
Towards a Two-Dimensional Framework for User
Models

P.t. de Vrieze1, P. van Bommel1, J. Klok2, and Th. van der Weide1

1 University of Nijmegen
2 Océ Research & Development

Abstract. The focus if this paper is user modeling in the context of
personalization of information systems. Such a personalization is essen-
tial to give users the feeling that the system is easily accessible. The way
this adaptive personalization works is very dependent on the adaptation
model that is chosen.
We introduce a generic two-dimensional classification framework for user
modeling systems. This enables us to clarify existing as well as new appli-
cations in the area of user modeling. In order to illustrate our framework
we evaluate push and pull based user modeling.

1 Introduction

The research area of user modeling seeks to enhance human computer interaction
by adapting the system to the user. This topic has already gained attention by
various authors, see: [1], [2], [3], [4]. User modeling involves the use of incremental
behaviour analysis for acquiring user models. It also involves adaptation of the
system behaviour to the user model. For a background on system adaptation we
refer to: [3], [5], [6].

The key part of a user modeling system is the user model. In order to know
what a user model should look like it is necessary to know the adaptation meth-
ods that are going to be employed. The methods that do this are described in the
adaptation model. This is a general model that describes how the user models
need to be created, maintained and used.

We distinguish two kinds of adaptation models: a push adaptation model
and a pull adaptation model. Those models are based on the direction of infer-
ence in the system. Further it is possible to combine both models into a hybrid
adaptation model that combines aspects of both models. An example of a hybrid
system can be found in.

While publications have described the use of both kinds of models and com-
binations of them, they have not explicitly evaluated the advantages and disad-
vantages of those models. We believe that this is important to be able to design
user modeling systems better.

In this paper we analyse the differences between the push and pull adaptation
models. For that it is important to first define what a user modeling system
actually is, and which parts of a system can be seen as a part of the adaptation

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Bournemouth University Research Online

https://core.ac.uk/display/74845?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


User Interface

Interface handler
Parameters

Interface
properties

Action handler

Parameters

Action
properties

Event handler

(a) A model of a normal
interactive system

Adaptation System

User Interface

Interface handler
Parameters

Interface
properties

User
properties

Event handler

Action handler

Parameters

Action
properties

Adaptation
handler

(b) A model of an interactive
system with user modeling

Fig. 1. Comparison of normal and user modeling systems

system. For that reason we give an overview of user modeling systems in section
2. After that we will introduce a list of demands that user modeling system
should satisfy. This list is then used in sections 5, 6, and 7 to evaluate the push,
pull and hybrid adaptation models. Finally, in section 8 we will evaluate our
framework and state possible points of further research.

2 Overview of User Modeling Systems

A user modeling system is a system that shows adaptive behaviour concerning
its interaction with the user. For explaining the difference between conventional
systems, i.e interactive systems that do not employ user modeling, (see figure
1(a)) and user modeling systems (see figure 1(b)) we first need to describe con-
ventional systems in a suitable way. Then we need to describe user modeling
systems, and compare them. In the next two sections we will describe both con-
ventional and user modeling systems.

Conventional interactive systems (see figure 1(a)) can be seen as state ma-
chines that interacts with a user. This interaction his handled by a user interface.
Each user action can induce a state change, after which new user actions are pos-
sible.

In designing a user interface serveral choices have to be made concerning
the looks and behaviour of the interface. Many of these choices are implicit or
given by default choices from guidelines. For the sake of being able to compare



a conventional system with a user modeling system we asume that the choices
are explicit. We call those choices interface properties.The interface properties
determine both the behaviour and looks of the user interface.

In a conventional system user actions induce events. These events trigger
system actions and interface changes. These actions and interface changes can
differ based on the interface properties

In a system based on user modeling (see figure 1(b)), the behaviour of the
various handlers may be affected by user properties in addition to the handler
specific properties. See e.g. [4] and [7] for systems that show such a change of
behaviour. Those user properties are supplied by the adaptation system. The
user properties can be seen as questions asked by the system about a specific
user property. As the adaptation system can be seen as the authority on the
user, the questions should be in such a way that all inferrence happens inside
the adaptation system.

As a consequence of the user properties influencing the handlers the user
interface now takes into account the user model as its behaviour is determined
by the user interface handler. The same goes for the action handler.

The user properties are provided by the adaptation handler. The adaptation
handler generates these properties based on events fed to it by the event handler.
The main point of user modeling is about how to go from these events to the
user properties.

3 Further Analysis of User Modeling Systems

To evaluate user modeling systems it is very useful to have a clear method
for comparing them. For this purpose we have developed a two-dimensional
classification framework. Our framework looks at all kinds of user modeling
systems and is not made by classification of existing systems. In this it differs
significantly from the framework in [8].

Figure 2 presents the proposed framework. Along the horizontal axis is the
inference process. It goes from the event model to the user model, and from the
user model to the system concept model. The event model consists of the actual
events generated by the system. The user model of the most system independent
user properties, and the system concept model consists of all the user questions
that can be asked by the system.

For certain user properties many derivation steps are necessary, and for others
only a few. Because of this reason we model the progress in that process, not
the steps. Further we define the model that is least system specific to be in the
middle. For that reason all systems will have their highest point in the middle.

On the vertical axis we model system independence. At the start of the
adaptation process, there are events generated by the system. These events are
maximally system dependent. An example of such an event could be: “The user
fills box 123 with a purple background”. We call the model here the event model.

For adaptation purposes the events generated by the system are not that
relevant. An adaptation system wants to use specific cases to infer knowledge of



Fig. 2. A two-dimensional user modeling classification framework

the general case. This inference process goes in a number of steps. At one point
a model is inferred that is most general. An example of knowledge that can be
inferred here is: “The users favourite colour is purple”. This is part of what we
call the user model.

At a point where the user model is known, the system needs to know how this
model fits into the questions a user modeling system might have. A user modeling
system wants to know the answer on a question like: “What background color
should a new box have?”. In the adaptation phase of the system, the adaptation
system will try to get system dependent answers based on the general knowledge
from the user model. The model of answers to system questions is called the
system concept model. The system concept model is where the user properties
live.

We can use the framework of figure 2 to determine two properties of systems.
Firstly, we can look at the hight of the triangle to determine how system specific
an adaptation system is. For example in figure 3 we see the systems S2 and S4.
S2 is more system independent than S4. This could mean that S2 can be more
easily be extended to provide more or different adaptation. The second property
we can distinguish is, where in the inference process a persistent model is stored.
This is an important measure as the process is different before and after storage.
Before storage a push process needs to be used to create the model. Push here
means that the arrival of an event generates a waterfall of subsequent events
that lead to updating the persistent model. We call this push adaptation. We
will discuss the advantages and disadvantages of push based systems in section
5.

After storage we need to use a pull strategy to perform adaptation. This starts
with the system requesting the value of a certain property from the adaptation
system. For determining the value of this property the adaptation system might
want to use the values of other properties that might also need to be calculated.
This goes on until the persistent model is used. We call this pull adaptation.



Fig. 3. Use of the two-dimensional classification framework

As an example of the use of the framework we look at figure 3. In figure 3
there are six systems with all different properties. System S1 is almost a purely
pull-based system, as it’s persistent model is created very early on in the inference
process, while S5 is can be classified as a hybrid system and S6 is a rule-based
system. The other systems are all different kinds of hybrid systems. Note that S5
is almost in the middle, but a system completely in the middle would be rather
unrealistic.

Based on the locations of the systems in figure 3 we can say things about the
systems, and especially their relations with eachother. As an example looking
at systems S3 and S5 we can say that system S3 has a bias on pull modeling
compared to S5 and that S3 is more system dependent than S5. This can be used
to say things about these systems like: “the persistent model of S3 is probably
relatively bigger than the persistent model of S5”, “It is probably more easy
to extend the adaptation system of S5 than to extend that of S3”, and “The
persistent model of S5 is less system dependent than that of S3”.

4 Properties of a User Modeling System

In the framework from section 3 we saw that there is push adaptation and
pull adaptation. In the comming sections we want to analyse the advantages
and disadvantages of these adaptation strategies. To make an analysis we have
identified a number of key properties of user modelling systems. Although some
of these properties are not easily measured, we still believe they are important.

– Adaptability. The user should be able to manually adapt his model to a
certain extend.

– Speed. The users’ perception of the system’s speed should not decrease.
– Extensibility. The system should be extensible while retaining the existing

knowledge about its users.
– Model size. The model size should not grow too large.
– Analysis possibilities. The chosen kind of adaptation model should allow for

all kinds of analysis techniques.



– Privacy. The system should be designed in such a way as to guarantee the
highest possible level of privacy for the users.

Some of these properties are more important than others. It mainly depends
on the application. We will not further discuss privacy as it depends mostly upon
the application and very little on the adaptation model.

5 Push Adaptation Models

Push adaptation models are adaptation models, that let events propagate on to
the values of a user model. Many systems that use push adaptation models use a
rule-based model as employed in [9]. This paper describes the adaptation system
of the AHA! system, a research system for creating adaptive hypermedia. These
rule-based models are based on Active Database technology and as such inherit
limitations from database systems.

Fig. 4. A push adaptation model

There are several points to ECA rules. There is the possibility of endless
recursion. Also there needs to be made a choice of techniques of achieving con-
fluence. It should not be possible that equal starting models and equal events
lead to different final user models.

One advantage of push adaptation is the fact that the contents of the user
model are well aggregated. This has as advantage that those contents can be
easily understood. Another advantage is that the relative size of the user model
stays small, and that the size does not change during regular use of the system.
This does however impede the possibilities for basing values of newly introduced
attributes upon already seen behaviour of the user.

In this section we evaluate push based adaptation models based on the points
from section 4.

– Adaptability. Because the user model stores end values it will be fairly easy
for users to adapt the model to their wishes as the results of their changes are
obvious and local. There could be too many possibilities for changes though.



– Speed. Provided that the amount of rules stays within limits there are no
serious speed issues with push adaptation models.

– Extensibility. Push adaptation models are similar to database theory, and are
often based on it. They have one problem that is similar to the problem of
databases. Database systems are not good in data model change. This is the
same with rule based adaptation models. At a moment that the adaptation
model changes, values for new properties need to be calculated which can be
expensive in terms of time.

– Model size. A push adaptation model has a user model with a limited size.
This is because events are aggregated into the user model at the moment
they happen.

– Analysis possibilities. The fact that event aggregation in rule based adap-
tation models happens at the moment the events happen makes it hard to
impossible to perform time based analysis on user actions. Also aging (as
weighing recent events higher than older events) is hard to implement.

From this point by point overview we can see that push adaptation models
are especially good in the areas of model size and complexity. The weakest points
lay in extensibility of the model.

Push adaptation models are very popular within the domain of educational
systems. Those systems can be characterised by the fact that the user properties
that need to be modelled are often (static/discrete/...). Push adaptation models
are used in other system to though. Examples of push adaptation models can
be found in: [9],[10],[11],[8].

6 Pull Adaptation Models

Pull adaptation models perform adaptation from a different direction than push
models. In the extremity a pull adaptation model records all events in the user
model. High level attributes are then derived based on lower level attributes and
querying of the event record.

Fig. 5. A pull adaptation model

The pull model is based on calculation at the moment of the request. As such
extension of the adaptation model is a lot easier than with push models.



One problem with the functional model though is the fact that the recorded
data has very little value on itself. For adaptation purposes one would prefer
to know concepts of user behaviour, not individual events. Push adaptation
makes sure that concept generation needs to be done only once. Certain concept
generation rules might be quite complex and would take a long time to recalculate
on every use. To allow this for the pull model caching could be very helpfull.

– Adaptability. Pull models have problems with adaptability. This is caused by
the fact that user models store huge amounts of abstract facts. One can not
expect even experts to be able to make changes with predictable results in
such a user model. An exception to this is that exclusion of time periods is
easy in pull models. All events have a timestamp, and removal of facts just
leads to different results of the functions.

– Speed. As user models that store events can get very big there is certainly
the need to use extensive caching of intermediate results. The language used
to query the user model could provide tools for incremental queries, where
old results get enhanced with newer facts. Also the set of matching events
can be stored to be used as a base for the query at a later time.

– Extensibility. The pull adaptation model scores very well on the point of
extensibility. As abstract events are stored there will be many cases where
new user attributes can be derived from behaviour before the attribute was
introduced.

– Model size. Model size is a disadvantage of the pull adaptation model. With
a little loss on model quality though old events could be aggregated into
smaller parts or even discarded. If the amount of users of the system is not
very high we don’t believe there is a big problem on model size.

– Analysis possibilities. The pull adaptation model allows for more analysis
possibilities. As all data in the user model is time stamped, time based
analysis and aging are easy performed. There are no analysis possibilities in
the push model that are not available in a pull model.

Pull based adaptation models are currently not common. They are especially
utilised in cases where combinations of events need to be analysed to retrieve
the goals of a user. A pull based adaptation model is for example used in [12].
In this article the interaction of users with a word processor is studied. This
interaction is used to make recommendations to the user on doing things more
efficient. Another example of pull models are attentive systems. They need to
determine whether a user can be disturbed. These systems are highly dynamic
and thus do not fit well with the static nature of the push model. Examples of
these systems can be found in [13]. Other pull systems can be found in: [7], [14]
and [15].

7 Hybrid Adaptation Models

Both adaptation models have their advantages and disadvantages. The push
model for example might need workarounds for ages (as being dynamic properties



changing every second). The pull model is not very good at storing static user
properties, and can be very space inefficient.

Looking at the two phases of the user modeling process we can see that while
the model use phase is especially suited for a pull approach, the modeling phase
is more directed towards a push approach. We can use this by using a hybrid
adaptation model. Such a hybrid model can combine the advantages of both
pure models. Basically the push model has a place in the user modelling phase
and the pull model in the adaptation phase.

– Adaptability. By storing system independent user properties the hybrid sys-
tem can offer the user clear high-level properties the user can change (not
properties that are either too abstract events with unclear results (pull), or
many system specific properties which have too localised results (push). This
could mean that the adaptability of a hybrid system is better than both the
rule based and functional approaches.
This adaptability advantage could vanish if the rule based and functional
models offer adaptability of intermediate concepts that are at the same po-
sition as the user properties of the hybrid model.

– Speed. Hybrid adaptation models should relieve many of the possible speed
problems in the functional model as it can reduce the complexity of the event
store in the functional model. It also avoids the rule explosion that comes
with a big interrelated push model.

– Extensibility. The modeling process goes from very system specific events
to less system dependent concepts. Those system independent concepts can
be building blocks for extension. System dependent events cannot really do
that. So there is no real loss in extensibility when using a hybrid model where
concepts are stored that are less system dependent.

– Model size. In the hybrid model the model size can be significantly lower than
the pull model as not single events are stored, but more high-level concepts.

– Analysis possibilities. As hybrid adaptation models allow for different adap-
tation strategies for different properties, they can retain most of the analysis
possibilities that function-based adaptation models have. At the same time
hybrid adaptation models can take advantage of properties of rule-based
adaptation models where the analysis possibilities offered by a function-
based approach is not necessary.

Hybrid adaptation models are more common than one would expect. They
can often be found in systems where no special effort was put to the adaptation
model. One area where they are almost unavoidable is the area of recommender
systems. These systems tend to be focused on document–user matching tech-
niques. Many of these systems make a single “user model” out of the event
history of the user-system interaction (push). Those user models are then used
at query time to make a rank of different recommendations (pull). Examples of
recommender systems can be found in: [8],[16]



8 Conclusion

In this paper we have introduced a framework for classifying user modeling
systems. With this framework we have shown that there are two basic categories
of adaptation: rule-based adaptation and function-based adaptation. We have
pointed out several examples of such systems.

Besides the rule-based and function based systems there is also a possibility
for hybrid systems. We believe these hybrid systems can be able to solve the
problems with both pure approaches, and combine their strong points.

We also pointed out that user modeling systems can have differing system
dependence. This system dependence measure can be an indication of ease of
extensibility of the system.

References

1. ACM: The adaptive web. Special Issue of Communications of the ACM 45 (2002)
2. Campbell, B., Goodman, J.M.: Ham: a general-purpose hypertext abstract ma-

chine. In: Proceeding of the ACM conference on Hypertext, Chapel Hill, North
Carolina, US, ACM Press (1987) 21–32

3. Chin, D.N.: Strategies for expressing concise, helpful answers. Artificial intelligence
review 14 (2000) 333–350

4. Fink, J., Kobsa, A.: User modeling for personalized city tours. Artificial intelligence
review 18 (2002) 33–74

5. Brusilovsky, P.: Methods and techniques of adaptive hypermedia. User Modeling
and User-Adapted Interaction 6 (1996) 87–129

6. Cartwright, D.: Diy user profiling. http://www.webdevelopersjournal.com/

articles/user_profiling_diy.html (2000)
7. Fleming, M., Cohen, R.: User modeling in the design of interactive interface agents.

In: Proceedings of the seventh international conference on User modeling, Springer-
Verlag New York, Inc. (1999) 67–76

8. Montaner, M., Lopez, B.: A taxonomy of recommender agents on the internet.
Artificial intelligence review 19 (2003) 285–330

9. Wu, H.: A reference Architecture for Adaptive Hypermedia Applications. PhD
thesis, Technical University of Eindhoven (2002) isbn: 90-386-0572-2.

10. Bra, P.D., Aerts, A., Houben, G., Wu, H.: Making generalpurpose adaptive hyper-
media work. In: Proceedings of the WebNet Conference. (2000) 117–123

11. Brusilovsky, P., Cooper, D.W.: Domain, task, and user models for an adaptive
hypermedia performance support system (2002)

12. Linton, F., Joy, D., Schafer, H.: Building user and expert models by longterm
observation of application usage. In: Proceedings of the seventh international con-
ference on User modeling, Springer-Verlag New York, Inc. (1999) 129–138

13. ACM: Attentive user interfaces. Special Issue of Comm. o.t. ACM 46 (2003) 30–72
14. Bull, S., McCalla, G.: Modelling cognitive style in a peer help network. Instruc-

tional science 30 (2002) 497–528
15. Virvou, M., Jones, J., Millington, M.: Virtues and problems of an active help

system for unix. Artificial intelligence review 14 (2000) 23–42
16. Maglio, P.P., Barrett, R.: How to build modeling agents to support web searchers.

In Jameson, A., Paris, C., Tasso, C., eds.: User Modeling: Proceedings of the Sixth
International Conference, UM97, Springer (1997)


