22,208 research outputs found

    Adaptive Harmonic Blocking Compensators.

    Get PDF
    This dissertation explores a new method of adaptive compensation and harmonic suppression in distribution systems. The compensator under development and investigation integrates a harmonic blocking compensator (HBC) with an adaptive balancing compensator (ABC) resulting in an adaptive harmonic blocking compensator (AHBC). Such a compensator can be used for compensating reactive power, for symmetrizing supply currents, for protecting the distribution system against load generated current harmonics and, consequently, the voltage harmonic distortion caused by non-linear loads. Harmonic blocking compensators are designed for compensating fixed loads, and they are not adaptive devices, while the adaptive capability of compensators is becoming more and more important. This dissertation investigates the possibility of the conversion of a HBC into an adaptive device. A HBC and an ABC are combined to form a new device which is referred to as an adaptive harmonic blocking compensator. A HBC provides the harmonic suppression. An ABC which contains three thyristor controlled susceptance circuits provides the variable susceptances needed for reactive and unbalanced power compensation. A digital signal processing system (DSPS) for three-phase quantities has been developed for the AHBC control. This DSPS consists of signal processing hardware and a control algorithm. The hardware includes transducers, a microcontroller and some associated circuits for signal processing. The control algorithm provides the thyristor firing angles calculated based on the current orthogonal decomposition method. The dissertation presents the fundamentals of AHBC operation and design, results of computer modeling using PSpice and experimental results obtained from a laboratory prototype

    Suppression of Second-Order Harmonic Current for Droop-Controlled Distributed Energy Resource Converters in DC Microgrids

    Get PDF
    Droop-controlled distributed energy resource converters in dc microgrids usually show low output impedances. When coupled with ac systems, second-order harmonics typically appear on the dc-bus voltage, causing significant harmonic currents at the converters resource side. This paper shows how to reduce such undesired currents by means of notch filters and resonant regulators included in the converters control loops. The main characteristics of these techniques in terms of harmonic attenuation and stability are systematically investigated. In particular, it is shown that the voltage control-loop bandwidth is limited to be below twice the line frequency to avoid instability. Then, a modified notch filter and a modified resonant regulator are proposed, allowing to remove the constraint on the voltage loop bandwidth. The resulting methods (i.e., the notch filter, the resonant regulator, and their corresponding modified versions) are evaluated in terms of output impedance and stability. Experimental results from a dc microgrid prototype composed of three dc-dc converters and one dc-ac converter, all with a rated power of 5kW, are reported

    Generalized Voltage-based State-Space Modelling of Modular Multilevel Converters with Constant Equilibrium in Steady-State

    Get PDF
    This paper demonstrates that the sum and difference of the upper and lower arm voltages are suitable variables for deriving a generalized state-space model of an MMC which settles at a constant equilibrium in steady-state operation, while including the internal voltage and current dynamics. The presented modelling approach allows for separating the multiple frequency components appearing within the MMC as a first step of the model derivation, to avoid variables containing multiple frequency components in steady-state. On this basis, it is shown that Park transformations at three different frequencies (+ω+\omega, 2ω-2\omega and +3ω+3\omega) can be applied for deriving a model formulation where all state-variables will settle at constant values in steady-state, corresponding to an equilibrium point of the model. The resulting model is accurately capturing the internal current and voltage dynamics of a three-phase MMC, independently from how the control system is implemented. The main advantage of this model formulation is that it can be linearised, allowing for eigenvalue-based analysis of the MMC dynamics. Furthermore, the model can be utilized for control system design by multi-variable methods requiring any stable equilibrium to be defined by a fixed operating point. Time-domain simulations in comparison to an established average model of the MMC, as well as results from a detailed simulation model of an MMC with 400 sub-modules per arm, are presented as verification of the validity and accuracy of the developed model

    Joint Multi-Pitch Detection Using Harmonic Envelope Estimation for Polyphonic Music Transcription

    Get PDF
    In this paper, a method for automatic transcription of music signals based on joint multiple-F0 estimation is proposed. As a time-frequency representation, the constant-Q resonator time-frequency image is employed, while a novel noise suppression technique based on pink noise assumption is applied in a preprocessing step. In the multiple-F0 estimation stage, the optimal tuning and inharmonicity parameters are computed and a salience function is proposed in order to select pitch candidates. For each pitch candidate combination, an overlapping partial treatment procedure is used, which is based on a novel spectral envelope estimation procedure for the log-frequency domain, in order to compute the harmonic envelope of candidate pitches. In order to select the optimal pitch combination for each time frame, a score function is proposed which combines spectral and temporal characteristics of the candidate pitches and also aims to suppress harmonic errors. For postprocessing, hidden Markov models (HMMs) and conditional random fields (CRFs) trained on MIDI data are employed, in order to boost transcription accuracy. The system was trained on isolated piano sounds from the MAPS database and was tested on classic and jazz recordings from the RWC database, as well as on recordings from a Disklavier piano. A comparison with several state-of-the-art systems is provided using a variety of error metrics, where encouraging results are indicated

    Emergence of superconductivity in the cuprates via a universal percolation process

    Full text link
    A pivotal step toward understanding unconventional superconductors would be to decipher how superconductivity emerges from the unusual normal state upon cooling. In the cuprates, traces of superconducting pairing appear above the macroscopic transition temperature TcT_c, yet extensive investigation has led to disparate conclusions. The main difficulty has been the separation of superconducting contributions from complex normal state behaviour. Here we avoid this problem by measuring the nonlinear conductivity, an observable that is zero in the normal state. We uncover for several representative cuprates that the nonlinear conductivity vanishes exponentially above TcT_c, both with temperature and magnetic field, and exhibits temperature-scaling characterized by a nearly universal scale T0T_0. Attempts to model the response with the frequently evoked Ginzburg-Landau theory are unsuccessful. Instead, our findings are captured by a simple percolation model that can also explain other properties of the cuprates. We thus resolve a long-standing conundrum by showing that the emergence of superconductivity in the cuprates is dominated by their inherent inhomogeneity

    An integrated approach to the optimum design of actively controlled composite wings

    Get PDF
    The importance of interactions among the various disciplines in airplane wing design has been recognized for quite some time. With the introduction of high gain, high authority control systems and the design of thin, flexible, lightweight composite wings, the integrated treatment of control systems, flight mechanics and dynamic aeroelasticity became a necessity. A research program is underway now aimed at extending structural synthesis concepts and methods to the integrated synthesis of lifting surfaces, spanning the disciplines of structures, aerodynamics and control for both analysis and design. Mathematical modeling techniques are carefully selected to be accurate enough for preliminary design purposes of the complicated, built-up lifting surfaces of real aircraft with their multiple design criteria and tight constraints. The presentation opens with some observations on the multidisciplinary nature of wing design. A brief review of some available state of the art practical wing optimization programs and a brief review of current research effort in the field serve to illuminate the motivation and support the direction taken in our research. The goals of this research effort are presented, followed by a description of the analysis and behavior sensitivity techniques used. The presentation concludes with a status report and some forecast of upcoming progress

    A theoretical study of the application of jet flap circulation control for reduction of rotor vibratory forces

    Get PDF
    The results of a study to investigate the theoretical potential of a jet-flap control system for reducing the vertical and horizontal non-cancelling helicopter rotor blade root shears are presented. A computer simulation describing the jet-flap control rotor system was developed to examine the reduction of each harmonic of the transmitted shears as a function of various rotor and jet parameters, rotor operating conditions and rotor configurations. The computer simulation of the air-loads included the influences of nonuniform inflow and blade elastic motions. (no hub motions were allowed.) The rotor trim and total rotor power (including jet compressor power) were also determined. It was found that all harmonics of the transmitted horizontal and vertical shears could be suppressed simultaneously using a single jet control
    corecore