16 research outputs found

    A Hierarchical Procedure for the Synthesis of ANFIS Networks

    Get PDF
    Adaptive neurofuzzy inference systems (ANFIS) represent an efficient technique for the solution of function approximation problems. When numerical samples are available in this regard, the synthesis of ANFIS networks can be carried out exploiting clustering algorithms. Starting from a hyperplane clustering synthesis in the joint input-output space, a computationally efficient optimization of ANFIS networks is proposed in this paper. It is based on a hierarchical constructive procedure, by which the number of rules is progressively increased and the optimal one is automatically determined on the basis of learning theory in order to maximize the generalization capability of the resulting ANFIS network. Extensive computer simulations prove the validity of the proposed algorithm and show a favorable comparison with other well-established techniques

    Artificial neural networks and their applications to intelligent fault diagnosis of power transmission lines

    Get PDF
    Over the past thirty years, the idea of computing based on models inspired by human brains and biological neural networks emerged. Artificial neural networks play an important role in the field of machine learning and hold the key to the success of performing many intelligent tasks by machines. They are used in various applications such as pattern recognition, data classification, stock market prediction, aerospace, weather forecasting, control systems, intelligent automation, robotics, and healthcare. Their architectures generally consist of an input layer, multiple hidden layers, and one output layer. They can be implemented on software or hardware. Nowadays, various structures with various names exist for artificial neural networks, each of which has its own particular applications. Those used types in this study include feedforward neural networks, convolutional neural networks, and general regression neural networks. Increasing the number of layers in artificial neural networks as needed for large datasets, implies increased computational expenses. Therefore, besides these basic structures in deep learning, some advanced techniques are proposed to overcome the drawbacks of original structures in deep learning such as transfer learning, federated learning, and reinforcement learning. Furthermore, implementing artificial neural networks in hardware gives scientists and engineers the chance to perform high-dimensional and big data-related tasks because it removes the constraints of memory access time defined as the von Neuman bottleneck. Accordingly, analog and digital circuits are used for artificial neural network implementations without using general-purpose CPUs. In this study, the problem of fault detection, identification, and location estimation of transmission lines is studied and various deep learning approaches are implemented and designed as solutions. This research work focuses on the transmission lines’ datasets, their faults, and the importance of identification, detection, and location estimation of them. It also includes a comprehensive review of the previous studies to perform these three tasks. The application of various artificial neural networks such as feedforward neural networks, convolutional neural networks, and general regression neural networks for identification, detection, and location estimation of transmission line datasets are also discussed in this study. Some advanced methods based on artificial neural networks are taken into account in this thesis such as the transfer learning technique. These methodologies are designed and applied on transmission line datasets to enable the scientist and engineers with using fewer data points for the training purpose and wasting less time on the training step. This work also proposes a transfer learning-based technique for distinguishing faulty and non-faulty insulators in transmission line images. Besides, an effective design for an activation function of the artificial neural networks is proposed in this thesis. Using hyperbolic tangent as an activation function in artificial neural networks has several benefits including inclusiveness and high accuracy

    Acta Technica Jaurinensis 2011

    Get PDF

    Energy and Area Efficient Machine Learning Architectures using Spin-Based Neurons

    Get PDF
    Recently, spintronic devices with low energy barrier nanomagnets such as spin orbit torque-Magnetic Tunnel Junctions (SOT-MTJs) and embedded magnetoresistive random access memory (MRAM) devices are being leveraged as a natural building block to provide probabilistic sigmoidal activation functions for RBMs. In this dissertation research, we use the Probabilistic Inference Network Simulator (PIN-Sim) to realize a circuit-level implementation of deep belief networks (DBNs) using memristive crossbars as weighted connections and embedded MRAM-based neurons as activation functions. Herein, a probabilistic interpolation recoder (PIR) circuit is developed for DBNs with probabilistic spin logic (p-bit)-based neurons to interpolate the probabilistic output of the neurons in the last hidden layer which are representing different output classes. Moreover, the impact of reducing the Magnetic Tunnel Junction\u27s (MTJ\u27s) energy barrier is assessed and optimized for the resulting stochasticity present in the learning system. In p-bit based DBNs, different defects such as variation of the nanomagnet thickness can undermine functionality by decreasing the fluctuation speed of the p-bit realized using a nanomagnet. A method is developed and refined to control the fluctuation frequency of the output of a p-bit device by employing a feedback mechanism. The feedback can alleviate this process variation sensitivity of p-bit based DBNs. This compact and low complexity method which is presented by introducing the self-compensating circuit can alleviate the influences of process variation in fabrication and practical implementation. Furthermore, this research presents an innovative image recognition technique for MNIST dataset on the basis of p-bit-based DBNs and TSK rule-based fuzzy systems. The proposed DBN-fuzzy system is introduced to benefit from low energy and area consumption of p-bit-based DBNs and high accuracy of TSK rule-based fuzzy systems. This system initially recognizes the top results through the p-bit-based DBN and then, the fuzzy system is employed to attain the top-1 recognition results from the obtained top outputs. Simulation results exhibit that a DBN-Fuzzy neural network not only has lower energy and area consumption than bigger DBN topologies while also achieving higher accuracy

    Identificacion y control de sistemas estocasticos con observaciones incompletas mediante modelos neurodifusos

    Get PDF
    En la práctica, los sistemas físicos obedecen a una dinámica multivariada e interactuante, que fácilmente es influenciada, perturbada o integrada por incertidumbres de diversas clases, las cuales inducen naturaleza estocástica al proceso global y algunas veces llegan a afectar la completitud de los datos. En esta tesis se presenta una metodología para la identificación y control de sistemas estocásticos con observaciones incompletas mediante modelos neuro-difusos. En particular, se desarrolla el análisis de la dinámica de un vehículo operado remotamente (ROV, Remotely Operated Vehicle) para aplicaciones submarinas, con el fin de determinar el modelo matemático y obtener simulaciones de la respuesta natural del sistema. Adicionalmente, se emplea un mecanismo de identificación del proceso mediante un modelo neuronal y otro neuro-difuso, los cuales se integran con un esquema de reducción de perturbaciones estocásticas para sobreponer las observaciones incompletas que residan en el proceso operativo. Finalmente, se propone un modelo neuro-difuso (ANFIS, Adaptive neuro fuzzy inference system) para controlar el sistema y se compara con el desempeño de una red neuronal con múltiples elementos Adaline (MADALINE, Multiple Adaline) con el fin de analizar las ventajas que ofrece la inclusión de conocimiento mediante reglas de inferencia difusa. Los resultados experimentales mostraron que se logró la controlabilidad del sistema llevándolo a un estado globalmente atractivo en el sentido de Lyapunov. Se pudo concluir que gracias a la capacidad de adaptación y contenencia de conocimiento lingüístico de los modelos neuro-difusos, el desempeño de control tuvo mayor rendimiento en términos de precisión y robustez, al compararlo con el modelo neuronal en aplicaciones operativas del ROV. Se destaca además la facilidad que tienen los modelos neuro-difusos para ser ampliamente potenciados mediante la integración de otros esquemas de procesamiento, dados los asuntos que quedaron pendientes en relación al error de estado estable y las perturbaciones ocasionadas por la interacción de los componentes.Magister en Automatización y Contro

    Intelligent Circuits and Systems

    Get PDF
    ICICS-2020 is the third conference initiated by the School of Electronics and Electrical Engineering at Lovely Professional University that explored recent innovations of researchers working for the development of smart and green technologies in the fields of Energy, Electronics, Communications, Computers, and Control. ICICS provides innovators to identify new opportunities for the social and economic benefits of society.  This conference bridges the gap between academics and R&D institutions, social visionaries, and experts from all strata of society to present their ongoing research activities and foster research relations between them. It provides opportunities for the exchange of new ideas, applications, and experiences in the field of smart technologies and finding global partners for future collaboration. The ICICS-2020 was conducted in two broad categories, Intelligent Circuits & Intelligent Systems and Emerging Technologies in Electrical Engineering

    Autonomous Navigation of Automated Guided Vehicle Using Monocular Camera

    Get PDF
    This paper presents a hybrid control algorithm for Automated Guided Vehicle (AGV) consisting of two independent control loops: Position Based Control (PBC) for global navigation within manufacturing environment and Image Based Visual Servoing (IBVS) for fine motions needed for accurate steering towards loading/unloading point. The proposed hybrid control separates the initial transportation task into global navigation towards the goal point, and fine motion from the goal point to the loading/unloading point. In this manner, the need for artificial landmarks or accurate map of the environment is bypassed. Initial experimental results show the usefulness of the proposed approach.COBISS.SR-ID 27383808

    Optimization of Operation Sequencing in CAPP Using Hybrid Genetic Algorithm and Simulated Annealing Approach

    Get PDF
    In any CAPP system, one of the most important process planning functions is selection of the operations and corresponding machines in order to generate the optimal operation sequence. In this paper, the hybrid GA-SA algorithm is used to solve this combinatorial optimization NP (Non-deterministic Polynomial) problem. The network representation is adopted to describe operation and sequencing flexibility in process planning and the mathematical model for process planning is described with the objective of minimizing the production time. Experimental results show effectiveness of the hybrid algorithm that, in comparison with the GA and SA standalone algorithms, gives optimal operation sequence with lesser computational time and lesser number of iterations
    corecore