.6)

where τFD and ωFD is the final drive torque and angular speed; τWheel and ωWheel is the

τFD, ωFD

τWheel, ωWheel

Figure 3.2: Final Drive is Modeled as a Reduction Gear.

final drive torque and angular speed of the wheel; and i0 is the ratio of the reduction gear
for the final drive.

20

3.1.3 Internal Combustion Engine

The Internal Combustion Engine (ICE) burns fuel (usually gasoline) in a small chamber
containing a piston connected to a crankshaft. The expansion of gas pushes on the piston,
causing it to move, and forcing the crankshaft to rotate. Higher engine torques can gener-
ally be produced by combusting more fuel. The efficiency of the engine is highly dependent
on its operating conditions. The engine efficiency is generally determined experimentally
and described using Brake Specific Fuel Consumption (BSFC) map.

The ICE fuel consumption is modelled by interpolating the BSFC map. This experi-
mentally validated the data was taken from Autonomie [5] and is shown in figure 3.3. It is
assumed the engine is always hot, so a ‘cold map’ describing fuel consumption of a cold en-
gine is not required. Realistically, frictional forces cause the engine to naturally slow down
when the engine is not supplied with fuel. However, ASHev uses a steady-state model, so
these dynamics are not captured. Instead, it is assumed that no fuel is consumed if the
engine is not outputting torque. The fuel consumption rate is approximated by a lookup
map, and is described by equation 3.3. Attempts to model the ICE fuel consumption rate
as a 5-3 polynomial (2 variable polynomial largest powers 3 and 5) were successful, but
took longer to solve and was less accurate.

ṁfuel[g/s] =
BSFC(τICE, ωICE)

[
g

kWh

]
3.6 ∗ 106

[
J

kWh

] τICEωICE (3.7)

The maximum torque constraint is described using a 3rd order polynomial [13, 7], shown
in equation 3.8 .

τICEmax = p1x
3 + p2x

2 + p3x+ p4 (3.8)

where x is the engine speed in rads.

3.1.4 Electric Motor / Generator

3-3 polynomials are usually sufficient to describe the efficiency of an electric motor gener-
ator (EM/GEN)[50]. However, it was found that a 4-4 polynomial had a better fit to the
efficiency maps provided by Autonomie [5]. The electric motor/generator efficiency (ηEM)
is modelled as a 4-4 polynomial described in equation 3.9.

ηEM = p00 + p10τ + p01ω + p20τ
2 + p11τω + p02ω

2 + p30τ
3 + p21τ

2ω

+p12τω
2 + p03ω

3 + p40τ
4 + p31τ

3ω + p22τ
2ω2 + p13τω

3 + p04ω
4 (3.9)

21

2
4
0

240

240
240

240

260
260

260

280
280

280

300 300
300

320 320 320

340 340 340
360 360 360
380 380 380
400 400 400420 420 420440 440 440460 460 460480 480 480500 500 500520 520 520

Brake Specific Fuel Consumption Map

Speed (rads)

T
o

rq
u

e
 (

N
m

)

150 200 250 300 350 400 450
0

20

40

60

80

100

120

BFSC (g/kWh)

Max Torque

Figure 3.3: Brake Specific Fuel Consumption Hot Map for 57kW Internal Combustion
engine. Data source from Autonomie 2012 [5].

where τ and ω is the torque and speed of the EM respectively. The polynomial fit is
acceptable (R2 = 0.9995), but will accumulate small errors over time. The EM can operate
as a motor and/or generator. Operating as a generator is sometimes less efficient than
operating as a motor, and thus each operation mode uses a different efficiency map. If the
product of the torque and speed is positive (first and third quadrant), it is operating as a
motor. If the product is negative (second and fourth quadrant), then it is operating as a
generator. This behaviour is shown in figure 3.4. In equation 3.10, a piecewise equation
describes the behaviour of the EM while: not operating, operating as a motor, or operating
as a generator.

PEM(τ, ω) =


τω = 0, 0
τω > 0, ηEM+(τ, ω)τω
τω < 0, ηEM−(τ, ω)τω

(3.10)

22

where ηEM+ and ηEM− is the efficiency of the EM during motor (+) or generator (-)
operation respectively.

5
0

5
0

5
0

5
0

5
0

5
0

5
6

5
6

5
6

5
6

5
6

5
6

6
2

6
2

6
2

6
2

6
2

6
2

6
8

6
8

6
8

6
8

6
8

6
8

7
4

7
4

7
4

7
4

7
4

7
4

8
0

8
0

8
0

8
0

8
0

8
0

8
6

8
6

8
6

8
6

8
6

8
6

8
6

8
6

8
6

8
6

8
6

8
6

86 86

92

92

9
2

92

92

92

92

92

Motor Efficieny Map (Torque)

Speed (rads/s)

T
o
rq

u
e
 (

N
m

)

−600 −400 −200 0 200 400 600
−400

−300

−200

−100

0

100

200

300

400

Efficiency

Max Torque (Propulsion)

Max Torque (Regen)

Figure 3.4: Electric Motor Efficiency Map. Data source from Autonomie 2012 [5].

Using GTM, ‘Power’ is not a through or across variable. Therefore an additional
equation is used to relate the electrical power to the current measured at the EM terminals.

IEMG =
PEMG

VEMG

(3.11)

3.1.5 Discrete Gearbox

The 5-speed manual gearbox is comprised of a train of spur gears [51]. Such gears are
commonly applied in automotive applications because they are 98-99% efficient [52]. The
schematic shown in figure 3.5, the gearbox ratio can be selected by moving the gear selector
fork, which will engage the gear collars. A rotational speed at Flange A ωGBa will be
multiplied or reduced by the selected gear ratio RGB resulting in speed ωGBb

seen at

23

Flange B. Conversely (assuming no losses), the torque seen at Flange B will be equal to
the negative product of inverse of RGB and the torque seen at Flange A.

The modelled gearbox has 5 gear ratios, ranging from less than 1 to greater than 3; the
gearbox can act as either a speed reducer or a speed multiplier. As the system equations of
the vehicle will be generated acasually, and the gearbox will not know which flange is the
input/output, the 5-speed gearbox is modelled as an ideal (lossless) gear. The equation
for the gearbox is shown in equation 3.12 [5, 26].

1 2 3 4 5 R

Flange A Flange B

Gear selector Fork

Idler Gear

Layshaft

Shifter

Figure 3.5: Diagram of a 5 Speed Sequential Gearbox with Reverse.

τGBb =
−1

RGB(ig)
τGBa

ωGBb = RGB(ig)ωGBa

(3.12)

where GBa and GBb are rotational flanges on the gearbox, RGB is the gear ratio equal to
{3.32,2,1.36,1.01,0.82} (the default gearbox in Autonomie [5]), and ig is the gear number.

24

3.1.6 Powersplit Device

The Powersplit Device (PSD) (also known as the planetary gearset, or epicyclic gear train)
can be found in automatic gearboxes, automotive differentials, and aircraft propeller re-
ductions. The PSD allows 3 rotational components to be connected together. Shown in
figure 3.6, the Powersplit Device is comprised of a ring gear, a sun gear, a planetary carrier
gear, and the planet gears. There are always at least 3 planets on the planetary carrier
to ensure rotational balance and reduce stress on the planet gears. As the sun gear turns,
it will force the planet gears to turn the opposite direction, which turns the ring gear.
The planet carrier can also turn, which causes the planet gears to rotate around the sun
gear allowing for different speed outputs (including negative rotations) at the ring gear
[52, 51]. The Powersplit device is described using 6 variables and 3 algebraic equations,

Sun

Ring Gear

Planet Carrier

Planet

Figure 3.6: Diagram of a Planetary Gearset.

thus allowing 3 degrees-of-freedom (DOF). During operation, if one of the gears is locked
in place (not allowed to move) the system can be treated as a static gear ratio. In the case

25

of a Powersplit Hybrid, the speed of one of the rotational flanges is specified as a function
of vehicle (wheel) speed, so this system is reduced to a 2 DOF system.

The PSD is modelled as a lossless device, shown in equation 3.13.

τPSDR
−RPSDτPSDS

= 0

τPSDPC
+ τPSDS

+ τPSDR
= 0

ωPSDPC
(1 +RPSD)− ωPSDS

−RPSDωPSDR
= 0

(3.13)

where R, S, PC represent the ring, sun, and planetary carrier gear, respectively; RPSD is
the ratio of teeth on the sun gear to the ring gear, where RPSD < 1.

3.1.7 Battery

The battery is generally considered one of the most difficult powertrain components to
model due to its electrochemical nature. Battery temperature, age, and State-Of-Charge
(SOC describes how much energy is left in the battery) have non-linear effects on the
battery terminal voltage [53, 54, 55, 56]. Physics or electrochemical based battery models
solve slowly but reflect the physics of the battery [57, 58, 59]. There is a growing body
of work to simplify the physics and electrochemical based battery models so they can be
used for real-time applications [60, 61].

Shown in figure 3.7, the equivalent circuit model is considered one of the simplest
battery models [5, 55]. Open circuit voltage (Voc), maximum input and output power, and
internal resistance (Rint) are functions of the battery SOC. Battery internal resistance is
used to used to calculate the battery terminal voltage V . As the terminal voltage is only a
function of the State-Of-Charge, voltage drops are ignored during high output transients.
Realistically, a drop in voltage will require more current must be supplied to maintain the
same power output. Although this effect is lost in the equivalent circuit model, it is still
useful for most purposes.

The battery model equations are as followed in equation 3.14.

Voc, Rint = f(SOC)

V =
Voc +

√
Voc

2 − 4RintηinvPbatt

2

SOCk+1 = SOCk −
P

3600V Qbattcap

(3.14)

26

Rint

VOC
V

+

-

I

Figure 3.7: Equivalent Circuit Battery Model.

where ηinv is the inverter efficiency (assumed to be a constant of 0.95), Pbatt is the battery
power, SOC is the State-of-Charge of the battery, and Qbattcap is the maximum battery
capacity.

As the system is to be simulated in steady-state and the battery voltage is a function
of SOC, it is necessary to first assume a voltage to calculate battery power. The battery
voltage is assumed to be nominal for 168 cells in series which is 271V. The equation for
nominal battery voltage can be found in equation 3.15. When Dynamic Programming is
performed, the battery current and power are checked against constraints to ensure the
model is representative of the physical system.

VBAT = 271[V] (3.15)

3.2 Component Masses and Scaling

A common way to represent a different sized component is to linearly scale the model.
Most of the components described in this chapter can be scaled for performance and mass.
For example, the ICE could be scaled up by 1.5 times by multiplying the BFSC map by
1.5, the maximum torque constraint by 1.5, and the ICE mass by 1.5. Shown in table
3.1, the baseline masses and scaling factors can be found for the components. The S
symbol denotes how the scaling factor would be applied to the original data. Note that
the planetary gear was not scaled, and the discrete gearbox can scale the gear ratios while
maintaining a constant mass.

27

Table 3.1: Baseline Mass and Scaling Equations for HEV Components.
Component Baseline

mass (kg)
Baseline Scaling Equations

Internal Combustion
Engine
(ICE)

34.00 * S Prius MY04
57 kW
1.5L 4 Cylinder

BSFC = BSFC ∗ S
τICEmax = τICEmax,base

∗ S

Electric Motor
(Large)
(EM)

86.76 * S Permanent Magnet
50 kW peak
25 kW continuous

PEM = PEM ∗ S
τEMmax = τEMmax,base

∗ S

Electric Motor
(Small)
(GEN)

25.00 * S Permanent Magnet
30 kW peak
14 kW continuous

PGEN = PEM ∗ S
τGENmax = τGENmax,base

∗ S

Discrete Gearbox
(GB)

75.00 [3.32,2,1.36,1.01,0.82] RGB = RGB,base ∗ S

Battery
(BAT)

35.70 * S NiMH
6.5 Ah 51xSeries @ 273V

BATCap = BATCap,base ∗ S

Planetary Gear
(PSD)

40.00 Ring/Sun teeth ratio =
78/30

—-

The ICE, EM and GEN all start using baseline performance maps for a 2004 Prius.
The first equation linearly scales the power requirement, i.e. BSFC (gasoline) for the
ICE, and PEM and PGEN (electrical power) for the electric motor and generator. For the
electric motor, the appropriate maps are scaled before curve-fit to polynomials. The second
equation describes their maximum output constraint (torque).

As the number of battery cells is assumed to be constant, the capacity of these cells
will scale with the scaling ratio, but the nominal voltage is kept constant.

3.3 Summary

The equations for Hybrid Electric Vehicle powertrain components are described in this
chapter. The components can be linearly scaled to represent different size components.
When interconnection equations are introduced, these equations can be used to describe

28

many different powertrain configurations. The next chapter will explain how the configu-
ration are represented and the vehicle powertrain structure is generated.

29

Chapter 4

Hybrid Electric Vehicle System
Representation and Modelling

This chapter describes the Graph-Theoretic Method (GTM) in detail. The equations
for a Powersplit hybrid powertrain are generated using the GTM as an example. An
enumerative approach to finding the control varaibles is shown, and heuristics for finding
feasible powertrains is presented.

4.1 Graph-Theoretic Method

The Graph-Theoretic Method is a systematic method for generating system equations
by specifying a topology and assigning the appropriate constitutive (terminal) equations
[40, 10, 12, 11]. This method is very systematic and thus is suitable for computer imple-
mentation. The topology of a system can be represented using a linear graph, which is
formed from a collection of nodes and directed edges. Before describing in detail the GTM
process, it is necessary to define GTM terminology:

Graph Theoretic Method Terminology [11]

Graph A graph is a collection of edges which intersect upon nodes. A graph is a pictorial
representation of the topology for a given system.

30

Edge Edges connect nodes and are pictorially described in a graph using an arrow. Each
edge is directed; it has a beginning point and an end point. If a node is the end point
for an edge, it is said that the edge is incident upon that node.

Node Nodes (also called vertices) are represented in a graph using dots or circles. In a
physical system, nodes represent component terminals.

Through Variable Through measurements are made in series with the component and
two selected terminals. The type of variable is dependent on the physical domain.
For example, in an electrical system the through variable is current. In a rotational
mechanical system, the through variable is torque.

Across Variable Complementary to the through measurement, across measurements are
made in parallel with the component and two selected terminals. Every edge has a
corresponding across variable dependent on the domain. For example, for an electrical
system the across variable is voltage; for a rotational mechanical system the across
variable is angular velocity.

Path If a node can be reached by traversing through the edges to another node, it is said
that these nodes are connected by a path. For example, in figure 4.1 nodes A and
GM are connected, and nodes A and C are also connected.

Connected If every node can be reached by every other node, it is said that this graph
is connected. For example, the graph in figure 4.1 is not connected because there is
no path from node (A/B/G) to node D.

Circuit A circuit is a subgraph that has exactly two distinct paths between every pair of
nodes in the subgraph.

Tree A tree is defined as a subgraph that: is connected; contains all the nodes in the
graph; and has no circuits. Edges in a tree are called branches.

Cotree A cotree is a subgraph of G that remains after deleting the edges of a tree. Edges
in a tree are called chords.

Fundamental Circuit A fundamental circuit consists of one chord, and a unique set of
branches. There is only one fundamental circuit for each chord in a graph.

Fundamental Cutset A cutset is a subset of edges which divides the graph into two
parts. The fundamental cutset contains one branch and a unique set of chords.
There is only one fundamental cutset per branch in a linear graph.

31

4.1.1 Incidence Matrix Representation

The topology of a Hybrid Electric Vehicle can be represented by a directed linear graph.
This linear graph can be described mathematically as an incidence matrix. The columns
in the incidence matrix represent edges corresponding to vehicle components. The rows in
the incidence matrix represent nodes to which the components connect. For example, the
mechanical incidence matrix shown in equation 4.1 corresponds to the mechanical linear
graph in figure 4.1 (left). Similarly, the electrical incidence matrix shown in equation 4.12
corresponds to the electrical linear graph in figure 4.1 (right).

Some components only appear in the mechanical graph (i.e. final drive and ICE),
some in the electrical graph (i.e. battery), and some in both (i.e. transducers, such
as electric motor or generator). The components that appear in both the mechanical
and electrical graph have additional terminal equations which relate their mechanical and
electrical behaviour.

The incidence matrix IM is a matrix composed of zeros and ones and negative ones,
where the ones represent the edge ‘entering’ the node, and a negative one represents the
edge ‘exiting’ the node. Each edge of the linear graph has a through variable: a physical
quantity measured in series. Each node of the linear graph represents a place where an
across variable could be measured; these are places where a variable measured in parallel
would be measured. Zeros represent no connection between the edge (column) and node
(row).

[IMMECH] =

components︷ ︸︸ ︷

node ICE FD EM GEN PSDR PSDS PSDPC

A 0 1 0 0 0 0 1
B 1 0 1 0 1 0 0
C 0 0 0 1 0 1 0
D 0 0 0 0 0 0 0
GM −1 −1 −1 −1 −1 −1 −1

 (4.1)

[IMELEC] =

components︷ ︸︸ ︷
node EM GEN BAT

E 1 1 1
F 0 0 0
H 0 0 0
GE −1 −1 −1

 (4.2)

The incidence matrix contains all of the topological information of the system. To generate
the system of equations from this matrix, a vector of through variables and across variables

32

A

B CGM

FD
EM GEN

PSDS

D

PSDR

PSDPC

ICE

E

H F

GE

BAT EMGEN

Figure 4.1: Linear Graph Representing a Series Hybrid. The Left Graph is the Mechanical
Graph and the Right Graph is the Electrical Graph.

are required.

Through variables represent a quantity that would be measured in series with the
corresponding edge (component). For example, an ammeter is put in series with an elec-
trical resistor to measure current in an electrical system; a torque meter is placed on a
rotational shaft to measure torque in a rotating mechanical system.

Across variables are quantities measured in parallel with the edge (component). For
example: in an electrical system a voltmeter may be placed in parallel with a resistor
to determine the voltage drop across the resistor; in a rotational mechanical system a
rotational sensor may be used to measure the angular velocity of a shaft with respect to a
non-rotating point.

Across variables are often most useful when measured with respect to a fixed point,
or ground, which corresponds to the datum or ground node. In this work, all of the
measurements are taken with respect to the ground node, because we are interested in the
absolute values of the measurement, and not the measurements relative to the nodes. For

33

example, it is useful to know the speed and torque of the engine relative to the observer
(ground), rather than measuring it with respect to a moving part of the powertrain.

For this example, the vector of mechanical and electrical through variables, representing
torques (τ) and electrical current (I) respectively, can be found in equation 4.3. Similarly,
the vector of mechanical and electrical across variables, representing angular velocity (ω)
and voltage (V) can be found in equation 4.18.

{τMECH} = {τICE, τFD, τEM , τGEN τPSDR
, τPSDS

, τPSDPC
}T

{τELEC} = {IEM , IGEN , IBAT}T
(4.3)

{αMECH} = {ωICE, ωFD, ωEM , ωGEN ωPSDR
, ωPSDS

, ωPSDPC
}T

{αELEC} = {VEM , VGEN , VBAT}T
(4.4)

4.1.2 Equation Generation

In this section, the equations for a Powersplit (Prius-like) architecture are derived. The
system level architecture is shown in figure 5.1.

In GTM, the vertex postulate states that: “the sum of through variables at any node
of a linear graph must equal zero when due account is taken of the orientation of edges
incident upon that node” [11]. This is equivalent to Kirchoff’s Current Law [41] and can
be expressed mathematically by equation 4.5.

[IM]{τ} = {0} (4.5)

where {τ} is a vector of through measurement variables. In this example, the vector of
through measurement variables for a Powersplit Hybrid shown in equation 4.3.

Cutset Equations

First, to ensure a connected graph, the nodes unconnected to the graph (rows of zeros) are
deleted. Then, the reduced incidence matrix is obtained by deleting the row corresponding
to the datum node. Starting with equation 4.1, node GM is removed from the IM to obtain
the reduced incidence matrix A shown in equation 4.6.

34

[A] =


node ICE FD EM GEN PSDR PSDS PSDPC

A 0 1 0 0 0 0 1
B 1 0 1 0 1 0 0
C 0 0 0 1 0 1 0

 (4.6)

Column swapping, and Gauss Jordan elimination is performed on reduced incidence matrix
[A] to transform it to the fundamental-cutset matrix [Af], where [Af] is in the form:

[Af] = [[1b][AC]] (4.7)

where, 1b is an identity matrix with as many rows and columns as nodes in the graph
(minus the datum node), and AC is the remainder of the Af matrix. Please note that the
leftmost columns of Af or the 1b matrix correspond to the branches in the tree, defining
the fundamental cutset [11].

[Af,MECH] =


node FD ICE GEN EM PSDR PSDS PSDPC

A 1 0 0 1 1 0 0
B 0 1 0 0 0 1 0
C 0 0 1 0 0 0 1

 (4.8)

Note: if column swapping is performed, the vector of through variables τ is correspond-
ingly rearranged.

{τf,MECH} = {τFD, τICE, τEM , τGEN , τPSDR
, τPSDS

, τPSDPC
}T (4.9)

Using equation 4.10, the system of cutset equations can be obtained by multiplying the
fundamental cutset matrix [Af] by the vector of through variables {τf,MECH}. The cutset
equations for the Powersplit mechanical graph can be found in equation 4.11.

[Af]{τf,MECH} = {0} (4.10)

τFD + τEM + τPSDR
= 0

τICE + τGEN = 0

τPSDS
+ τPSDPC

= 0

(4.11)

Using a similar approach to the electrical graph, the F , H, and GE rows are deleted.
After, column swapping is performed, and Gauss Jordan elimination is performed to obtain

35

the reduced incidence matrix (resulting in the same matrix). The fundamental electrical
cutset matrix for the Powersplit configuration is shown in equation 4.12.

[Af,ELEC] =
[node EM GEN BAT

E 1 1 1
]

(4.12)

The reduced incidence matrix is multiplied by the vector of through variables, resulting
in the system of through equations for the electrical graph, found in equation 4.13.

IEM + IGEN + IBAT = 0 (4.13)

Circuit / Across Equations

Using the circuit postulate in GTM, the across equations can be generated. The circuit
postulate states: ”the sum of across variables around any circuit of a graph must equal
zero when due account is taken of the direction of edges in the circuit”. Mathematically
this can be described by equation 4.14.

[Bf][α] = {0} (4.14)

where,
[Bf] = [[Bb][1c]] (4.15)

Luckily, it is not required to revisit the linear graph to obtain [Bb]. Exploiting the principle
of orthogonality [11, 62], [Bb] can be obtained from [Ac] using equation 4.16.

[Bb] = −[Ac]
T (4.16)

Therefore in this example, [Bf] can be found in equation 4.17.

[Bf,MECH]T =


FD ICE GEN EM PSDR PSDS PSDPC

−1 0 0 1 0 0 0
−1 0 0 0 1 0 0
0 0 −1 0 0 1 0
0 −1 0 0 0 0 1

 (4.17)

Similar to the vector of equations found in equation 4.3, the across variables for the Pow-
ersplit hybrid powertrain are shown in equation 4.18.

{αMECH} = {ωICE, ωFD, ωEM , ωGEN ωPSDR
, ωPSDS

, ωPSDPC
}T

{αELEC} = {VEM , VGEN , VBAT}T
(4.18)

36

By applying equation 4.14 to 4.17 and 4.18, we can obtain the system of across equations
for the mechanical graph, which are shown in equation 4.19.

−ωFD + ωEM = 0

−ωFD + ωPSDR
= 0

−ωGEN + ωPSDS
= 0

−ωICE + ωPSDPC
= 0

(4.19)

Similarly the connection equations for the electrical graph are derived by permuting the
[Bb] matrix, shown in equation 4.20.

[Bf,ELEC]T =

[EM GEN BAT

−1 1 0
−1 0 1

]
(4.20)

Multiplying the matrix in equation 4.20 by the vector of across variables found in equation
4.18 results in the system of circuit equations for the electrical graph, which is shown in
equation 4.21.

−VEM + VGEN = 0

−VGEN + VBAT = 0
(4.21)

4.1.3 Terminal Equations

The interconnection equations are obtained by combining the mechanical cutset equations
(4.11), electrical cutset equations (4.19), mechanical circuit equations (4.19) and electrical
circuit equations (4.21). By examining the interconnection equations in terms of their vari-
ables, the respective constitutive equations can be systematically chosen from a library of
equations (library of component models). The system equations are obtained by combining
the interconnection equations with the constitutive equations.

For the Powersplit powertrain example, the variables for the engine τICE and ωICE are
in the equations, so the equation 3.7 describing fuel consumption is added to the system.
Similarly, the equations for the EM (equation 3.9), GEN (equation 3.9) and PSD (equation
3.13) are included. As a mechanical brake is required in the final system, the τFD variable
is replaced with τFD + τbrake. A more rigorous approach would be to add the mechanical
brake to the graph. This approach was taken for its simplicity, it is a logical place to put

37

the brake, and to limit the design space. The system comprised of the interconnection and
terminal equations is found below in equation 4.22.

τFD + τbrake + τEM + τPSDR
= 0

τICE + τPSDPC
= 0

τGEN + τPSDS
= 0

IEM + IGEN + IBAT = 0

−ωFD + ωEM = 0

−ωFD + ωPSDR
= 0

−ωGEN + ωPSDS
= 0

−ωICE + ωPSDPC
= 0

−VGEN + VBAT = 0

−VEM + VGEN = 0

VBAT − 271 = 0

IEM −
PEM
VEM

= 0

PEM(τ, ω) =


τω = 0, 0
τω > 0, ηEM+(τ, ω)τω
τω < 0, ηEM−(τ, ω)τω

IGEN −
PGEN
VGEN

= 0

PGEN(τ, ω) =


τω = 0, 0
τω > 0, ηGEN+(τ, ω)τω
τω < 0, ηGEN−(τ, ω)τω

˙mfuel −
BSFC(τICE, ωICE)

3.6 ∗ 106 τICEωICE = 0

τPSDR
−RPSDτPSDS

= 0

τPSDPC
+ τPSDS

+ τPSDR
= 0

ωPSDPC
(1 +RPSD)− ωPSDS

−RPSDωPSDR
= 0

(4.22)

4.1.4 Driver Equation Selection

Examining equation 4.22, it can be seen that there are 19 equations and 24 variables.
As there must be an equal number of equations and variables to solve a system, 24 −

38

19 = 5 variables need to have specified values. By specifying values to certain variables,
those variables become the inputs to the system. This section will describe how the input
variables are chosen.

Three variables are always specified: final drive torque, final drive speed, and brake
torque. A drivecycle is used to evaluate the vehicle architectures. The drivecycle is a
predefined driving pattern that specifies speed and acceleration. From the speed and
acceleration, the values of the two final drive variables, τFD and ωFD in equation 3.2
can be calculated. In every architecture, a mechanical brake is included, and therefore a
mechanical brake torque τbrake may be specified during deceleration. To reduce the number
of unknowns, τbrake is assigned a percentage of the braking torque (i.e., {0%, 50%, 100 %}).
By specifying the values of τFD, ωFD, and τbrake, 3 of the 5 variables have been specified
values, and 2 more are required. An enumeration method is used to systematically pick
the remaining 2 inputs.

Systematic Method for Selecting Input Variables

1. An ordered list of predetermined control variables is loaded from memory. These
variables are chosen in this order because they make logical sense as input variables.
For example, RGB is a logical choice of a input for any vehicle with a discrete gearbox.
τICE is a logical choice for any vehicle with an ICE. Fuel consumption ṁfuel is a poor
choice for a control variable as it is function of both τFD and ωFD. In this example,
the list of logical control drivers is:

Driverlist = [RGB, τICE, ωICE, τEM , ωEM , τGEN , ωGEN] (4.23)

If the equations are solved symbolically, the control variables will be independent
of each other. Torque and speed linked variables, such as τICE and ωICE, can be
controlled independently due to degrees of freedom in the system. For example, if
an ICE is connected to an EM/GEN, the EM/GEN can control how much torque is
absorbed to create electricity, and subsequently control the speed of the ICE.

2. A list of system variables is extracted from the system equations. The intersect of
the list of system variables and the driver list is taken to determine the possible
control variables. In this example, the intersect of the variables in equation 4.22 and
equation 4.23 is:

{τICE, ωICE, τEM , ωEM , τGEN , ωGEN} (4.24)

39

3. As we only require 2 control variables, we can use combinatorics to determine all
combinations of two variables. To save time, this list of permutations is sorted
preferentially. In this example the list of permutations is:

Driverlist = [{τICE, ωICE}, {τEM , τICE}, {ωEM , τICE}, {τEM , ωICE},
{τGEN , τICE}, {ωGEN , τICE}, {ωEM , ωICE}, {τGEN , ωICE}, {τEM , ωEM},

{ωGEN , ωICE}, {τEM , τGEN}, {τEM , ωGEN}, {ωEM , τGEN}, {ωEM , ωGEN}, {τGEN , ωGEN}]
(4.25)

4. An attempt is made to find a symbolic solution to the powertrain model. If not found,
the next set of driver variables are selected, and a new attempt is made. As there are
more variables (24) than equations (19), the Maple function eliminate() is well suited
to find a symbolic solution. eliminate() eliminates a set of variables from a system
of equations by performing substitutions. The result is system of functions, which
have the eliminated variables on the left hand side of the equation, and the remaining
variables on the right hand side. In this example, all the non-driver equations are
eliminated from the system of equations in 4.22 (i.e. τEM , τGEN , τPSDR

...) and can be
found on the left hand side in the system of equations 4.27. The non-driver variables
are all described in terms of the driver variables shown in equation 4.26.

{τFD, ωFD, τBrake, τICE, ωICE} (4.26)

The functions f1, f2, f3 are too large to show as they are comprised of piece-wise
functions containing polynomials; their arguments are shown instead.

40

τEM = −τFD − τBrake − 0.722τICE

τGEN = −0.277τICE

τPSDR
= 0.722τICE

τPSDS
= 0.277τICE

τPSDPC
= −τICE

ωEM = ωFD

ωGEN = 3.599ωICE − 2.599ωFD

ωPSDPC
= ωICE

ωPSDR
= ωFD

ωPSDS
= 3.599ωICE − 2.599ωFD

VEM = 271

VGEN = 271

VBAT = 271

IEM = f1(τFD, ωFD, τBrake, τICE)

IGEN = f2(ωFD, τICE, ωICE)

IBAT = f3(τFD, ωFD, τBrake, τICE, ωFD)

mfuelICE
= f4(τICE, ωICE)

(4.27)

5. When a symbolic solution is found, an attempt is made to get a numerical solution by
assigning the driver variables a numerical value. If a numerical solution is successfully
obtained, then the solution has been found. Else, the another attempt to find the
symbolic solution is made with another set of the driver variables. If the list of driver
variables is exhausted without finding a symbolic solution, it is assumed the topology
is invalid.

4.2 Heuristics for Valid Vehicle Topologies

4.2.1 Genomes

As shown in section 4.1.1, the topology of a vehicle is represented in a reduced incidence
matrix consisting of only zeros and ones. There are many possible matrix permutations;

41

however, few permutations result in viable topologies. Each of these incidence matrices
are represented using a genome. A genome contains information describing both the
mechanical and electrical topology, and is written as a linear string. For example, the
genome for the matrix in equation 4.6 and equation 4.12 is shown in equation 4.28.

[010000110101000001010111]⇐⇒


[Af,MECH] =

0 1 0 0 0 0 1
1 0 1 0 1 0 0
0 0 0 1 0 1 0


[Af,ELEC] =

[
1 1 1

]
(4.28)

The Incidence Matrix is generated by parsing the genome into a matrix of predefined size.
The first part of the genome parsed into the mechanical graph, and the second part the
electrical graph. For example, in equation 4.28, the genome is 24 characters long, and the
matrix dimensions for the mechanical and electrical IMs are 3x7 and 1x3 respectively. The
first 21 characters of the genome are parsed row by row into the mechanical matrix, then
the last 3 characters are parsed into the electrical matrix.

In this thesis the design space is limited to a 4x9 mechanical matrix because an addi-
tional node and 2 columns representing the gearbox are included. The total genome is 39
characters long. The electrical matrix could be expanded; however, this work assumes the
converters are integrated with the battery and all electrical components are connected in
parallel. If multiple discrete converters or power sources were included in the design space,
it would be necessary to increase the number of rows in the electrical matrix to allow for
serial electrical connections.

4.2.2 Heuristics

Instead of evaluating each genome using driver selection (described in section 4.1.4) it is
much faster to use heuristics to eliminate invalid topologies. Each incidence matrix is
formed, then checked for the following criteria:

1. An Incidence Matrix cannot have more than a single 1 in each column by definition.
According to GTM, components are connected between two nodes. All measurements
are taken with respect to the ground node, which appears as a row of -1s, that is
removed to obtain the reduced incidence matrix, described in section 4.1.2. Therefore,
there should only be one 1 in each column.

42

2. A row cannot contain a single one. A row with a single 1 represents a component
disconnected from the graph (a floating arm), and thus is an invalid topology.

3. The first entry in the genome must be 1. Forcing the final drive to be in the first
equation reduces the number of permutations due to isomorphisms.

4. The ICE and the Battery must be in the graph to be a valid HEV powertrain; the
columns corresponding to these two components must contain a single 1.

5. If the electric motor / generator is in the mechanical graph, it must also exist in the
electrical graph to ensure the correct terminal equations appear in the final system
of equations.

6. The Powersplit Device must have either 0 or 3 connections. As the Powersplit Device
has 3 flanges, they must all be connected, or none of them connected (not in the
graph).

7. Similar to the Powersplit Device, the gearbox must have 0 or 2 connections.

8. There should be no loops between the gearboxes. For example, the discrete gearbox
should not connect the sun and the planetary gearset. This effectively reduces the
DOF of the gearset from a 3 DOF system to a 1 DOF system, where 1 speed and no
torques can be specified. In a dynamic system, such a mechanism will not move and
is not useful.

The set of genomes that pass the heuristic criteria are checked for isomorphs. Isomor-
phism occurs when different genomes result in the same system of equations. This can
occur when the rows of the incidence matrix are swapped. To remove isomorphs, a refer-
ence genome is selected and its mechanical incidence matrix is constructed. Similarly, a
test genome is selected and its mechanical incidence matrix is constructed. If all the rows
in the reference genome IM are found in the test genome IM, then an isomorph is discov-
ered and it is removed from the pool of genomes. Alternatively, Gauss-Jordan elimination
can be performed on both matrices; if the result is the same, they are isomorphs.

To save computational memory, enumeration was performed on two genomes: one 27
characters long, and one 9 characters long. The two enumerated genomes were appended
together. The genomes only contained zeros and ones. The 36 character genome represents
a 4x9 mechanical incidence matrix. Each genome was evaluated against the heuristic
criteria above. The number of unique genomes was categorized by number of ‘1s’ in the
mechanical incidence matrix. The results are presented in table 4.1.

43

Table 4.1: Number of Unique Genomes per ’1’ picked in Mechanical Graph
Pick # unique genomes
1-2 0
3 2
4 4
5 12
6 38
7 36
8 72
9 360

10+ 0
Total 520

4.3 Summary

In this chapter it was shown that the Graph Theoretic Method can be used to generate
the system of equations for a Hybrid Electric Vehicle powertrain. The equations for a
Powersplit Hybrid Electric powertrain were derived as an example. A process to select
the control variables for any topology was presented. This process is used in chapter 6 to
evaluate different topologies.

44

Chapter 5

System Model Validation

To validate the model formulation approach, two architectures are presented and compared
against Autonomie: a Powersplit Hybrid and a Parallel Hybrid. Together, these two
architectures use all of the component equations presented in this thesis. These system
models are validated by the following process:

1. Creating the desired architecture to be validated in Autonomie.

2. Running the simulation in Autonomie.

3. Extracting the control inputs and outputs from Autonomie.

4. Using the control inputs from Autonomie as inputs to ASHev.

5. Comparing the outputs between Autonomie and ASHev.

The model is validated if the two simulations have similar outputs. Both models use
the same maps for electric motor/generator power, and ICE fuel consumption. The maps
are linearly scaled to fit the component size. Differences in the two models are highlighted
in table 5.1.

5.1 Verification of Powersplit Architecture versus Au-

tonomie

Shown in figure 5.1, the Powersplit Hybrid has the final drive connected in parallel with
the EM and the planetary gearset ring gear; this allows allowing torque to be delivered

45

Table 5.1: Model Differences Between Autonomie and ASHev
- Autonomie ASHev
Model Type Quasi-Static, forward Static, backward
E. Motor/Generator Equation Interpolation 4-4 Curve-fit Polynomial
ICE Fuel Consumption Interpolation Interpolation
PSD Efficiency Losses (3%) Lossless
Discrete Gearbox Efficiency Losses (interpolated) Lossless
Electric Converter Dynamic 0.95-1 Efficiency Static 0.95
Clutch Yes No

S

PC

R

GENGEN

EMEM

FD

ICEFuel

BAT CONV

Legend

Mechanical

Electrical

Transmission

Assumed

Electrical
Connection

Mechanical
Connection

Figure 5.1: Architecture of a Powersplit Vehicle

from either the EM or the ring gear. The second electric motor, GEN is connected to the
sun gear of the planetary gearset. The ICE is connected to the planetary carrier. Torque
can be transmitted from the ICE to the GEN via the PSD to charge the battery or supply
the EM with power. Torque can also be transmitted from the ICE to the FD through the
ring gear.

The Autonomie model is simulated using a 0.1s timestep. For validation purposes,
ASHev was simulated using both a 0.1s and 1s timestep. The 1s timestep ASHev model
used inputs from Autonomie averaged over 1s. The final drive and ICE torque and speed

46

were chosen as inputs. The 0.1 and 1s timestep model have very similar results, so for
readability, only select graphs in figures 5.2, 5.3, and 5.4 were chosen to show both results.

The drivecycle speed and torque can be seen in figures 5.2a and b; these are exactly the
same because these outputs are taken from Autonomie and used as inputs to the ASHev
model. Similarly, shown in figure 5.2c and d, the ICE torque and speed were taken from
Autonomie and used as inputs to the ASHev model. Vehicle parameters and component
information for these models can be found in table 5.2.

Table 5.2: Powersplit Model Parameters
Vehicle Mass 1400 kg
Internal Combustion Engine Prius MY04, 57kW 1.5L, 4 Cylinder
EM1 (Generator) Permanent Magnet 30kW peak, 14kW continuous
EM2 (Traction Motor) Permanent Magnet 50kW peak, 25kW continuous
Transmission Powersplit device
Final Drive Reduction Gear Ratio 3.93
Wheel Radius 0.287 m
Battery Type NiMH 51x Series
Battery Capacity 6.5Ah
Frontal Surface Area 1.746 m2

Coefficient of Drag 0.3
Rolling Coefficient of Friction 0.015
Input Variables τFD, ωFD, τICE, ωICE

There are a few differences in the models, but the resulting fuel consumption rates
in figure 5.2e are identical. Autonomie uses a different fuel consumption map when the
engine is signal off, whereas ASHev only uses one fuel consumption map. Although this
phenomenon is not encountered in this particular example, Autonomie allows the engine
to slow down due to frictional forces when disconnected mechanically from the powertrain,
thus reporting negative torques while still consuming fuel. Shown in figure 5.2f, these
assumptions are acceptable as 442.5g is the reported fuel consumption for both models.

47

0 200 400 600 800
−200

−100

0

100

200
(a) Final Drive Torque

time (s)

T
o

rq
u
e

 (
N

m
)

ASHev

Autonomie

0 200 400 600 800
0

100

200

300

400
(b) Final Drive Speed

time (s)

S
p

e
e

d
 (

ra
d

s
/s

)

ASHev

Autonomie

0 200 400 600 800
−50

0

50

100

150
(c) ICE Torque

time (s)

T
o

rq
u

e
 (

N
m

)

ASHev

Autonomie

0 200 400 600 800
−100

0

100

200

300
(d) ICE Speed

time (s)

S
p

e
e

d
 (

ra
d

s
/s

)

ASHev

Autonomie

0 200 400 600 800
0

0.5

1

1.5

2
(e) ICE Fuel Consumption Rate

time (s)

F
u

e
l
c
o

n
s
u

m
p

ti
o

n
 r

a
te

 (
g

/s
)

ASHev

Autonomie

0 200 400 600 800
0

100

200

300

400

500
(f) Cumlulative fuel spent by ICE

time (s)

F
u

e
l
s
p

e
n

t
(g

)

ASHev

ASHev 1s

Autonomie

Figure 5.2: Validation Results for Powersplit Architecture: ICE

48

Shown in figure 5.3a, the Electric Motor torque in ASHev approximately tracks the
reference torque. Autonomie assumes there are power losses in the PSD, whereas ASHev
assumes no losses. This results in the ICE transmitting less torque than expected through
the PSD, and the electric motor must make up the difference. Shown in figure 5.4a, the
maximum absolute difference is less than 30Nm.

The electric motor is mechanically connected to the final drive, shown in figure 5.3c,
the electric motor tracks the reference speed exactly. Shown in figure 5.3e, the electric
motor power approximately tracks the reference. The error is due to model differences;
the electric motor power is calculated from a curve fit of an efficiency map provided by
Autonomie. There is a small error introduced when curve-fitting a polynomial to a discrete
map. Combined with the torque error due to the PSD power losses, this results in a small,
but acceptable, power difference. Shown in figure 5.4c, the electrical power error at any
one point is less than 10kW (for a 0.1s timestep).

The generator output is shown in figure 5.3b, d, f. The torque error during transient
periods is shown in figure 5.3b. The error has three sources: the PSD inefficiencies; rota-
tional inertial forces in the PSD; and frictional forces in the engine. As inertial forces at the
component level are ignored in the steady-state models, these terms cannot be corrected.
The transients are small and result in an acceptable amount of cumulative error for the
calculated generator power. The difference in torque and power between Autonomie and
ASHev can be found in figures 5.4b and d.

The battery output is shown in figure 5.4e and f. The battery output is a function of
the electric motor and generator power output. As can be seen in 5.4e, the battery power
output generally tracks Autonomie’s output quite well, even with the error introduced by
the torque and efficiency differences in the electric motor and generator. Figure 5.4b shows
the battery State-Of-Charge, which indicates the effect of the cumulative error in of the
battery power output. The final difference in SOC is -0.0413, which is a 6.4% error. This
is an acceptable amount of error for conceptual design.

49

0 200 400 600 800
−200

−100

0

100

200
(a) Electric Motor Torque

time (s)

T
o

rq
u
e

 (
N

m
)

ASHev

Autonomie

0 200 400 600 800
0

100

200

300

400
(c) Electric Motor Speed

time (s)

S
p

e
e

d
 (

ra
d

s
/s

)

ASHev

Autonomie

0 200 400 600 800
−3

−2

−1

0

1

2
x 10

4 (e) Electric Motor Electrical Power Input

time (s)

E
le

c
tr

ic
a

l
P

o
w

e
r

In
p

u
t

(W
)

ASHev

Autonomie

0 200 400 600 800
−40

−20

0

20

40
(b) Generator Torque

time (s)

T
o

rq
u
e

 (
N

m
)

ASHev

Autonomie

0 200 400 600 800
−1000

−500

0

500
(d) Generator Speed

time (s)

S
p

e
e

d
 (

ra
d

s
/s

)

ASHev

Autonomie

0 200 400 600 800
−3

−2

−1

0

1

2
x 10

4 (f) Generator Electrical Power Input

time (s)

E
le

c
tr

ic
a

l
P

o
w

e
r

In
p

u
t

(W
)

ASHev

Autonomie

Figure 5.3: Validation Results for Powersplit Architecture: Electric Motor and Generator

50

0 200 400 600 800
−40

−30

−20

−10

0

10

20

30
(a) Electric Motor Torque Error

time (s)

T
o

rq
u

e
 (

N
m

)

0 200 400 600 800
−1.5

−1

−0.5

0

0.5

1
x 10

4(c) Electric Motor Electrical Power Error

time (s)

E
le

c
tr

ic
a

l
P

o
w

e
r

In
p

u
t

(W
)

0 200 400 600 800
−40

−30

−20

−10

0

10

20

30
(b) Generator Torque Error

time (s)

T
o

rq
u

e
 (

N
m

)

0 200 400 600 800
−2

−1

0

1

2
x 10

4 (d) Generator Electrical Power Error

time (s)

E
le

c
tr

ic
a

l
P

o
w

e
r

In
p

u
t

(W
)

Figure 5.4: Validation Results for Powersplit Architecture: Electric Motor and Generator
Error

51

0 200 400 600 800
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3
x 10

4 (a) Battery Power Output

time (s)

P
o
w

e
r

(W
)

ASHev

Autonomie

0 200 400 600 800
0.5

0.55

0.6

0.65

0.7

0.75

0.8
(b) Battery State−Of−Charge.

time (s)

B
a
tt
e
ry

 S
ta

te
−

o
f−

C
h
a
rg

e

ASHev

ASHev 1s

Autonomie

Figure 5.5: Validation Results for Powersplit Architecture: Battery

5.2 Verification of Parallel Architecture versus Au-

tonomie

The Parallel system model was validated using a similar approach as described at the
beginning of chapter 5. Parameters and component data for the simulation are shown in
table 5.3. The final drive torque and speed are specified, thus have exactly the same values
as the Powersplit example in figures 5.2a and b. The input to this system was the ICE
torque (shown in figure 5.7a) and the gearbox ratio (shown in figure 5.8a).

52

Legend

Mechanical

Electrical

Transmission

Assumed

Electrical
Connection

Mechanical
Connection

Gba

GBb

EMEM

FD

ICEFuel

BAT CONV

Gba

GBb

GENGEN

FD

ICEFuel

BAT CONV

(a) Parallel with Electric Motor (b) Parallel with Generator

GBa

GBb

EMEM

FD

ICEFuel

BAT CONV

Figure 5.6: Architecture of a Parallel Hybrid Vehicle

Table 5.3: Parallel Model Parameters
Vehicle Mass 1619 kg
ICE Prius MY04, 85kW (scaled) 1.5L, 4 Cylinder
EM Permanent Magnet 25kW peak, 12.5kW continuous
Transmission 5 Speed Manual Gearbox
Gearbox Ratios {3.32,2,1.36,1.01,0.82}
Final Drive Reduction Gear Ratio 3.93
Wheel Radius 0.287 m
Battery Type NiMH 51x Series
Battery Capacity 6.5Ah
Frontal Surface Area 1.746 m2

Coefficiecnt of Drag 0.3
Rolling Coefficient of Friction 0.015
Input Variables τICE, RGB

Shown in figure 5.7c, the ICE speed in the ASHev model tracks the reference speed in
the Autonomie model, except when torque is reported to be negative. Shown in figure 5.7a
the negative ICE torques represent the engine slowing down due to frictional forces. This
can occur when the clutch between the engine and final drive is open, and no fuel supplied

53

to the engine. Shown in figure 5.8a, Autonomie uses a gearbox ratio of ‘0’ to represent an
open clutch. ASHev uses a gear ratio of ‘1’ instead of ‘0’ to avoid division by zero errors.
This results in a small error in the cumulative fuel consumption, which is shown in figure
5.7e. The fuel consumption for Autonomie and ASHEV is 640.9 g and 637.3 g respectively;
an acceptable -0.55% error.

The electric motor is mechanically connected to the final drive and thus the speed
tracks perfectly as seen in figure 5.7d. Shown in figure 5.7b, there is some error between
the electric motor torque. The error is because the ASHev model assumes the gearbox
is lossless. As the electric motor torque is equal to the difference between the final drive
torque and the gearbox output torque, the small error in the gearbox output torque results
in error in the electric motor torque. Due to the differences in torque, and that the curve
fit to the electric motor efficiency is not perfect, there is some error in the electric motor
power input, as seen in figure 5.7f.

As previously stated, ASHev assumes a lossless gearbox, whereas Autonomie assumes
a gearbox efficiency of 0.89-99%. The differences can be seen in figures 5.8c and e. This
iteration of ASHev does not detect which side of the gearbox is the input, so losses are
ignored to avoid an efficiency of greater than 1.

In figure 5.8d, the ASHev battery power output can be seen to approximately track
the reference. Shown in figure 5.2e, the battery State-Of-Charge finishes at a higher value.
The final State-Of-Charge in the Autonomie model and ASHev is 0.643 and 0.65, or 1.1%
error. The higher value is expected; the lossless gearbox results in less energy spent, and
a higher final SOC for the same fuel consumption.

54

0 200 400 600 800
−50

0

50

100

150

200
(a) ICE Torque

time

T
o
rq

u
e
 (

N
m

)

ASHev

Autonomie

0 200 400 600 800
0

100

200

300

400
(c) ICE Speed

time

S
p
e
e
d
 (

R
a
d
s
)

ASHev

Autonomie

0 200 400 600 800
0

0.5

1

1.5

2

2.5
(e) ICE Fuel Consumption Rate

time

F
u
e
l
c
o
n
s
u
m

p
ti
o
n
 r

a
te

 (
g
/s

)

ASHev

Autonomie

0 200 400 600 800
−1000

−500

0

500

1000
(b) Electric Motor Torque

time

T
o
rq

u
e
 (

N
m

)

ASHev

Autonomie

0 200 400 600 800
0

100

200

300

400
(d) Electric Motor Speed

time

S
p
e
e
d
 (

R
a
d
s
)

ASHev

Autonomie

0 200 400 600 800
−1

−0.5

0

0.5

1
x 10

5 (f) Electric Motor Electrical Power Input

time

E
le

c
tr

ic
a
l
P

o
w

e
r

In
p
u
t
(W

)

ASHev

Autonomie

Figure 5.7: Valiation Results for Parallel Architecture: ICE and electric motor

55

0 200 400 600 800
0

1

2

3

4
(a) Gearbox Ratio

time

G
e

a
rb

o
x
 R

a
ti
o

ASHev

Autonomie

0 200 400 600 800
−1000

−500

0

500
(c) Gearbox Torque (side a)

time

T
o

rq
u

e
 (

N
m

)

ASHev

Autonomie

0 200 400 600 800
−300

−200

−100

0

100

200

300
(e) Gearbox Torque (side b)

time

T
o

rq
u

e
 (

N
m

)

ASHev

Autonomie

0 200 400 600 800
−1

−0.5

0

0.5

1
x 10

5 (b) Battery Power Output

time

P
o

w
e

r
(W

)

ASHev

Autonomie

0 200 400 600 800
0.5

0.55

0.6

0.65

0.7

0.75

0.8
(d) Battery State−Of−Charge

time

B
a

tt
e

ry
 S

ta
te

−
o

f−
C

h
a

rg
e

ASHev

ASHev 1s

Autonomie

0 200 400 600 800
0

200

400

600

800
(f) Cumlulative fuel spent by ICE

time

F
u

e
l
s
p

e
n

d
 (

g
)

ASHev

ASHev 1s

Autonomie

Figure 5.8: Valiation Results for Parallel Hybrid: Gearbox and Battery

56

5.3 Summary

In this chapter two vehicles were validated: Powersplit and Parallel. The ASHev static
model is compared to the quasi-static model provided by Autonomie. Numerous assump-
tions were made about the efficiencies of electric motors and gearboxes. The resulting error
between the two models is a 6.4% error in the final battery State-Of-Charge, and less than
1% error in fuel consumption. This small amount of error is considered acceptable for the
purpose of this thesis.

57

Chapter 6

Methodology

This section will describe the implementation and optimization of the ASHev model. Mat-
lab 2012b and its native toolboxes were used to implement: component size optimization;
component map scaling and curve-fitting; and the Dynamic Program. The Maple 17 sym-
bolic math toolbox was used to implement the Graph Theoretic Method. Fully simulating a
topology would take between 1 - 90 minutes on a 2.2 GHz single core CPU; the computation
time is dependent on the input resolution and the length of the drivecycle. Approximately
99% of the computation was spent generating calculating the steady-state vehicle response,
which was stored in a ‘vehicle state lookup table’. As the vehicle is modeled in steady-state,
parallel computing could be used to reduce computation time.

Parallel Computing

Parallel computing was used to significantly reduce simulation time. A cluster computer
contains many central processing units (CPU), and each CPU contains multiple cores.
Each core can simultaneously perform a different task. A core that is available for work is
called an ‘open worker’. The cluster used in this work has an architecture shown in figure
6.1. A PC was used to remotely access the HSPC (High Speed Performance Computer)
cluster, where Matlab instances with the Maple toolbox could be opened on various nodes.
The HSPC contained 2 nodes, each containing 8 CPUs, with 4 cores per CPU; in total 64
workers were available.

Matlab 2012b artificially limits the number of workers to 12 per instance. To max-
imize worker usage, 4 Matlab instances were opened simultaneously. Each instance was
programmed to evaluate a different set of genomes. In total, 48 of the 64 workers were

58

PC HSPC Cluster

Node 0

CPU

Core Core

Core Core

CPU

Core Core

Core Core

CPU

Core Core

Core Core

CPU

Core Core

Core Core

CPU

Core Core

Core Core

CPU

Core Core

Core Core

CPU

Core Core

Core Core

CPU

Core Core

Core Core

Node 2

CPU

Core Core

Core Core

CPU

Core Core

Core Core

CPU

Core Core

Core Core

CPU

Core Core

Core Core

CPU

Core Core

Core Core

CPU

Core Core

Core Core

CPU

Core Core

Core Core

CPU

Core Core

Core Core

PC
Remote
Access HSPC Assigns Jobs

to CPU

Each core handles a
separate job

Figure 6.1: Cluster Computer Configuration

used; 16 workers were unused because the HSPC was a shared computing resource. The
result was up to a 2000% reduction in computation time; the 90 minute evaluations were
reduced to 4.5 minutes. This limitation was removed in Matlab 2014a, and therefore future
versions of this work will not need to use multiple instances.

6.1 Topology Simulation and Evaluation

Vehicle State Lookup Table Generation

The torque and speed of the vehicle is calculated for each timestep from a drivecycle. It
is assumed that the system can reach any desired behaviour within 1s of applying the
input (i.e. engine speed or torque) regardless of the previous state of the system. The
control input is discretized over its operation range, and stored in a vector (i.e. τICE =
[0,10,20,30..150]Nm). The response of the other components are calculated as a function
of the control input and the torque and speed of the vehicle.

In this implementation, the first step of Dynamic Programming is to generate a lookup
table of vehicle responses with respect to vehicle speeds and torques and component inputs.
This ‘vehicle state lookup table’ is then used to evaluate the response for various vehicle
states.

For each input and timestep the system of equations is solved numerically and stored
as a table entry. The procedure is as described below, and a flowchart of the procedure is
shown in figure 6.2.

59

Vehicle State Lookup Table Generation Process

1. Accept incidence matrix describing the vehicle topology, and scaling factors describ-
ing vehicle component size.

2. Using the Graph Theoretic Method (described in section 4.1), generate the model
equations from the incidence matrix.

3. Given a drivecycle, discretize speed into 1s timesteps.

4. Calculate vehicle mass from base chasis mass, and scaled component masses. Calcu-
late the vehicle torque and speed at each timestep in the drivecycle.

5. Determine the appropriate input variables by enumerating the possible drivers, and
testing them until a symbolic solution is found. This process is described in detail
in section 4.1.4. If no solution is found, then a ‘Failed to find symbolic solution’ is
returned and the corresponding score described in table 6.1 is assigned.

6. The symbolic solution is compiled into a procedure for speed. This procedure calcu-
lates the vehicle system response as a function of the inputs and states. This can be
achieved using the Maple command varsol := unapply(symbsol, notdrivers), where
varsol is a function which returns the vehicle system response, symbsol is the sym-
bolic solution, and notdrivers is a set of the variables in sys minus driverlist. The
arguments to varsol are the vehicle speed and torque, and the component inputs.

7. The compiled solution is saved to disk.

8. For every entry in the control input vector, and every vehicle state, the system
response is calculated using the symbolic solution from the previous step. For faster
simulation, this calculation is parallelized on the cluster computer by:

(a) Splitting the systems to be evaluated into blocks. For example, there could be
more than 4 million systems of equations to solve. A block could consist of 5000
systems.

(b) Assigning a block to an open worker.

(c) Prior to calculating the system responses, restart Maple (using restart()) and
load the symbolic solution from disk.

(d) All the blocks have been evaluated, the data is collected in local memory.

9. Store collected system states and responses in a ‘vehicle state lookup table’.

60

10. Table entries that violate engine/electric motor torque and speed constraints are
eliminated. If there is a timestep for which the vehicle cannot find an input to meet
the vehicle performance, a score corresponding to ‘Missing entries in table’ (shown
in table 6.1) is returned.

11. Calculate ICE fuel consumption rate based on lookup table.

12. Export table to Dynamic Program.

It was found that using the Maple toolbox to repeatedly evaluate functions would cause
the Maple kernel to accumulate large amounts of memory and eventually crash. This is
likely due to faulty garbage collection. To work around this problem, the symbolic solution
to the system of equations was solved to disk and restart; was periodically invoked to clear
Maple’s memory. After the memory was cleared, evaluating the functions could be resumed
by reading the symbolic solution from disk.

61

Incidence
Matrix

Drivecycle

Vehicle States
(Torque, Speed)

Predefined
Control
Points

Solve System of
Equations

Symbolically

Evaluate solution
numerically at
control points

Enumerate
control points
for every state

Export Table

Store Values in
Table

Remove Table
Entries Violating

Constraints

GTM:
Generate System

Equations

Cluster Computer

Split Systems into
Blocks

Assign blocks to
workers on cluster

computer

Collect Data

Component
Scaling Factors

Determine Control

Calculate
Vehicle Mass

Legend

Process

Input/Output

Database

Figure 6.2: Flow Chart for Simulating Vehicle States and Inputs.

62

6.2 Dynamic Programming

Dynamic programming is a popular off-line method to determine the optimal control law
given all prior trip information [63, 49, 64]. The dynamic program is based on Bellman’s
Principle of Optimality [14], which states that a problem can be broken into sub-problems,
and the solution to each sub-problem is dependent to the sub-problem before it. By solving
backwards in time, the optimal control law for each time step is obtained. When the final
time step is reached, the control law can be followed forwards in time, and the optimal
control law is obtained.

At every timestep, every possible input is evaluated for every possible state and assigned
an objective score. For each state, the input which minimizes the objective score is selected.
This is effectively a method of enumeration, making it robust but also slow. Therefore the
code implementation is extremely important, which is described in section 6.2.1.

6.2.1 Dynamic Program Pseudocode

Dynamic Program Terminology

Pseudocode for the dynamic program is provided in this section. A description of the
variables used in the pseudocode will be provided first for readability.

Continuing the example of a Powersplit Hybrid, the input is assumed to be u =
f(τICE, τbrake, ωICE). The vector of all inputs is defined as U = (u1, u2, ...un), where
n = nτICE

∗nτbrake∗nωICE
, and nτICE

, nτbrake , nωICE
are equal to the number of elements in the

vector describing the input resolution. For example, if the input discretization was done as
follows: τICE = [0,10,20..150], τbrake = [0,50,100], ωICE = [0,25,50..450], then nτICE

= 15,
τbrake = 3, ωICE = 18. Therefore the vector of U contains 15 ∗ 3 ∗ 18 = 810 elements.

In this work, X is a vector which represents the battery State-Of-Charge discretized be-
tween its minimum and maximum charge. For example, X = [0.5000, 0.5002, 0.5004...0.9000].
Xtmax is the state at the final timestep (first subproblem) and Xtarget is the desired final
state.

G(u) is a matrix representing the score of each element of vector U applied to each
element of vector X for a given subproblem. In other words, it is the objective score of
each input applied to each state for a given timestep. G(u) is calculated in equation 6.1.

G(u) = ṁfuel ∗
[
3.6 ∗ 106

[
J

kWh

]]
− PBAT (6.1)

63

J(Xt) is a matrix representing the cumulative score to travel from X at timestep t to
the final state Xtmax. J(Xt) represents the minimum cost to go from X at timestep t to
the final state Xtmax.

Dynamic Program Pseudocode Process

1. With reference to the top of figure 6.3, receive lookup table.

2. At the final timestep, calculate initial objective function by applying an off-target
penalty, Jkmax = 1e12 ∗ (XtmaxXtarget).

3. Starting at the second-final timestep and solving backwards in time, loop:

(a) Calculate a grid-matrix of next states by adding a specified state (battery SOC)
vector X = (x1, x2, ..., xm) to a vector of inputs U = (u1, u2, ...un).

(b) Calculate the matrix G(u) from the inputs and specified state vector, where
G(u) is described in equation 6.1. If violating constraints, add penalties to
objective function. Constraints include:

i. Maximum charge/discharge power as a function of battery SOC.

ii. Gear change ratio must be +1,−1, 0.

iii. SOCmin < SOC < SOCmax.

(c) Calculate matrix of J(Xt+1); the cost to go to from the current state xi,t to the
next state xj,t+1.

(d) Calculate cost J(Xt) = J(Xt+1) +G(U).

(e) For each xi,t, min(Ji). The corresponding U∗ is the optimal control for xi,t.

(f) Store u∗i,t for every xi,t.

(g) Return to 3a, t = t− 1. Terminate at t = 0 and pass matrix J to forward solver
in step 4.

4. With reference to figure 6.4, start the forward solver. Let x∗1 = x0∗, where x0∗ is the
predefined initial value of battery SOC.

5. Starting at t = 0, and using table of U∗
t for every Xt get u∗t for specified x∗t . If x∗t is

not a value on state vector X, use the nearest neighbour instead. If SOCmin > x∗t or
SOCmax < x∗t (exceed battery SOC bounds), apply a SOCBoundV iolationPenalty penalty
as described in table 6.1.

64

6. Calculate x∗t+1 = x∗t + ut

7. Let t = t+ 1. Terminate when t = tmax.

8. If x∗final 6= SOCfinal apply a SOCFinalTargetPenalty penalty as described in table 6.1.

It is interesting to note that the table J obtained at step 3(g) contains the decisions
which minimize the objective score to go from any state Xt to the final state Xtmax.
Approximately 95% of the computation time in Dynamic Programming is spent generating
this table, and the remaining 5% of time is spent at the forwards solver. Using this
method, results for different initial states x0∗ can be quickly computed without additional
calculations.

65

Set initial score
(off target penalty)

Jkmax = C(Xtmax-Xtarget)
2

For t = tmax-1 to 1

At each element of
Xt and Ut calculate

Xt+1

Calculate Gt(U)
Gk = ICEmdot * 46e6 – BATTP

Pena

Penalty for out
bound SOC

XSOC > Xmaxsoc
XSOC < Xminsoc

Penalty for
exceeding

maximum power
XBATT_P > XBATT_P,max
XBATT_P < XBATT_P,min

Penalty for jumping
gear changes
ΔGBR =1,0,-1

Penalty engine
turning ON/OFF
ΔICEmdot =1,0

Add penalties to
Gt(U)

Calculate Jt

Jt = Gt + J(Xt+1)

For each Xt

Select Ut that
min(Jk)

t=1?

Lookup Table

For each Xt

Select Ut that min(Jt)

Store Optimal Ut for
every Xt

For t = 1 to tmax

Predefined
X1*

t=tmax ?

Lookup table
Ut* for every Xt

Interpolate
Xt+1 = Xt* + Ut*

End

Lookup table
ui,t* for every xi,t

Figure 6.3: Flow Chart for Dynamic Programming

66

Set initial score
(off target penalty)

Jkmax = C(Xtmax-Xtarget)
2

For t = tmax-1 to 1

At each element of
Xt and Ut calculate

Xt+1

Calculate Gt(U)
Gk = ICEmdot * 46e6 – BATTP

Pena

Penalty for out
bound SOC

XSOC > Xmaxsoc
XSOC < Xminsoc

Penalty for
exceeding

maximum power
XBATT_P > XBATT_P,max
XBATT_P < XBATT_P,min

Penalty for jumping
gear changes
ΔGBR =1,0,-1

Penalty engine
turning ON/OFF
ΔICEmdot =1,0

Add penalties to
Gt(U)

Calculate Jt

Jt = Gt + J(Xt+1)

For each Xt

Select Ut that
min(Jk)

t=1?

Lookup Table

For each Xt

Select Ut that min(Jt)

Store Optimal Ut for
every Xt

For t = 1 to tmax

Predefined
X1*

t=tmax ?

Lookup table
Ut* for every Xt

Interpolate
Xt+1 = Xt* + Ut*

End

Lookup table
ui,t* for every xi,t

Figure 6.4: Forward Solve Flow Chart for Dynamic Programming

Matlab Vectorization Method

The Dynamic Program implementation in Matlab was based on an approach developed by
Guzella (see chapter on Dynamic Programming for pseudocode in [47]). In Matlab, a code
vectorized approach is orders of magnitude faster than a loop approach [47]. This process
is graphically described in figure 6.5.

1. To enumerate each input for each state, two grids were used: the state grid with
identical states along the rows, and an input grid with identical states along the
columns. Adding these two matrices together resulted in a matrix of the next states.

67

2. The cost function matrix (J(Xt+1)) is calculated for the next state matrix. Linear
interpolation is used to calculate scores that fall inbetween scores. Matlabs linearp1()
contains rigorous checks, and is relatively slow. In this implementation a custom
speed-optimized interpolation function was available at [65] was used.

3. The input cost matrix is calculated from the input grid matrix G(U)

4. The cost matrix J(Xt) was calculated from the input cost matrix J(Xt+1)

5. Using min(), on the cost matrix J(Xt) should return a column vector of the minimum
cost of every row, and the array index position of the minimum cost

6.2.2 Dynamic Program Settings

A convergence study was performed to determine the best settings for Dynamic Program-
ming. The variables studied in the convergence study are: the number of discretized inputs,
resolution of the state grid, and solver time. The study was performed on an Intel Dual
Core 2.2 GHz, 6 GB RAM desktop computer; however,only 1 core was used for table gener-
ation and Dynamic Programming. The system was simulated over the HWFET drivecycle
which contains 765 discrete 1 second timesteps [66]. Shown in figure 6.6, it was found that
increasing the number of inputs would greatly increase the overall solve time due to the
greater amount of table entries, but have relatively little effect on the dynamic program
computation time. The input vector U was limited to 1035 elements to reduce solve time
to 10 minutes. The discretization values can be found in the dynamic program settings in
the results section.

68

X
1

t

Un

...

U3

U2

U1

X
2

t

X
3

t

... X
m

t

X
1

t+
U

1
X

1
t+

U
2

X
1

t+
U

3
...

X
1

t+
U

n

X
2

t+
U

1

X
3t

+U
1

...

X
m

t+
U

1

X
2

t+
U

2
X

2
t+

U
3

...
X

2
t+

U
n

X
3

t+
U

2
X

3
t+

U
3

...
X

3
t+

U
n

...
...

...
...

X
m

t+
U

2
X

m
t+

U
3

...
X

m
t+

U
n

J X
1

t+
U

1
J X

1
t+

U
2

J X
1

t+
U

3
...

J X
1

t+
U

n

J X
2t

+U
1

J X
3

t+
U

1

...

J X
m

t+
U

1

J X
2

t+
U

2
J X

2t
+U

3
...

J X
2

t+
U

n

J X
3

t+
U

2
J X

3
t+

U
3

...
J X

3
t+

U
n

...
...

...
...

J X
m

t+
U

2
J X

m
t+

U
3

...
J X

m
t+

U
n

 C
al

cu
la

te
 N

ex
t

St
at

e
M

at
ri

x
In

te
rp

o
la

te
 c

o
st

 J
(X

t+
1
)

G
U

1
G

U
2

G
U

3
...

G
U

n

G
U

1

G
U

1

... G
U

1

G
U

2
G

U
3

...
G

U
n

G
U

2
G

U
3

...
G

U
n

...
...

...
...

G
U

2
G

U
3

...
G

U
n

C
al

cu
la

te
 c

o
st

 G
(u

)

G
U

1
G

U
2

G
U

3
...

G
U

n

G
U

1

G
U

1

... G
U

1

G
U

2
G

U
3

...
G

U
n

G
U

2
G

U
3

...
G

U
n

...
...

...
...

G
U

2
G

U
3

...
G

U
n

C
o

st
 J

(X
t)

J 1
1t

J 1
2t

J 1
3t

...
J 1

n
t

J 2
1t

J 3
1t ... J m
1

t

J 2
2t

J 2
3t

...
J 2

n
t

J 3
2t

J 3
3t

...
J 3

n
t

...
...

...
...

J m
2t

J m
3

t
...

J m
nt

Fo
r

Ev
er

y
X

, m
in

 J
 t

o
fi

nd
 U

*
Ea

ch
 X

 s
h

o
u

ld
 h

av
e

an
 U

*

U
2

U
3

U
3

... U
n

X
1

t

X
2

t

X
3

t

... X
n

t

F
ig

u
re

6.
5:

C
o
d
e

V
ec

to
ri

za
ti

on
m

et
h
o
d

fo
r

D
y
n
am

ic
P

ro
gr

am
m

in
g

69

0

5000

0

500

1000

1500
0

200

400

600

800

grid points

Total Time

inputs

S
im

u
la

ti
o
n
 t
im

e
 (

s
)

0

5000

0

500

1000

1500
0

100

200

300

grid points

Table Generation

inputs

S
im

u
la

ti
o
n
 t
im

e
 (

s
)

0

5000

0

500

1000

1500
0

200

400

600

grid points

Dynamic Programming

inputs

S
im

u
la

ti
o
n
 t
im

e
 (

s
)

Figure 6.6: Solver Time versus Number of Discretized Inputs and Number of Dynamic
Program (Battery SOC) Grid Points.

As the proposed dynamic program allows for off-grid state values through interpolation,
it is also possible for there to be error in the final state. Shown in figure 6.7, about 2000
SOC grid points are required to have less than 1% error.

70

Figure 6.7: SOC Error versus Number of Discretized Inputs and Number of DP (Battery
SOC) Grid Points.

Autonomie’s rule based controller and ASHev’s optimal controller obtained from Dy-
namic Programming were compared using the aforementioned settings. A Powersplit hy-
brid simulation was built in Autonomie, and the control signal (τICE, ωICE) was extracted.
Shown in 6.8, the Autonomie control strategy was applied to the ASHev model. The same
initial and final conditions for the battery SOC were set in the Dynamic Program.

As expected, seen in figure 6.8, third graph from the top, the Dynamic Program control
strategy uses less fuel than the rule based controller. Autonomie consumes 523.3g (55.3
MPG), whereas the dynamic program consumes 397.1g (72.9 MPG). In figure 6.8, bottom
graph, it can be seen that the ICE will only output torque at its most fuel efficient operating
points. Shown in figure 6.9, the engine operates at the highest efficiency at high torques.

71

0 100 200 300 400 500 600 700 800
0

20

40

60

80

100
HWFET drive cycle

time (s)

V
e
h
ic

le
 V

e
lo

c
it
y
 (

k
m

/h
)

0 100 200 300 400 500 600 700 800
0.5

0.55

0.6

0.65

0.7
Battery State−Of−Charge

time (s)

B
a
tt
e
ry

 S
O

C

0 100 200 300 400 500 600 700 800
0

100

200

300

400

500
Cumulative Fuel Consumption

time (s))

C
u
m

u
la

ti
v
e
 F

u
e
l
C

o
n
s
u
m

p
ti
o
n
 (

g
)

Autonomie

DP

0 100 200 300 400 500 600 700 800

0

50

100

Internal Combustion Engine Torque

time (s))

T
o
rq

u
e
 (

N
m

)

Autonomie

DP

Autonomie

DP

Figure 6.8: Comparison of Autonomie Control Strategy versus Dynamic Program Strategy.
Both Simulations were Performed Using the ASHev model.

72

2
4
0

240 240

240

240

260 260
260

280 280
280

300 300 300

320 320 320

340 340 340
360 360 360
380 380 380
400 400 400
420 420 420
440 440 440460 460 460480 480 480500 500 500520 520 520

Brake Specific Fuel Consumption Map

Speed (rads/s)

T
o

rq
u
e

 (
N

m
)

150 200 250 300 350 400 450
0

20

40

60

80

100

120

BSFC

Max Torque

Autonomie

ASHev

Figure 6.9: Comparison of Autonomie Control Strategy versus Dynamic Program Strategy.
Both Simulations were Performed Using the ASHev model.

The engine operating points selected by DP and Autonomie are shown in figure 6.9.
Autonomies’ control algorithm selects the highest efficiency region for the speed, and thus
it is optimized locally at the engine level. Although it appears that only a few operating
points have been selected by Dynamic Programming, these operating points (torque and
speed) have been repeatedly selected. Dynamic Programming achieves a lower fuel con-
sumption by optimizing the fuel consumption globally over the entire trip, rather than only
optimizing it locally. It is likely that increasing the resolution of the inputs will slightly
increase the fuel efficiency of the vehicle, but at a significant increase in computation time.

6.3 Objective Score

Shown in table 6.1 are the scenarios for calculating the objective score. The following list
is a description of the objective scoring outcomes.

• FailValue is an arbitrarily set value which should be more than triple the expected
fuel spent during a drivecycle.

• Pass is the best-case scenario: the algorithm completes without error, and the fuel
consumption over a drivecycle is returned. Typical values are under 1000.

73

• Fail to find symbolic solution is the worst-case scenario, and a value based on
FailV alue is returned.

• Missing entries in table occurs when a symbolic solution can be found, but the
components are sized such that it cannot meet the performance targets.

• Pass with off target final SOC/out of bound SOC - Final SOC is out off target,
or SOC violates SOC min/max bounds.

Table 6.1: Values and Calculations for Objective Score
Value Objective Score Value
FailV alue (default) 4000
Pass Calculated Fuel Consumption (g)
Fail to find symbolic solution FailV alue
Missing entries in table FailV alue ∗ 0.66 + FailV alue ∗ 0.33 ∗

(#TimestepsMissed)/(#TimestepsInDrivecycle)
Pass with off target final
SOC/out of bound SOC

Calculated Fuel Consumption (g)
+SOCFinalTargetPenalty + SOCBoundV iolationPenalty

A penalty is applied based on the absolute value of the off-target. The ‘equivalent fuel
consumption’ penalty is calculated by using equation 6.2.

SOCFinalTargetPenalty = |FinalSOC − FinalTargetSOC| ∗ dSOCtoGas

SOCBoundV iolationPenalty =
∑

(|OutOfBoundSOC|) ∗ dSOCtoGas
(6.2)

where the value of dSOCtoGas is shown in equation 6.3. The last value in the equation
(0.153) is assumed to be representative of a power plant charging the battery. This is be
an approximation of charging the battery to a higher initial State-Of-Charge so it can
avoid the minimum SOC constraint. Assuming a power plant can convert gasoline to
electricity at a 20% efficiency, power transmission is 85% efficient, and battery charging
is 90% efficient; the overall system efficiency is 15.3% [67, 68]. Performing this way is
penalized; the lower end efficiencies for power conversion and transmission were chosen.

dSOCtoGas = 3600s ∗BATCap(Ah) ∗ (271V)/46e3(kJ/g)/0.153 (6.3)

74

6.4 Pattern Search

Generalized Pattern Search belongs to a category of direct search methods that do not
require derivative information to determine search directions. The Pattern Search opti-
mization algorithm was chosen for sizing components because it is a well-known global
optimization method with a relatively fast convergence rate [69]. A global optimization
algorithm is required because the objective score is non-continuous; ‘cliffs’ can be created
when a topology does not meet the performance requirements. As the objective function
is a functional (function of a function), it is not differentiable.

Pattern search systematically finds the global optimum through exploratory moves. At
each iteration, the objective function is sampled around the iterate point. The sampled
point with the lowest objective score becomes the iterate point for the next iteration. The
Pattern Search algorithm is briefly described below:

Pattern Search Algorithm [70, 71]

1. Staring at xk, compute the objective function f(xk). Loop:

2. Determine step length and direction, sk.

3. Evaluate the difference in objective function, ρk around xk, where ρk = f(xk) −
f(xk + sk).

4. If the new objective function is smaller, ρk > 0, that point becomes the starting point
for the next iteration, xk+1 = xk + sk. Otherwise, no change for the next iteration,
xk+1 = xk.

5. Update the search direction matrix Ck and step length variable ∆k.

(a) If xk+1 = xk, shrink step length δk a factor θ: ∆k+1 = θ∆k.

(b) Ck is updated depending on the type of pattern search performed. Generally it
is a matrix containing one orthogonal direction for every dimension.

6. While step length is larger than a tolerance, ∆k > ∆tol return to step 2.

Like any global optimization algorithm, convergence is guaranteed, but convergence to
the global minima is not [70, 71].

75

6.5 Summary

This chapter described the implementation for creating and comparing vehicle topologies.
Topology equations are generated based on the incidence matrix. These equations are used
to solve the system under different operating conditions, and the results are stored in a
vehicle state lookup table. The lookup table is passed to Dynamic Program where the
optimal control law is determined through enumeration of the table. The result is assigned
an objective score. Pattern search is used minimize this objective score by varying the
component sizes.

76

Chapter 7

Results and Discussion

As evaluating every permutation may be extremely time consuming, a screening process
is used to eliminate infeasible topologies so only promising topologies are evaluated. This
chapter breaks down the screening process into 4 stages. The first stage uses heuristics to
quickly eliminate infeasible topologies, and reduce the number of genomes to a workable
number (described in section 4.2.2). The second stage eliminates topologies that cannot
meet driving requirements based on a section of the US06 drivecycle. Component sizing
is performed during the second stage to ensure the topology is feasible, regardless of the
component size. The third stage uses a performance-focused drivecycle based on the PNGV
(Partnership for New Generation of Vehicles) requirements to screen out poorly performing
topologies. The genomes from the third stage are ranked, and the top 20 continue to the
fourth stage. In the fourth stage, the component sizes are optimized for a PNGV-HWFET
drivecycle.

7.1 Multi-Stage Topology Screening

As previously mentioned, using a single threaded CPU to simulate a drivecycle such as
HWFET may take up to 90 minutes. Therefore, it is impractical to blindly attempt
to optimize all possible topologies. Instead, a method is presented which systematically
reduces the number of genomes by using short drive cycles and performance targets. This
method is presented below and in a flow chart shown in figure 7.1.

1. All permutations of genomes were generated using combinatorics. Genomes were
parsed into mechanical and electrical IM, and evaluated against heuristics for validity.

77

Of the 6.78 ∗ 1010 combinations, only 524 genomes could generate valid powertrain.
A breakdown of these genomes is shown in table 4.1.

2. The genomes’ first 3 components (ICE/EM/GEN) were optimized for part of the
US06 drivecycle, as shown in figure 7.3. This short ‘gentle’ drivecycle was used to
screen out topologies that had extremely poor driving performance or lacked regen-
erative braking. US06 was chosen because it is a standard drivecycle that slowly
accelerates to 110 km/h.

Component size was optimized for each topology to ensure it could meet the perfor-
mance criteria regardless of the component size. The optimization used the scaling
factors as arguments and the fuel consumption as the objective function. To reduce
computation time, only the sizes of three of the five components (ICE/EM/GEN)
were optimized. The battery and gearbox ratios were assumed to not greatly af-
fect driving performance, especially on a short, low-performance drivecycle, . If the
topology cannot meet the performance criteria, the genomes were assigned a ‘Missing
entries in table’ score described in 6.1. 193 genomes were found to meet the US06
driving performance.

3. The 193 genomes were screened for driving performance using a drivecycle based
on PNGV design goals, shown as the second graph in figure 7.2. All 5 component
sizes were optimized. 159 genomes passed the performance screening. Of the 159
topologies, the best 20 which minimized fuel consumption were taken to the next
round.

4. The top 20 topologies that minimized fuel consumption were chosen and optimized
against the PNGV performance and HWFET drive cycle, seen in the bottom graph
in figure 7.2. The top 20 topologies are shown in figure 7.4, and are shown in table
7.5.

78

All Numerical
Permuations

(6.78e10)

Valid Topologies
(524)

IM
Heuristics

Remove
Isomorphs

Basic Performance
Feasible

Topologies

Quick Screen:
3-Component

Optimization on
Partial US06

Performance
Screen:

5-Component
Optimization based

on PNEV goals

PNEV Performance
Feasible Topologies

Best Topologies
(20)

Rank
Topologies

Final Evaluation:
5-Component
Optimization

with PNEV goals
and drivecycle

Ranked Best
Topologies

(20)

Figure 7.1: Flow Chart of the Topology Screening Process.

79

The 3 drivecycles used to evaluate the topologies for fuel consumption are shown in
figure 7.2. The US06 drivecycle is found in the top graph. The shaded area is the section
that was used to first screen the topologies. This highlighted area had the most difficult
acceleration profile.

The middle graph in figure 7.2 is a hand-built drivecycle based on the PNGV goals.
The guidelines descried in the PNGV goals were: accelerating from 0 to 96 km/h (60 mph)
in 13.5s (rounded to 14s), maintaining a speed of 88 km/h (55 mph) at a 6.5 degree grade,
and acceleration from 55 to 70 mph (88 to 112 km/h) in 8s. Additionally, a top speed of
130 km/h was desired. This drivecycle could potentially be changed to achieve any driving
performance.

The bottom graph in figure 7.2 is a combination of PNGV goals (seen in middle graph),
followed by the HWFET drive cycle. This drivecycle was created to optimize a performance
drivetrain, while introducing average driving behavior.

80

0 100 200 300 400 500 600
0

100

200
US06 drivecycle

time (s)

V
e

h
ic

le
 S

p
e

e
d

 (
k
m

/h
)

0 10 20 30 40 50 60 70 80 90
0

100

200
Performance drivecycle based on PNGV

time (s)

V
e

h
ic

le
 S

p
e

e
d

 (
k
m

/h
)

0 100 200 300 400 500 600 700 800 900
0

50

100

150
Combination PNGV & HWFET drivecycle

time (s)

V
e

h
ic

le
 S

p
e

e
d

 (
k
m

/h
)

Figure 7.2: Drivecycles. Top: US06 drivecycle. Highlighted Area is Used to Screen Topolo-
gies. Middle: Drivecycle based on PNGV Design Guidelines. Bottom: Drivecycle based
on PNGV Design Guidelines with HWFET.

Pattern search was used to optimize the component sizes. The settings for pattern
search can be found in table 7.1.

81

Setting Value
Arguments (Scaling Factors) [ICE, EM, GEN, GB, BAT]
Tolerance 0.1
Maximum Iterations 100
Upper Bound [2,2,2,2,2]
Lower Bound (PNGV) [0.5,0.5,0.5,0.5,0.5]
Lower Bound (PNGV/HWFET) [0.25,0.25,0.25,0.25,0.25]

Table 7.1: Pattern Search Settings

7.2 Topology Optimization Results for the PNGV goals

As stated in section 7.1, the component sizes were optimized for fuel consumption for a
drivecycle based on the PNGV goals. This section will show the results from this opti-
mization. Results for all of the topologies are summarized in the top graph seen in figure
7.3. On the x-axis are the topologies sorted by fuel consumption. On the y-axis is the fuel
consumption. Shown in the top figure, the topologies with a fuel consumption over 2000
failed to meet either the dynamic or kinematic requirements of the drive cycle. Only 159
topologies could meet the constraints. It was found that 119 topologies have an (arbitrarily
set target) fuel consumption score of 200 or less.

82

0 20 40 60 80 100 120
100

120

140

160

180

Genome number (rank)

F
u
e
l
C

o
n
s
u
m

p
io

n
 (

g
)

Fuel Consumption for Genome: PNGV (Scores Under 200)

0 20 40 60 80 100 120 140 160 180 200
0

500

1000

1500

2000

2500

3000

Genome number (rank)

F
u
e
l
C

o
n
s
u
m

p
io

n
 (

g
)

Fuel Consumption for Genome: PNGV (All Genomes)

Figure 7.3: Results from the PNEV Screening.

Shown in figure 7.4 are the 20 topologies have the lowest fuel consumption for the
PNGV drivecycle. Other notable topologies are shown in figure 7.5. Shown in table 7.2
are the topologies are named by their description. Their fuel consumption and component
scaling factors are also shown.

83

(1) (2)

S

PC

REM FD

ICE

Gba

GBb

GEN

FDGba

GBb

ICE

GEN

(3)

S

PC

R FDGba

GBb

EM

ICE

GEN

(4)

EM

EM FD

ICE

Gba

GBb

GEN

(5)

S

PC

R FDGba

GBb

EM

ICE

GEN

(6)

S

PC

R FDGba

GBbEM

ICE

GEN

(7)

EM FD

ICE

Gba

GBb

GEN

(8)

EM

FDICE Gba

GBb

(9)

EM FD

ICE

Gba

GBb

GEN

(10)

S

PC

R FD

EM

ICE

GEN

Gba

GBb

(11)

S

PC

R FDEM

ICE

GEN

Gba

GBb

(12)

S

PC

R FD

GEN

ICE

EM

Gba

GBb EM FD

ICE

Gba

GBb

(13) (14)

EM

FD

ICE

Gba

GBb

(15)

S

PC

R FD

EM

ICE

GEN

Gba

GBb

(16)

S

PC

R FD

GEN

ICE

EM

Gba

GBb

(17)

S

PC

R FD

GEN

ICE

EM

Gba

GBb

(18)

FD

GEN

ICE

EM

Gba

GBb

S

PC

R FD

EM

ICE

GEN

Gba

GBb

(19) (20)

EM FD

ICE

Gba

GBb

FD GEN ICEEM
S

PC

RFD

GEN

ICE

EM

(71) (117)

S

PC

RFD

GEN

ICE

EM

Gba

GBb S

PC

RFD

GEN

ICEEM

Gba

GBb

(33) (36)

Legend

Mechanical

Electrical

Transmission

Mechanical
Connection

Figure 7.4: Top 20 Topologies Obtained from the PNGV drivecycle. Legend can be found
in 7.5.

84

The topologies seen in figure 7.5 were included in the optimization for reference. Topol-
ogy #33 is a Prius-like hybrid with an additional discrete gearbox between the planetary
gear and the final drive. Topology #36 is similar to topology #33, but the discrete gearbox
is put before both the electric motor and planetary gearset. Topology #71 is a Prius-like
powertrain. Topology #117 is a Series powertrain. These topologies perform relatively
well, but are not in the top 20.

(1) (2)

S

PC

REM FD

ICE

Gba

GBb

GEN

FDGba

GBb

ICE

GEN

(3)

S

PC

R FDGba

GBb

EM

ICE

GEN

(4)

EM

EM FD

ICE

Gba

GBb

GEN

(5)

S

PC

R FDGba

GBb

EM

ICE

GEN

(6)

S

PC

R FDGba

GBbEM

ICE

GEN

(7)

EM FD

ICE

Gba

GBb

GEN

(8)

EM

FDICE Gba

GBb

(9)

EM FD

ICE

Gba

GBb

GEN

(10)

S

PC

R FD

EM

ICE

GEN

Gba

GBb

(11)

S

PC

R FDEM

ICE

GEN

Gba

GBb

(12)

S

PC

R FD

GEN

ICE

EM

Gba

GBb EM FD

ICE

Gba

GBb

(13) (14)

EM

FD

ICE

Gba

GBb

(15)

S

PC

R FD

EM

ICE

GEN

Gba

GBb

(16)

S

PC

R FD

GEN

ICE

EM

Gba

GBb

(17)

S

PC

R FD

GEN

ICE

EM

Gba

GBb

(18)

FD

GEN

ICE

EM

Gba

GBb

S

PC

R FD

EM

ICE

GEN

Gba

GBb

(19) (20)

EM FD

ICE

Gba

GBb

FD GEN ICEEM
S

PC

RFD

GEN

ICE

EM

(71) (117)

S

PC

RFD

GEN

ICE

EM

Gba

GBb S

PC

RFD

GEN

ICEEM

Gba

GBb

(33) (36)

Legend

Mechanical

Electrical

Transmission

Mechanical
Connection

Figure 7.5: Notable Topologies.

The descriptions are loosely based off the naming convention used in Autonomie.
Post/pre-Gearbox refers to the position of the powertrain component relative to the gear-
box, as seen from the final drive. This comes in two forms: speed multiplying (M), and
speed reducing (R). As the gearbox ratios are linearly scaled by a factor ranging from
0.5 to 2 (while maintaining a static weight of 75kg), either side can act as a speed mul-
tiplier or reducer, depending on the gear selected. All of the gearboxes that functioned
as a speed multiplier had their gear ratios scaled to 0.5. This changed their baseline ra-
tios of [3.32,2,1.36,1.01,0.82] to [1.66, 1.00, 0.68, 0.51, 0.41], or ‘tuning for speed’, rather
than ‘tuning for acceleration (torque)’. This is likely because the component sizes were
optimized for a drivecycle with a high average speed.

The first 20 genomes have fuel consumptions ranging from 107.1g to 112.2g; a 4.8%
difference. The curve-fits for the electric motor/generator have a R2 value of at least 0.9551;
therefore, there is a small error when evaluating the EM/GEN energy consumption and
subsequently the battery State-Of-Charge. This small error may change the order of these
topologies when a detailed simulation is performed.

85

In table 7.2 the topologies are shown sorted by fuel consumption. Component scaling
ratios of ‘n/a’ denote topologies which do not include that particular component. It can be
seen that for all topologies, the ICE was chosen to be scaled up. Of the shown topologies,
not a single ICE was scaled down, and only the Series topology (genome 117) maintained
a scaling ratio of 1 (57kW). As fuel consumption are generally lower for smaller engines,
the scaling up of the ICE can only be explained by the difficult drivecycle; a smaller engine
would not be able to provide the torque necessary to meet the acceleration profile.

The EM and GEN were generally scaled down, likely to reduce weight. As it is possible
for both the EM and the GEN to be used as motors, they could potentially be used together
to efficiently provide tractive force.

As all-electric range does not factor into this optimization, it is seen that all of the
topologies have scaled down their battery to reduce weight. Electric-range could easily
be incorporated by changing the initial and final values of the battery SOC. Dynamic
Programming was used so the battery usage is optimized over the drivecycle and never
reaches the battery minimum and maximum limits. Optimal controllers are unrealistic,
unless one is driving the same route repeatedly, thus larger batteries provide the system
with more flexibility and are much easier to implement.

86

Table 7.2: PNGV drivecycle results: Description of Top 20 Genomes Seen in Figure 7.4
and Notable Genomes in Figure 7.5.
Genome
#

Description Component Scaling Ratios
[ICE, EM, GEN, R, BAT]

FC
(g)

1 Post-Gearbox (M) Parallel [1.25,0.50,n/a,0.50,0.50] 107.1
2 Post-Gearbox (M) Complex [1.25,0.50,0.50,0.50,0.50] 107.7
3 Post-Gearbox (M) with PC output and Par-

allel ICE-EM on Ring and GEN on Sun
[1.13,0.50,0.88,0.50,0.50] 107.8

4 Pre-Gearbox (M) EM, Powersplit with PC
output, ICE on Sun and GEN on Ring

[1.13,0.50,0.75,0.50,0.50] 107.8

5 Complex with Pre-Gearbox GEN [1.25,0.50,0.50,0.50,0.50] 108.0
6 Post-Gearbox (R) EM in Parallel with PC

output, ICE on Ring, GEN on Sun
[1.13,0.50,0.75,0.75,0.50] 109.4

7 Post-Gearbox (R) with PC output, GEN on
Sun and Parallel ICE-EM on Ring

[1.13,0.50,0.75,0.75,0.50] 109.0

8 Post-Gearbox (R) Complex [1.50,0.63,0.50,0.50,0.50] 109.4
9 Parallel with Gearbox (M) on ICE [1.25,0.75,n/a,0.50,0.50] 109.5
10 Complex with Pre-Gearbox (R) EM [1.50,0.50,0.88,0.50,0.50] 109.9
11 Complex with Pre-Gearbox (R) GEN [1.50,0.50,0.50,0.50,0.50] 110.1
12 PC output gear with GEN on SUN and Post-

Gearbox ICE-EM on Ring
[1.13,0.50,0.88,0.75,0.50] 110.3

13 Post-Gearbox (R) ICE with PC output in
Parallel, GEN on Sun, EM on Ring

[1.38,0.50,0.50,0.50,0.50] 110.6

14 PC output gear, with EM on Sun, Post-
Gearbox (M) Parallel ICE-GEN on Ring

[1.13,0.50,0.88,0.50,0.50] 110.8

15 Post Gearbox (R) Parallel [1.63,0.50,n/a,0.50,0.63] 110.8
16 Parallel Post-Gearbox (R) ICE [1.50,0.75,n/a,0.50,0.63] 111.3
17 PC output, GEN on Sun, Post-Gearbox (R)

Parallel ICE-EM
[1.13,0.50,0.88,0.50,0.50] 111.7

18 Parallel EM - PC output with GEN on Sun [1.13,0.75,0.63,0.75,0.50] 111.8
19 PC output, EM on Sun, Post-Gearbox (R)

Parallel ICE-GEN
[1.13,0.50,1.00,0.75,0.50] 112.1

20 PC output, EM on Sun, Post-Gearbox (M)
Parallel ICE-GEN

[1.13,0.75,0.50,0.75,0.50] 112.2

33 Pre-Gearbox (R) EM Powersplit [1.13,0.50,0.50,1.13,0.50] 115.4
36 Post-Gearbox (R) Powersplit [1.13,0.75,0.75,1.25,0.50] 116.0
71 Powersplit [1.50,1.00,1.38,n/a,0.50] 127.7
117 Series [1.00,1.88,2.00,n/a,0.50] 168.2

87

As it would be impractical to show the results for all topologies, only the results for
the best topology is shown. The behaviour of Genome # 1 is shown in figure 7.6 and 7.7.
Shown in figure 7.6, the ICE will only consume fuel in its most efficient operating region.
Shown in figure 7.7 is the BFSC with the operating points overlay. As expected, the ICE
is operating in its most efficient regions, or is off (providing 0 torque).

0 10 20 30 40 50 60 70 80 90
0

100

200
Fuel Consumption vs time

F
u
e
l
(g

)

0 10 20 30 40 50 60 70 80 90
0

100

200
ICE Torque

T
o
rq

u
e
 (

N
m

)

0 10 20 30 40 50 60 70 80 90

0.7

0.8
SOC vs time

S
O

C

0 10 20 30 40 50 60 70 80 90
0

50

100

150

200

T
ri
p
 s

p
e
e
d
 (

k
m

/h
)

0 10 20 30 40 50 60 70 80 90
0

1

2
Discrete gearbox

time(s)

G
e
a
r

R
a
ti
o

Figure 7.6: Dynamic programming results for Genome #1. Top: (left, solid line) battery
State-Of-Charge vs time, (right, dotted line) vehicle velocity vs time. Second from top:
cumulative fuel consumption vs time. Third from top: Internal Combustion Engine torque
output. Bottom: discrete gearbox ratios.

Pattern search was used to find the optimal component sizes. Shown in figure 7.8, the
median number of iterations required for convergence in a 5 dimension problem is 18. As
there were 193 topologies, a histogram of the number of number of iterations and function
calls is shown for groups of topologies rather than for the individual topologies. For each
iteration, the function was called multiple times to sample the surrounding objective score

88

280 280

300

300 300

300

300

320 320
320

340 340
340

360 360
360

380 380 380

400 400 400

420 420 420
440 440 440
460 460 460
480 480 480
500 500 500
520 520 520

Brake Specific Fuel Consumption Map

Speed (rads)

T
o

rq
u
e

 (
N

m
)

150 200 250 300 350 400 450
0

50

100

150

BFSC

Max Torque

Operating Point

Figure 7.7: Brake Specfic Fuel Consumption Map with operating points for Genome #1
on the PNGV drivecycle.

and choose a new search direction. A few topologies had 4 rather than 5 components (i.e.
Genome #1 does not have a GEN); they required fewer iterations to reach convergence.

6 10 14 18 22 26 30 34 38 42
0

20

40

60

80

100
Number of iterations to convergence

Number of iterations

N
u
m

b
e
r

o
f
to

p
o

o
g
ie

s

31 49 67 85 103 121 139 157 175 193
0

20

40

60

80
Number of function calls to convergence

Number of function calls

N
u
m

b
e

r
o
f
to

p
o
o
g
ie

s

Figure 7.8: Optimization statistics for PNGV drivecycle.

89

7.3 Topology Optimization Results for the PNGV-

HWFET drivecycle

The final stage of optimization combined the PNGV and HWFET drivecycles to create
representative highway driving behaviour that must meet certain performance criteria. It
is expected the optimization results may change because the combined drivecycle is longer
with more regen-braking opportunites. The results for the optimization can be found in
table 7.3. The genome number and naming were preserved from table 7.2, but sorted in
ascending order by fuel consumption. The component scaling ratios and fuel consumption
were updated for the drivecycle.

The most fuel efficient topology is genome #6, a Powersplit Hybrid with a discrete
gearbox between the final drive and output gear of the planetary carrier.

90

Table 7.3: HWFET-PNGV drivecycle results: Description of Top 20 Genomes Seen in
Figure 7.4 and Notable Genomes in Figure 7.5.
Genome
#

Description Component Scaling Ratios
[ICE, EM, GEN, R, BAT]

FC
(g)

6 Post-Gearbox (R) EM in Parallel with PC
output, ICE on Ring, GEN on Sun

[0.88,0.50,0.75,0.50,0.50] 614.0

15 Post Gearbox (R) Parallel [1.25,0.75,n/a,0.50,0.38] 617.0
17 PC output, GEN on Sun, Post-Gearbox (R)

Parallel ICE-EM
[1.00,0.50,0.88,0.50,0.38] 618.4

8 Post-Gearbox (R) Complex [1.25,0.50,0.38,0.50,0.38] 619.0
11 Complex with Pre-Gearbox (R) GEN [1.25,0.50,0.38,0.50,0.38] 619.9
33 Pre-Gearbox (R) EM Powersplit [1.00,0.75,0.50,0.75,0.38] 620.4
5 Complex with Pre-Gearbox GEN [1.13,0.50,0.25,0.50,0.38] 620.8
1 Post-Gearbox (M) Parallel [1.25,0.50,n/a,0.50,0.38] 623.4
16 Parallel Post-Gearbox (R) ICE [1.25,0.88,n/a,0.50,0.50] 624.3
2 Post-Gearbox (M) Complex [1.00,0.50,0.50,0.50,0.63] 626.5
19 PC output, EM on Sun, Post-Gearbox (R)

Parallel ICE-GEN
[1.00,0.50,1.00,0.50,0.25] 628.5

9 Parallel with Gearbox (M) on ICE [1.00,0.75,n/a,0.50,0.63] 630.8
4 Pre-Gearbox (M) EM, Powersplit with PC

output, ICE on Sun and GEN on Ring
[0.88,0.50,0.63,0.50,0.38] 630.9

13 Post-Gearbox (R) ICE with PC output in
Parallel, GEN on Sun, EM on Ring

[1.13,0.50,0.38,0.50,0.50] 634.5

36 Post-Gearbox (R) Powersplit [1.00,1.00,0.75,0.75,0.50] 635.2
3 Post-Gearbox (M) with PC output and Par-

allel ICE-EM on Ring and GEN on Sun
[1.00,0.25,1.00,0.50,0.25] 637.3

10 Complex with Pre-Gearbox (R) EM [1.13,0.50,0.25,0.75,0.50] 639.1
12 PC output gear with GEN on SUN and Post-

Gearbox ICE-EM on Ring
[1.00,0.25,0.88,0.50,0.25] 640.7

14 PC output gear, with EM on Sun, Post-
Gearbox (M) Parallel ICE-GEN on Ring

[1.00,0.50,0.75,0.50,0.25] 641.5

20 PC output, EM on Sun, Post-Gearbox (M)
Parallel ICE-GEN

[0.75,0.75,0.50,0.50,0.75] 643.0

18 Parallel EM - PC output with GEN on Sun [0.88,0.75,0.50,0.50,0.50] 646.9
7 Post-Gearbox (R) with PC output, GEN on

Sun and Parallel ICE-EM on Ring
[1.00,0.50,0.50,1.00,0.38] 654.3

71 Powersplit [1.25,1.00,1.63,n/a,1.00] 679.5
117 Series [1.00,2.00,2.00,n/a,0.38] 774.1

91

The optimization results for the PNGV-HWFET drivecycle is shown in figure 7.9.
The number of iterations and function calls are shown for each of the top 20 genomes
individually. All of the optimizations terminated when the step size was less than the
tolerance step size of 0.1.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 33 36 71 117
0

5

10

15

20

25
Number of iterations to convergence

Topology Number

#
 i
te

ra
ti
o
n
s

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 33 36 71 117
0

50

100

150

200
Number of function calls to convergence

Topology Number

#
 o

f
fu

n
c
ti
o
n
 c

a
lls

Figure 7.9: Optimization statistics for PNGV-HWFET drivecycle. The numbering for the
topologies correspond to the genome number in table 7.2.

92

7.4 Discussion and Interpretation of Results

The topologies rankings are important, but it is more important to understand the trends
that make these powertrains efficient. Of the top 24 evaluated topologies, there were 4
Parallel-like, 1 Series-like, 5 Complex-like, 7 Complex-Powersplit-like, and 7 Powersplit-
like. Topologies #1, 9, 15, 16 are Parallel-like, because they have an ICE mechanically
connected in parallel with an electric motor and the final drive. Topology # 117 is the
reference Series hybrid powertrain and is the only Series-like topology that was evaluated.
Topologies #2, 5, 8, 10, 11 are Complex-like. Complex-like topologies are defined as 3
movers mechanically connected to a transmission (without a powersplit device). Topologies
#4, 6, 13, 18, 33, 36, 71 are Powersplit-like, defined as one mover (ICE, EM, GEN) per
gear (ring, sun, planetary carrier) on the PSD. Topologies #3, 7, 12, 14, 17, 19, 20 are
Complex-Powersplit-like, as defined by 3 movers, with more than one mover per gear on
the PSD.

Long, complex geartrains suffered no penalties because mechanical losses were ignored.
This skewed the results towards mechanically coupled powertrains, such as Parallel-like,
Complex-Powersplit-like and Powersplit-like topologies. All possible Parallel-like topologies
were in top 20 architectures. Complex-like and Powersplit-Complex-like topologies together
made the majority of the genomes, however they have more components and thus have more
possible configurations. Electrically coupled hybrids (such as Series hybrids) performed
comparatively worse because electrical inefficiencies were included. Shown in table 7.2
and 7.3, the Series Hybrid performed the worst of all 24 evaluated topologies. Powersplit-
like and Complex-Powersplit-like topologies could operate as a Parallel hybrid or Series
hybrid. The extra modes of operation make these topologies perform more efficiently;
however, to realistically build a configuration such as #3, additional clutches and more
complex controllers would be required.

It is interesting to note that the Series (#117) and Powersplit (#71) powertrains did
not make the top 20 topologies for the PNGV screening stage. This is likely due to the
optimization objective function being a function of fuel consumption and does not include
vehicle cost or controller complexity. Powertrain connectors, such as intermediate gears
and driveshafts, were also not factored into this optimization. Additional constraints that
could be included are: packaging, intellectual property, vehicle type, development time,
safety and chassis weight.

All of the top 20 topologies contained the discrete gearbox. Therefore, the extra 75 kg
of gearbox mass is always offset by improved fuel efficiency. The gearboxes were assumed
to be perfectly efficient. In reality they have a dynamic efficiency ranging from 95-97%.

93

Furthermore, transmission efficiency decreases as the reduction ratio increases, with very
high reduction ratios being as low as 75-80% efficient [18]. Introducing mechanical ineffi-
ciencies into the powertrain model may yield results with fewer gearboxes. For the purpose
of conceptual design, these are all topologies which should be considered.

Although the FD/ICE/EM/GEN could realistically be placed on the ring/sun/planet
carrier gear in any combination [18], it was found that the planetary carrier was favoured
as the output gear. The Chevrolet Volt is an example of a commercially available HEV
that uses the planetary carrier as the output gear (albeit in combination with a second
planetary gear). Generally the GEN should be placed on the sun gear because it runs at
the highest speed and lowest torque, and thus a smaller generator with a high speed can
be used, which takes up less space and weight [18].

7.5 Summary

The results for the Hybrid Electric Vehicle powertrain screening and optimization were
presented in this chapter. Parallel-like, Powersplit-like, and Complex-like topologies were
found to be the most efficient. Mechanical inefficiencies were ignored in the models, so
electrically coupled topologies, such as a Series powertrain, were comparatively less effi-
cient.

94

Chapter 8

Conclusion

An algorithm was developed to assemble and compare all possible configurations of pow-
ertrain components. Combinatorics was used to discover all possible combinations of: an
internal combustion engine, high-torque low-speed electric motor, low-torque high-speed
electric motor, planetary gearset, and five-speed discrete gearbox. The Graph Theoretic
Method was used to generate the powertrain models.

The powertrain models were comprised of steady-state equations in symbolic form. An
optimal control strategy is required to fairly compare the different topologies because a
powertrain control strategy is dependant on the configuration. Dynamic Programming
was used to determine the control law that minimizes the energy consumption for a given
drivecycle. Evaluating every possible topology would take an extremely long time, so
topologies were evaluated using a multi-stage screening process.

The first stage examined the structure of the powertrain and used heuristics to eliminate
infeasible topologies; 512 topologies were feasible.

The second stage eliminated topologies that could not meet basic driving performance;
193 topologies were feasible. Basic driving performance was tested using a section of the
US06 drivecycle. The sizes of three components was optimized to ensure the topology is
feasible independent of the size of the components.

The third stage eliminated topologies which could not achieve driving performance
design goals; 159 could achieve the performance requirements, but only 119 were reasonably
fuel efficient. The driving performance goals were implemented with a drivecycle based
on the Partnership for a New Generation of Vehicles (PNGV) goals. The sizes for five
components were optimized at this stage.

95

The 20 most fuel efficient powertrains were selected for further evaluation. Additionally,
4 common powertrains were evaluated for reference. The size of the components were
optimized for a combination of the PNGV drivecycle and the HWFET drivecycle.

The most fuel efficient topology was found to be a Powersplit hybrid which has a dis-
crete gearbox between the final drive and the powersplit device. The electric motor, plan-
etary carrier gear, and gearbox were connected in parallel. It was found that Parallel-like,
Powersplit-like, and Complex-like topologies were were the most efficient powertrain config-
urations. Powertrains containing two gearboxes were more efficient because the geartrain
models ignored mechanical inefficiencies.

8.1 Contributions

The main contributions in this thesis are: (i) the creation of a framework to automate
the design of hybrid electric vehicle powertrains, (ii) heuristics to quickly eliminate invalid
topologies, (iii) a process to speed up the evaluation of a steady-state model using parallel
computing, and (iv) novel hybrid electric vehicle topologies.

8.2 Lessons Learned

MapleSim Implementation

As MapleSim uses the GTM to formulate equations, attempts were made to exploit the
built in solver, then export a model from MapleSim to Simulink. This approach used a
‘control switchbox’ custom component, which accepted an adjacency matrix as an input
parameter. The model components were connected to this control switch custom com-
ponent. The component interconnections be manipulated by changing the values of the
adjacency matrix. Using this approach, a Series hybrid was successfully into a Parallel
Hybrid.

This approach was abandoned when it was discovered that the ‘output model to
Simulink’ routine would create a functional model (written in C) with a fixed structure.
A fixed structure model is not appropriate when changing topologies as the code needs to
be reordered or flexible.

It was attempted to pass in parameters and execute the MapleSim model externally.
Unfortunately the only way to externally run the simulation is to compile the model and

96

call it from Maple. Compiling the model will fix the equation structure, rendering it useless
for topology analysis.

8.2.1 Maple Toolbox Implementation

When solving a system in terms of its symbolic variables, eliminate() is more appropri-
ate function and executes much faster than solve(). While repeatedly solving systems of
solutions, Maple does not perform garbage collection effectively until restart() is called.
Memory would allocate in the kernel until disk swapping caused major system slowdown
or a crash occurred. A workaround was created by saving all of the necessary variables to
disk, calling restart() periodically, then reloading the variables from disk.

8.2.2 Curve-fitting Toolbox

A higher R2 value does not always mean the fit is good. Always check the extrema of
your polynomials, otherwise unexpected values could be obtained. A small algorithm was
created to double-check that the error between the curve-fit and the map data was not
great.

8.2.3 Genetic Algorithm

The design of hybrid powertrains could potentially be automated using this framework if
more computing power was available. The design space can be expanded by increasing the
number of components and the number of nodes allowed in the incidence matrix. Potential
components could be: super-capacitors, fuel cells, additional planetary gears, flywheels,
and clutches. Additionally the powertrain design framework could easily be expanded to
heavy trucks, trains, planes and boats by changing the base vehicle parameters and the
drivecycle.

Expanding the design space has the disadvantage of exponentially increasing the num-
ber of possible combinations. Liu [9] used an approach which involved describing planar
mechanisms with a genome. In Liu’s work, the design space was much larger and enumer-
ation was not practical. Instead of enumeration, the genetic algorithm was applied to the
genome describing each topology resulting in a heuristic search. A disadvantage to this
method is large number of generations (5000+) required for convergence, and is thus is
only suitable for simulations that complete quickly.

97

8.3 Future Work

8.3.1 Mechanical Inefficiencies

Ignoring mechanical inefficiencies skewed the topology optimization to the Parallel-like
powertrains rather than Series-like topologies. For a more realistic balance of topologies
these inefficiencies should be included. By examining the incidence matrix, it could be
determined which end of the gearbox was facing the final drive. A damper variable could
be included to introduce power losses. The power loss would be a function of the output
torque. For example, in the case of a simple ICE vehicle, the current equations (only torque
equations shown for brevity):

τFD = τGBa

τGBb =
−1

RGB(ig)
τGBa

τGBb = τICE

(8.1)

would be replaced with the equations:

τFD = τGBa + τGBaloss

τGBb =
−1

RGB(ig)
τGBa

τGBb = τICE

τGBaloss = τGBa

{
τGBa ∗ ωGBa > 0 GBLoss

else −GBLoss

(8.2)

where GBLoss would be the power loss, ranging from 1-5%. It was found that this method
was effective for some topologies, but caused eliminate() to cease working. Further analysis
is required to ensure this is a robust solution.

8.3.2 Genetic Algorithm

As previously mentioned, adding more components exponentially expand the design space.
For a certain large number of components, it may be feasible to use the genetic algorithm

98

Figure 8.1: Genetic Algorithm Topology Search Results

to find the best topology. The original goal of this work was to use the genetic algorithm,
but it was found to be no better than random number generation for this application.

Shown in figure 8.1, are results from earlier work. The top graph shows the results of
the genetic algorithm search as a function of generation. It can be seen that the Parallel
and Powersplit architectures were found after 9 generations (population size of 50), or
450 simulation calls. Unfortunately the Series Hybrid topology was not found, so it was
decided that the usefulness of this approach is limited. It is likely that this approach will
become more useful as the design space increases, or as simulation time decreases. The
bottom graph is a genome.

This concludes the thesis. Thank you very much for taking the time to read this. I

99

really hope you learned something. I have no more knowledge to impart on you, but I will
leave you with a lesson. In the words of George E. P. Box, “essentially, all models are
wrong, but some are useful”.

100

References

[1] K. Ogata, Modern Control Engineering. New Jersey: Prentice Hall, 1997.

[2] W. Boruzky, Bond Graph Methodology. London: Springer, 2010.

[3] P. Barrade and A. Bouscayrol, “Energetic Macroscopic Representation - An Energy-
Flow Based Methodology dedicated for the control of multiphysics systems.” 2011.

[4] R. Zanasi, “Power-oriented graphs for modeling electrical machines,” in Electrotechni-
cal Conference, 1996. MELECON ’96., 8th Mediterranean (Volume:3), no. 39, (Bari),
pp. 1211–1214, IEEE, 1996.

[5] ANL, “Autonomie,” 2012.

[6] K. Chen, A. Bouscayrol, A. Berthon, P. Delarue, D. Hissel, and R. Trigui, “Global
modeling of different vehicles,” IEEE Vehicular Technology Magazine, vol. 4, 2009.

[7] I. K. Luigi del Re, Frank Allgower , Glielmo Luigi, Carlos Guardiola, Automotive
Model Predictive Control. Springer, 2010.

[8] C. C. Chan, “The State of the Art of Electric, Hybrid, and Fuel Cell Vehicles,”
Proceedings of the IEEE, vol. 95, pp. 704–718, Apr. 2007.

[9] Y. Liu, Automated Type and Dimensional Synthesis of Planar Mechanisms Using
Numerical Optimization with Genetic Algorithms. Phd thesis, University of Waterloo,
2004.

[10] J. J. McPhee, “On the use of linear graph theory in multibody system dynamics,”
1996.

[11] J. J. Mcphee, “Dynamics of Multibody Systems : Conventional and Graph-Theoretic
Approaches.” 2004.

101

[12] J. J. McPhee, “Unified Modelling Theories for the Dynamics of Multidisciplinary
Multibody Systems,” in Advances in Computational Multibody Systems (J. A. Ambro-
sio, ed.), ch. Unified Mo, pp. 125–154, Lisbon, Portugal: Springer, 2 ed., 2005.

[13] R. Wang and S. M. Lukic, “Dynamic programming technique in hybrid electric vehicle
optimization,” 2012 IEEE International Electric Vehicle Conference, pp. 1–8, 2012.

[14] D. S. Naidu, Optimal Control Systems. 2003.

[15] M. Neuman, H. Sandberg, and B. Wahlberg, “Rule-Based Control of Series HEVs
Derived from Deterministic Dynamic Programming.”.

[16] M. P. O. Keefe and T. Markel, “Dynamic Programming Applied to Investigate Energy
Management Strategies for a Plug-in HEV,” No. November, 2006.

[17] S. Chanda, POWERTRAIN SIZING AND ENERGY USAGE ADAPTATION
STRATEGY. PhD thesis, University of Akron, 2008.

[18] M. Ehsani, Y. Gao, and A. Emadi, Modern Electric, Hybrid Electric, and Fuel Cell
Vehicles. CRC Press, second edi ed., 2010.

[19] M. Chehresaz, “Modeling and Design Optimization of Plug-In Hybrid Electric Vehicle
Powertrains,” 2013.

[20] O. Bitsche and G. Gutmann, “Systems for hybrid cars,” Journal of Power Sources,
vol. 127, pp. 8–15, Mar. 2004.

[21] E. Karden, S. Ploumen, B. Fricke, T. Miller, and K. Snyder, “Energy storage devices
for future hybrid electric vehicles,” Journal of Power Sources, vol. 168, pp. 2–11, May
2007.

[22] A. E. Bayrak, Y. Ren, and P. Y. Papalambros, “Design of Hybrid-Electric Vehicle
Architectures Using Auto-Generation of Feasible Driving Modes,” in Proceedings of the
ASME 2013 International Design Engineering Technical Conferences and Computers
and Information in Engineering Conference, pp. 1–9, 2013.

[23] A. Kawahashi and Toyota Motor Corporation, “New-Generation Hybrid Electric Ve-
hicle and Its Supporting Power Semiconductor Devices,” pp. 23–29, 2004.

[24] J. M. Miller and M. Everett, “An Assessment of Ultra-capacitors as the Power Cache
in Toyota THS-11 , GM-Allision AHS-2 and Ford FHS Hybrid Propulsion Systems,”
IEEE.

102

[25] C. Chan, A. Bouscayrol, and K. Chen, “Electric, Hybrid, and Fuel-Cell Vehicles:
Architectures and Modeling,” IEEE Transactions on Vehicular Technology, vol. 59,
2010.

[26] Maplesoft, “MapleSim,” 2014.

[27] Modelica Association, “Modellica.”

[28] The MathWorks Inc, “Simscape,” 2014.

[29] K. J. Astrom and R. M. Murray, Feedback Systems: An Introduction for Scientists
and Engineers. Princeton University Press, 2012.

[30] J. Eborn, “Bond Graph Modelling,” 1960.

[31] University Lille1, “Energetic Macroscopic Representation.”

[32] K. Chen, A. Bouscaryrol, and W. Lhomme, “Energetic Macroscopic Representation
and Inversion-based Control: Application to an Electric Vehicle with an Electric Dif-
ferenetial,” Journal of Asian Electric Vehicles, vol. 6, no. 1, pp. 1097–1102, 2008.

[33] K. Chen, A. Bouscayrol, A. Berthon, P. Delarue, D. Hissel, and R. Trigui, “Global
modeling of different vehicles using Energetic Macroscopic Representation,” 2008
IEEE Vehicle Power and Propulsion Conference, 2008.

[34] R. Zanasi, “Dynamics of a n-links manipulator by using power-oriented graphs,” in
Symposium on Robot Control-SYROCO, pp. 535—-542, 1994.

[35] R. Morselli and R. Zanasi, “Modeling of Automotive Control Systems Using Power
Oriented Graphs,” IECON 2006 - 32nd Annual Conference on IEEE Industrial Elec-
tronics, pp. 5295–5300, Nov. 2006.

[36] R. Zanasi, A. Viscontit, G. Sandoni, and R. Morselli, “Dynamic Modeling and Control
of a Car Transmission System,” no. July, pp. 416–421, 2001.

[37] R. Zanasi and F. Grossi, “The POG technique for modeling planetary gears and
hybrid automotive systems,” 2009 IEEE Vehicle Power and Propulsion Conference,
pp. 1301–1307, Sept. 2009.

[38] K. W. Morency, Automatic Generation of Real-Time Simulation Code for Vehicle
Dynamics using Linear Graph Theory and Symbolic Computing by. PhD thesis, Uni-
versity of Waterloo, 2007.

103

[39] G. Savage, “Robust Design Coursenotes,” 2013.

[40] T.-S. Dao and J. McPhee, “Dynamic modeling of electrochemical systems using linear
graph theory,” Journal of Power Sources, vol. 196, pp. 10442–10454, Dec. 2011.

[41] B. Bollbas, Modern Graph Theory. Springer New York, 1998.

[42] J. S. G. Paganell, S. Delprat, T.M. Guerra, J. Rimaux, “Equivalent Consumption
Minimization Strategy For Parallel Hybrid Powertrains,” IEEE VTC, vol. 4, pp. 2076–
2081, 2002.

[43] J. Liu and H. Peng, “A systematic design approach for two planetary gear split,”
Vehicle System Dynamics, vol. 48, no. 11, pp. 1395–1412, 2010.

[44] X. Ma, Y. Zhang, and C. Yin, “Kinematic Study and Mode Analysis of a New 2-Mode
Hybrid Transmission,” Proceedings of the FISITA 2012 World Automotive Congress,
vol. 193, 2013.

[45] X. Zhang, C.-t. Li, D. Kum, and H. Peng, “Prius + and Volt : Configuration Analysis
of Power-Split Hybrid Vehicles With a Single Planetary Gear,” IEEE Transactions on
Vehicular Technology, vol. 61, no. 8, pp. 3544–3552, 2012.

[46] T. Hofman, S. r. Ebbesen, and L. Guzzella, “Topology Optimization for Hybrid Elec-
tric Vehicles With Automated Transmissions,” IEEE Transactions on Vehicular Tech-
nology, vol. 61, pp. 2442–2451, July 2012.

[47] A. S. Lino Guzzella, Vehicle Propulsion Systems. 2013.

[48] J. A. P. L. Rodrigo Garvia-Valle, Electric Vehicle Integration into Modern Power
Networks. 2013.

[49] F. Irani, On Dynamic Programming Technique Applied to a Parallel Hybrid Electric
Vehicle. PhD thesis, 2009.

[50] R. A. Mcdonald, “Electric Motor Modeling for Conceptual Aircraft Design.”.

[51] W. N. Harald Naunheimer, Bernd Bertsche, Joachim Ryborz, Automotive Transmis-
sions. Springer Berlin Heidelberg, second edi ed., 1994.

[52] R. L. Norton, Design of Machinery: An Introduction to the Synthesis and Analysis of
Mechanisms and Machines. New York: McGraw-Hill, second edi ed., 1992.

104

[53] J. Gomez, R. Nelson, E. E. Kalu, M. H. Weatherspoon, and J. P. Zheng, “Equivalent
circuit model parameters of a high-power Li-ion battery: Thermal and state of charge
effects,” Journal of Power Sources, vol. 196, pp. 4826–4831, May 2011.

[54] J. Gomez, R. Nelson, E. E. Kalu, M. H. Weatherspoon, and J. P. Zheng, “Corrigendum
to Equivalent circuit model parameters of a high-power Li-ion battery: Thermal and
state of charge effects [J. Power Sources 196 (10) (2011) 48264831],” Journal of Power
Sources, vol. 218, p. 5, Nov. 2012.

[55] V. Johnson, “Battery performance models in ADVISOR,” Journal of Power Sources,
vol. 110, pp. 321–329, Aug. 2002.

[56] A. Seaman, T.-S. Dao, and J. McPhee, “A survey of mathematics-based equivalent-
circuit and electrochemical battery models for hybrid and electric vehicle simulation,”
Journal of Power Sources, vol. 256, pp. 410–423, June 2014.

[57] M. Doyle, T. F. Fuller, and J. Newman, “Modeling of Galvanostatic Charge and
Discharge of the Lithium / Polymer / Insertion Cell,” J. Electrochem. Soc, vol. 140,
no. 6, pp. 1526–1533, 1993.

[58] J. Newman and W. Tiedemann, “Porous-electrode theory with battery applications,”
AIChE Journal, vol. 21, pp. 25–41, Jan. 1975.

[59] J. N. Marc Doyle, “Doyle - The Use of Mathematical Modeling in the Design of
LithiumPolymer Battery Systems,” Electrochimica Acta, vol. 40, no. 13, pp. 2191–
2196, 1995.

[60] V. R. Subramanian, V. D. Diwakar, and D. Tapriyal, “Efficient Macro-Micro Scale
Coupled Modeling of Batteries,” Journal of The Electrochemical Society, vol. 152,
no. 10, p. A2002, 2005.

[61] T.-S. Dao, C. P. Vyasarayani, and J. McPhee, “Simplification and order reduction
of lithium-ion battery model based on porous-electrode theory,” Journal of Power
Sources, vol. 198, pp. 329–337, Jan. 2012.

[62] G. Andrews, “Dynamics Using Vector-Network Techniques,” tech. rep., Mechanical
Engineering, University of Waterloo, Waterloo, 1977.

[63] A. Sciarretta, M. Back, and L. Guzzella, “Optimal Control of Parallel Hybrid Electric
Vehicles,” IEEE Transactions on Control Systems Technology, vol. 12, pp. 352–363,
May 2004.

105

[64] Z. Yuan, L. Teng, S. Fengchun, and H. Peng, “Comparative Study of Dynamic Pro-
gramming and Pontryagins Minimum Principle on Energy Management for a Parallel
Hybrid Electric Vehicle,” Energies, vol. 6, pp. 2305–2318, Apr. 2013.

[65] Matlab Central File Exchange, “LERP: fast n-dimensional linear interpolation & ex-
trapolation.”

[66] A. Rahmoun and H. Biechl, “Modelling of Li-ion batteries using equivalent circuit
diagrams,” PRZEGLAD ELEKTROTECHNICZNY, vol. 2, pp. 152–156, 2012.

[67] Wikipedia, “Internal Combustion Engine.”

[68] Schneider Electric, “How big are Power line losses?.”

[69] Mathworks, “Global Optimization Toolbox,” 2014.

[70] V. Torczon, “On the Convergence of Pattern Search Algorithms,” SIAM Journal of
Optimization, vol. 7, no. 1, pp. 1–25, 1997.

[71] C. Audet and J. E. Dennis, “Analysis of generalized pattern searches,” SIAM Journal
of Optimization, vol. 13, no. 3, pp. 889–903, 2003.

[72] K. Ahn, S. Cho, and S. W. Cha, “Optimal operation of the power-split hybrid electric
vehicle powertrain,” Proceedings of the Institution of Mechanical Engineers, Part D:
Journal of Automobile Engineering, vol. 222, pp. 789–800, May 2008.

[73] X. Ai, “An Electro-Mechanical Infinitely Variable,” vol. 2005, no. 724, 2014.

[74] N. L. Biggs, E. K. Lloyd, and R. J. Wilson, Graph Theory 1736-1936. 1999.

[75] S. Golbuff, Optimization of A Plug-In Hybrid Electric Vehicle. PhD thesis, Georgia
Institute of technology, 2006.

[76] H. G. H. Herman E. Koenig, Yilmaz Tokad, Hiremaglur K. Kesavan, Analysis of
Discrete Physical Systems. McGraw-Hill, 1967.

[77] A. Ing, “Public Acceptance of Electric Vehicles in Toronto,” in International Society
for the System Sciences, pp. 1–12, 2011.

[78] T. Katrašnik, “Analytical framework for analyzing the energy conversion efficiency
of different hybrid electric vehicle topologies,” Energy Conversion and Management,
vol. 50, pp. 1924–1938, Aug. 2009.

106

[79] T. Katrašnik, “Analytical framework for analyzing the energy conversion efficiency
of different hybrid electric vehicle topologies,” Energy Conversion & Management,
vol. 50, pp. 1924–1938, 2009.

[80] J. Nocedal, S. J. Wright, and S. M. Robinson, Numerical Optimization.

[81] T. L. S. Robert G. Busacker, Finite Graphs and Networks: An Introduction with
Applications. McGraw-Hill, 1965.

[82] T. Solutions, “Hybrid and Electric Vehicle Solutions Guide,” 2013.

[83] M. B. R. Sundram Seshu, Linear Graphs and Electrical Networks. Addison-Wesley
Publishing Company, 1961.

[84] E. Wilhelm, J. Hofer, W. Schenler, and L. Guzzella, “Optimal implementation of
lightweighting and powertrain effi ciency technology in passengers’ vehicles,” Trans-
port, vol. 27, pp. 237–249, Sept. 2012.

107

	List of Tables
	List of Figures
	Introduction
	Problem Statement
	Research Objective
	Approach
	Document Overview

	Literature Review
	Hybrid Electric Vehicles
	Degrees of Powertrain Hybridization
	Hybrid Electric Powertrain Architectures

	Modelling Methodology
	Model Classification
	Model Representations
	Graph Theoretic Method

	Topology Search Methods Applied to Hybrid Electric Powertrain Architecture
	Summary

	Hybrid Electric Vehicle Components
	Component Models
	Longitudinal Dynamics
	Final Drive
	Internal Combustion Engine
	Electric Motor / Generator
	Discrete Gearbox
	Powersplit Device
	Battery

	Component Masses and Scaling
	Summary

	Hybrid Electric Vehicle System Representation and Modelling
	Graph-Theoretic Method
	Incidence Matrix Representation
	Equation Generation
	Terminal Equations
	Driver Equation Selection

	Heuristics for Valid Vehicle Topologies
	Genomes
	Heuristics

	Summary

	System Model Validation
	Verification of Powersplit Architecture versus Autonomie
	Verification of Parallel Architecture versus Autonomie
	Summary

	Methodology
	Topology Simulation and Evaluation
	Dynamic Programming
	Dynamic Program Pseudocode
	Dynamic Program Settings

	Objective Score
	Pattern Search
	Summary

	Results and Discussion
	Multi-Stage Topology Screening
	Topology Optimization Results for the PNGV goals
	Topology Optimization Results for the PNGV-HWFET drivecycle
	Discussion and Interpretation of Results
	Summary

	Conclusion
	Contributions
	Lessons Learned
	Maple Toolbox Implementation
	Curve-fitting Toolbox
	Genetic Algorithm

	Future Work
	Mechanical Inefficiencies
	Genetic Algorithm

	References

