736,521 research outputs found

    Towards a Two-Dimensional Framework for User Models

    Get PDF
    The focus if this paper is user modeling in the context of personalization of information systems. Such a personalization is essential to give users the feeling that the system is easily accessible. The way this adaptive personalization works is very dependent on the adaptation model that is chosen. We introduce a generic two-dimensional classification framework for user modeling systems. This enables us to clarify existing as well as new applications in the area of user modeling. In order to illustrate our framework we evaluate push and pull based user modeling

    Location Dependent Dirichlet Processes

    Full text link
    Dirichlet processes (DP) are widely applied in Bayesian nonparametric modeling. However, in their basic form they do not directly integrate dependency information among data arising from space and time. In this paper, we propose location dependent Dirichlet processes (LDDP) which incorporate nonparametric Gaussian processes in the DP modeling framework to model such dependencies. We develop the LDDP in the context of mixture modeling, and develop a mean field variational inference algorithm for this mixture model. The effectiveness of the proposed modeling framework is shown on an image segmentation task

    A personalized and context-aware news offer for mobile devices

    Get PDF
    For classical domains, such as movies, recommender systems have proven their usefulness. But recommending news is more challenging due to the short life span of news content and the demand for up-to-date recommendations. This paper presents a news recommendation service with a content-based algorithm that uses features of a search engine for content processing and indexing, and a collaborative filtering algorithm for serendipity. The extension towards a context-aware algorithm is made to assess the information value of context in a mobile environment through a user study. Analyzing interaction behavior and feedback of users on three recommendation approaches shows that interaction with the content is crucial input for user modeling. Context-aware recommendations using time and device type as context data outperform traditional recommendations with an accuracy gain dependent on the contextual situation. These findings demonstrate that the user experience of news services can be improved by a personalized context-aware news offer

    A Context-aware Attention Network for Interactive Question Answering

    Full text link
    Neural network based sequence-to-sequence models in an encoder-decoder framework have been successfully applied to solve Question Answering (QA) problems, predicting answers from statements and questions. However, almost all previous models have failed to consider detailed context information and unknown states under which systems do not have enough information to answer given questions. These scenarios with incomplete or ambiguous information are very common in the setting of Interactive Question Answering (IQA). To address this challenge, we develop a novel model, employing context-dependent word-level attention for more accurate statement representations and question-guided sentence-level attention for better context modeling. We also generate unique IQA datasets to test our model, which will be made publicly available. Employing these attention mechanisms, our model accurately understands when it can output an answer or when it requires generating a supplementary question for additional input depending on different contexts. When available, user's feedback is encoded and directly applied to update sentence-level attention to infer an answer. Extensive experiments on QA and IQA datasets quantitatively demonstrate the effectiveness of our model with significant improvement over state-of-the-art conventional QA models.Comment: 9 page

    Learning user-specific latent influence and susceptibility from information cascades

    Full text link
    Predicting cascade dynamics has important implications for understanding information propagation and launching viral marketing. Previous works mainly adopt a pair-wise manner, modeling the propagation probability between pairs of users using n^2 independent parameters for n users. Consequently, these models suffer from severe overfitting problem, specially for pairs of users without direct interactions, limiting their prediction accuracy. Here we propose to model the cascade dynamics by learning two low-dimensional user-specific vectors from observed cascades, capturing their influence and susceptibility respectively. This model requires much less parameters and thus could combat overfitting problem. Moreover, this model could naturally model context-dependent factors like cumulative effect in information propagation. Extensive experiments on synthetic dataset and a large-scale microblogging dataset demonstrate that this model outperforms the existing pair-wise models at predicting cascade dynamics, cascade size, and "who will be retweeted".Comment: from The 29th AAAI Conference on Artificial Intelligence (AAAI-2015

    Optimal embedding parameters: A modelling paradigm

    Full text link
    Reconstruction of a dynamical system from a time series requires the selection of two parameters, the embedding dimension ded_e and the embedding lag Ļ„\tau. Many competing criteria to select these parameters exist, and all are heuristic. Within the context of modeling the evolution operator of the underlying dynamical system, we show that one only need be concerned with the product deĻ„d_e\tau. We introduce an information theoretic criteria for the optimal selection of the embedding window dw=deĻ„d_w=d_e\tau. For infinitely long time series this method is equivalent to selecting the embedding lag that minimises the nonlinear model prediction error. For short and noisy time series we find that the results of this new algorithm are data dependent and superior to estimation of embedding parameters with the standard techniques
    • ā€¦
    corecore