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ABSTRACT 

 

Recently, spintronic devices with low energy barrier nanomagnets such as spin orbit torque-

Magnetic Tunnel Junctions (SOT-MTJs) and embedded magnetoresistive random access 

memory (MRAM) devices are being leveraged as a natural building block to provide 

probabilistic sigmoidal activation functions for RBMs. In this dissertation research, we use the 

Probabilistic Inference Network Simulator (PIN-Sim) to realize a circuit-level implementation of 

deep belief networks (DBNs) using memristive crossbars as weighted connections and embedded 

MRAM-based neurons as activation functions. Herein, a probabilistic interpolation recoder (PIR) 

circuit is developed for DBNs with probabilistic spin logic (p-bit)-based neurons to interpolate 

the probabilistic output of the neurons in the last hidden layer which are representing different 

output classes. Moreover, the impact of reducing the Magnetic Tunnel Junction’s (MTJ’s) energy 

barrier is assessed and optimized for the resulting stochasticity present in the learning system. In 

p-bit based DBNs, different defects such as variation of the nanomagnet thickness can undermine 

functionality by decreasing the fluctuation speed of the p-bit realized using a nanomagnet. A 

method is developed and refined to control the fluctuation frequency of the output of a p-bit 

device by employing a feedback mechanism. The feedback can alleviate this process variation 

sensitivity of p-bit based DBNs. This compact and low complexity method which is presented by 

introducing the self-compensating circuit can alleviate the influences of process variation in 

fabrication and practical implementation. 

Furthermore, this research presents an innovative image recognition technique for MNIST 

dataset on the basis of p-bit-based DBNs and TSK rule-based fuzzy systems. The proposed 

DBN-fuzzy system is introduced to benefit from low energy and area consumption of p-bit-based 
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DBNs and high accuracy of TSK rule-based fuzzy systems. This system initially recognizes the 

top results through the p-bit-based DBN and then, the fuzzy system is employed to attain the top-

1 recognition results from the obtained top outputs. Simulation results exhibit that a DBN-Fuzzy 

neural network not only has lower energy and area consumption than bigger DBN topologies 

while also achieving higher accuracy. 
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CHAPTER 1: INTRODUCTION AND MOTIVATION123 

1.1 Introduction and Related Works  

The Restricted Boltzmann machine (RBM) is one of the well-known classes of unsupervised 

learning approach [1]. A set of RBMs connected hierarchically can be utilized to create deep 

belief networks (DBNs) with outstanding learning abilities such as natural language 

understanding for various applications [2]. Most of the research on RBM and DBN has focused 

on software implementations. Albeit the software implementation of DBNs on current von-

Neumann-based platforms (e.g. CPU, GPU, FPGA) provides flexibility, it incurs significant 

power dissipation and high latency due to inherent data communication costs, a.k.a. the “memory 

wall” issue. There are various hardware implementations for RBMs such as FPGAs [3], [4] and 

CMOS multi-core processors [5] aiming to tackle existing software limitations.  

Recently, processing-in-memory based solutions using emerging non-volatile memories (NVMs) 

such as resistive RAM (RRAM) [6], [7] and phase change memory (PCM) [8] are set forth to be 

used within the DBN architecture. NVMs provide the capability of performing logic beyond data 

storage by bringing an intrinsic computation parallelism alleviating the data transfer bottleneck. 

NVMs are typically used as weighted connections interconnecting building blocks in RBMs.  

The existing FPGA-based acceleration solutions show 25- 145× speedup compared to software 

implementations [3], [4]. However, these designs have noticeable limitations such as constrained 

clock frequencies, routing congestion, and resource deficiencies due to the significant embedded 

memory utilization for weighted connections and activation functions. In [9] optimization 

                                                           
1 ©2020 IEEE. Part of this chapter is reprinted, with permission, from [214]. 
2 ©2020 IEEE. Part of this chapter is reprinted, with permission, from [261]. 
3 ©2021 IEEE. Part of this chapter is reprinted, with permission, from [273]. 
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methods to reduce memory requirements for weights and biases are proposed. However, in order 

to implement each of the activation functions, a random number generator (RNG), dedicated 

piecewise linear approximator (PLA), and comparators are still required which increases area 

and energy consumption per neuron. As an alternative method, the stochastic CMOS-based RBM 

implementation have been set forth [10] that takes full advantage of low-complexity of the 

stochastic CMOS designs to improve area- and energy-efficiency. On the other hand, such 

implementation seeks extremely-long bit-stream that could lead to more energy consumption and 

longer latencies. Besides, it requires a significant amount of Linear Feedback Shift Registers 

(LFSRs) to generate the uncorrelated input and weight bit-streams. Both the FPGA and 

stochastic CMOS implementations leverage parallel Boolean circuits such as pseudo-random 

number generators, adder, and multipliers to improve the performance. Such designs impose 

significant area and energy overheads compared with leveraging the physical behaviors of 

emerging devices to perform the computation intrinsically.  

Within the NVM domain, Bojnordi et al. [6] proposed to leverage resistive RAM (RRAM) 

devices to implement vectormatrix multiplication with up to 100× speedup and 10× energy 

savings over single-threaded cores. In the same way, Eryilmaz et al. [8] and Sheri et al. [7] have 

used resistive memories with CMOS activation function that ultimately imposes excessive area 

and power consumption overheads. Recently, spintronic devices with low energy barrier 

nanomagnets such as spin orbit torque-Magnetic Tunnel Junctions (SOT-MTJs) and embedded 

magnetoresistive random access memory (MRAM) devices are leveraged as a natural building 

block to provide probabilistic sigmoidal activation functions for RBMs, as studied in [11] and 

[12], respectively. These devices have realized significant energy and area improvements 

compared to previous RBM hardware implementations. Thus, we will investigate various circuit 
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implementations to interpolate the stochastic output of the probabilistic spin logic devices (p-bit) 

proposed in [13]. In particular, inspired by a technique that is used to create an analog-to-digital 

converter [14], we will develop two CMOS-based probabilistic interpolation recoder (PIR) 

circuits, which leverage a sampling methodology to provide a digital output corresponding to the 

probabilistic output of the p-bit based neurons. The proposed circuits achieve significant 

improvements in terms of resource utilization and energy consumption compared to conventional 

integration followed by analog-to-digital conversion methods. 

1.2 Need for In-Situ Adaptation for Process Variation Immunity 

Stochastic circuits play a significant role in the implementation of networks with probabilistic 

nodes. For instance, learning networks employing p-bits are worthwhile in realizing DBNs in a 

way that weights are trained offline by a learning algorithm in software and the hardware is 

utilized to repeatedly perform inference tasks effectively. Unstable low barrier nanomagnets 

present a direct mechanism to realize stochastic sigmoidal neurons in DBNs through leveraging 

the randomly fluctuating magnetization to produce a stochastic time varying output voltage. If 

these nanomagnets are designed to have as low energy barriers that are feasible, then many 

random outputs are produced in a short period of time. Under this strategy, a near-zero energy 

barrier nanomagnet has the capability of free magnetization layer flipping back and forth which 

can be tuned by modulated the voltage on the gate of p-bit’s NMOS transistor.  

The p-bit device is not entirely tolerant of defects and device-to-device variations even though is 

more error resilient than strictly digital computing devices [215]. The statistical distribution of 

the magnetization fluctuations, such as the power spectral density become affected by the 

presence of both localized and delocalized structural defects and moderate variations for the 
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barrier height of the nanomagnet which is caused by small size variations [216]. It is investigated 

that the power spectral density is relatively insensitive to the presence of small localized defects 

and moderate barrier height change. Nevertheless, the power spectral density is substantially 

affected by delocalized defects such as thickness variations over a significant fraction of the 

nanomagnet [217][218][219]. Delocalized defects can considerably change the fluctuation rate of 

the magnetization in low barrier nanomagnets. This will affect applications in p-bit-based 

neurons for neuromorphic architectures because the fluctuation rate is essential for stochastic 

computing applications. Thus, the defects caused by the fabrication imperfections are required to 

be addressed for neuromorphic applications using p-bit based neurons such as DBNs due to their 

significant impact on their performance and accuracy.  

1.3 Contributions of The Dissertation 

1.3.1 An Efficient Converter to Interpolate The Probabilistic Output of The Neurons in DBNs 

The concept of using sampling and count operations to interpret the probabilistic output of a p-

bit based neuron offers an intriguing approach to realize a CMOS-based probabilistic 

interpolation recoder (PIR) for a spin-based stochastic binary neuron. Herein, we proposed a PIR 

circuit as a replacement for an analog-based approach to interpolate the output of the p-bit based 

activation functions in the last layer of a DBN circuit. The conventional method involved: first, 

using an RC circuit to continuously integrate the analog output of the p-bit, next an op-amp 

based sample and holder is used to sample the output of the RC circuit, finally the analog 

sampled output is converted to a digital value through an op-AMP based ADC circuit and a 

priority encoder. Our proposed CMOS-based PIR circuit removes the need for all of area- and 

energy-consuming analog components existing in conventional circuits such as resistors, 
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capacitors, and opamps, and performs the interpolation operation only by using MOS-transistor 

based Boolean gates and flip-flops. In addition, the PIR circuits have an inherent single stuck-at 

fault tolerant features to tolerate either transient or permanent faults at the circuit’s output 

without redundancy or active refurbishment overhead. 

1.3.2 Mitigating The Effects of Process Variation on The Performance and Accuracy of DBNs 

We investigated two approaches to mitigate the effects of process variation on the energy barrier 

of the p-bit based neurons, and their consequent impact on the performance and accuracy of 

DBNs using p-bit devices as probabilistic sigmoidal neurons. In the first approach, it was shown 

that an increase in the energy barrier leads to decreased fluctuation speed in the magnetization 

direction of the p-bit’ nanomagnet. It means that in order to observe the desired probabilistic 

sigmoidal behavior in the p-bit based neuron a temporal redundancy is required to be added to 

the sampling time of the p-bits output to give it enough time to have sufficient probabilistic 

fluctuations. While the temporal redundancy has shown to be an efficient mechanism, it was 

examined that it can lead to approximately 10-fold higher energy consumption in a 784×200×10 

DBN which can tolerate maximum 2 kT of energy barrier variations compared to a variation-less 

DBN with similar topology. The second variation tolerance mechanism proposed herein involved 

implementing p-bit with a negative self-feedback, which could significantly increase the 

probabilistic fluctuation speed of the free layer. In this case, the drain of the NMOS transistor in 

the p-bit device tracks the magnetization direction of the free layer of the MTJ, and the inverter 

at the output of the device naturally generates the inverse voltage, hence realizing a negative 

feedback effect which successfully compensate the variation impacts with only ~10% energy 

consumption overheads. 
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1.3.3 High Accuracy DBN-Fuzzy Neural Networks Using MRAM-Based Stochastic Neurons 

In order to benefit from high-speed DBN hardware implementations, Probabilistic Inference 

Network-Simulator (PIN-Sim) has been developed and used to achieve up to 3× energy 

reduction and 20× area reduction in comparison with the prior DBN hardware implementations, 

however, this framework suffers from low accuracy in image classification. In order to improve 

the accuracy of MRAM-based DBN, we can increase the size of network but the accuracy will 

be improved only by 2.5% at the cost of ∼10× higher energy consumption and significantly 

larger area overheads. We addressed this problem by utilizing a fast fuzzy algorithm in the 

interest of improving the accuracy of MRAM-based neural networks while we still can benefit 

from a high-speed hardware implementation. In this system, the MRAM-based DBN and the 

fuzzy system are working sequentially, which can be suboptimal in terms of energy as well as 

accuracy. In the first phase, the MRAM-based DBN is employed to identify the top recognition 

results with the highest probability. In the second phase, a fuzzy system is utilized to obtain the 

top-1 recognition results. Simulation results exhibit that a DBN-Fuzzy neural network not only 

has lower energy and area consumption than bigger DBN topologies but also has higher 

accuracy. Neuro-fuzzy systems based on spintronic devices may offer a compact and 

computationally-efficient architectural approach to machine-based image recognition tasks. 
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CHAPTER 2: MAGNETIC TUNNEL JUNCTIONS (MTJ) 

CHARACTERISTICS AND OPERATION 

The development of spintronics [15] was a direct result of the discovery of Giant 

Magnetoresistance (GMR) [16],[17], which in turn resulted in numerous significant advances. 

The demand for feasible alternatives to minimize power leakage rises with CMOS downscaling, 

and one of the most promising solutions is appeared to be spin-based devices [18]. 

In the spintronics development, Magnetic Tunnel Junction (MTJ) has an important role [19]. An 

insulator layer exists between ferromagnetic layers in the structure of an MTJ. In comparison to 

other technologies, MTJ has low power consumption, excellent scalability, and potentially 

infinite endurance. Moreover, MTJ devices can be entirely turned off without data loss resulting 

in saving energy which cause the MTJ appropriate for various applications [19] such as analog to 

digital converter and memory devices. MTJ-based non-volatile memories (NVMs) have shown 

excellent performance by considering its advantages such as endurance and energy efficiency 

[20]. At highly low energy levels, MTJ-based memories work with a ten-year retention time 

making them appropriate for low powered applications as internet of things (IoT) applications or 

batteries [21]. Other applications of MTJ devices are in storage and data processing [22],[25]. 

MTJs can be applied to mixed signals, such as analog to digital converters and comparators 

[24],[25] which can be useful in radio frequency. As an illustration, spectrum-optimizing 

applications based on compressive sensing [26] desire to lower power consumption and reduce 

the area of their circuits.  

Figure 1 shows the fundamental structure of MTJ devices. As shown, an insulator layer MgO 

divides two ferromagnetic layers. In the free layer, the magnetization direction can be switched 
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but the magnetization direction in the reference layer is unchangeable. Thus, electrical properties 

of the MTJ device is identified by the magnetic field. The two ferromagnetic layers’ 

magnetization orientations (mz) cause the two levels of the MTJ resistance to be in the high-

resistance RAP at an anti-parallel state or low-resistance RP at a parallel state. The binary logic 

can be easily implemented by employing these two stable states of the MTJ [27]-[30]. Several 

methods for switching between the stable states of an MTJ have been presented. Below, three of 

the most prominent mechanisms for magnetization-switching are explained. 

2.1 Spin Transfer Torque (STT) Switching 

In order to enhance the density of the basic proposed MTJ circuits, spin transfer torque was 

presented in [31]. The bidirectional current I in STT device allows switch the MTJ state when I 

is bigger than a critical current Ic0. While STT enhances the scalability of the circuit, which 

provides a denser and simpler design, this method utilizes the same line to write and read the 

MTJ state which in turn leads to the issue of encountering an unexpected writing while a reading 

is occurring. Another drawback of the STT is that going from AP to P needs a smaller current 

than going from P to AP. Additionally, the application density is restricted in STT devices since 

a larger access transistor size is needed and increase in retention failures leads to unreliable 

operations [32]. The applications with high write speed have several problems since the 

 

Figure 1: Magnetic tunnel junction (MTJ). 
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switching current of STT is proportional to the write pulse width in reverse [32]. The MTJ 

behavior model can be written as [33],[34]: 

𝐼𝐶𝑂 =  𝛼
𝛾𝑒

𝜇𝐵𝑔
 (𝜇0𝑀𝑠)𝐻𝑘𝑉                                                      (1) 

𝐸 =  
𝜇0𝑀𝑠𝐻𝑘𝑉

2
                                                          (2) 

where the gyromagnetic ratio is 𝛾, the magnetic damping constantis 𝛼, the elementary charge is 

e, the spin polarization efficiency factor is g, the Bohr magneton is 𝜇𝐵, the permeability of free 

space is 𝜇0, the effective anisotropy field is Hk, the saturation magnetization is Ms, and the 

volume of the free layer is V. The average MTJ state switching delay time (t) can be attained as 

follows [33],[34]: 

𝜏 =  𝜏0 exp(
𝐸

𝐾𝐵𝑇
(1 −

𝐼

𝐼𝑐0
)) ,𝑤ℎ𝑒𝑛 𝐼 <  𝐼𝑐0                               (3) 

1

𝜏
= [

2

𝐶+ln(
𝜋2𝜖

4
)
]

𝜇𝐵𝑃𝑟𝑒𝑓

𝑒𝑚𝑚(1+𝑃𝑟𝑒𝑓𝑃𝑓𝑟𝑒𝑒)
(𝐼 − 𝐼𝑐0),𝑤ℎ𝑒𝑛 𝐼 >  𝐼𝑐0                  (4) 

 

where the Boltzmann constant is KB, the attempt period is 𝜏0, the temperature is T, the thermal 

stability factor is 𝜖, Euler’s constant is C, the tunneling spin polarizations are Pref and Pfree, and 

the magnetization moment is mm. 

2.2 Voltage-Controlled Magnetic Anisotropy (VCMA) Switching 

Magnetoelectric effects have been employed in the interest of lowering the required energy 

consumption for switching the MTJ state [35]. By utilizing a voltage-controlled MTJ with an 

electric field, less area and energy consumption is achievable [36],[37]. An electric field with the 
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VCMA effect is utilized with the purpose of switching the MTJ state, which is when the 

occupation of atomic orbitals at the interface is altered through an accumulation of electron 

charges induced by the electric field. A change of magnetic anisotropy is obtained with this and 

the spin-orbit interaction [35],[38],[39]. 

Figure 2 exhibits the operational characterization of VCMA-MTJ. The barrier thickness increase 

would result in lower parasitic conductance and the effect of current-induced torques when the 

switching is carried out through voltage [32]. VCMA can decrease the energy barrier between 

the AP and P states which makes the switch of states easier. The energy barrier (Eb) between two 

stable magnetization states can be removed once the switching voltage Vb is more than MTJ 

critical voltage Vc. The minimum Vc for successful VCMA-MTJ switching is given by [40]: 

 

 

Figure 2: Structure and stable states of VCMA-MTJ device. 
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𝑉𝑐 = ∆(0)𝑘𝐵𝑇𝑡𝑜𝑥/𝜉𝐴                                                              (5) 

 

where the thermal stability under zero voltage is ∆(0), kB is the Boltzmann constant, the VCMA 

coefficient to weigh the perpendicular magnetic anisotropy (PMA) change under Vb is 𝜉, the 

temperature is T, the MTJ oxide layer thickness is tox, and the sectional area of the MTJ is A. 

The VCMA-MTJ unstable states make its dynamics are changed consistently until Vc is obtained 

[41]. As soon as the excitation of MTJ terminals has finished, the energy barrier of the 

intermediate states returns to an amount more than the stable states resulting to stabilize the MTJ 

in its AP or P state. VCMA does not need large currents that lead to better scalability in its 

applications and less power consumption relating to STT. On the other hand, practical VCMA 

devices suffers from reliability issues which need to be examined more [42]. 

2.3 Spin-Orbit Torque (SOT) Switching 

A balanced switching current between the two MTJ states is allowed in the SOT devices by 

utilizing three terminals with the purpose of separating the read and write paths. In these devices, 

the read stability is increased since during the read operation, the possibility of a bit flip is 

decreased [32]. Spins are gathered once a current passes the non-magnetic layer and over the 

magnetization of the ferromagnetic layer, a torque switching is produced. Moreover, by utilizing 

SOT with the elimination of the time-demanding precessional motion, a faster switching can be 

happened [43]. On the other hand, SOT devices cannot be compatible with high-density 

applications since its three terminal structure causes a bigger cell size than STT-based 

applications. 



 

12 
 

2.4 Post-CMOS Roles of Spin-Based Digital Circuits 

This subsection discusses some digital applications of MTJ devices. 

2.4.1 MTJ-Based MRAM 

MTJ-based memories are the most famous applications of MTJ. The best characteristics of static 

random-access memory (SRAM), dynamic random-access memory (DRAM), and flash memory 

can be found in Magnetic Random-Access Memory (MRAM) [44],[45]. MTJs are considered as 

the primary elements in information storage by employing the difference of the MTJ resistance 

in its antiparallel and parallel states to represent the “1” and “0” in the binary system and the 

intrinsic spin of electrons as a storage unit. 

According to the needed MOS transistors’ numbers and approach of write operation to build a 

memory cell, the MTJ-based MRAM’s structures can be different [46],[49]. Figure 3 (a) shows 

the bit-cell structure of spin transfer torque MTJ-based MRAM (STT-MRAM). As shown, the 

STT-MTJ has higher density memories since each bit-cell has only one transistor with the STT-

MTJ. The MTJ state switching during the write operation is performed by the bi-directional 

current IWrite and the comparison of read current IRead with a reference current defines the MTJ 

state [30]. It should be noted that an asymmetric write operation characterizes STT-MRAM since 

the current needed to switch from the P to AP state is bigger than that of switching from the AP 

to P state [48]. As a result, the access transistor has to be large in the interest of obtaining the 

requirement of the write operations’ worse case [47],[48],[50]. 

Relative to other techniques, STT-MRAM has intrinsic problems such as high write power and 

long latency [41]. However, magnetization flipping upon a voltage pulse is provided by MTJ 

with VCMA [36],[51]. A lower energy dissipation can be obtained by utilizing voltage instead of 
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a charge current for MTJ write operations [41]. Furthermore, access transistor size reduction can 

be attained by the needed driving current reduction for the write operation [41]. By considering 

the switching energy and density of devices, VCMA-MTJ-based memory has better performance 

than STT-MRAM [35],[41],[52],[53]. 

Figure 3 (b) illustrates the structure of VCMA-MeRAM. This device has 1 access transistor and 

1 MTJ in series like STT-MRAM. By switching the MTJ state or maintaining it, write operation 

can be performed. For this purpose, an extra circuit is required in order to check the state of MTJ 

and decide to maintain or switch the state of MTJ. 

Herein, we discussed the structure of SOT-MRAM as its bit-cell design is shown in Figure 3 (c). 

As shown, the two access transistors in each bit-cell decreases the capacity of integration density 

[47],[49]. In this device, the read path and the write path are separated. The voltage applied 

between the bit line (BL) and the source line (SL) generates the write current IWrite that is 

polarized and as a result, switches the MTJ free layer’s magnetization direction. However, based 

on the magnitude of IRead, the MTJ state is read during the read operation [54]. 

 

                       (a)                                   (b)                                                             (c) 

 

Figure 3: Memories devices: (a) STT-MRAM (b) VCMA-MeRAM (c) SOT-MRAM. 
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Recent researches claim that SOT-MRAM needs a lower write energy and a lower write time 

than STT-MRAM [55]-[58]. However, it is shown in [41] that VCMA-MeRAMs has better 

energy consumption, speed and area than STT-MRAM. Table 1 exhibits a comprehensive 

comparison between these devices provided in [59]. On the other hand, we need to consider that 

intensive development and research are being done on SOT and VCMA devices despite 

commercialized products are based in STT MTJ. 

Recently, combination of read and write MTJ device’s mechanisms have been employed for 

implementing memories. As an illustration, NAND-SPIN is an MTJ-based memory [47] which 

utilizes couple of the aforementioned switching mechanisms. As shown in Figure 4, the 

advantages of both SOT and STT mechanisms are taken in the interest of gaining better 

performance. The integration density of NAND-SPIN memory is better relative to SOT-MRAM 

since the transistors are shared by several MTJs. However, NAND-SPIN has better energy 

performance than STT-MRAM [47].  

Table 1: Comparison between some MTJ-based memories. 
 

 STT-MRAM VCMA-MeRAM SOT-MRAM 

Read Time (ns) 1–5 1–5 1–5 
Write Time (ns) 5–10 <1 <1 

Cell Size (area in F2) 40–50 20–30 50–70 

Bit Density (Gb/cm2) 
1 2 0.75 

Read Energy/Bit (fJ) 10–20 1–5 10–20 

Write Energy/Bit (fJ) 100–200 <5 <10 

 



 

15 
 

 

2.4.2 Non-Volatile Logic Gates 

Other applications of MTJ devices are non-volatile logic gates which provide less power 

consumption and area. Figure 5 shows the structure of NV-AND / NV-NAND. The NAND and 

AND operations are represented by 𝑄 and 𝑄, respectively. Table 2 exhibits the truth table and 

Equations (6) and (7) illustrates the logic functions. For any MTJ’s resistive level, this structure 

functions correctly. 

𝑄 =  𝐴𝐵                                                                           (6) 
 

𝑄 = 𝐴𝐵̅̅ ̅̅ =  𝐴 + �̅� =  𝐴𝐵 + 𝐴𝐵̅̅ ̅̅ +  𝐴�̅�                                               (7) 

 

 

Figure 4: The structure of 4-bit NAND-SPIN. 
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Figure 6 illustrates the structure of NV-OR / NV-NOR. The NOR and OR operations are 

represented by 𝑄 and 𝑄, respectively. Table 3 exhibits the truth table and Equations (8) and (9) 

illustrates the logic functions. 

𝑄 = 𝐴𝐵 + 𝐴�̅� + 𝐴𝐵                                                                (8) 

 

𝑄 = 𝐴�̅�                                                                          (9) 

 
 

Table 2: Truth table of AND/NAND. 
 

A B 𝑄 (AND) 𝑄 (NAND) 

0 0 0 1 
0 1 0 1 

1 0 0 1 

1 1 1 0 

 

Table 3: Truth table of OR/NOR. 
 

A B 𝑄 (OR) 𝑄 (NOR) 

0 0 0 1 
0 1 1 0 

1 0 1 0 

1 1 1 0 

 

 

Figure 5: The structure of NV-AND / NV-NAND. 
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Figure 7 illustrates the structure of NV-XOR / NV-XNOR. The XNOR and XOR operations are 

represented by �̅� and 𝑄, respectively. Table 4 exhibits the truth table and Equations (10) and 

(11) illustrates the logic functions. 

 

𝑄 = 𝐴𝐵 + 𝐴�̅�                                                                           (10) 
 

�̅� =  �̅��̅� + 𝐴𝐵                                                                           (11) 

 

 

 

Figure 6: the structure of NV-OR / NV-NOR. 
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Table 4: Truth table of XOR/XNOR. 
 

A B 𝑄 (XOR) 𝑄 (XNOR) 

0 0 0 1 
0 1 1 0 

1 0 1 0 

1 1 0 1 
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In [60], Deng presents some structures for logic gates that decrease the number of MTJ and 

NMOS transistors relative to the presented logic gate structures. On the other hand, some MTJ 

and NMOS settings such as their resistance configurations must be followed to be operated 

properly. 

2.4.3 Non-Volatile Clockless Look-Up Table (C-LUT) 

Look-Up Tables (LUTs) are one of the major FPGAs’ components which are usually 

implemented by SRAM cells [61]. However, SRAM-based LUTs have several limitations such 

as high static power, volatility, and low logic density [62]. On the contrary, MTJ-based LUTs 

have lower mutual disturbance and power consumption since all parts are powered off except the 

data processing portion which is active.  

Table 5 exhibits a comprehensive comparison of some MTJ-based LUTs provided in [63]. In 

[62], Salehi et al. employs spin Hall effect (SHE)-based MTJ for implementing a 6-input 

fracturable non-volatile Clockless LUT (C-LUT) for combinational logic operations without 

 

Figure 7: The structure of NV-XOR / NV-XNOR. 
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requiring a clock while the proposed spin-based LUTs in [63]-[67] need a clock. This C-LUT 

reduces the area in comparison with the STT-MTJ-based C-LUT by removing the sense 

amplifier. 

2.4.4 Spin-MTJ Based Non-Volatile Flip-Flop 

Flip-flop based on non-volatile memory prevents the data loss due to system crashes and power 

failures. In [69], Zhao et al. proposes one of the first MTJ-based non-volatile flip-flop for System 

On Chip (SoC) and FPGA circuits. These circuits are fully non-volatile since all the processed 

data is stored in the cells of Spin-MTJ memory permanently. Figure 8 shows the full schematic 

of this circuit. 

 

 

 

Table 5: Characteristics of LUT designs. 
 

Design Write/Read Operation Features and Challenges 

FIMS-LUT [68] Magnetic Field/TMR 
High Speed 

High Power Consumption 

High Area Overhead 

TAS-LUT [64] Magnetic Field/TMR 

Relatively High Speed 
High Power Consumption 
Medium Area Overhead 

STT-LUT [63] STT/TMR 

High Speed 
Low Power Consumption 

Low Area Overhead 

A-LUT [63] STT/TMR 

High Speed 
Scalable Power Consumption 

Low Area Overhead 
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The transistors N3, N4, N5, N6 are controlled by the NOR gates that two of them are active each 

time. While the circuit is in static mode, the power dissipation is reduced since the signal EN 

enables the current source. The pair of MTJs is written by the signal IN and then, the current 

direction is given. N7 switches between the reading and writing mode. The slave register keeps 

the prior data and the input data is stored when Clk = 1. However, the sense amplifier reads the 

stored data and the slave register updates with Q when Clk = 0. Several implementations of non-

volatile flip-flop are available in [34],[70]-[72]. 

2.4.5 Spin-MTJ Based Non-Volatile Full Adder 

Figure 9 shows the structure of a single-bit full adder including two outputs (S and Co) and three 

inputs (A, B and Ci) given by Equations (12) and (13). In a CPU, high-density and low-power FA 

are desirable since FA is a fundamental unit to an arithmetic operation. 

 

 

Figure 8: Spin-MTJ based Non-Volatile Flip-Flop [69]. 
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𝑆 =  𝐴  𝐵  𝐶𝑖 =  𝐴𝐵𝐶𝑖 + 𝐴�̅�𝐶�̅� + 𝐴𝐵𝐶�̅� + 𝐴�̅�𝐶𝑖                                 (12) 
 

𝐶𝑜 =  𝐴𝐵 + 𝐴𝐶𝑖 + 𝐵𝐶𝑖                                                           (13) 

 

The MTJ-based SUM and CARRY sub-circuits are shown in Figure 10 [60]. In [23],[73]-[75], 

many more non-volatile full adders were presented. 

 

 

Figure 9: The schematic of Single-bit full adder (FA). 
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Figure 10: The structure of full adder: (a) SUM sub-circuit (b) CARRY sub-circuit. 

 

M

Ci

A    

  i   i

   A 

Ci

B    

S   

M

A Ci      i

B    

Co  o 



 

22 
 

 

 2.5 Fabrication of Magnetic Tunnel Junctions 

Researchers utilize several materials such as Mg3B2O6 [89], ZnO [88], NaCl [87], and Al2O3 [86] 

as barrier layer material but the most frequently used material is MgO [85]. Other barrier layer 

material such as titanates [90],[91] and ferrites [92] have been utilized too. Several groups 

investigate barriers with graphene as insulating layer [93],[94]. The most popular ferromagnetic 

layers are CoFeB, Co, and Fe [95]. In the past few years, several studies broadly have been done 

in MTJ with rare earth metals [98] and heusler alloys [96],[97]. Additionally, ferromagnetic 

electrodes in these devices’ fabrication is being implemented by MTJ with magnetic oxides [99] 

[100][101].  

Lower resistance (RP) will be achieved in the barrier’s tunneled electrons once spins have the 

same orientation in lower and upper ferromagnets. The opposite spin-orientation in two 

ferromagnets results in higher electrical resistance (RAP). Therefore, such combination of an 

insulator and ferromagnets demonstrate spin-orientation dependent electrical behavior, which is 

not allowed in regular magnetic materials or conducting [102][103]. 

Magneto-resistance (MR) effect defines as a change in the device’s electric resistance with an 

applied magnetic field’s effect once spin-orientation of such a combination of insulator and 

ferromagnets is controlled by applying magnetic field [84][86]. This effect is recognized as TMR 

effect since these devices’ MR effect is relevant to tunneling phenomena [84]. As a result, these 

devices demonstrate tunneling magnetoresistance (TMR) that relies on the barrier layer’s 

thickness and the ferromagnetic layer’s spin polarization [104]. Several successful effect of such 

combinations have been experimentally demonstrated in various groups[84][98]. Moreover, this 
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effect’s technological development can be observed by many memory devices’ successful 

implementation [76][83].  

These devices are on the basis of the spin dependent tunneling principle. Huge value of TMR is 

achieved from insulating barrier’s spin dependent tunneling. Theoretically, a TMR value of 

∼1000% was achieved [106][107] but experimentally, a value of 604% could be attained so far 

[108]. These devices’ deposition is a difficult task in spite of interesting phenomena in these 

devices. In this subsection, we will explain these devices’ fabrication, but before, we will focus 

on the junction area’s importance. 

2.5.1 Junction Size  

In future storage technology, the possibility to form micrometer-scale junctions is one essential 

condition for the MTJ’s application as read head sensors or MRAM elements. Working for 

longer duration and obtaining low dimensions is another challenge for these devices’ fabrication. 

It is shown that for data retention over 10 years, a high enough thermal stability can be achieved 

for magnetic cells with size of nanometer [93][98][108][109]. By utilizing lithography process, 

MTJs are fabricated down to the nanometer levels’ dimensions [110][111]. 

For a specified set of barrier parameters, a memory application should have a definite value for 

the junction area’s resistance. Therefore, the product of barrier’s resistance and junction area, 

resistance area (RA) product, is defined to understand the MTJ’s characteristics[112][113]. On 

the basis of the operational requirements on access time and noise, an upper limit of around 20 

kΩ μm2 to the RA product of MRAM cells is set [114][116]. Thus, researchers assess TMR of 

these devices along with RA product [117][121]. It is reported RA = 1 kΩ μm2 and TMR = 12% 

in RF plasma oxidized Al barrier [117], RS = 2 kΩ μm2 and TMR = 12% in natural in situ 
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oxidation [118], and RS = 960 Ω μm2 and TMR = 6% in multiple oxidation of successive layers 

of Al in O2 [119]. In order to minimize the junction area, lithography can be considered as an 

alternate solution by considering these several issues. Therefore, the MTJ’s fabrication is a two-

step process: (1) growth of multilayer structures by utilizing appropriate deposition technique, 

and (2) grown multilayers are fabricated into devices. We have explained these steps in the next 

subsections [101]. 

2.5.2 Growth of Multilayer Structure  

One of the major steps in the MTJ’s fabrication is growth of a multilayer structure. For 

deposition of multilayer structure, we need dedicated deposition chamber with ultra-high vacuum 

(10−10–10−11 Torr) [96][100]. 

2.5.3 Molecular Beam Epitaxy (MBE)  

The most popular tool for the MTJ’s deposition is MBE. This tool is efficient in maintaining 

different layers’ orientation and stoichiometry. For this reason, researchers mostly utilize this 

technique to grow MTJ. In this technique, CaTiO3 as insulating layer and trilayer heterostructure 

La1−xSrxMnO3 as the ferromagnet was utilized. This structure demonstrates magnetoresistance 

ΔR/R(H)ΔR/R(H) of as much as 450% in 200 Oe applied field at 14 K which persists up to ∼250 

K [122]. In [123], RA product of the order of 106 Ω–μm2 and TMR value ∼120% are reported by 

depositing Fe/MgO/Fe structure with MBE method. In [124], RA product of few kΩ–μm2 and 

MR ratio of 88% (T = 293 K) are reported for the structure of fully epitaxial Fe/MgO/Fe MTJ 

with this technique. For Fe(001)/MgO(001)/Fe(001) junctions, RA product of 25 kΩ–μm2 and 

TMR value 180% are reported by this group [105]. 
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Likewise, several research groups utilize this technique to fabricate Fe/MgO/Fe MTJ with 

considerable values of TMR [125][128]. For MgO(100)/Fe/MgO/Fe/Co/Pd MTJ with thickness 

of 0.8 nm for insulating layer, these junctions show a very small interlayer magnetic coupling, 

TMR up to 17%, and a low resistance around 4 kΩ–μm2 [129]. Several other groups also employ 

this technique for MTJ structure growth such as Co/MgO/Co tunnel junctions [133], MgO–EuO 

composite tunnel barriers [132], heusler based MTJ [131], and Fe/MgO/Gd [130]. 

2.5.3.1 E-Beam Evaporation  

E-beam evaporation method can be utilized for growing Fe/MgO/Fe structures [84][134][135]. 

This set-up permits online monitoring of thickness by utilizing quartz crystal monitor and 

substrate heating up to 500 °C [136]. In [134][135], the details of these structures’ growth 

procedure are reported. These structures do not show the formation of perfect interfaces but 

instead of that show the presence of Fe-oxides at interfaces [137]. Interface oxidation can be 

resulted from vacuum level of the order of 10−8 Torr by utilizing this technique and growing 

MgO/Fe/MgO structures [140] and Fe/MgO/Fe/Co MTJ structures [138][139]. We should avoid 

this condition for the good quality MTJ’s fabrication. 

2.5.3.2 Sputtering Deposition  

Another choice for growing these structures is a combination of RF and DC sputtering since a 

typical MTJ multilayer structure consists of insulating and ferromagnetic layers. For the 

deposition of CoFeB/MgO/CoFeB structure, a Six-Gun RF sputtering set-up is utilized in 

[141][142].  

This technique recently is efficiently utilized for the multilayer structure’s deposition of this 

CoFeB based MTJ. Sputtering method is utilized for growing MgO tunnel barriers with CoFe 
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electrodes which demonstrate TMR values of up to about 300% at low temperatures and almost 

220% at room temperature [143]. In [101] is shown that these structures demonstrate crystallinity 

from well distinguishable lattice for each layer.  

Several researchers used this technique to develop MTJ with varying compositions of 

ferromagnetic CoFeB electrodes while these MTJs demonstrate highest value of TMR 

[144][148]. A value of TMR around 604% at room temperature employing this technique is 

reported in [108] which is the TMR maximum value has been reported so far. Moreover, this 

group has achieved a low switching current of 49 μA in Ta/CoFeB/MgO/CoFeB/Ta, high thermal 

stability at dimension as low as 40 nm diameter, and TMR value of the order of 120% by 

employing this technique. Therefore, these parameters try to use these MTJs in spintronic 

devices [149]. 

2.5.3.3 ION Beam Sputtering Deposition  

To deposit these structures, Ion beam sputtering has been utilized by several research groups 

[150][155]. TMR values up to 110%, with RA products of 100–400 Ω μm2 for 

CoFeB/MgO/CoFeB MTJ have been reported by these authors. NiFe/Mg/MgO/CoFe MTJ is 

grown by utilizing this technique by Singh and Chaudhary [152][154]. These authors report a 

TMR value of 1% for ion beam sputtered MTJ [153].  

To deposit multilayer structure, several famous methods has been discussed in this subsection 

which further fabricate these devices in well-defined junctions by using lithography process. For 

growing oxide heterostructures in context of MTJ, several other deposition techniques such as 

atomic layer deposition [158][161] and pulsed laser deposition [156][157] are also employed by 

researchers.  
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2.5.4 Lithography  

For the semiconductor devices’ fabrication, one of the famous phenomena in electronic industry 

is Lithography [162][163]. E-beam lithography is employs even though in semiconductor 

industry, optical lithography meets the device size requirement [164]. In [165][166], e-beam 

lithography is preferred through advanced etching procedure and in [164][166], e-beam 

lithography is preferred to design devices free from mechanical damage and chemical impurity. 

Two lithography types are defined based on the fabricated device’s size: (1) Nanolithography 

features smaller than 100 nm and (2) Microlithography for growing features smaller than 10 μm. 

MTJs with junction size scaling down to few nm are under fabrication through the development 

of device requirements and technological advances. Therefore, the MTJ’s fabrication is 

considered as a subcategory of nanolithography. 

2.5.4.1 Photolithography  

One of the approaches that often used for microchips’ semiconductor manufacturing is 

Photolithography. For fabricating micro-electro-mechanical-systems (MEMS) devices, 

photolithography is usually utilized too. Several steps are required to fabricate device from layer 

grown on substrate (wafer) in typical lithography process. These steps can be outlined as follows 

[101]:  

I. As explained in Radio Corporation of America [167], surface layer cleaning.  

II. Heating the wafer surface to drive off any moisture that may be exist.  

III. Application of photoresist by spin coating.  

IV. Exposure of photoresist by pattern of intense light. 

V. Etching.  
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VI. Photoresist removal.  

Therefore, the two most critical steps in lithography process are: (1) exposure and (2) etching. 

The photoresist removal from layer is Etching. Chemical etching is a cost-effective and simple 

technique of etching by utilizing chemicals [168][169]. Several different techniques are used for 

etching procedure these days. These techniques are ion beam milling [172], reactive ion etching 

[171], and plasma etching [170]. While wet etching is considered as chemical etching procedure, 

these approaches are usually considered as dry etching. 

Other principal step is exposure while the lithography’s category is defined by the radiation’s 

nature utilized for exposure. Photolithography is a process that ultra-violet radiation is employed 

for exposure. This technique is used for both MTJ fabrication and semiconductor devices’ 

fabrication. Photolithography has been used in several researches in micron-sized Fe/MgO/Fe 

[174], Co75Fe25/Al2O3/Co75Fe25 [173], and Ni–Fe/Al2O3/Co [172] junction. Chen et al. employed 

this technique to grow micron-sized junction on flexible substrate [175][176]. The MTJ 

fabrication is a regular process while the layers’ number for pattering is more than three and each 

layer requires pattering. Patterning of Co, Al2O3, and NiFe layers is needed for NiFe/Al2O3/Co 

fabrication. The MTJ device patterning is a difficult job and requires a lot of expertise since each 

layer’s patterning goes through several steps.  

2.5.4.2 E-Beam Lithography  

Electron beam lithography has the ability of much greater patterning resolution. In the 

manufacture of photomasks, electron beam lithography is essential too. Electron beam 

lithography is kind of maskless lithography which a mask is not needed to produce the ultimate 

pattern. Instead, through controlling an electron beam while scans across a resist-coated 
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substrate, the ultimate pattern is made directly from a digital representation on a computer. The 

drawback of electron beam lithography is that it is much slower than photolithography. As a 

result, e-beam lithography is used in most of the MTJ uses [140][155]. This process is used to 

fabricate Ni80Fe20/Co75Fe25/Al-O/Co75Fe25/Ta MTJ. A part of the MTJ structure is removed by 

utilizing Ar ion milling and e-beam lithography in this procedure. Then, Pt layer of thickness 10 

nm was vacuum-evaporated obliquely on both sides of Al2O3/Cu films, substrate was covered 

with a thick Al2O3/Cu film and liftoff in organic solvent. At the end, Ar ion milling defines 

junction area, in which the Pt films were utilized as etching masks with 100 μm × 10 nm. 

2.5.5 Patterning oF FE/MGO/FE System  

Recently, ion milling is preferred over chemical etching in case of etching in spite of significant 

results in chemical etching. We first discuss the Fe/MgO/Fe/Au MTJ procedure utilizing e-beam 

lithography and chemical etching in the interest of understanding the MTJ fabrication 

phenomena. The detailed information of this lithography procedure is given by Fe/MgO/Fe MTJ. 

As depicted below, the process containing almost 21 steps which are demonstrated in terms of 

different steps for better understanding [101]:  

1. Multilayer structure growth.  

2. Deposition of photoresist (PR) on the structure.  

3. PR Masking. 

4. Radiation exposure on PR.  

5. Desired structures are grown in PR.  

6. Au layer etching.  

7. Fe layer etching using appropriate etching agent. 
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8. MgO barrier layer etching.  

9. Photoresist removal.  

10. PR Deposition.  

11. Utilization of another mask to define exposure to radiation and lower layer. 

12. After exposure structures are formed through PR.  

13. Lower electrode etching.  

14. PR removal.  

15. Silica deposition for insulation among several devices. 

16. PR deposition.  

17. Mask to exposure through radiation and grow contact pads.  

18. Structure formation for lower contact pads.  

19. Formation of structure and silica etching for contact pads. 

20. Contact layer deposition and PR removal.  

21. PR deposition and exposure through mask to deposit contact pads of around 1 mm. 

 

2.5.6 Fabrication of Device Using Pseudo/Metal Masking Procedure  

To fabricate these devices, we need to pass through a complicated lithography process. These 

devices’ properties can be affected through a number of such treatments. Thus, researcher 

employs the technologies that are free from complicated lithography process. Pseudo-masking is 

a technology that is utilized by researchers at the beginning of this technology as these junctions’ 

fabrication. In [177][178], this methodology is employed to develop the procedure for growing 

CoFe/Al2O3/Co and CoFe/Al2O3/NiFe junctions. At room temperature, these junctions could 

achieve approximately 11% of TMR. 
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To minimizing magnetic coupling, the Jullieres’s observation of TMR in Fe/Ge/Co junction has 

been employed in this procedure through oxidizing Ge in dry oxygen [179]. To deposit 

Gd/Gd2O3/NiFe junctions, metal masking is used by this group [180]. As a replacement for metal 

mask that allows in situ deposition of MTJ, Ootuka et al. reported fabrication method on the 

basis of Si3N4 membrane [181]. As reported by Julliers [179] and Moodera group [177][178], 

this process also prevents the situation where vacuum breaking is needed for designing junctions. 

Although mask formation requires e-beam lithography, the pseudo-masking fabrication methods 

to grow MTJ without lithography process. In [67], pseudo masking is employed by Perkin et al. 

employed in the interest of fabricating these devices, which results in approximately 220% TMR 

value at room temperature. Thereafter, Barraud et al. used this technique for the purpose of 

growing Co/Al2O3/Co junction on organic substrate and Si [182] and on Kapton substrate by 

another group[183].  

As described, MTJ fabrication is a multistep and complicated procedure. The most significant 

steps are choice of radiation, etching, and masking. In the lithography process a substantial 

improvement has been achieved through the technological advancement that makes good quality 

junction with smaller junction size and perfect shape. Researchers utilize various lithography 

techniques such as free electron lithography [186], X-ray lithography [185], and ion beam lithog-

raphy [184]. Because of typical instrumentation associated with these techniques, the utilization 

of these techniques is restricted [187][188]. 
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CHAPTER 3: BACKGROUND1 

3.1 Deep Belief Network (DBN) 

DBN can be easily realized by stacking Restricted Boltzmann machines (RBMs), which are 

classes of recurrent stochastic neural networks, in which state of the network, k, has an energy 

expressed by (1), determined by the connection weights between nodes and the node bias, where 

𝑠𝑖
𝑘 denotes the state of node i in k, bi represents the bias, or intrinsic excitability of node i, and wij 

is the weight of connection between nodes i and j [189]. 

𝐸(𝑘) =  − ∑ 𝑠𝑖
𝑘𝑏𝑖 − ∑ 𝑠𝑖

𝑘𝑠𝑗
𝑘𝑤𝑖𝑗𝑖<𝑘  𝑖                                           (14)   

The probability of each node in a RBM to be in state one is determined based on (2), where σ 

denotes the sigmoid function. RBMs can reach a Boltzmann distribution in which the system 

probability to be in state v is represented by (3), and u could be any possible system state. 

Therefore, given sufficient time, the system moves towards the states with the lowest associated 

energy. 

𝑃(𝑠𝑖 = 1) =  𝜎 (𝑏𝑖 + ∑ 𝑤𝑖𝑗𝑠𝑗𝑗 )                                                      (15) 

 

 

𝑃(𝑣) =  
𝑒−𝐸(𝑣)

∑ 𝑒−𝐸(𝑢)
𝑢

                                                                 (16) 

 

 

 

                                                           
1 ©2020 IEEE. Part of this chapter is reprinted, with permission, from [214]. 
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RBM consists of two fully-connected layers called the visible layer and the hidden layer, as 

shown in Figure 11. Crossbar architecture is a widely-explored method to implement such 

networks. The most known method for training RBMs is contrastive divergence (CD), which is 

based on approximate gradient descent procedure using Gibbs sampling [190]. CD operates in 

four steps as described below: 

 

I. Feed-Forward I: The hidden layer, h, is sampled based on the applied training input 

vector, v, to the visible layer. 

II. Feed-back: The generated input (v′) is sampled based on the sampled hidden layer 

output which is fed-back to the network. 

III. Feed-Forward II: The reconstructed hidden layer, h′, is sampled by applying v′ to the 

visible layer. 

IV. Update: The weights are updated according to Equation (17), where W is the weight 

matrix and η is the learning rate. 

∆𝑊 =   η(vℎ𝑇 − 𝑣´ℎ´𝑇)                                                        (17) 

 

 

 

 

Figure 11: An example of DBN structure including a visible layer 
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Algorithm 1: Contrastive Divergence Unsupervised Learning Algorithm 

Input: train dataset (Dtrain), # of training samples (S), # of RBMs (M) 

Output: weight (n).mat, bias(n).mat, where n is the RBM number 

Require: Maximum iteration (MaxIter), Learning Rate (η) 

for i= 1:S do 

      v = Dtrain(i); 

      for j= 1:M do 

           for k= 1:MaxIter do 

                 Feed-Forward 1: h = 𝜎 (𝑏 + ∑𝑤. 𝑣); 
                 Feed-Back: v´ = 𝜎 (𝑐 + ∑𝑤. ℎ); 

                Feed-Forward 2: h´ = 𝜎 (𝑏 + ∑𝑤. 𝑣´) ; 

                Update: 

                ΔW(j) = η (vhT −v´h´T) ⇒ W(j) = W(j) + ΔW(j) 

                ΔB(j) = η (h − h´) ⇒ B(j) = B(j) + ΔB(j) 

               ΔC(j) = η (v − v´) ⇒ C(j) = C(j) + ΔC(j) 

          end 

     end 

end 

for j= 1:M do 

weight(j).mat ⇐W(j) ; 

bias(j).mat ⇐ B(j) ; 

end 

 

A DBN can be formed by stacking RBMs and trained similarly to RBMs. The visible layer and 

the first of the hidden layers within the network are trained first with CD. Then, the CD is 

repeated as much as needed, which will adjust the weights in a hierarchical flow as described in 

Algorithm 1. 

3.2 Embedded MRAM-Based Neuron  

In this subsection, we show how a recently-proposed building block based on embedded MRAM 

technology can realize a neuron with probabilistic sigmoidal activation function [13]. The 

MRAM-based stochastic device (p-bit) structure is shown in Figure 12. It consists of a magnetic 

tunnel junction (MTJ), which is a 2-terminal device with two possible resistive levels based on 

the orientation of its ferromagnetic (FM) layers, i.e. fixed layer and free layer. The fixed layer 

has a fixed magnetic orientation, while the free layer’s magnetization orientation can be 
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switched. In conventional MRAM cells, free layer of the MTJ is manufactured with a thermally-

stable nanomagnet with a large energy barrier with respect to the thermal energy (kT). 

Accordingly, the fixed layer works as a non-volatile storage. Recently, in search of functional 

spintronic paradigms, thermally-unstable MTJs based on superparamagnetic materials have been 

theoretically and experimentally explored [191], [192], [193], [194], [11], [195], [196], [197], 

[198].  

In this work, we use a thermally-unstable MRAM device with a low energy-barrier nanomagnet 

(EB << 40 kT) [13]. The MTJ resistance of this device randomly fluctuates between the two 

possible resistive states. This leads to a fluctuating output voltage at the drain of the NMOS 

transistor connected to a CMOS inverter. The inverter amplify such voltage deviation from the 

threshold voltage and generate a stochastic output modulated by the input voltage. Particularly, 

by reducing the drain-source resistance (rds) through increasing the input voltage (VIN), the 

voltage at the drain of the NMOS transistor is shorted to the ground. Alternatively, it can get to 

VDD by increasing the rds through decreasing VIN. Such device operation is formulated 

considering the MTJ conductance [13]: 

 

 

Figure 12: The diagram of the embedded MRAM-based neuron 
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𝐺𝑀𝑇𝐽 = 𝐺0 [1 + 𝑚𝑧
𝑇𝑀𝑅

(2+𝑇𝑀𝑅)
]                                                      (18) 

 

where mz is the free layer magnetization, G0 denotes the average MTJ conductance, (GP+GAP)/2, 

and TMR represents the tunneling magnetoresistance ratio. The drain voltage can be written as: 

𝑉𝐷𝑅𝐴𝐼𝑁/ 𝑉𝐷𝐷 = 
(2+𝑇𝑀𝑅) + 𝑇𝑀𝑅 𝑚𝑧

(2+𝑇𝑀𝑅)(1+𝛼) + 𝑇𝑀𝑅 𝑚𝑧
                                                      (19) 

 

 

where α is the ratio of the transistor conductance (GT) to the average MTJ conductance (G0).  

The p-bit device uses a circular nanomagnet with near-zero energy barrier without shape 

anisotropy. The free layer magnetization for the MTJ conductance discussed in Equation (18) is 

given by the stochastic Landau-Lifshitz-Gilbert (LLG) equation: 

(1 + 𝛼2)𝑑�̂�/𝑑𝑡 = −|𝛾|�̂� × �⃑⃑� − 𝛼|𝛾|(�̂� × �̂� × �⃑⃑� ) + 1/𝑞𝑁(�̂� × 𝐼𝑆⃑⃑  × �̂�) + (𝛼/𝑞𝑁(�̂� × 𝐼𝑆⃑⃑  ))       (20) 

 

 

 

Figure 13: Output probability of MRAM-based neuron vs. its input voltage. 
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where α is the damping coefficient of the nanomagnet, γ is the electron gyromagnetic ratio, q 

denotes the electron charge, and 𝐼𝑆⃑⃑  is the spin current incident to the free layer. Figure 13 shows 

the correlation between the probability of output being in state “1” and VIN. A close observation 

shows that VIN = VDD/2 = 400 mV produces an output probability of 50%. 

Some of the most recent hardware implementations of DBNs are listed in Table 6. In [4], FPGAs 

are utilized to achieve speedups of 25-145 in comparison with software implementations, 

however they still suffer from constrained clock frequencies and routing congestion along with 

substantial resource deficiencies because of the significant embedded memory utilization for 

both weighted connections and activation functions. The design presented in [10], benefits the 

low-complexity characteristics of stochastic CMOS-based arithmetic for implementing RBMs 

with reduced area and power consumption but the increased latencies in this design significantly 

restrains the energy savings due to the enormous number of linear feedback shift registers 

(LFSRs) that are required to generate the long input and weight bit-streams. In [6] and [8], the 

crossbar arrays have been employed with emerging technologies such as resistive RAM (RRAM) 

Table 6: Various hardware implementations for DBN architecture. 

Design Weighted Connection Activation Function Energy per 

Neuron 

Normalized Area 

per Neuron 

[4] Embedded multipliers ▪ 2-kB BRAM 

▪ PLA 

▪ RNG 

~10-100 nJ ~3000× 

[10] ▪ LFSR 

▪ AND/OR gates 

▪ LFSR 

▪ Bit-wise AND 

▪ Tree adder 

▪ FSM-based tanh  

~10-100 nJ ~90× 

[6] RRAM ▪ 64×16 LUTs 

▪ Pseudo Random Number Generator 

▪ Comparator  

~1-10 nJ ~1250× 

[8] PCM Off-chip N/A N/A 

[11] SOT-DWM near-zero energy barrier SOT-MTJ ~1-10 fJ ~1.25× 

[12] Memristive Devices Embedded MRAM-based Stochastic Neuron  ~10-30 fJ 1× 
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and phase change memory (PCM) to implement matrix multiplication within RBMs. In [6], 

Bojnordi et al. have employed RRAM devices as weighted connections to achieve 100-fold and 

10-fold improvement with respect to operation speed and energy consumption, respectively, 

relative to single-threaded cores. The CMOS-based circuits such as multipliers and RNGs are 

employed in all the aforementioned designs to realize the probabilistic behavior of activation 

functions, which results in significant area and energy overheads. In [11], Zand et al. have 

achieved substantial area and energy reductions by employing low energy barrier spin-orbit 

torque (SOT) MTJs to implement the probabilistic sigmoidal activation function. Nevertheless, 

this design requires weighted connections with very large resistance values which results in 

considerable area overhead and fabrication complexity. Moreover, the current-mode behavior of 

the SOT-MTJ devices imposes considerable power consumption to the activation functions 

[199], [200]. Voltage-driven embedded MRAM-based neuron with low energy barrier (p-bit) has 

been proposed to take advantage of intrinsic thermal noise to generate sigmoidal probabilistic 

activation functions required for RBMs [12]. As listed in Table 6, the p-bit based RBM 

implementation can attain approximately three orders of magnitude energy reduction relative to 

the previous energy-efficient CMOS-based implementations, as well as at least 90- fold decrease 

in the CMOS device count. 

3.3 Probabilistic Inference Network-Simulator (PIN-SIM) 

Herein, we use the Probabilistic Inference Network-Simulator (PIN-Sim) proposed in [12] to 

realize a circuit-level implementation of DBNs using memristive crossbars as weighted 

connections and embedded MRAM-based neurons as activation functions. As shown in Figure 

14, PIN-Sim is a hierarchical simulation framework that consists of five main modules: (1) 

trainDBN: a MATLAB-based module used for training various DBN topologies [201] (2) 
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mapWeight: a module developed in MATLAB that converts the trained weights and biases to 

their corresponding resistance values, (3) mapDBN: a python-based module which provides a 

circuitlevel implementation of the restricted Boltzmann machine using the obtained weight and 

bias resistances, (4) neuron: a SPICE model of the MRAM-based stochastic neuron [13], (5) 

testDBN: the main module developed in Python that executes test evaluations to assess the error 

rate and power consumption using the other modules in PIN-Sim. 

As described in Algorithm 2, a MATLAB implementation of DBN is modified to train the 

network and obtain the bias (B) and trained weight (W) matrices. Then, the extracted bias and 

weight matrices are applied to mapWEIGHT as a MATLAB module to convert both the positive 

and negative elements in bias and weight matrices to two separate matrices with only positive 

elements as described in Algorithm 3 and below: 

 

𝑤(𝑖,𝑗)
+ = {

𝑤(𝑖,𝑗),       𝑖𝑓 𝑤(𝑖,𝑗)  ≥ 0

0,              𝑖𝑓 𝑤(𝑖,𝑗)  < 0 
,         𝑤(𝑖,𝑗)

− = {
0,                        𝑖𝑓 𝑤(𝑖,𝑗)  ≥ 0

−𝑤(𝑖,𝑗),              𝑖𝑓 𝑤(𝑖,𝑗)  < 0 
                    (21) 

 

 

 

 

𝑏𝑗
+ = {

𝑏𝑗 ,              𝑖𝑓 𝑏𝑗  ≥ 0

0,              𝑖𝑓 𝑏𝑗  < 0 
,         𝑏𝑗

− = {
0,                        𝑖𝑓 𝑏𝑗  ≥ 0

−𝑏𝑗,                    𝑖𝑓 𝑏𝑗  < 0 
                    (22) 
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Algorithm 2: PIN-Sim Methodology 

Input: test dataset (Dtest) with the target labels (Label), # of test samples(S), #of RBMs(M), 

#of nodes in hidden layer x (Nx) 

Output: Error Rate 

Initialize: Err = 0 

weight.mat, bias.mat ⇐Contrastive_Divergence Algorithm 

posWeight.txt, negWeight .txt, posBias.txt, negBias.txt ⇐ mapWeight (Weight.mat, Bias.mat) 

for i= 1:S do 

      input_data = Dtest (i); 

      for j= 1:M do 

            RBM(j).sp ⇐ mapRBM(input_data, Nj+1, posWeight.txt, negWeight.txt, posBias.txt, negBias.txt); 

            Run RBM(j).sp in HSPICE and store the obtained output voltages in array outRBM; 

            for k= 1:Nj do 

                  Run neuron.sp model with outRBM(k) as the input of the kth Neuron; 

            end 

            Store the output of the neurons in array OUTPUT; 

            if (j = M) then 

                if (OUTPUT, Label(i)) then 

                     Err+ = 1; 

                end 

           else 

                    input_data = OUTPUT; 

           end 

      end 

end 

ErrorRate = Err/S; 

 

 

 

Figure 14: The block diagram of PIN-Sim framework including five main modules [12]. 
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Next, the mapWEIGHT module obtains the corresponding conductance values of the elements in 

W+, W−, B+, and B− matrices by using the below equations: 

∀ 𝑤(𝑖,𝑗)  ∈ (𝑊+,𝑊−): 𝑔𝑤(𝑖,𝑗) = 
(𝑔𝑚𝑎𝑥 − 𝑔𝑚𝑖𝑛) × (𝑤(𝑖,𝑗)− 𝑤𝑚𝑖𝑛)

𝑤𝑚𝑎𝑥− 𝑤𝑚𝑖𝑛
+ 𝑔𝑚𝑖𝑛                         (23) 

 

 

 

∀ 𝑏(𝑖,𝑗)  ∈ (𝐵+, 𝐵−): 𝑔𝑏(𝑖,𝑗) = 
(𝑔𝑚𝑎𝑥 − 𝑔𝑚𝑖𝑛) × (𝑏(𝑖,𝑗)− 𝑏𝑚𝑖𝑛)

𝑏𝑚𝑎𝑥− 𝑏𝑚𝑖𝑛
+ 𝑔𝑚𝑖𝑛                         (24) 

 

 

where ∀ 𝑔(𝑖,𝑗)  ∈ 𝐺 ∶  𝑔𝑚𝑖𝑛 ≤ 𝑔(𝑖,𝑗)  ≤  𝑔𝑚𝑎𝑥 , in which gmax = 1/rmin and gmin = 1/rmax are 

maximum and minimum conductances of all weighted connections in the crossbar weighted 

array. Moreover, wmin, wmax, bmin, and bmax are the minimum and maximum values in all of the 

weight and bias matrices, respectively. For implementing the required resistive crossbar array, all 

of the obtained conductance values are converted and quantized to their corresponding resistance 

values by utilizing Equation (25): 

 

∀ 𝑔(𝑖,𝑗)  ∈ (𝐺𝑊+, 𝐺𝑊−, 𝐺𝐵+, 𝐺𝐵−): 𝑟(𝑖,𝑗) = 
𝑟𝑜𝑢𝑛𝑑(𝑄×1/𝑔(𝑖,𝑗)) 

𝑄
                         (25) 

 

 

 

Where GB−, GB+, GW−, and GW+ are negative bias, positive bias, negative weight, and positive 

weight conductance matrices, respectively, and Q is the quantization factor.  

Algorithm 3: mapWeight Methodology 

Input: weight.mat, bias.mat, #of RBMs (M) 

Output: posWeight(n).txt, negWeight(n).txt, posBias(n).txt, negBias(n).txt, where n is the RBM number 

Require: rmin, rmax, Quantization Factor (Q) 

gmax = 1/rmin; 

gmin = 1/rmax; 

Q = Q/(rmax − rmin); 

for i= 1:M do 
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      W+, W− ⇐ weight(i) Matrix; 

      B+, B− ⇐ bias(i) Matrix; 

      wmin = smallest weight value in Wpos, Wneg; 

      wmax = largest weight value in Wpos, Wneg; 

      bmin = smallest weight value in Bpos, Bneg; 

      bmax = largest weight value in Bpos, Bneg; 

       𝐺𝑊+ = 
(𝑔𝑚𝑎𝑥 − 𝑔𝑚𝑖𝑛) × (𝑊+− 𝑤𝑚𝑖𝑛)

𝑤𝑚𝑎𝑥− 𝑤𝑚𝑖𝑛
+ 𝑔𝑚𝑖𝑛, 𝑅𝑊+ = 

𝑟𝑜𝑢𝑛𝑑(𝑄×1/𝐺𝑊+)

𝑄
 ; 

       𝐺𝑊− = 
(𝑔𝑚𝑎𝑥 − 𝑔𝑚𝑖𝑛) × (𝑊−− 𝑤𝑚𝑖𝑛)

𝑤𝑚𝑎𝑥− 𝑤𝑚𝑖𝑛
+ 𝑔𝑚𝑖𝑛, 𝑅𝑊− = 

𝑟𝑜𝑢𝑛𝑑(𝑄×1/𝐺𝑊−)

𝑄
 ; 

       𝐺𝐵+ = 
(𝑔𝑚𝑎𝑥 − 𝑔𝑚𝑖𝑛) × (𝐵+− 𝑏𝑚𝑖𝑛)

𝑏𝑚𝑎𝑥− 𝑏𝑚𝑖𝑛
+ 𝑔𝑚𝑖𝑛, 𝑅𝐵+ = 

𝑟𝑜𝑢𝑛𝑑(𝑄×1/𝐺𝐵+)

𝑄
 ; 

       𝐺𝐵− = 
(𝑔𝑚𝑎𝑥 − 𝑔𝑚𝑖𝑛) × (𝐵−− 𝑏𝑚𝑖𝑛)

𝑏𝑚𝑎𝑥− 𝑏𝑚𝑖𝑛
+ 𝑔𝑚𝑖𝑛, 𝑅𝐵− = 

𝑟𝑜𝑢𝑛𝑑(𝑄×1/𝐺𝐵−)

𝑄
 ; 

     posWeight(i).txt ⇐ RW+; 

    negWeight(i).txt ⇐ RW−; 

    posBias(i).txt ⇐ RB+; 

    negBias(i).txt ⇐ RB−; 

end 

 

 

Then, the negative and positive bias and weight resistance matrices will be converted to text 

files. As shown in Figure 14, a Python module called mapRBM.py receives the obtained matrices 

and based on the defined network topology, automatically produces plural crossbar weighted 

array circuits in SPICE. At the end, another Python module named testDBN.py uses the model of 

the probabilistic neuron and generated circuit of the DBN to perform a SPICE circuit simulation 

and calculate the error rate by utilizing the text files of test inputs and test labels. 

A possible hardware implementation of an RBM is shown in  

Figure 15 whereby the needed probabilistic sigmoidal activation function neurons is generated by 

the concise embedded MRAM-based design described in the prior subsection. For realizing the 

matrix multiplication elaborated in Equation (15), the resistive crossbar arrays are employed in 

this implementation. The resistive weighted connections will be programmed on the basis of the 

off-chip trained weights. As illustrated in  
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Figure 15, two resistive weighted arrays with the same dimensions are needed to implement the 

positive and negative weights in the w matrix. The differential amplifiers which are implemented 

by op-amps link the outputs of the positive and negative weighted connections. The input signal 

of the MRAM-based neuron is the output voltage of the op-amp. The embedded MRAM-based 

neuron will generate an output voltage signal with a probability, which is modulated based on the 

applied input voltage and fluctuates between VDD and GND. At the end, the probabilistic output 

of the neuron is converted to an analog voltage level by employing a resistor-capacitor (RC) 

integrator circuit, which can be later converted to a digital output within an analog to digital 

converter. Based on the application requirements, several parameters can be tuned in the PIN-

Sim framework as listed in Table 7. 
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Figure 15: An RBM hardware implementation. Two resistive arrays are leveraged along with differential 

amplifiers to implement both positive and negative weights. The embedded MRAM-based neurons are used to 

evaluate the activation functions. The fluctuating output voltage of the neurons are integrated through an RC 

circuit to generate the output of the proposed RBM structure. 

 

Table 7: PIN-Sim Tunable Parameters and their default values 

Parameters Description Default Value 

Topology Defines the number of layers and nodes 784×200×10 

TrainNum # of training images 3,000 

Rmin Minimum resistance of the weighted connections 1 kΩ 

ΔRW Difference between min and max resistances of weighted connections 400% 

Q Quantization factor 8 

R0, R1 Resistances of the resistors in the differential amplifiers 1 kΩ, 5 kΩ 

Ri, Ci Resistance and capacitance of the RC integrator circuits 100 kΩ, 20 fF 
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CHAPTER 4: PROBABILISTIC INTERPOLATION RECODER12 

In this dissertation research, we use a 784×200×10 DBN for MNIST pattern recognition tasks. 

Figure 16 indicates the output voltages of the neurons for a sample digit of “4” in the last hidden 

layer whereas each neuron represents an output class. Figure 16 (a) shows the probabilistic 

outputs of the p-bit devices while the outputs of their corresponding integrator circuits is 

demonstrated in Figure 16 (b). The outputs of the integrators are connected to the proposed PIR 

circuits described in this section to interpolate the probabilistic outputs of the neurons 

representing each class in the MNIST dataset. 

                                                           
1 ©2020 IEEE. Part of this chapter is reprinted, with permission, from [214]. 
2 ©2020 IEEE. Part of this chapter is reprinted, with permission, from [260]. 

 

Figure 16: Output voltages of a 784 × 200 × 10 DBN for a sample digit of ”4”: (a) Probabilistic output of the p-

bit devices, (b) Output of the integrator circuit [12]. 
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4.1 Sample and Count Based PIR (SC-PIR) 

Conventional methods for designing an interpolation circuit for probabilistic neurons involve 

using an integrator circuit, e.g. resistor-capacitor (RC) circuit, along with an analog-digital-

converter (ADC) to convert the probabilistic outputs of the neurons to a digital output, as shown 

in Figure 17 (a). Interpolation circuits such as ADCs, which are required for a completely 

operational network, are being investigated as an emerging topic in computing. These are 

identified as useful targets to further reduce energy and area demands [193], [194], [195], [196], 

[197]. For instance in [194], significant reduction of the ADC energy and area overhead is 

achieved by using bit-slice sparsity since the power-hungry ADCs prevent the practical 

deployment of Resistive Random-Access Memory (ReRAM)-based DNN accelerators on end 

devices with limited chip area and power budget. In [195], they painstakingly attempted to 

reduce the overhead of ADCs by partitioning the input into several segments which are fed 

sequentially into the crossbar. An alternate technique is presented in [196] to reduce the 

overhead of ADCs in ReRAM neuromorphic computing systems by normalizing and quantizing 

data. In [197], it is an explicit focus to considerably decrease the overhead of the peripheral 

circuit to reduce the total design area and power consumption by quantizing the weights to fewer 

bits. Herein, we propose a CMOS-based probabilistic interpolation recoder (PIR), which is 

directly connected to the p-bits to generate a discrete n-bit output for each of the neurons in the 

last layer of the network. Figure 17 (b) shows the circuit structure of 3-bit SC-PIRs. 

In the proposed SC-PIR circuits, the probabilistic output of the embedded MRAM-based neuron 

(NeuronOUT) is sampled at the positive edge of each clock (clk), and the sampled outputs are 

accumulated through a counter. A ctrl signal is utilized to reset the counter and control the PIR 

circuit’s sampling time window. An n-bit PIR circuit counts the sampled outputs for 2n-1 clocks 
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and then returns the accumulated value in the form of an n-bit output (OUTn-1-OUT0). Figure 18 

(a) exhibits the transient response of the proposed 3-bit SCPIR circuits, while the input of the p-

bit based neuron is set to VIN = VDD/2 = 400mV. When the ctrl signal is ”0”, the counter is reset 

and the output of the PIR circuit will be connected to GND, i.e. (OUT2 -OUT0 = 000). When the 

ctrl = 1, the counter is activated, and the output of the neuron is sampled at every positive edge 

of the clock signal. If the output of the RC integrator circuit connected to the neuron is greater 

than VDD/2 during the sampling time, the PIR circuit will increment the counter, else the counter 

remains unchanged. For instance, in Figure 18 (a), the counter is incremented from 000 to 001 at 

 
(a) 

 

 
 

(b) 

 

 

 
(c) 

 

Figure 17: (a) 3-bit ADC circuit, (b) 3-bit SC-PIR circuit, and (c) 3-bit SS-PIR circuit. 
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the fourth positive edge of the clock since ctrl signal is equal to ”1” and the voltage of the 

NeuronOUT is greater than VDD/2 = 400 mV. An n-bit SC-PIR circuit continues this process for 

2n clock periods and after the 2n-th period, the output of the counter is used as the interpolated 

output of the probabilistic neuron. 

 

 
(a) 

 

 
 

(b) 

 
Figure 18: Timing waveforms of (a) 3-bit SC-PIR circuit and (b) 3-bit SS-PIR circuit. 
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4.2 Sample and Shift Based PIR (SS-PIR) 

In this dissertation research, we develop another alternative implementation of PIR circuits that 

is called sample and shift based PIR (SS-PIR) in the interest of improving energy consumption 

while obtaining a comparable error rate. In the proposed SS-PIR circuit, the sampled outputs are 

interpolated through a bidirectional shift register at the positive edge of clock (clk). The SS-PIR 

circuit shifts by one position the bit array stored in it, shifting in NeuronOUT and shifting out the 

last bit in the array at each transition of the clock input. The shift register in the SS-PIR circuit 

must be shifted right or left if the sampled output voltage of the neurons integrator (NeuronOUT) 

is less than or greater than VDD/2, respectively. In other words, the bit array that is stored in shift 

register multiplies or divides by 2 if NeuronOUT is less than or greater than VDD/2, respectively. A 

ctrl signal is utilized to reset the shift register and control the SS-PIR circuit’s sampling time 

window. An n-bit SS-PIR circuit counts the sampled outputs for n clock periods and then returns 

the shifted value in the form of an n-bit output (OUTn-1-OUT0). Figure 18 (b) exhibits the 

transient response of the proposed 3-bit SS-PIR circuits while the input of the p-bit based neuron 

is set to VIN = VDD/2 = 400 mV. For instance, as shown in the figure, when the ctrl signal is ”1”, 

the value stored in the shift register changes from 000 to 001 at the third positive edge, and from 

001 to 011 at the fourth positive edge of the clock since NeuronOUT > (VDD/2 = 0.4V). 

 

4.3 PIR for Spiking Neural Networks 

With some minor changes in the PIR circuit design, they can be utilized in the Spiking Neural 

Network (SNN) architectures as well. There are various implementations of spiking neurons, 

whereby some require a compatible counting and sampling while others do not utilize such 

techniques. In Seo et al. [202], each SNNs neuron circuit has its own 16-bit adder, Op-amp 
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comparator, and a 4:1 mux to integrate all presynaptic weights and determine firing activity, 

which essentially imposes a large power overhead to the design. In [203], the neurons readout 

block includes a column ADC, which contains a summing amplifier, a sample-and-hold circuit 

and a high-resolution ADC, which again shows a large area-overhead. Wang et al. [204] exploit 

a capacitive accumulator and then a comparator as well as a flip-flop to readout the data from a 

SNN-based RRAM crossbar. On the other hand, in a recent work [205], the authors present an 

efficient three-step memristive-based SNNs neuron; or reference [206] presents an all-spin SNNs 

by using a domain wall-based neuron, where neither of these designs need adder/comparator-

based techniques.  

The proposed sequential PIR circuit can be modified to a combinational circuit which instead of 

sampling the output of the neuron at the positive edges of the clock, would increment the counter 

or shifts the shift register in SC-PIR and SS-PIR circuits, respectively. This occurs when the 

input voltage of the circuit (i.e. output of the neuron in SNN) is greater than a specific voltage 

threshold. However, the proposal of our PIR circuit is particularly important for DBNs whereas 

listed in Table 6, the p-bit based neurons achieve orders of magnitude energy and area reduction 

compared to their CMOS-based counterpart, but they require an efficient interpolation circuit to 

fully-leverage their advantages. Thus, in this dissertation research, we have focused on 

developing energy and area efficient interpolation circuits for DBN architectures. 

4.4 Simulation Results 

In order to assess the performance of the proposed PIR circuits, we have utilized them within the 

structure of a 784×200×10 DBN circuit implemented by the PIN-Sim framework for MNIST 

digit recognition application. As shown in Figure 19, the PIR circuits are connected to the output 
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layer to interpolate the probabilistic output of the neurons which represent the 0-9 digit classes of 

the MNIST dataset. Moreover, we employ a circular disk magnet that have been fabricated and 

characterized in [207], [208], and [198] with near-zero energy barrier without any shape 

anisotropy.  

 

Table 8 shows the device parameters that are used in the simulations in this dissertation research 

[13]. It should be emphasized that the results are not considerably influenced by the current that 

is flowing at the midpoint (VIN = VDD/2) for the selected parameters with a circular free layer 

with an in-plane anisotropy, and any pinning at higher input voltages takes advantage of 

switching operation of the device. By verifying the functionality and efficiency of the PIR 

circuits for MNIST dataset, their efficiency for larger datasets will be validated as well. This is 

 

 

Figure 19: Simulation framework utilized for application-level simulations. (a) subset of MNIST dataset with 

100 test images, (b) a 784×200×10 DBN developed for MNIST pattern recognition application, (c) hardware 

implementation of the 784×200×10 DBN using PIN-Sim tool, (d) stochastic MRAM-based neuron (p-bit), and 

(e) PIR unit used to interpolate the probabilistic output of the p-bit based output neurons to digital output. 
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because the PIR circuits are only used to interpolate the probabilistic output of the last layer in 

the network, while the accuracy of the network for various datasets rely on other factors such as 

number of hidden layers and number of nodes in each hidden layer which is not the focus of this 

work. Thus, once it is shown that PIR circuits can properly interpolate the output of the network 

for MNIST dataset, it is also verified that they can interpolate the outputs of different DBN 

topologies for different datasets. 

Table 8: Parameters Use for Modeling and Simulation [13]. 

Parameters Value 

Saturation magnetization (CoFeB)(Ms) 1100 emu/cc [209] 

Free Layer Diameter, thickness 22 nm, 2 nm 

Polarization 0.59 [210] 

TMR 110% [210] 

MTJ RA-product 9Ω - μm2 [210] 

Damping coefficient 0.01 Error! Reference source not 

found.[209] 

Temperature 26.85 °C 

 

Table 9: The binary outputs generated by ADC-based and PIR-based interpolation circuits for an input digit 

“2” from the MNIST dataset of handwritten digits. 

Output 
Class 

3-bit 
ADC 

3-bit 
SC-PIR 

3-bit 
SS-PIR 

4-bit 
SC-PIR 

4-bit 
SS-PIR 

5-bit 
SC-PIR 

5-bit 
SS-PIR 

Digit-0 001 100 001 0011 0000 10001 00000 
Digit-1 001 000 000 0001 0000 00111 00000 
Digit-2 110 111 111 1110 1111 11110 11111 
Digit-3 010 111 011 0110 0011 11111 00000 
Digit-4 001 001 000 0001 0000 01000 00000 
Digit-5 000 000 000 0010 0000 00010 00000 
Digit-6 000 001 000 0011 0000 01011 00000 
Digit-7 000 000 000 0000 0000 00000 00000 
Digit-8 001 100 000 0111 0000 10101 00000 
Digit-9 000 000 000 0010 0000 00010 00000 

1st Selected              
 2 2,3 2 2 2 3 2 

2nd Selected             
 3 0,8 3 8 3 2 - 

3rd Selected        
 0,1,4,8 4,6 0 3 - 8 - 
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4.4.1 Accuracy Analyses 

Herein, 100 images from MNIST dataset are selected, which induced the most discrepancy in 

recognition accuracy when classified using ADC and PIR circuits. Output classes are selected 

according to the binary values given to them by the ADC-based or PIR-based interpolation 

circuits. For instance, Table 9 exhibits the binary values generated for each output classes in the 

784×200×10 DBN for a sample digit “2” from the selected images of the MNIST dataset. The 

output class(es) with the largest binary value represents the first class(es) selected by the 

interpolation circuit. As listed in Table 9, the 3-bit and 5-bit SC-PIR circuits produced similar 

output binary values for digit classes 2,3 and 3 respectively as its top selections, which is an 

incorrect recognition, while other circuits successfully selected the correct output class. 

Table 10 provides a recognition accuracy comparison between DBN circuits with 3-bit ADC and 

DBNs with 3-bit, 4-bit and 5-bit PIR in their structure. As listed, the 3-bit PIR circuits could 

obtain a comparable error rate with 3-bit ADC circuit, which led to a top-2 error rate of 0.23 and 

Table 10: Various DBN hardware implementations with a focus on activation function structure. 

Design 3-bit 

ADC 

3-bit 

SC-PIR 

3-bit 

SS-PIR 

4-bit 

SC-PIR 

4-bit 

SS-PIR 

5-bit 

SC-PIR 

5-bit 

SS-PIR 

Resource Utilization OP-AMP 

Capacitor 

Resistor 

Transistor 

9 

2 

22 

94 

- 

1 

1 

114 

- 

1 

1 

90 

- 

1 

1 

156 

- 

1 

1 

128 

- 

1 

1 

208 

- 

1 

1 

152 

Required Number of clocks - 8 4 16 5 32 6 

Error Rate 0.2 0.23 0.24 0.17 0.27 0.18 0.18 

Power Consumption (µW) 70.3 39.2 32 38.4 43.3 42.6 39.5 

Energy Consumption (fJ) 351.5 156.8 64 307.2 108.25 681.6 118.5 

Energy-Error -Product 702.6 360.6 153.6 522.2 292.2 1226.8 213.3 
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0.24 for SC-PIR and SS-PIR respectively. This is mainly due to the low number of samples in 

the sampling time window for the 3-bit PIR circuits, i.e. only 7 and 3 samples for SC-PIR and 

SS-PIR respectively, which results in giving the same value to different classes. On the other 

hand, 4-bit SC-PIR and 5-bit SS-PIR circuits could achieve better error rate than 3-bit ADC 

circuit as shown in Figure 20. It is worth emphasizing that the network topology, weights, and 

neurons in each of these DBN implementations are similar, even a similar random seed is 

utilized in the SPICE simulations to generate the probabilistic behavior of the p-bit based 

neurons, thus the discrepancy in the recognition accuracy is only induced by the difference in the 

interpolation circuits and no other factors are involved. 

 

4.4.2 Performance Analyses 

In this work, the authors expected an increase in the error rate by replacing the ADCs with PIR 

circuits since a continuous integration operation followed by a sample-and-hold operation, and 

analog-to-digital conversion is replaced by a simple sample and accumulation method that is 

implemented only by CMOS transistors. Thus, to better comprehend the advantages of our 

proposed circuits, we have defined a metric called energy-error-product (EEP) as follows, which 

incorporates the energy costs to achieve a particular accuracy: 

 

Figure 20: Error Rate for 3-bit, 4-bit and 5-bit SC-PIR and SS-PIR. 
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𝐸𝐸𝑃 =  𝑁 × 𝐸 × 𝑒𝑟𝑟                                                             (26) 

 

 

where N is the number of output neurons, E is the energy consumption of the PIR circuit, and err 

is the error rate of the network. 

Table 10 provides a comparison between the 3-bit ADC and 3-bit, 4-bit and 5-bit PIR circuits in 

terms of resource utilization, power/energy consumption, and EEP values. A comparison 

between 3-bit ADC and PIR circuits shows a significant improvement in the effectiveness of 

resource utilization. In the PIR circuits, all of the area-consuming elements in the conventional 

circuits such as operational amplifiers (op-amps), resistors, and capacitors are removed and for 

example, only 58 MOS transistors are increased for 5-bit SS-PIR compared to the 3-bit ADC 

circuit. Moreover, more than 54% and 81% reductions in power and energy are achieved, 

respectively, whereas EEP reduction is 78% for 3-bit SS-PIR circuit compared to 3-bit ADC as 

shown in Figure 21. The results obtained verify the advantage of our proposed circuit in terms of 

the individual and combined metrics of accuracy and energy consumption. 

Table 11 lists the power and energy consumption of the weighted array, activation function, and 

interpolation circuits for several DBN topologies. In smaller networks, such as the 784×10 DBN, 

energy consumption of the ADC-based interpolation circuit is approximately 9-fold greater than 

 

Figure 21: EEP for 3-bit, 4-bit and 5-bit SC-PIR and SS-PIR. 
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the energy that is consumed in the activation functions, while it constitutes almost 28% of the 

total energy consumption of the entire network. On the other hand, the proposed SS-PIR circuit 

achieves more than 5-fold energy consumption reduction compared to ADC-based circuit, which 

significantly reduces the contribution of the interpolation circuit to the total energy consumption 

of the network from 28% to only 6%. By enlarging the size of the network, the activation 

function and interpolation circuit will be minority sources of energy consumption, which is 

partially realized by the considerable energy reductions achieved by utilizing the p-bit devices as 

neurons and proposed PIRs as interpolation circuits. 

4.4.3 Area Analysis 

One of the major challenges of ADC circuits are their significant area consumption, which is 

mainly induced by the large analog components existing in their structure such as Op-Amps. 

Herein, we have used a Flash ADC, which uses a linear voltage ladder with Op-Amp based 

comparators and an encoder circuit to interpolate the probabilistic output of the circuit and 

compared its energy and area consumption with our proposed PIR circuits. For the Op-Amp 

circuits we have used the CMOS-based design proposed in [211], which reports an area 

Table 11: Power and energy consumption of weighted array, activation function and interpolation circuits for 

several DBN topologies. 

 

 

Topology 

Power Consumption (mW) Energy Consumption (pJ) 

 

 

Weighted 

Array 

 

 

Activation 

Function 

Interpolation 

Circuits 

 

 

Weighted 

Array 

 

 

Activation 

Function 

 

Interpolation 

Circuits 

3-bit 

ADC 

3-bit 

SS-PIR 

3-bit 

ADC 

3-bit 

SS-PIR 

784×10 4.146 0.194 0.703 0.32 8.292 0.388 3.515 0.64 

784×200×10 80.4 5.6 0.703 0.32 321.6 22.4 3.515 0.64 

784×200×200×10 117.57 10.5 0.703 0.32 705.42 63 3.515 0.64 
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consumption of approximately 250 μm2 for 130nm CMOS technology, scaling it down to 14nm 

nodes using the scaling method proposed in [212] results in an approximate area consumption of 

2.9 μm2 for each Op-Amps utilized in the ADC circuits. On the other hand, the layout design 

results of MRAM-based neuron demonstrate that the area consumption of the MRAM-based 

neuron is approximately equal to 32 λ × 32 λ, where λ = 14nm/2 = 7nm for 14nm FinFET 

technology, thus leading to the approximate area consumption of 0.05 μm2 per neuron [12]. 

Herein we have used the area consumption of the p-bit neuron as the baseline and all the other 

estimated area values are normalized according to the p-bit area consumption. For instance, the 

area required to implement the RC circuit with 100 K resistor and 20fF capacitor is almost three 

times larger than that of the p-bit [12], i.e. RCArea=3X, i.e. 3×(p-bit neuron area). On the other 

hand, we have used the well-known 1T-1R structure for each weight in the weighted array, 

which allocates one transistor to each weight and the resistive devices are fabricated on top of the 

MOS transistors thus incurring no area overhead. Therefore, the estimated area consumption for 

each weight is approximately 0.02 μm2 =0.4X. Table 12 provides the normalized area 

consumptions for weighted arrays, activation functions, and interpolation circuits for various 

Table 12: Area of weighted array, activation function and interpolation circuits for several DBN topologies 

relative to the area occupied by a single p-bit-based neuron. 

 

 

Topology 

Normalized Area 

 

 

Weighted 

Array 

 

 

Activation 

Function 

Interpolation 

Circuits 

3-bit 

ADC 

3-bit 

SS-PIR 

784×10 2600× 10× 4400× 330× 

784×200×10 52000× 2000× 4400× 330× 

784×200×200×10 66000× 400000× 4400× 330× 
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network topologies. As it is listed in table, the area consumption of the activation function and 

interpolation circuits constitute a significantly smaller portion of the entire networks area, when 

the DBNs become larger which is in part realized by significant area reductions achieved by p-

bit devices and PIR circuits. 

 

4.4.4 Fault Analysis 

High performance integrated circuits must be protected against either transient or permanent 

faults. The most commonly fault model is the single stuck-at fault, in which faults are modeled in 

a way that only one circuit node is permanently connected to either 0 (stuck-at 0) or 1 (stuck-at 

1). When a node is stuck-at 0 or 1, the value is still readable, but cannot be altered. In a write 

operation, the stuck-at node is faulty if the desired value is not equal to the stuck-at value but if 

the two values are equal, the node is not faulty. In order to do a fault simulation, it is necessary to 

execute two simulations: one for the fault-free circuit and another for the faulty circuit with some 

Table 13: Stuck-at fault table for 4-bit SC-PIR. 

Bit Stuck- 

at 

Output = O3O2O2O0 

1111 1110 1101 1100 1011 1010 1001 1000 0111 0110 0101 0100 0011 0010 0001 0000 

O3 0  X X X X X X X  

X 

 

X 

 

X 

 

X 

 

X 

 

X 

 

X 

 

X 1 

O2 0  X X X  

X 

 

X 

 

X 

 

X 

X X X X  

X 

 

X 

 

X 

 

X 1 

O1 0  X  

X 

 

X 

X X  

X 

 

X 

X X  

X 

 

X 

X X  

X 

 

X 1 

O0 0   

X 

X  

X 

X  

X 

X  

X 

X  

X 

X  

X 

X  

X 

X  

X 1 

 

X 

X 

X 

X 
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faults. In this way, when using the single stuck-at model, the fault injection includes a node that 

is permanently set either to 0 or 1. By comparing the output of the two simulations, if the 

simulation results are different for the same input, it is concluded that the circuit is faulty [213]. 

In this dissertation research, we evaluate ADC and PIR circuits in terms of reliability to achieve 

more efficient DBNs. For a circuit with n outputs, 2n single stuck-at faults would be possible 

since each output can set to 0 or 1. In 4-bit and 5-bit circuits, 8 and 10 single stuck-at faults can 

transpire respectively as shown in Table 13 and 14. The ’X’ shows the states that a faulty bit 

causes faulty output and the blank state illustrates that output is still correct despite a faulty bit. 

For example, the output of SS-PIR will be faulty when the desired output must be 31 just in a 

case that most significant bit becomes stuck at 0 (O4/0). We calculate the faulty rate of each 

circuit by dividing the number of states that cause faulty outputs by all possible stuck-at fault 

states for each circuit. The faulty rate for 4-bit ADC and SC-PIR circuits is 50% because a bit 

flip for each output causes faulty output. In SS-PIR, the fault rate is 33% which is achieved by 

providing some dropouts between all possible outputs. To better comprehend the reliability 

advantages of SS-PIR circuits, we have defined a metric called energy-error-faulty-product 

(EEFP) as follows, where F is the fault rate: 

𝐸𝐸𝐹𝑃 =  𝑁 × 𝐸 × 𝑒𝑟𝑟 × 𝐹                                                          (27) 

 

 

This incorporates the energy and reliability costs to achieve a particular accuracy. As shown in 

Figure 22, all PIR-based circuits have better EEFP than 3-bit ADC up to 84% reduction except 

5-bit SC-PIR. The SS-PIR can offer better performance also in the matter of reliability in 

comparison to ADC and SCPIR. 
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Figure 22: EEFP for 3-bit, 4-bit and 5-bit SC-PIR and SS-PIR. 

 

 

Table 14: Stuck-at fault table for 5-bit SS-PIR. 

Bit Stuck-at Output = O3O2O2O0 

11111 01111 00111 00011 00001 00000 

O4 0 X  

X 

 

X 

 

X 

 

X 

 

X 1 

O3 0  X  

X 

 

X 

 

X 

 

X 1 

O2 0   X 

 

 

X 

 

X 

 

X 1 

O1 0   

 

 X 

 

 

X 

 

X 1 

O0 0     X  

1      X 
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4.5 Recoder Based Conversion Circuit 

To obtain better accuracy, we develop a CMOS-based recoder which produces a digital n-bit 

output from each stochastic neuron in the last layer of the neural network. In the proposed 

recoder circuit, the sampled outputs are counted through a bidirectional shift register at the 

positive edge of each clock (clk). The circuit is updated based on the paradigm of two last 

NeuronOUT. On the positive edge of each clock, if the most recent two NeuronOUT values are “01” 

or “10”, then these states are considered as transitionary states and thus the reading remains 

unchanged. On the other hand, if the two last NeuronOUT values are “11” or “00”, then these 

states are considered as stable states and recoder’s output will be updated. In the update process, 

the recoder circuit shifts by one position the bit array stored in it to right or left if the NeuronOUT 

is “0” or “1”, respectively. Indeed, the recoder circuit is shifting in the NeuronOUT and shifting 

out the last bit in the array at each transition of the clock input. Thus, the bit array that is stored 

in shift register multiplies or divides the value by 2 if the NeuronOUT  is “1” or “0”, respectively. 

Figure 23 shows the circuit structure of 3-bit recoder-based interpolation circuit. A ctrl signal is 

used to reset the counter and control the recoder circuit’s sampling time window. An n-bit 

 

 

Figure 23: 3-bit recoder circuit. 
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recoder circuit counts the sampled outputs for n − 1 clocks and then outputs the shifted value in 

form of an n-bit output (OUTn−1 − OUT0). We utilize the p-bit device model developed in [13] 

along with 14nm HP-FinFET PTM library to perform SPICE circuit simulations using the 

nominal voltage of VDD = 0.8 for the purpose of verifying the functionality of the proposed 

recoder circuits. 

Herein, the recognition accuracy comparison between DBN circuits with 3-bit ADC and DBNs 

with 3-bit, 4-bit, and 5- bit recoders is presented. As listed in Table 15, the 3-bit and 4-bit 

recoder circuits could obtain a comparable error rate with 3-bit ADC circuit, which led to a top-2 

error rate of 0.20 and 0.21 respectively. Furthermore, 5-bit recoder circuit could gain better error 

rate than 3-bit ADC circuit. It should be noted that differences in the recognition accuracy are 

created only by the interpolation circuits. Other factors such as the network topology, weights, 

and neurons in each of these DBN implementations including random seed are identical in the 

SPICE simulations to produce the probabilistic behavior of the p-bit based neurons. Table 15 

provides a comparison between the 3-bit ADC and 3-bit, 4-bit and 5-bit recoder circuits with 

Table 15: Performance comparison between 3-bit, 4-bit and 5-bit recoder circuits. 

Design 3-bit 

ADC 

3-bit 

Recoder 

4-bit 

Recoder 

5-bit 

Recoder 

 

Resource Utilization 

OP-AMP 

Capacitor 

Resistor 

Transistor 

9 

2 

22 

94 

- 

1 

1 

202 

- 

1 

1 

232 

- 

1 

1 

278 

Required Number of clocks - 5 6 7 

Error Rate 0.20 0.20 0.21 0.14 

Power Consumption (µW) 70.3 36.3 41.4 50.3 

Energy Consumption (fJ) 351.5 90.75 124.2 176.0 

Energy-Error -Product 702.6 181.5 260.8 246.4 
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regards to resource utilization, power/energy consumption, and EEP values. A comparison 

between 3-bit ADC and recoder circuits shows a substantial enhancement in the efficiency of 

resource utilization. In the recoder circuits, all of the area-consuming elements in the 

conventional circuits like operational amplifiers (op-amps), resistors, and capacitors are omitted 

and for instance, only 108 MOS transistors are increased for 3-bit recoder in relation to the 3-bit 

ADC circuit. As shown in Table 15, more than 48% and 74% reductions in power and energy are 

achieved, respectively, while EEP reduction is 74% for 3-bit recoder circuit in relation to 3-bit 

ADC. 

4.6 Python-Driven Simulation Framework 

The goal with this script is to gather data on how process variation will affect the energy barrier 

of the MTJ, thus changing the realization of the sigmoid function and potentially adverse effects 

to energy consumption. The Python script invokes SPICE to gather outputs under consecutive 

voltage data points applied to the p-bit device as shown in Figure 24. Given a SPICE neuron file 

with the small magnetic anisotropy field, HK, defined in the parameter file, the script changes HK 

values based on the propagated energy barrier value. It then runs the simulation while piping the 

bash output to a text file in case of any SPICE errors. Finally, it extracts the neuron output 

 

Figure 24: MTJ Energy barrier simulation using Python scripting. 
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voltage data points and collates them within the results text file. Multiple energy barrier values 

can be run sequentially if a text file containing a list of energy barriers with each entry is passed 

as an argument to the script.  

Data points can then be plotted in MATLAB to view the effect that the energy barrier has on the 

realization of the sigmoid activation function. The formula used by the Python script for 

calculating the energy barrier, EB, is: 

𝐸𝐵 =
1

2
𝐻𝐾𝑀𝑠𝑉                                                         (28) 

 

where V is the volume and MS is the magnetization saturation of the MTJ. The pseudocode for 

the script is identified in Algorithm 4. 

Algorithm 4: Effect of Process Variation on the MTJ Sigmoid Activation Function Realization 

Input: energy barriers, neuron source file 

Output: neuron output voltage 

for each energy barrier, E: 

    calculate 𝐻𝐾 =
2𝐸𝑏

𝑀𝑠𝑉
 

    search for “HK=” in SPICE code 

    replace anisotropy field value with calculated value 

    run SPICE simulation piping bash output to text file 

    search for voltage output and write to results file 

 

 

Another tool developed was a Python script to aid testing of the DBN’s accuracy with the 

MNIST dataset. The development of these scripts extends PIN-sim and will aid future 

development and testing of p-bit based, DBN networks with a PIR digitization output stage. 

4.7 MNIST Dataset Evaluation 

 To analyze the performance of the PIR circuit, a Python script was developed to compare the 

large amounts of data commonly found in machine learning datasets. This accuracy analysis 
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script operated as follows: first, it reads one line of the MNIST dataset file to find the expected 

output for that testcase and the testcase label. Secondly, it locates each instance of the testcase 

label in the PIR output file. Third, it reads the neuron data into a list until it encounters the 

subsequent case. Upon finding the next testcase, all the neurons for the current testcase have 

been read and now can be processed. The list is sorted by constituent probabilities from high to 

low. Next, the first two neurons are examined to see if either of them is the neuron indicating the 

expected output from the MNIST dataset. If any output digit neuron subsequent to the top two 

neurons have the same probability, then the output of the PIR circuit counts as a fail even if the 

expected output was within the top two confidence selections, whereas the circuit was not able to 

tell a clear difference between which neuron was correct. If the expected output was a neuron in 

the top two likelihood categories, then the testcase is regarded as a pass.  

The process is repeated until either file reaches its end. Upon finishing all testcases, then the total 

number of testcase passes and failures are tabulated so that the overall error rate is determined. 

The corresponding pseudocode is listed in Algorithm 5. The script was tested by comparing the 

error rates generated against previous works [214]. Namely, the script was fed outputs of a PIR 

circuit with 100 testcases and the MNIST dataset. The results obtained are listed in Table 15. 
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Algorithm 5:  MNIST DBN Performance Analysis 

Input: MNIST dataset, PIR output 

Output: number of testcases that passed/failed 

for each testcase 

    for each neuron 

        append neuron data to list 

    sort list by neuron probability high to low 

    if the expected output was in the top two neurons 

        AND its probability doesn’t match any neurons 

        beyond the top two neurons 

    then 

         testcase passes 

    else 

        testcase fails 
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CHAPTER 5: ELECTRICALLY-TUNABLE STOCHASTICITY FOR SPIN-

BASED NEUROMORPHIC CIRCUITS12 

Stochastic circuits play a significant role in the implementation of networks with probabilistic 

nodes. For instance, learning networks employing p-bits are worthwhile in realizing DBNs in a 

way that weights are trained offline by a learning algorithm in software and the hardware is 

utilized to repeatedly perform inference tasks effectively. Unstable low barrier nanomagnets 

present a direct mechanism to realize stochastic sigmoidal neurons in DBNs through leveraging 

the randomly fluctuating magnetization to produce a stochastic time varying output voltage. If 

these nanomagnets are designed to have as low energy barriers that are feasible, then many 

random outputs are produced in a short period of time. Under this strategy, a near-zero energy 

barrier (𝐸𝑏 ≪ 𝑘𝐵𝑇) nanomagnet has the capability of free magnetization layer flipping back and 

forth which can be tuned by modulated the voltage on the gate of p-bit’s NMOS transistor.  

5.1 Effects of Process Variation on The Probabilistic Behavior of P-Bit 

The p-bit device is not entirely tolerant of defects and device-to-device variations even though is 

more error resilient than strictly digital computing devices [215]. The statistical distribution of 

the magnetization fluctuations, such as the power spectral density become affected by the 

presence of both localized and delocalized structural defects and moderate variations for the 

barrier height of the nanomagnet which is caused by small size variations [216]. It is investigated 

that the power spectral density is relatively insensitive to the presence of small localized defects 

and moderate barrier height change. Nevertheless, the power spectral density is substantially 

affected by delocalized defects such as thickness variations over a significant fraction of the 

                                                           
1 ©2020 IEEE. Part of this chapter is reprinted, with permission, from [261]. 
2 ©2021 IEEE. Part of this chapter is reprinted, with permission, from [262]. 
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nanomagnet [217]-[219]. Delocalized defects can considerably change the fluctuation rate of the 

magnetization in low barrier nanomagnets. This will affect applications in p-bit-based neurons 

for neuromorphic architectures because the fluctuation rate is essential for stochastic computing 

applications. 

The near-zero energy barrier in p-bit devices is achievable by reducing the total magnetic 

moment through decreasing volume (V) and/or manage a small anisotropy field (HK) [220], 

according to the below relation:                      

𝐸𝐵 =
1

2
𝐻𝐾𝑀𝑆𝑉 =

1

2
𝐻𝐾𝑀𝑠(𝜋(𝑑/2)2𝑡𝑓)                                       (29)                                  

where d and tf are the diameter and thickness of the MTJ’s free layer. Due to the variations in the 

fabrication process of low energy barrier nanomagnets, p-bits may exhibit different “as-built” 

energy barriers [221]. Based on Equation (29), variations in MTJ’s anisoptropy field (𝜎𝐻𝐾) and 

nanomagnet diameter (𝜎𝑑) cause linear and quadratic variations in energy barrier (𝜎𝐸𝐵), 

respectively. 

As described in previous section, the near-zero energy barrier free layer will fluctuate arbitrarily 

between the parallel and anti-parallel magnetic states. The magnetization dwell time in the 

parallel and anti-parallel states creates a distribution which confirms that the nanomagnet 

fluctuates stochastically. By switching the magnetization direction of the free layer between 

parallel and anti-parallel states, a sigmoidal distribution is observed over a sequence of samples. 

These state transitions are instigated by thermal energy which is adequate to randomly fluctuate 

when using a sufficiently small energy barrier. The fluctuation speed of a nanomagnet can be 

obtained from the average dwell time in parallel and anti-parallel states 𝜏𝑃 and 𝜏𝐴𝑃 as follows 

[222]-[224]: 
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𝜏−1 = 𝜏𝑃
−1 + 𝜏𝐴𝑃

−1                                                                 (30) 

 

and, this time scale is related to the energy barrier (𝐸𝐵) of the nanomagnet [225] 

𝜏 =  𝜏0 ×  exp (𝐸𝐵/𝐾𝐵𝑇)                                                           (31) 

 

 

Thus, the fluctuation speed of nanomagnet can be increased or decreased by reducing or 

increasing the energy barrier, respectively, which will impact the probabilistic behavior of the p-

bit devices. 

The defects caused by the fabrication imperfections are required to be addressed for 

neuromorphic applications using p-bit based neurons such as DBNs due to their significant 

impact on their performance and accuracy. Generally, these challenges raised by variations can 

be addressed by two approaches. Firstly, a fabrication-oriented approach aims to refine materials 

and production processes. Alternatively, a post-fabrication mechanism is proposed herein which 

leverages temporal redundancy as well as a circuit-level mechanism to address the 

aforementioned PV-imposed challenges. Moreover, a sensitivity-analysis will be conducted to 

inform the production process with the acceptable range and tolerances for critical parameters 

impacting the energy-barrier and resulting stochasticity of the p-bit device.  

  5.2 Variation-Less P-Bit Based DBN as The Baseline 

In this dissertation research, we utilize a variation-less 784 × 200 × 10 DBN circuit as the 

baseline to analyze the reliability and energy consumption tradeoffs. The Probabilistic Inference 

Network-Simulator (PIN-Sim) is used to realize a circuit-level implementation of DBNs. In PIN-

Sim, resistive crossbars and embedded MRAM-based p-bit neurons are employed as weighted 

connections and activation functions, respectively.  
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The energy consumption of the weighted array and activation function for various DBN 

topologies is shown in Figure 25. As shown, a substantial amount of energy is consumed in the 

weighted connections, while less than 10% of the total energy is consumed in the neurons of an 

embedded MRAM-based p-bit approach. For example, the total energy consumption of a 784 × 

200 × 10 DBN is almost equal to 344 pJ, only 22.4 pJ of which is dissipated in the activation 

functions. This is achieved by using the proposed energy-efficient embedded MRAM-based p-bit 

neurons to implement the activation functions, as opposed to more elaborate floating-point 

circuits and pseudo-random number generators. 

5.3 Proposed Variation-Immune P-Bit Implementation 

Herein, the impact of energy barrier variation is assessed by using a random distribution of 

parameters for several ranges from near-zero kT to 2.0 kT. The higher energy barrier of 1.5 kT, 

1.75 kT, and 2.0 kT are realized by increasing the small anisotropy field (HK). As expressed in 

Equations (30) and (31), increasing the energy barrier decreases the probabilistic fluctuation 

speed of the nanomagnet in p-bit devices, which means if we do not change the sampling time of 

the p-bit’s output the probabilistic sigmoidal activation function will be distorted as shown in 

Figure 27: (a) to (c). The results obtained by MATLAB simulation, depicted in Figure 26, show 

 

Figure 25: Energy consumption of weighted array and activation function for several DBN topologies. 
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that while the energy barriers less than or equal to 1.5 kT yield an recognition error of 

approximately 5% (i.e., accuracy rate ~95%) for MNIST hand-written digit recognition 

application, the error rate will be drastically increased to an unacceptable value of ~90% (i.e. 

accuracy rate ~10%) for the energy barriers more than 1.75 kT on a 784×200×10 DBN which is 

trained by 60,000 training images. Thus, the process variation sensitivity of DBNs utilizing low 

energy barrier MTJs are seen to encounter a sharp “knee effect” drop-off when energy barriers 

exceed 1.75 kT as illustrated in Figure 26. 

 

 

Figure 26: Effects of neuron’s energy barriers on the DBN accuracy. 

 

 

(a)                                      (b)                 (c) 
 

Figure 27: (a) Output probability of MRAM-based neuron for (a) EB = 1.5 kT, (b) EB = 1.75 kT, and (c) EB = 2.0 kT. 
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5.4 P-Bit with Temporal Redundancy 

As mentioned, the increase in the energy barrier of p-bit results in a decrease in the probabilistic 

fluctuation speed of its nanomagnet. It means that given sufficiently long sampling time, the p-

bit’s output voltage can realize its probabilistic sigmoidal behavior without any distortions. To 

verify the effect of increasing the sampling window period (𝜏𝑆) of p-bit’s output to address the 

energy-barrier variation issues, we have examined p-bits with four different energy barriers: 0.5 

kT, 1 kT, 1.5 kT, and 2 kT. Figure 28: shows an experiment conducted in SPICE circuit simulator, 

in which the input voltage of the p-bit neurons with different energy barriers is incrementally 

increased from 0.3 V to 0.5 V (i.e. the active region of the p-bits probabilistic sigmoidal 

activation function) with 20 mV steps. In every step the input voltage remains fixed for 𝜏𝑆 period 

of time and the output voltage is monitored using CosmosScope. It is shown that in order to 

achieve the sigmoidal output required to be realized by p-bit based neurons with 0.5 kT, 1 kT, 1.5 

kT, and 2 kT, the minimum 𝜏𝑆 should be tuned to 4 ns, 11 ns, 16 ns, and 19 ns, respectively, 

while the sampling window period for a p-bit with near-zero energy barrier is 2 ns. These results 

are obtained using the SWEEP function provided by HSPICE circuit simulator.     

 

Figure 28: Output of MRAM-based neuron vs. time for different energy barriers (a) EB = 0.5 kT, (b) EB = 1.0 kT, 

(c) EB = 1.5 kT, and (c) EB = 2.0 kT. 
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In order to assess differences in energy consumption of DBNs under different energy barriers, 

we examined a 784×200×10 DBN circuit implemented by the PIN-Sim framework for MNIST 

digit recognition application using p-bits models with the maximum energy-barrier variations 

ranging from ~0 kT to 2.0  kT with 0.5 kT steps. Herein, we consider the energy consumption of 

the p-bit neuron with near-zero energy barrier as the baseline. Figure 29 illustrates the energy 

consumptions of a 784×200×10 DBN with various levels of maximum energy barrier variation 

tolerance using the proposed temporal redundancy mechanism. As depicted, the energy that is 

consumed in DBN with ~2 kT energy barrier variation tolerance is approximately 10-fold greater 

than variation-less DBNs utilizing p-bits with near-zero energy barrier. It is worth noting that 

variations are applied via PIN-Sim tool by using a randomly generated energy barrier value 

between 0 kT and a maximum energy barrier variation defined by user. Hereby, we seek to 

examine the “knee effect” point of energy barrier for p-bit devices with different energy barriers, 

whereby too high of a barrier increases the energy consumption of the neural network. Thus, in 

terms of energy consumption, a “knee effect” point for the energy barrier is seen to be around 0.5 

kT for our DBN. This knee effect factor can be alleviated in practice by configuring a feedback 

mechanism to increase the fluctuation rate of the nanomagnet, as described in the following 

 

 

Figure 29: Influence of increasing energy barrier on energy consumption for 784×200×10 topology. 
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Section.  

5.5 P-Bit with Feedback  

In this Section, we demonstrate a p-bit neuron circuit, in which the fluctuation rate of its 

nanomagnet can be tuned using an electrical feedback. In this neuron, the average fluctuation 

frequency (f0) is determined by the energy barrier of the nanomagnet through the following 

equation [225]: 

𝑓0 = (𝜏0 ×  exp (𝐸𝐵/𝐾𝐵𝑇))−1                                                      (32) 

Herein, the output of the p-bit device is amplified and fed back to the NMOS transistor, thus the 

magnetization fluctuation becomes faster, depending on the polarity and strength of the 

feedback, as a modulation method to compensate towards optimal levels of thermal noise. An 

implementation of the feedback configuration is illustrated in Figure 30. In this case, the drain of 

the NMOS transistor tracks the magnetization direction of the free layer of the MTJ. The inverter 

at the output of the device naturally generates the inverse voltage, hence realizing a feedback 

compensation mechanism. The feedback can be controlled by changing the value of the resistor 

Rf, which changes the feedback current flowing through the NMOS transistor. Figure 31 (a) 

shows the output of p-bit with an energy barrier of EB ≈1.5 kT and a feedback with Rf = 100 KΩ, 

while in the no feedback case (Rf = infinity), the nanomagnet of device fluctuates extremely 

 

Figure 30: Device configuration with feedback for the embedded MRAM-based p-bit. 
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slower as shown in Figure 31 (b). Employing the feedback resistor decreases the fluctuation time 

scale, 𝜏, by approximately 5 times, which reduces the need for temporal redundancy, in 

consequent of which the energy consumption in the variation-tolerance p-bit neuron will be 

decreased. 

A similar experiment involving feedback of the p-bit output to its input was performed in a 

current controlled device scheme [226]. In that case, the effect of feedback on frequency 

tunability can be understood by considering the change to the energy landscape of the 

nanomagnet. In the feedback configuration, when magnetization is in the “P” state, the device 

output feeds back a negative current to its input, thus tilting the energy barrier in favor of the 

“AP” state, i.e, the barrier that needs to be overcome to transition from the “P” to the “AP” state 

becomes smaller than the barrier for the reverse transition. Similarly, when the magnetization is   

 

 

Figure 31: Tuning the effective energy barrier through electrical feedback. (a) Measurement of the output 

fluctuations of the device without feedback for EB = 1.5 kT. (b) Measurement of the output fluctuations of the 

device with the feedback implemented through a simple resistor of value 100 K for EB = 1.5 kT. 
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in the “AP” state, the barrier for transitioning from the “AP” to the “P” state is smaller than the 

barrier for the reverse transition. So, the energy landscape is dynamically modified in a way such 

that the energy barrier appears to be lower to transition from the occupied state to the other state. 

This effect increases the fluctuation frequency of the device output, expressed as: 

𝑓0 = (𝜏0 ×  exp (𝐸𝐵,𝑒𝑓𝑓/𝐾𝐵𝑇))−1                                                  (33) 

where the effective energy barrier (EB,eff) is given by: 

𝐸𝐵,𝑒𝑓𝑓 = 𝐸𝐵(1 ± 𝐼𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘/𝐼𝐶)                                                    (34) 

where EB is the intrinsic energy barrier of the nanomagnet given in Equation (29), Ifeedback is the 

feedback current and IC is the critical current for magnetization switching at zero temperature. 

Ifeedback can be replaced by VDDRf from analyzing the circuit configuration, considering that the 

NMOS transistor resistance is much smaller than Rf (which can be realized by choosing a large 

enough Rf). Next, by defining VDDIC as R0, we get the following expression for the effective 

energy barrier of the magnet: 

𝐸𝐵,𝑒𝑓𝑓 = 𝐸𝐵(1 ± 𝑅0/𝑅𝑓)                                                        (35) 

Equations (33) and (35) elaborate that the fluctuation frequency of the p-bit can be controlled by 

changing the feedback resistor, as also demonstrated in the experiment [226]. The above analysis 

generally holds true for the device presented in this dissertation research. The circuit simulation 

results exhibit that maximum variations of 0.5 kT, 1 kT, 1.5 kT and 2 kT can be compensated 

using 𝑅𝑓 with 30 𝐾Ω, 60 𝐾Ω, 100 𝐾Ω, 120 𝐾Ω resistances, respectively. This is realized with 

only ~12% energy overhead, which is 25.1 pJ for p-bit with 120 𝐾Ω feedback resistor compared 

to 22.4 pJ for p-bit without feedback. 
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5.6 Process Variation Analysis of SOT Perpendicular Nanomagnets In DBNs 

The probabilistic spin logic device (p-bit) with perpendicular magnetic anisotropy (PMA) is 

amongst the new building block which is completely tunable by spin orbit torque (SOT) 

[222],[224],[226]. The output of p-bit can be varied by adjusting a DC current through the giant 

spin Hall effect (GSHE) Ta Hall bar as illustrated in Figure 32. By adjusting the direction of the 

DC current (IC), then the magnetization direction will probabilistically favor either the “UP” or 

“DOWN” state that produces a sigmoidal curve by taking the average of the states as the current 

is swept across a range of values. The charge current flowing through the layer with giant spin 

Hall effect (GSHE) modifies the dwell time in the two stable states and as a result, changes the 

output significantly for a LBNM with a thermal barrier close to zero kT. According to the 

thermal energy, the p-bit is implemented with a thermally-stable nanomagnet in regular MRAM 

cells with a high energy barrier. As a result, the p-bit offers a thresholding behavior appropriate 

for neural network applications and meanwhile works in non-volatile storages in the form of a 

 
Figure 32: The diagram of the probabilistic device (p-bit) with perpendicular magnetic anisotropy (PMA) as a 

binary stochastic neuron for DBNs [222],[224],[226]. The experiments in [222],[224],[226] used AHE to read 

the magnetization state. This read scheme can be replaced by an MTJ. The magnetization state of the weak 

perpendicular anisotropy free layer can be read through the resistance change of an MTJ as proposed in [194].  
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single-bit element. The magnetization direction in the device is read through anomalous Hall 

effect (AHE), which requires large CMOS circuitry to amplify the weak output signal generated. 

However, if the single nanomagnet of the device can be replaced by an MTJ where the free layer 

is designed to have a similarly weak perpendicular anisotropy, then the magnetization 

fluctuations can be read through a much stronger tunneling magnetoresistance (TMR) effect. A 

similar device is proposed in [194] and shown in Figure 32. This device uses the same 

technology as the SOT-MRAM, with one modification, i.e. the MTJ free layer is made thermally 

unstable. Hence, the implementation of p-bits requires small changes to the MRAM fabrication 

flow. In a low perpendicular anisotropy p-bit device, any little in-plane anisotropy can result in a 

considerable tilt angle (θ) that may not be detectable in high perpendicular anisotropy magnets. 

The in-plane spins do not impact the desired direction of the average magnetization component 

in the Z-direction when there is no tilt in the magnet’s anisotropy. As a result, the average 

magnetization component in the Z-direction remains around zero. Accordingly, the tilt direction 

is toward the X-axis in the ZX-plane as shown in Figure 33. It has been proved, in the Z-

direction, perfect tunability of the average magnetization component can be attained for tilt 

angles around 25 degrees [222],[224],[226]. 

 

 

 

Figure 33: Tunability of the average magnetization component in the Z-direction while the magnetization lies in 

the ZX-plane. 
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A three-terminal SOT-based neuron is much more suitable to be utilized into neural networks for 

several reasons. The shared read/write path across the whole device in STT-based neurons results 

in a read reliability issue while serious stress can be applied on the MTJ by the write current. 

Also, the shared read and write path causes the concatenation of these devices into a neural 

network to become complicated since the input and output signals are not isolated from each 

other. Moreover, due to considerable incubation delays of STT-MRAM devices, they are unable 

to work reliably at ns and sub-ns scales [227]-[230]. 

In this section, the impact of process variation on the SOT p-bit based DBN is evaluated. We 

have modeled a random variation distribution of three types of process variation which affects 

the fluctuation speed of nanomagnet; 1) (𝜎𝐻𝐾): variations in the anisotropy field (HK), 2) (𝜎𝑑): 

variations in the diameter (d) of nanomagnet, and 3) (𝜎𝑡𝑓): variations in the thickness (tf) of 

nanomagnet, for various temperatures and tilt angles (θ). The nanomagnet parameters used in our 

simulation for a variation-less p-bit based DBN as the baseline are: HK = 400 mT, D = 36 nm, tf = 

1.3 nm, θ = 25 degrees, and Temperature = 300K. The lower and higher energy barriers are 

realized by decreasing and increasing these three parameters. As described in Equations (30) and 

(31), reducing and increasing the energy barrier increases and reduces the nanomagnet’s 

probabilistic fluctuation speed in SOT-MRAM devices. 

5.6.1 Individual Variation 

Herein, we analyze the impact of individual parameter variation while temperature and tilt angle 

are varying for specified ranges. The results are achieved by MATLAB simulation for MNIST 

hand-written digit recognition application by utilizing 60,000 training images on a 784×200×10 

DBN. It is mentioned that variations in PIN-Sim framework are applied by utilizing a randomly 
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generated parameters value between the baseline value of each parameter and a maximum 

parameter variation of 25%. 

5.6.1.1 Anisotropy Field Variation 

Figure 34 (a) and (b) show the accuracy of p-bit based DBN versus 𝜎𝐻K for various temperatures 

of 200K to 400K and tilt angles of 10 degrees to 30 degrees, respectively. Other nanomagnet 

parameters are the same with the baseline and fixed. As shown in Figure 34 (a), anisotropy field 

 

(a) 

 

 

(b) 

 

Figure 34: Accuracy of p-bit based DBN versus 𝜎𝐻𝑀 for: (a) Temperature of 200K to 400K, (b) Tilt angles of 10 

degrees to 30 degrees. 
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variations do not affect the accuracy of p-bit based DBN while temperature values range from 

200K to 250K. The worst-case scenario is when temperature = 400K in presence of around 7% 

process variation in anisotropy field which the accuracy will be reduced to an unsuitable value of 

around 10% (i.e. error rate around 90%). As it can be seen in the Figure 34 (b), tilt angle should 

be at least around 18 degrees while process variation in anisotropy field completely can be 

tolerated up to 25% (i.e. 𝜎𝐻K = 25%) for at least a tilt angle of 28 degrees. Thus, the process 

variation of anisotropy field in p-bit based DBNs are seen to be tolerated up to around 20% for 

the baseline values of temperature and tilt angle. In this case, for temperature of 300K and tilt 

angle 25 degrees baseline values are used throughout. 

5.6.1.2 Diameter Variation 

The accuracy of p-bit based DBN versus 𝜎d for various temperatures of 200K to 400K and tilt 

angles of 10 degrees to 30 degrees is demonstrated in Figure 35 (a) and (b), respectively, 

whereas other nanomagnet parameters are equivalent to the baseline values and fixed. By 

decreasing temperature, higher diameter variation can be tolerated as shown in Figure 35 (a). The 

best-case scenario is when temperature = 250K in presence of around 14% process variation in 

diameter which the accuracy of around 90% is still obtained. As can be observed in Figure 35 

(b), diameter variation can be tolerated up to around 8%, i.e. 𝜎d = 8%, for a small range of tilt 

angles. Hence, the process variation of diameter in p-bit based DBNs is witnessed to be tolerated 

up to around 8% for the baseline values of temperature and tilt angle. In comparison to 

anisotropy field variation, p-bit based DBNs are more sensitive to diameter variation. 
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5.6.1.3 Thickness Variation 

Figure 36 (a) and (b) exhibit the accuracy of p-bit based DBN versus 𝜎tf while temperature and 

tilt angle range from 200K to 400K and 10 degrees to 30 degrees, respectively. Other 

nanomagnet parameters are fixed values which are equivalent to the baseline values. Thickness 

variations do not impact the accuracy of p-bit based DBN while temperature values range from 

200K to 220K as displayed in Figure 36 (a). The least thickness variation tolerance is achieved 

 

(a) 

 

 

(b) 

 

Figure 35: Accuracy of p-bit based DBN versus 𝜎d for: (a) Temperature of 200K to 400K, (b) Tilt angles of 10 

degrees to 30 degrees. 
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when temperature = 400K in presence of around 8% process variation in thickness which the 

accuracy will be reduced to an inappropriate value of around 10% (i.e. error rate around 90%). 

As illustrated in Figure 36 (b), tilt angle should be at least around 18 degrees while process 

variation in thickness completely can be tolerated up to 25% (i.e. 𝜎tf = 25%) for at least a tilt 

angle of 28 degrees. Therefore, the process variation of thickness in p-bit based DBNs is seen to 

be tolerated up to around 23% percent for the baseline values of temperature and tilt angle. The 

 

(a) 

 

 

(b) 

 

Figure 36: Accuracy of p-bit based DBN versus 𝜎tf for: (a) Temperature of 200K to 400K, (b) Tilt angles of 10 

degrees to 30 degrees. 
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p-bit based DBNs are less sensitive to thickness variation in relation to anisotropy field and 

diameter variations. 

5.6.2 Impact of Multiple Sources of Variation 

Herein, we analyze the impact of multiple variation sources of 𝜎𝐻K, 𝜎d, and 𝜎tf ranging from 0% 

to 25% on the p-bit based DBNs while temperature and tilt angle are fixed values which are 

equivalent to the baseline values of 300K and 25 degrees, respectively. The results are achieved 

by MATLAB simulation for MNIST hand-written digit recognition application by utilizing 

60,000 training images on a 784×200×10 DBN. As previously mentioned, the maximum value of 

variation of all parameters is limited to 25%. 

Figure 37 (a) to (c) show the accuracy of p-bit based DBN for three different combinations of 

𝜎𝐻K, 𝜎d, and 𝜎tf. As we can see, by increasing variation in a parameter, less variation in another 

parameter is tolerable. Thus, the highest variation tolerance for each parameter is obtained when 

variation in other parameters is 0% (i.e. other parameters are set to the baseline values). In other 

words, less variation in each parameter is tolerable in the presence of variation in more than one 

parameter compared to the scenarios that only one parameter has variation. As shown in Figure 

37 (a), the highest multiple variation tolerance for a combination of 𝜎d and 𝜎𝐻K is obtained 

when 𝜎d = 5% and 𝜎𝐻K = 7% which results in an aggregated variation of 12%. Figure 37 (b) 

exhibits that the highest multiple variation tolerance for a combination of 𝜎tf and 𝜎d is attained 

when 𝜎tf = 15% and 𝜎d = 5% which leads to an aggregated variation of 20%. The highest 

multiple variation tolerance for a combination of 𝜎tf and 𝜎HK is achievable when 𝜎tf = 11% and 

𝜎HK = 7% which results in an aggregated variation of 18%. The results show that the p-bit based 

DBNs are more sensitive to the multiple variations of (𝜎d vs. 𝜎𝐻K), (𝜎tf vs. 𝜎HK), (𝜎tf vs. 𝜎d), 
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respectively. By employing a feedback approach, this knee effect factor can be mitigated in 
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(c) 

 

Figure 37: Accuracy of p-bit based DBN for: (a) 𝜎d vs. 𝜎HK, (b) 𝜎tf vs. 𝜎d, (c) 𝜎tf vs. 𝜎HK. 
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practice by changing the nanomagnet’s fluctuation rate, as explained in the next section. 

5.6.3 SOT P-Bit with Feedback 

In this section, we present a method to control the fluctuation frequency of the output of a p-bit. 

In this device, the output voltage tracks the magnetization direction through the anomalous Hall 

effect and fluctuates randomly between two values, “UP” and “DOWN”. The energy barrier of 

the nanomagnet defines the average fluctuation frequency (𝑓0) as described in Equation (33). A 

DC current through the layer with GSHE biases the stochastic output of the device towards one 

of the two states. However, instead of a DC current, when the device’s output is amplified and 

fed back to the layer with GSHE, the fluctuation of the magnetization based on the strength and 

polarity of the feedback gets slower or faster, analogous to temperature annealing. Figure 38 (a) 

 

 

Figure 38: Tuning the effective energy barrier through electrical feedback. (a) Measurement configuration with 

the feedback implemented through a simple resistor of value 360 K. (b) Measurement of the output fluctuations 

of the device for various feedback configurations. 
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shows the device schematic with the feedback configuration. The value of the resistor 𝑅𝑓 

controls the feedback which alters the feedback current flowing through the layer with GSHE. 

However, for experimental simplicity, the resistor value is kept fixed and the VDD of the 

amplifier is changed in both magnitude and sign. Figure 38 (b) shows the experimentally 

measured stochastic signal at the output of this device for different feedback configurations. A 

large positive VDD corresponds to a strong positive feedback, while a large negative VDD 

corresponds to a strong negative feedback. It can be seen that the fluctuations at the device 

output become progressively faster as the feedback changes from positive to negative (amplifier 

VDD changing from +5V to -5V). The output signals for various feedback configurations are 

shifted artificially along the vertical axis for clarity. Please note that in this experiment, the 

average fluctuation time scale, t, is 144 ms at no feedback. This slow fluctuation speed is due to 

the fact that the nanomagnet used in this experiment had an energy barrier, EB = 18 kBT. In order 

to achieve fluctuations of 1 ns, this energy barrier can be reduced to be closer to 1 kBT by two 

approaches: 

1. By designing weaker perpendicular anisotropy stacks through the ferromagnetic layer 

thickness optimization. In a CoFeB/MgO perpendicular anisotropy magnetic stack, the 

effective anisotropy energy density is given by [231]: 

  

                          
1

2
𝑀𝑠𝐻𝐾 =  𝐾𝑒𝑓𝑓 = 

𝐾𝑖

𝑡𝐹
−

𝑀𝑆
2

2𝜇0
                                                 (36) 

 

where 𝐾𝑖 is the interface anisotropy, 𝑡𝐹 is the thickness of the ferromagnetic layer, 𝑀𝑆 is 

the saturation magnetization and 𝜇0 is permeability of free space. It can be seen from the 
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above equation that by engineering the 𝑡𝐹 to make the RHS close to zero, we can make 

the effective perpendicular anisotropy to vanish, hence resulting in very low EB. 

 

2. By fabricating magnets with smaller diameters through advanced lithography, the volume 

and hence the EB of the nanomagnet can be made smaller. With currently available 

industrial lithographic technology, a diameter of 30 nm is possible [232]. 

In this device, a charge current input to the heavy metal electrode adjacent to the nanomagnet 

produces a torque on its magnetization via SOT. This was heuristically explained as a tilting of 

the energy landscape, where a positive current tilts the energy landscape towards the “UP” state 

and a negative current causes a tilt towards the “DOWN” state. When the device output is 

converted to a charge current and fed back to the device input, the tilt of the energy landscape 

dynamically depends on the instantaneous state of magnetization. This results in a dynamic 

modification of the effective energy barrier. The case for the negative feedback case is described 

as follows. When the magnetization is in the “UP” state, the negative feedback produces a 

negative charge current through the input that tilts energy landscape towards the “DOWN” state, 

thus reducing energy barrier to hop out of the “UP” state. likewise, once the magnetization is in 

the “DOWN” state, a positive feedback current is produced at the input that tilts the energy 

landscape towards the “UP” state, hence reducing energy barrier to hop out of the “DOWN” 

state. Hence, a negative feedback results is an overall reduction of the effective energy barrier to 

switch to the other state. Following the modified Neel-Brown model [233],[234] to include the 

effect of spin torque on the nanomagnet due to the current flowing through the layer with GSHE, 

Equations (33) and (34) are obtained for the fluctuation frequency. This results in a faster 

fluctuation rate, as seen by replacing 𝐸𝐵 with a smaller 𝐸𝐵,𝑒𝑓𝑓 in Equation (29). By considering 
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GSHE layer resistance is much smaller than 𝑅𝑓, 𝐼𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘 can be defined as 𝑉𝐷𝐷 𝑅𝑓⁄ . Then, by 

replacing 𝑉𝐷𝐷 𝐼𝐶⁄  with 𝑅0, Equation (35) is obtained for the magnet’s effective energy barrier. 

From Equation (33) and (35) it is clearly seen that the p-bit’s fluctuation frequency can be 

managed by altering the feedback resistor, as is proved in the experiment. 
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CHAPTER 6: HIGH ACCURACY DBN-FUZZY NEURAL NETWORKS 

USING MRAM-BASED STOCHASTIC NEURONS1 

6.1 Fundamentals of Fuzzy Systems 

Fuzzy system is a dynamic or static system utilizes fuzzy logic, fuzzy sets, and the corresponding 

mathematical framework [235],[272]. There are several ways that a system requires fuzzy sets, 

as explained below:  

• In the system’s description: As an illustration, a system can be defined as a fuzzy relation 

or as a collection of if-then rules with fuzzy predicates. For instance, the relationship 

between a room’s temperature trend and a heating power would be described as the 

following fuzzy rule:  

If the heating power is low then the temperature will rise slow 

• In the system parameters specification: By employing fuzzy numbers rather than real 

numbers for parameters, a system can be described by a differential Equation or 

algebraic. As an illustration, suppose an Equation: 𝑤 = 4̃𝑧1 + 7̃𝑧2, where membership 

functions define 4̃ and 7̃ as fuzzy numbers “about four” and “about seven”, respectively. 

The uncertainty in the values of parameter is expressed by fuzzy numbers.  

• A system’s state variables, output, and input may be fuzzy sets. Human perception 

quantities such as beauty and comfort or unreliable sensors (“noisy” data) can provide 

fuzzy inputs. While the conventional (crisp) systems cannot process this kind of 

information, fuzzy systems can do it.  

                                                           
1 ©2021 IEEE. Part of this chapter is reprinted, with permission, from [273]. 
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Several of the aforementioned attributes can be employed in a fuzzy system at the same time. A 

summary of the relationships between the variables and descriptions of crisp and fuzzy systems 

is given in Table 16. The fuzzily described systems with fuzzy or crisp inputs are discussed in 

this chapter. The fuzzy systems employ rule-based fuzzy systems, i.e., if-then rules are more 

common and we will discuss only about these systems in the rest of this chapter. Various goals 

such as data analysis, modeling, prediction or control can be served as fuzzy systems. For 

simplicity, without regard to the goal of system, a fuzzy rule-based system is called a fuzzy 

model in this chapter. 

6.2 Rule-Based Fuzzy Models 

The variables relationships in rule-based fuzzy systems are represented by employing the 

following common form of fuzzy if–then rules:  

If antecedent proposition then consequent proposition 

The fuzzy proposition type of “z̃ is A” forms the antecedent proposition where A is a linguistic 

constant (term) and �̃� is a linguistic variable. The amount of similarity between A and �̃� specifies 

the truth value of proposition which is a real number within one and zero. Two major types of 

rule-based fuzzy models can be represented based on the consequent’s form:  

Table 16: Crisp and fuzzy information in systems. 

System Description Input Data Resulting Output Data Mathematical Framework 

Crisp Crisp Crisp Functional Analysis, Linear Algebra, etc. 

Crisp Fuzzy Fuzzy Extension Principle 

Fuzzy Crisp/Fuzzy Fuzzy Fuzzy Relational Calculus, Fuzzy Inference 
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• Linguistic Fuzzy Model: both the consequent and the antecedent are fuzzy propositions. 

• Takagi–Sugeno-Kang (TSK) Fuzzy Model: the consequent is a crisp function but the 

antecedent is a fuzzy proposition.  

In the next subsections, these two types of fuzzy models are discussed more. 

6.2.1 Linguistic Fuzzy Model 

In order to obtain available (semi-)qualitative knowledge in the form of if–then rules, the model 

of linguistic fuzzy has been proposed as following [236],[237]:  

Ri: If �̃� is Ai then �̃� is Bi, i = 1, 2, …, P                                   (37)  

Here, Ai and Bi are the antecedent and consequent linguistic terms, and �̃� and �̃� are the 

antecedent and consequent linguistic variables, respectively. The linguistic terms Ai (Bi) and 

values of �̃� (�̃�) are fuzzy sets described in their corresponding base variables’ domain: z ∈ Z ⸦ 

ℝp and w ∈ W ⸦ ℝq. The antecedent (consequent) fuzzy sets’ membership functions are based on 

the mappings: μ(z): Z → [0, 1], μ(w): W → [0, 1]. Fuzzy regions in the antecedent space are 

defined by fuzzy sets Ai while the corresponding consequent propositions hold. Generally, 

predefined terms such as Medium and Small describe the linguistic terms Ai and Bi. Thus, we 

have Ai ∈ A and Bi ∈ B by denoting these sets by A and B, respectively. The sets A and B, and 

rule base R = {Ri | i = 1, 2, …, P} form the linguistic model’s knowledge base.  

We require an algorithm which permits us to compute the output value for some assigned input 

values in the interest of utilizing the linguistic model which is called the fuzzy inference 

algorithm. By employing fuzzy relational calculus, the inference mechanism can be achieved for 

the linguistic model as discussed in the subsequent subsection. 



 

93 
 

6.2.1.1 Relational Representation of A Linguistic Model 

Fuzzy relation can be employed for each rule in Equation (37): Ri: (Z×W) → [0, 1]. Two 

different primary ways can compute this relation: (1) Mamdani Method: utilizing fuzzy 

conjunctions, and (2) Fuzzy Logic Method: utilizing fuzzy implications, as illustrated in [238]. 

Once the if-then rule in Equation (37) is strictly considered as “A implies B” (Ai → Bi) then we 

can use fuzzy implications. This means that if A holds then B must hold too in order to obtain a 

true implication in classical logic. On the other hand, not only we can say nothing about B when 

A does not hold but also, we cannot invert the relationship.  

The if-then rules’ interpretation is “it is true that A and B hold at the same time” once utilizing a 

conjunction (A˄B). We can invert this relationship since this is symmetric. Herein, the minimum 

(˄) operator computes the relation R as follows: 

Ri = Ai × Bi, that is, 𝜇𝑅𝑖
 (z, w) = 𝜇𝐴𝑖

(z) ˄ 𝜇𝐵𝑖
(w)                              (38)  

For all feasible pairs of z and w, the Cartesian product space of Z and W computes the minimum. 

The disjunction of the P individual rule’s relations Ri defines the whole model in Equation (37) 

as follows:  

R = ⋃ 𝑅𝑖
𝑃
𝑖=1 , that is, 𝜇𝑅(z, w) = max

1≤𝑖≤𝑃
[𝜇𝐴𝑖

(z) ˄ 𝜇𝐵𝑖
(w)]                        (39)  

Then, the relational max-min composition (о) can compute the linguistic model while the fuzzy 

relation R encodes the whole rule base: 

 �̃� = �̃� о R                                                               (40) 
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6.2.1.2 Max-Min (Mamdani) Inference 

Fuzzy relation can represent a rule base as explained in the previous subsection. Then, the max-

min relational composition computes a rule-based fuzzy model’s output. We will show that the 

relational calculus can be by-passed in this subsection. This results in a benefit that we can avoid 

storing of the relation R and the domains’ discretization. In order to prove it, assume the 

relational composition provides the output value Bʹ for an input fuzzy value z̃ = Aʹ: 

𝜇Bʹ (w) = max
𝑍

[𝜇Aʹ(z) ˄ 𝜇𝑅(z, w)]                                           (41)  

Below expression is attained by replacing 𝜇𝑅(z, w) with Equation (39): 

𝜇Bʹ (w) = max
𝑍

{𝜇Aʹ(z) ˄ max
1≤𝑖≤𝑃

[𝜇𝐴𝑖
(x) ˄ 𝜇𝐵𝑖

(w)]}                                (42) 

The order of max and min operation can be altered as follows since this operation can be taken 

over different domains: 

  
 

𝜇Bʹ (w) = max
1≤𝑖≤𝑃

{max
𝑍

[𝜇Aʹ(z) ˄ 𝜇𝐴𝑖
(z)]˄ 𝜇𝐵𝑖

(w)}                                (43) 

The linguistic model’s output fuzzy set is as follows by denoting 𝛽𝑖 = max
𝑍

[𝜇Aʹ(z) ˄ 𝜇𝐴𝑖
(z)] as 

the degree of fulfillment of the ith rule’s antecedent: 

 

𝜇Bʹ (w) = max
1≤𝑖≤𝑃

[𝛽
𝑖
 ˄ 𝜇𝐵𝑖

(w)],   w ∈ W                                       (44) 

Algorithm 6 summarizes the whole algorithm which is called the Mamdani or max-min 

inference. 
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Algorithm 6: Mamdani (Max-Min) Inference 

1. Compute the degree of fulfillment by: 𝛽𝑖 = max
𝑍

[𝜇Aʹ(x) ˄ 𝜇𝐴𝑖
(x)] , 1 ≤ 𝑖 ≤ 𝑃 

Note that for a singleton fuzzy set ( 𝜇Aʹ(z) = 1 for z = z0 𝑎𝑛𝑑 𝜇Aʹ(z) = 0 otherwise) 

the equation for 𝛽𝑖 simplifies to 𝛽𝑖 = 𝜇𝐴𝑖
(z0) 

2. Derive the output fuzzy sets Biʹ: 𝜇Bʹ𝑖
(w) =  𝛽𝑖 ˄ 𝜇𝐵𝑖

(w), 𝑤 ∈   𝑊, 1 ≤ 𝑖 ≤ 𝑃 

3. Aggregate the output fuzzy sets Biʹ: 𝜇Bʹ(w) =  max
1≤𝑖≤𝑃

𝜇Bʹ𝑖
(w) , 𝑤 ∈   𝑊   

 

 

 

6.2.1.3 Multivariable Systems 

Generally, the linguistic model was discussed so far includes both the MIMO and SISO cases. 

By employing multivariate membership functions, vector domains can define all fuzzy sets in the 

model in the MIMO case. On the other hand, univariate membership functions can write suitably 

the consequent and antecedent propositions as fuzzy propositions’ logical combinations. In order 

to combine the propositions, we can employ fuzzy logic operators such as the negation, 

disjunction, and conjunction. Moreover, a set of MISO models can create a MIMO model. 

Herein, we will write MISO systems’ rules for the ease of notation. The conjunctive form of the 

antecedent is more popular as follows:  

Ri: If z1 is Ai1 and z2 is Ai2 and … and zp is Aiq then w is Bi, i = 1, 2, …, P             (45) 

We can conclude the aforementioned model is a special format of Equation (37) since the fuzzy 

set Ai in Equation (37) is achieved as the Cartesian product of fuzzy sets Aij: Ai = Ai1×Ai2× … 

×Aiq. Therefore, the step 1 of Algorithm 6 (degree of fulfillment) can be written as:  

𝛽𝑖 = 𝜇𝐴𝑖1
(𝑧1)˄ 𝜇𝐴𝑖2

(𝑧2)˄…  ˄ 𝜇𝐴𝑖𝑞
(𝑧𝑞),   1 ≤ i ≤ P                     (46) 
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We can utilize the product or other conjunction operators. The input domain can be divided into 

a lattice of fuzzy hyperboxes by a set of rules in the conjunctive antecedent form. Each Cartesian 

product-space intersection of the corresponding univariate fuzzy sets is considered as an 

hyperboxes. For covering the entire domain, the number of rules in the conjunctive form can be 

obtained as follows:  

𝑃 =  ∏𝑁𝑖

𝑞

𝑖=1

 

where the number of linguistic terms of the ith antecedent variable is Ni and the input space’s 

dimension is q.  

6.2.1.4 Defuzzification 

A crisp output w is suitable in several applications. The output fuzzy set should be defuzzified in 

the interest of obtaining a crisp value. The center of gravity (COG) defuzzification technique is 

utilized in the Mamdani inference scheme. The w coordinate of the center of gravity of the area 

under the fuzzy set Bʹ is computed in this technique as follows: 

𝑤ˊ = 𝑐𝑜𝑔 (𝐵´) =  
∑ 𝜇𝐵´

𝐹
𝑗=1 (𝑤𝑗)𝑤𝑗

∑ 𝜇𝐵´
𝐹
𝑗=1 (𝑤𝑗)

                                        (47) 

where the number of elements wj in W is F. In order to compute the center of gravity, continuous 

domain W must be discretized. 
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6.2.1.5 Singleton Model 

Whenever the consequent fuzzy sets Bi are singleton fuzzy sets then a special case of the 

linguistic fuzzy model is achieved which is called the singleton model. By employing real 

numbers bi, these sets can be denoted easily as the below rules:  

Ri: If �̃� is Ai then w = bi, i = 1, 2, …, P                                     (48) 

We generally can use this model with a simplified inference/defuzzification method which is 

called the fuzzy mean: 

𝑤 = 
∑ 𝛽𝑖𝑏𝑖

𝑃
𝑖=1

∑ 𝛽𝑖
𝑃
𝑖=1

                                                          (49) 

The singleton fuzzy model pertains to the basis functions expansion [239] which is a general 

class of general function approximators: 

𝑤 = ∑ ∅𝑖(𝑥)𝑏𝑖
𝑃
𝑖=1                                                     (50) 

This systems’ class covers almost all nonlinear system identification’s structures such as splines, 

radial basis function networks, or artificial neural networks. [240],[241] investigate connections 

between these models’ types. The constants bi are the consequents in the singleton model and the 

degrees of fulfillment of the rule antecedents provides basis functions ∅𝑖(𝑥). We can obtain 

multilinear interpolation among the rule consequents if  

• For each domain element, the membership degrees sum up to one and the antecedent 

membership functions are trapezoidal, pairwise overlapping  

• The connective and logical in the rule antecedents is represented by the product operator. 

In addition, any linear mapping of the form can be represented by a singleton model: 
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𝑤 = 𝑞𝑇𝑧 + 𝑣 =  ∑ 𝑞𝑖𝑥𝑖 + 𝑣
𝑞
𝑖=1                                          (51) 

The antecedent membership functions should be triangular in this case. Through assessing the 

suitable mapping in Equation (51) for the cores aij of the antecedent fuzzy sets Aij, we can 

calculate consequent singletons: 

𝑏𝑖 = ∑ 𝑞𝑗𝑎𝑖𝑗 + 𝑣𝑞
𝑗=1                                                 (52) 

We can benefit from this property by initializing the fuzzy model in a way that it mimics a 

predefined linear model and then optimize it later. 

6.2.2 Takagi-Sugeno-Kang Model 

The introduced linguistic model defines a predefined system by employing linguistic if-then 

rules with fuzzy proposition in both the consequent and antecedent. However, crisp functions in 

the consequents are utilized in the Takagi–Sugeno-Kang (TSK) fuzzy model [242]. Therefore, 

this model is considered as a combination of mathematical and linguistic regression modeling in 

a way that the antecedents define fuzzy regions for consequent functions which are valid in the 

input space. The below form shows the TSK rules:  

Ri: If z is Ai then wi = fi(z), i = 1, 2, …, P                                   (53) 

In this model, the input z is a crisp variable opposed to the linguistic model. In the functions fi, 

each rule’s parameters are only different but generally have the same structure. For the ease of 

notation, we will consider a scalar fi in the result but fi is a vector-valued function in general. By 

considering the affine form, an affine TSK model is attained based on the following simple rules:  

Ri: If z is Ai then 𝑎𝑖
𝑇𝑧 + 𝑏𝑖, i = 1, 2, …, P                                   (54) 
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where a scalar offset is bi and a parameter vector is ai. The singleton model in Equation (48) can 

be achieved if for each i we have ai = 0. 

6.2.2.1 Inference Mechanism 

A direct extension of the singleton model inference in Equation (49) results in the TSK model’s 

inference formula as follows: 

𝑤 = 
∑ 𝛽𝑖𝑤𝑖

𝑃
𝑖=1

∑ 𝛽𝑖
𝑃
𝑖=1

= 
∑ 𝛽𝑖(𝑎𝑖

𝑇𝑧+ 𝑏𝑖)
𝑃
𝑖=1

∑ 𝛽𝑖
𝑃
𝑖=1

                                            (55) 

The TSK model can be considered as a smoothed piece-wise estimation of a nonlinear function 

when the parameters bi and ai correspond to that function’s local linearization and the antecedent 

fuzzy sets consider overlapping regions in the antecedent space and distinct at the same time 

[235]. 

6.2.2.2 TSK Model as A Quasi-Linear Systems 

By denoting the normalized degree of fulfillment, the affine TSK model can be considered as a 

quasi-linear system: 

𝛾𝑖(𝑧) =  𝛽𝑖(𝑧)/∑ 𝛽𝑗(𝑧)
𝑃
𝑗=1                                            (56) 

In order to emphasize that the TSK model is a quasi-linear model of the below form, we 

represent 𝛽𝑖(𝑧) specifically as a function z: 

𝑤 = (∑ 𝛾𝑖(𝑧)𝑎𝑖
𝑇)𝑧 + 𝑃

𝑖=1 ∑ 𝛾𝑖(𝑧)𝑏𝑖
𝑃
𝑖=1 = 𝑎𝑇(𝑧)𝑧 + 𝑏(𝑧)                     (57) 

The convex linear combinations of the consequent parameters bi and ai are ‘parameters’ b(z), 

a(z): 
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𝑎(𝑧) = ∑ 𝛾𝑖(𝑧)𝑎𝑖,       𝑏(𝑧) = 𝑃
𝑖=1 ∑ 𝛾𝑖(𝑧)𝑏𝑖

𝑃
𝑖=1                              (58) 

In the space of a quasi-linear system’s parameters, a TSK model can be considered as a mapping 

from the input (antecedent) space to a polytope region (convex) that provide identical analysis of 

linear systems and TSK models in a framework. In [243]-[246], several methods have been 

proposed to design controllers with suitable closed loop characteristics and to evaluate their 

stability. 

6.2.3 Modeling Dynamic Systems 

As mentioned earlier, by utilizing the concept of the system’s state, static functions generally 

model time-invariant dynamic systems. We can specify what the consequent state will be by 

using the system’s state and input. We can have the following Equation in the discrete-time 

setting: 

𝑧(𝑝 + 1) = 𝑓(𝑧(𝑝), 𝑢(𝑝))                                             (59) 

where the input and the state at time p are u(p) and z(p), respectively, and the state-transition 

function is f which is a static function. We can estimate the state-transition function by utilizing 

fuzzy models of different types. Input-output modeling is often applied while the process’ state is 

usually not measured. The NARX (Nonlinear AutoRegessive with eXogenous input) is the most 

prevalent model: 

𝑤(𝑝 + 1) = 𝑓(𝑤(𝑝),𝑤(𝑝 − 1),… ,𝑤(𝑝 − 𝑛𝑤 + 1), 𝑢(𝑝), 𝑢(𝑝 − 1),… , 𝑢(𝑝 − 𝑛𝑢 + 1))   (60) 

where the past model inputs and outputs are denoted by and u(p), …, u(p-nu+ 1) and w(p), …, 

w(p-nw+ 1), respectively, and integers related to the model order are nu, ny. As an illustration, the 

following form’s rules may be included in a dynamic system’s linguistic fuzzy model:  
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Ri: If w(p) is Ai1 and w(p-1) is Ai2 and, … w(p-n+1) is Ain and u(k) is Bi1 and u(k-1) is Bi2 and, 

…, u(k-m+1) is Bim then y(k+1) is Ci                                                                                         (61) 

In this case, external dynamic filters added to the fuzzy system take care of the dynamic 

behavior. In Equation (61), no output filter is utilized and the input dynamic filter is a 

straightforward generator of the lagged outputs and inputs. 

As mentioned in [247], any smooth function to any accuracy’s degree can be estimated by the 

fuzzy models. Thus, any controllable and observable modes of a large class of discrete-time 

nonlinear systems can be estimated by type’s models in Equation (61) [248]. 

6.3 Building Fuzzy Models 

The data and prior knowledge are two general information’s sources for creating fuzzy models. 

The prior knowledge normally developed by “experts”, i.e., operators, process designers, etc. and 

can be of a rather approximate nature. In this case, straightforward fuzzy expert systems can 

define fuzzy models [249].  

For most of the processes, data are accesible as records of the special identification experiments 

or process operation can be implemented to attain the relevant data. Not only approximate 

reasoning and fuzzy logic can create fuzzy models from data, but also ideas originating from the 

field of conventional systems identification, data analysis, and neural networks. Fuzzy 

identification means the tuning or acquisition of fuzzy models by using data.  

In a fuzzy model, two fundamental approaches can be defined for the integration of data and 

knowledge:  
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1. A set of if–then rules translates the verbal form of expert knowledge that creates a certain 

model. By employing input-output data, we can fine-tune the parameters in this structure 

including parameters, consequent singletons, or membership functions. Alike to artificial 

neural networks that we can apply standard learning algorithms, a fuzzy model can be 

considered as a layered network at the computational level that is exploited by the certain 

tuning algorithms. Commonly, this technique is called neuro-fuzzy modeling 

[240],[250],[251]. 

2. A fuzzy model is created from data and in order to formulate the rules, no antecedent 

knowledge about the under-study’s system is initially utilized. The membership functions 

and extracted rules are expected to prepare a posteriori interpretation of the behavior of 

system. In the interest of obtaining more informative data, an expert can design additional 

experiments. Moreover, an expert can supply new rules or alter the rules.  

Based on the specific application, we can combine these techniques. At the end, we define the 

primary techniques to fine-tune or extract fuzzy models by utilizing data and the primary choices 

and steps in the fuzzy models’ knowledge-based construction [235]. 

6.3.1 Structure and Parameters 

Two fundamentals parts in the fuzzy models’ design are recognized: the parameters and the 

structure of the model. The model’s flexibility in approximation mappings is specified by the 

structure. Then, the parameters are estimated in the interest of fitting the data at hand. While a 

model with a rich structure has worse generalization properties but has the ability to estimate 

more sophisticated functions. Good generalization provides this ability that a model can carry out 

on another data set from the same process as well as the data set that is fitted to. 
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Structure selection includes the below choices in fuzzy models:  

• Output and input variables: It is sometimes unclear which variables must be utilized as 

the model’s inputs in complex systems. The system’s order should be estimated in the 

dynamic systems. This means to determine the number of output and input lags nu and nw, 

respectively, for the input-output NARX model in Equation (60). The common 

information’s sources for this choice are the modeling’s purpose and insight in the 

process behavior. In order to compare different choices by considering some performance 

metric, we can sometimes utilize automatic data-driven selection.  

• The rules’ structure: The antecedent form and the model type (Takagi-Sugeno-Kang, 

singleton, linguistic) are involved in this choice. The type available knowledge and the 

purpose of modeling are important aspects.  

• Membership functions’ type and number for each variable: The level of the model’s 

granularity is determined by this choice. This choice will be influenced by the available 

knowledge’s details and the modeling’s purpose. Membership functions can be removed 

or added to the model through data-driven methods.  

• Defuzzification method, connective operators, the inference mechanism’s type: The fuzzy 

model’s type restricts these choices (TSK, Mamdani). Anyway, some freedom such as 

the conjunction operators’ choice remains within these restrictions. Differentiable 

operators such as sum and product are commonly preferred to the standard min and max 

operators in the interest of facilitating fuzzy models’ data-driven optimization.  

By adjusting the parameters, the fuzzy model’s performance can be fine-tuned after the structure 

is fixed. Linguistic models’ tunable parameters are the parameters of consequent membership 
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functions and antecedent, and the rules. Takagi-Sugeno-Kang models have parameters in the 

consequent functions and in antecedent membership functions. 

6.3.2 Knowledge-Based Design 

The below steps must be followed with the intention of designing a fuzzy model in accordance 

with available expert knowledge:  

1. Select the defuzzification and inference methods, the rules’ structure and the output and 

input variables.  

2. Define the corresponding membership functions and decide on the linguistic terms’ 

number for each variable.  

3. Utilize fuzzy if-then rules to formulate the available knowledge.  

4. Verify the model by utilizing data. Repeat the aforementioned design steps if the model 

does not fulfill the desired performance. 

The quality and extent of the available knowledge, and the prepared problem determine the 

success of this approach. For certain problems, the knowledge-based design may be an 

inefficient and very time-consuming procedure, while for other problems it may lead to useful 

models quickly. As a result, a combination of a data-driven tuning of the model parameters and 

the knowledge-based design would be more useful. The next subsections discuss various 

approaches for the fuzzy model parameters’ adjustment by using data. 
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6.3.3 Data-Driven Acquisition/Tunning of Fuzzy Models 

In this subsection, we suppose that a set of M input-output data pairs {(zi,wi)|i = 1, 2, … ,M} is 

accessible while wi are output scalars and zi ϵ ℝq are input vectors. Denote w ϵ ℝM a vector 

containing the outputs wp and Z ∈ ℝM×q a matrix having the vectors 𝑧𝑃
𝑇 in its rows: 

Z = [z1, …, zM]T,     w = [w1, … , wM]T                                     (62) 

6.3.3.1 Least-Square Estimation of Consequents 

As shown in Equations (55) and (49), the TSK and singleton models’ defuzzification formulas 

are linear in the consequent parameters (bi and ai). By employing least-squares techniques, we 

can estimate these parameters from the available data. Denote Γi ∈ ℝM×M, as its pth diagonal 

element, the diagonal matrix having the normalized membership degree 𝛾𝑖(𝑧𝑝) of Equation (56). 

The extended matrix Ze = [Z,1] can be created by adding a unitary column to Z. Then, the 

products of matrices Γi and Ze compose Z´ the matrix in ℝM×PM: 

Z´ = [Γ1Ze, Γ2Ze, …, ΓKZe]                                               (63) 

The single parameter vector 𝜃 ∈ ℝP(q+1) contains the consequent parameters bi and ai: 

𝜃 = [𝑎1
𝑇 , 𝑏1, 𝑎2

𝑇 , 𝑏2, … , 𝑎𝑃
𝑇 , 𝑏𝑃]

𝑇                                          (64) 

Now, Equation (55) can be described in a matrix form of w = Z´𝜃 + ϵ by utilizing the data Z and 

w. We can solve this set of Equations for the parameter 𝜃 with linear algebra [252]: 

𝜃 = [(Z´)𝑇Z´]−1 (Z´)𝑇 𝑤                                                (65) 

This solution gives us the minimal prediction error as an optimal least-squares solution which is 

appropriate for prediction models. On the other hand, as local models’ parameters, it may bias 
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the consequent parameters’ estimation. We can apply a weighted least-squares approach per rule 

in the interest of obtaining an accurate approximation of local model parameters: 

[𝑎𝑖
𝑇 , 𝑏𝑖

𝑇] = [𝑍𝑒
𝑇𝛤𝑖𝑍𝑒]

−1 𝑍𝑒
𝑇𝛤𝑖 𝑤                                                (66) 

The individual rules’ consequent parameters are not “biased” by the rules’ interactions since they 

are approximated separately from each other. Equations (65) and (66) can be directly applied to 

the singleton model in Equation (48) by deleting ai for all 1 ≤ 𝑖 ≤ 𝑃. 

6.3.3.2 Temple-Based Modeling 

By employing this approach, we can easily partition the antecedent variables’ domains into a 

given number of equally shaped and spaced membership functions. Then, all the antecedent 

terms’ combinations are covered by the established rule base. The least-squares method 

approximates the consequent parameters. As an illustration, assume a first-order difference 

Equation describes a nonlinear dynamic system as below: 

𝑤(𝑝 + 1) = 𝑤(𝑝) + 𝑢(𝑝)𝑒−3|𝑤(𝑝)|                                                (67) 

In order to generate a set of 300 input–output data pairs with this Equation, a stepwise inputs 

signal is used. The below TSK rule structure can be selected by assuming that the system’s 

nonlinearity is only caused by w and the system is first order:  

If w(p) is Ai then w(p + 1) = aiw(p) + biu(p)                                       (68) 

In the domain of w(p), seven triangular membership functions (A1 to A7) with equal space are 

determined by supposing that we have no more prior knowledge.  

The combination of known mechanistic models’ linearization and local models attained by 

parameter estimation is facilitated by the TSK model’s transparent local structure. The remaining 
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regions’ parameters can be attained by linearizing the process’ mechanistic model if 

measurements are accessible only in specified regions of the process’ operating domain. Assume 

w = f(z) predefines this model. The below affine TSK model’s parameters in Equation (54) are 

resulted from linearization around the center ci of the ith rule’s antecedent membership function: 

𝑎𝑖 = 
𝑑𝑓

𝑑𝑧
 |𝑧 = 𝑐𝑖,   𝑏𝑖 = 𝑓(𝑐𝑖)                                                (69) 

In the template-based approach, the number of rules in the model may rise quickly which is 

considered as a disadvantage of this approach. Generally, all the antecedent variables are 

partitioned uniformly if we have no knowledge to show which variables make the system’s 

nonlinearity. This kind of partitioning results in the number of rules’ exponential increase. 

Some specific regions need almost fine partitioning while other regions can be estimated very 

well by a single model. This means that the system behavior complexity is usually not uniform. 

The membership functions should capture the system’s non-uniform behavior with the purpose 

of obtaining an efficient representation with the minimum rules. We often need to form the 

membership functions by utilizing system measurements, as explained in the next subsections. 

6.3.3.3 Neuro-Fuzzy Modeling 

It is shown that least-squares methods can optimally approximate parameters that are linearly 

related to the output. We can utilize the known training algorithms from the neural networks’ 

area in the interest of optimizing the parameters which are related in a nonlinear way to the 

output. Similar to artificial neural networks, a fuzzy model can be represented as a layered 

structure at the computational level. Therefore, this technique is generally called neuro-fuzzy 

modeling [240],[241],[250][241].  
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6.3.3.4 Fuzzy Clustering 

Fuzzy-clustering-based identification methods employ the graded membership’s concept to show 

the similarity’s degree of some typical object and a predefined object. An appropriate distance 

measure calculates the similarity’s degree. Feature vectors can be partitioned based on the 

similarity in a way that the vectors from different clusters are too dissimilar and vectors within a 

cluster are too similar. 

By employing the Euclidean distance measure, fuzzy clustering groups the data into two clusters 

which calls v1 and v2. The fuzzy partition matrix expresses the data’s partitioning in a way that in 

a fuzzy cluster with prototypes vj, elements μij are degrees of membership of the data points [zi, 

wi]. 

By projecting the clusters onto the axes, we can extract fuzzy if-then rules. Assume, we have a 

data set with two associated fuzzy rules and two apparent clusters. The concept of data’s 

similarity to a predefined prototype gives enough space for the choice of the prototype’s 

character itself and of an appropriate distance measure. For instance, the clusters can be 

ellipsoids with adaptively determined shape [253], or the prototypes can be described as linear 

subspaces [254]. From such clusters, we can extract the consequent parameters and the 

antecedent membership functions of the Takagi–Sugeno-Kang model as below [255]: 

If z is A1 then w = a1z + b1 

If z is A2 then w = a2z + b2 

One rule in the Takagi–Sugeno-Kang model represent each achieved cluster. The partition 

matrix’s point-wise projection onto the antecedent variables generates the membership functions 

for fuzzy sets A1 and A2. Then, an appropriate parametric function estimates these point-wise 
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defined fuzzy sets. Least-squares estimates in Equations (65) or (66) obtains the consequent 

parameters for each rule.  

6.4 Proposed DBN-Fuzzy Neural Network 

A neuro-fuzzy system is an integration of neural networks’ learning ability and rule-based fuzzy 

systems’ interpretability [242],[256],[257],[258]. Consequently, an integrated deep neural 

network fuzzy system can benefit from the advantages of both a deep network and a fuzzy 

system. In this section, we present a DBN-fuzzy network for image classification on the basis of 

Takagi-Sugeno-Kang (TSK) system [242]. This system models fuzzy rule-based systems which 

is composed of several fuzzy rules. A TSK rule set is described as: 

 

   If x1 is A1j and x2 is A2j And … xd is Adj then yj = fj(x)                            (70) 

 

 

where j = 1, 2, …, J , the number of fuzzy rules is J, the ith input variable xi, a fuzzy set for ith 

input of jth rule is Aij, a fuzzy conjunction operator is And, and output of kth rule is fj(.). The 

system’s output is defined as: 

 

𝑦 =  
∑ 𝑝𝑗(𝑥).𝑓𝑘(𝑥)

𝐽
𝑗=1

∑ 𝑝𝑘(𝑥)
𝐽
𝑗=1

= ∑ �̅�𝑗(𝑥). 𝑓𝑘(𝑥)𝐽
𝑗=1                                   (71) 

 

 

where 𝑝𝑗(𝑥) =  ∏ 𝑝𝐴𝑖𝑗
(𝑥𝑖)

𝑑
𝑖=1  and 𝑝𝐴𝑖𝑗

(𝑥𝑖) is a membership grade determining similarity’s 

degree of xi and Aik. 
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The DBN-Fuzzy neural network structure is shown in Figure 39. In the first phase, the MRAM-

based DBN is employed to identify the top recognition results with the highest probability. 

Figure 39 (a) to (d) shows a 784 × 200 × 10 DBN structure for MNIST digit recognition dataset 

which is implemented by the PIN-Sim framework [12]. As shown in Figure 39 (c) and (d), 

weighted connections and activation functions are implemented with memristive crossbars and 

p-bit respectively. In the second phase, a fuzzy system is utilized to obtain the top-1 recognition 

results. Herein, we have employed a TSK-based fuzzy system is presented in [259] and modified 

it to be compatible with our MRAM-based DBN which is implemented in PIN-Sim framework. 

In this system, a set of subregions of an input image is assessed as the universe of discourse, a 

specific pattern is examined as a fuzzy set, and the similarity amongst the subregions and the 

 

 

Figure 39: The DBN-Fuzzy system used for application-level simulations. (a) an input image 

from MNIST dataset, (b) a 784×200×10 DBN developed for MNIST pattern recognition 

application, (c) hardware implementation of the 784×200×10 DBN using PIN-Sim tool, (d) 

stochastic MRAM-based neuron (p-bit), and (e) TSK rule-based fuzzy system. 
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If subregions and pattern identified by Aj are similar and located in the exact same place then  

 

(

𝑓1𝑗(𝑥)

𝑓2𝑗(𝑥)

⋮
𝑓𝑛𝑗(𝑥)

),  j= 1, …, J 

specified pattern is considered as the membership grade. By considering each fuzzy rule take a 

distinct pattern in the input image, Equation (70) can be reworded as follows: 

 

 

 

 

 (72) 

 

 

 

 

where number of rules is J, number of outputs is n, a specific pattern for the jth rule defined over 

set of subregions is Aj, a subregion from set of subregions is x, and ith output for the jth pattern is 

fik(x). The final recognition result is made based on the outputs of each rule through the following 

steps [259], according to Algorithm 7: 

 

I. Matrix Membership Grades: In this step, the similarity among a specific pattern (Aj) and 

a subregion (ai) in the image is measured for each rule through calculating a matrix of 

membership grades (Pj) by employing dot product operation as follows: 

 

𝑃𝑗 = [𝑝𝑖𝑗] =  [𝑎𝑖. 𝐴𝑗]                                                    (73) 

 

 

II. Firing Strength Measurement: Each rules’ firing strength is measured through 

membership grade matrix’s normalization: 

 

𝑃�̅� = 
𝑃𝑗

∑ 𝑃𝑙
𝐽
𝑙=1

                                                         (74) 
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III. Final Outputs Computation: The final outputs (yi) are calculated based on the outputs of 

each rule (yik) by multiplying 𝑃�̅� to its equivalent subregion (𝑔𝑖𝑗(𝑥)):   

 

 𝑦𝑖 = ∑ 𝑦𝑖𝑗
𝐽
𝑗=1 = ∑ 𝑝�̅�

𝐽
𝑗=1 𝑔𝑖𝑗(𝑥)                                      (75) 

 

 

 

Algorithm 7: TSK Rule-based Fuzzy System Algorithm  

for all input images do 

      Get the outputs of MRAM-based DBN  

      Find top outputs of MRAM-based DBN 

      for each top output do 

            Calculating membership matrix (𝑃𝑗) of the input image based on the specified pattern for each top 

output 

            Obtain membership grade matrix’s normalization (𝑃�̅�) of the input image for each top output 

        Outputs final computation (𝑦𝑖) of the input image for each top output 

      end 

end 

 

 

6.5 Simulation Results 

In this section, we implement the proposed DBN-Fuzzy system for MNIST digit recognition 

dataset by employing the structure of a 784×10 DBN circuit in the PIN-Sim framework and 

developing the TSK rule-based fuzzy system using Python scripts. The input of this system is a 

28×28 digit image and the size of patterns as the fuzzy set is 7×7. As shown in Figure 40, the 

input image is divided into 16 subregions which their sizes are identical to the 20 patterns that 

are identified in blue boxes. For each specified digit, the patterns are chosen by considering 

which digits are misrecognized with the  
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specified correct digit in the MRAM-based DBN. For example, digit “3” is misrecognized with 

digits “2”, “5”, and “8” by the MRAM-based DBN. For each top output from MRAM-based 

DBN, a membership matrix is attained by measuring similarity among the pattern and its 

corresponding subregion utilizing dot product. Then, the strength of each pattern is measured by 

normalizing each member in the membership matrix with its equivalent member in the other 

membership matrices. Finally, the output of each pattern is calculated through an element-wise 

multiplication of the normalized membership grade matrix and its equivalent subregion. 

Figure 41 shows the top-1 accuracy of PIN-Sim framework with and without the TSK rule-based 

fuzzy system for all input digits and each separate digit. As you can see, the proposed DBN-

Fuzzy-based PIN-Sim always shows higher accuracy than DBN-based PIN-Sim. Our results 

show that the accuracy of PIN-Sim is increased from 64% to 82% for all digits by employing the 

TSK rule-based fuzzy system. As can be seen, each individual digit has at least 7.1% 

improvement except digits “5”, “6”, and “8”. For each individual digit, the highest top-1 

accuracy is obtained for digits “0” and “8” with 100% accuracy, and the lowest top-1 accuracy is 

obtained for the digit “0” and “8” with 100% accuracy and the lowest top-1 accuracy is obtained 

for the digit “5” with 57.1% accuracy while for PIN-Sim without TSK rule-based fuzzy system, 

 

Figure 40: Input image subregions and identified patterns for each input digit in MNIST 

dataset. 
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the top-1 accuracy for digits “1”, “2”, “5”, and “7” are below 60%. The highest recognition 

enhancement is for digit “7” with 40% improvement and the lowest recognition enhancement is 

for the digit “4” with 7.1% improvement. 

Figure 42 shows the top-1 accuracy of the TSK rule-based fuzzy system for all input digits and 

each individual digit. In other terms, this graph shows the ability of the TSK rule-based fuzzy 

 

 

Figure 41: PIN-Sim Top-1 Accuracy for MNIST dataset. 

 

 

Figure 42: TSK Rule-based Fuzzy System Top-1 Accuracy for MNIST data set. 
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system to recognize the correct digit in the cases that the correct digit is among the top outputs of 

MRAM-based DBN. As you can see, the accuracy of this system is 92.1% for all digits. 

Moreover, the highest top-1 accuracy of 100% is obtained for digits “0”, “1”, “6”, and “8” while 

at least 84.6% accuracy is achieved for other digits.  

Figure 43 illustrates an accuracy comparison between 784 × 10 DBN-Fuzzy neural network and 

four different DBN topologies for various number of training samples. The results show that an 

accuracy of 48.8% for a 784×500×500×10 DBN trained by 500 training inputs can be 

increased to an 83.5% accuracy achieved using 784×10 DBN-Fuzzy which is trained by around 

10,000 input training samples. Therefore, the recognition accuracy can be improved by 

employing the fuzzy system and increasing the number of training samples instead of the number 

of hidden layers in the network and number of nodes in each layer. 

Figure 44 depicts the energy consumption of 784 × 10 DBN-Fuzzy neural network and four 

different DBN topologies while evaluating a single input image. As shown, a substantial amount 

 

Figure 43: Accuracy of 784 × 10 DBN-Fuzzy neural network and four different DBN topologies for 

various training samples. 
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of energy is consumed in the weighted connections, while less than 10% of the total energy is 

consumed in the neurons. As an illustration, the total energy consumption of a 

784×200×200×200×10 DBN is almost equal to 1.55 nJ, only 0.1 nJ of which is dissipated in the 

neurons. Moreover, the energy consumption of around 3.9 nJ for a 784×500×500×500×10 

DBN can be reduced to an 8.3 pJ energy consumption achieved utilizing 784×10 DBN-Fuzzy. 

This is achieved by employing the proposed TSK Rule-based Fuzzy System to improve the 

accuracy of MRAM-based DBNs. 

Table 17 shows the normalized area consumptions for activation functions and weighted arrays 

for a 784 × 10 DBN-Fuzzy neural network and four different DBN topologies. Hereby, we have 

utilized the area consumption of the p-bit neuron as the baseline and relative to the p-bit area 

consumption, the estimated area values for activation functions and weighted arrays are 

normalized. According to the MRAM-based neuron’s layout design, the MRAM-based neuron’s 

area consumption is almost equal to 32λ×32λ, where λ = 14nm/2 = 7nm for 14nm FinFET 

 

Figure 44: Energy Consumption for 784 × 10 DBN-Fuzzy neural network and four different 

DBN topologies. 
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technology, thus resulting in the approximate area consumption of 0.05 μm2 per neuron [12]. For 

each weight in the weighted array, the well-known 1T-1R structure is utilized. The resistive 

devices incurring no area overhead since these devices are fabricated on top of the MOS 

transistors. As a result, this structure allocates one transistor to each weight and the evaluated 

area consumption for each weight is around 0.02 μm2 = 0.4X [12]. As it is shown in the table, the 

area consumption of a 784 × 10 DBN-Fuzzy neural network is significantly smaller than the four 

DBN topologies while 784 × 10 DBN-Fuzzy neural network has higher accuracy and lower 

energy consumption. 

    

 

 

 

Table 17: Area of weighted array and activation function for 784 × 10 DBN-Fuzzy neural network and four 

different DBN topologies relative to the area occupied by a single p-bit-based neuron. 

 

Topology 

Normalized Area 

 
Weighted Array 

 
Activation Function 

784×10 DBN-Fuzzy 3200× 10× 

784×200×200×10 DBN 80000× 400000× 

784×500×500×10 DBN 260000× 2500000× 

784×200×200×200×10 DBN 96000× 80000000× 

784×500×500×500×10 DBN 360000× 1250000000× 
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CHAPTER 7: CONCLUSION123 

7.1 Summary 

The concept of using sampling and count operations to interpret the probabilistic output of a p-

bit based neuron offers an intriguing approach to realize a CMOS-based probabilistic 

interpolation recoder (PIR) for a spin-based stochastic binary neuron. Herein, we proposed a PIR 

circuit as a replacement for an analog-based approach to interpolate the output of the p-bit based 

activation functions in the last layer of a DBN circuit. The conventional method involved: first, 

using an RC circuit to continuously integrate the analog output of the p-bit, next an op-amp 

based sample and holder is used to sample the output of the RC circuit, finally the analog 

sampled output is converted to a digital value through an op-AMP based ADC circuit and a 

priority encoder. Our proposed CMOS-based PIR circuit removes the need for all of area- and 

energy-consuming analog components existing in conventional circuits such as resistors, 

capacitors, and opamps, and performs the interpolation operation only by using MOS-transistor 

based Boolean gates and flip-flops. In addition, the PIR circuits have an inherent single stuck-at 

fault tolerant features to tolerate either transient or permanent faults at the circuit’s output 

without redundancy or active refurbishment overhead. 

Moreover, we will two approaches to mitigate the effects of process variation on the energy 

barrier of the p-bit based neurons, and their consequent impact on the performance and accuracy 

of DBNs using p-bit devices as probabilistic sigmoidal neurons [260],[261],[262]. In the first 

approach, it was shown that an increase in the energy barrier leads to decreased fluctuation speed 

                                                           
1 ©2020 IEEE. Part of this chapter is reprinted, with permission, from [214]. 
2 ©2020 IEEE. Part of this chapter is reprinted, with permission, from [261]. 
3 ©2021 IEEE. Part of this chapter is reprinted, with permission, from [273]. 
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in the magnetization direction of the p-bit’s nanomagnet. Thus, to observe the desired 

probabilistic sigmoidal behavior in the p-bit based neuron a temporal redundancy is required to 

be added to the sampling time of the p-bits output to give it time to have sufficient probabilistic 

fluctuations. While the temporal redundancy has shown to be an efficient mechanism, it was 

examined that it can lead to approximately 10-fold higher energy consumption in a 784×200×10 

DBN which can tolerate maximum 2 kT of energy barrier variations compared to a variation-less 

DBN. The second variation tolerance mechanism involved implementing p-bit with a negative 

self-feedback, which significantly increases the probabilistic fluctuation speed of the free layer. 

In this case, the drain of the NMOS transistor in the p-bit device tracks the magnetization 

direction of the free layer of the MTJ, and the inverter at the output of the device generates the 

inverse voltage, hence realizing a negative feedback effect which compensates the variation 

impacts with only ~10% energy consumption overheads. 

Finally, we present an innovative image recognition technique for MNIST dataset on the basis of 

MRAM-based DBNs and TSK rule-based fuzzy systems [273]. The proposed DBN-fuzzy system 

is introduced to benefit from low energy and area consumption of MRAM-based DBNs and high 

accuracy of TSK rule-based fuzzy systems. This system initially recognizes the top results 

through the MRAM-based DBN and then, the fuzzy system is employed to attain the top-1 

recognition results from the obtained top outputs. We have shown that the top-1 accuracy of the 

DBN-fuzzy neural network is enhanced from 64% to 82% relative to the MRAM-based DBNs 

for a 784 × 10 network. Simulation results exhibit that a 784 × 10 DBN-Fuzzy neural network 

not only has lower energy and area consumption than bigger DBN topologies but also has higher 

accuracy. Neuro-fuzzy systems based on spintronic devices may offer a compact and 

computationally-efficient architectural approach to machine-based image recognition tasks. 
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7.2 Future Directions 

The development of MRAM technology has focused primarily so far on stable binary digital 

memory applications. However, there is recent work that makes use of MRAM technology in a 

different type of application space, i.e. Neural Networks (NNs). Recent studies have shown that 

neurons (one of the two building blocks of an NN) can be built in MRAM cells using e.g. low-

barrier magnetic tunnel junctions (MTJs). In particular, Ostwal et al. [263] demonstrated in 2019 

for the first time a spin-orbit torque (SOT) based tunable random number generator (TRNG) 

using an unstable in-plane magnetic (IMA) MTJ stack. A charge current through the SOT 

material (here tantalum, marked blue in the layer stack) enables manipulation of the free 

magnetic layer (here CoFeB, marked red in the layer stack). While the device has the free 

magnetic layer fluctuating between its two magnetic states with a 50:50 probability without any 

input, a charge current can tune the probability to be either in the parallel (P) or antiparallel (AP) 

state. Combing this layout with an inverter allows for a neuron with gain that can be assembled 

into a larger neural network (NN). Note that to build the same tunable random number generator 

(TRNG) in complementary metal oxide semiconductor (CMOS) technology, about 1,000 

transistors would be required, making the above hardware demonstration about 500-fold more 

compact. Realization of the second building block of NNs, i.e. synapses based on MRAM 

technology is thus highly desirable, since it would allow for an integrated – all MRAM based – 

approach towards a compact and highly power efficient neural network. In order to explore the 

potential of magnetic elements for synapses that consist of an ensemble of binary memory 

elements, Ostwal et al. [264] recently demonstrated a 4-bit compound synapse that used an array 

of 16 nanomagnets with perpendicular magnetic anisotropy (PMA) located in the crossbar region 

of a tantalum film that was used to excerpt spin-orbit torque. 
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Analog electronic non-volatile memories (eNVMs) have attracted attention in the research 

community for their potential as synaptic elements [265]. The conductance of such an eNVM 

can increase or decrease in a continuous analog fashion, mimicking the potentiation or 

depression of a synapse. However, while Resistive Random Access Memory (RRAM) 

technology has shown the potential for achieving such analog conductance behavior, the reliable 

fabrication of analog RRAM devices has remained challenging [266]. Hence, compound 

synapses that utilize an ensemble of fabricable binary memory elements are proposed. 

Employing the probabilistic switching of individual memory elements, multilevel operation can 

be realized in a reproducible fashion. In fact, experimental implementations based on an 

arrangement of parallel binary RRAM devices and simulations of Convolutional Neural 

Networks (CNNs) demonstrated multi-level operation of such compound synapse structures 

[267]. However, RRAM technology is facing challenges in terms of current and voltage scaling 

and is prone to process variability and instabilities. On the other hand, “MRAM has already 

found a niche market and is heading toward disruptive growth” according to Bhatti et al. [268]. 

Spin transfer torque (STT)-MRAM is close to foundry scale production [269] and wafer-scale 

manufacturability has been shown even for SOT-MRAM [271]. Moreover, we believe STT-

MTJs to be less suitable for synapse applications, since the READ path and the WRITE path are 

identical and an unavoidable constantly changing resistance of the MTJs in series will make the 

device’s switching behavior less controllable. 
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