176 research outputs found

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    Frequency hopping in wireless sensor networks

    Get PDF
    Wireless sensor networks (WSNs) are nowadays being used to collectively gather and spread information in different kinds of applications, for military, civilian, environmental as well as commercial purposes. Therefore the proper functioning of WSNs under different kinds of environmental conditions, especially hostile environments, is a must and a lot of research currently ongoing. The problems related to the initialization and deployment of WSNs under harsh and resource limited conditions are investigated in this thesis. Frequency hopping (FH) is a spread spectrum technique in which multiple channels are used, or hoped, for communications across the network. This mitigates the worst effects of interference with frequency agile communication systems rather than by brute force approaches. FH is a promising technique for achieving the coexistence of sensor networks with other currently existing wireless systems, and it is successful within the somewhat limited computational capabilities of the sensor nodes hardware radios. In this thesis, a FH scheme for WSNs is implemented for a pair of nodes on an application layer. The merits and demerits of the scheme are studied for different kinds of WSN environments. The implementation has been done using a Sensinode NanoStack, a communication stack for internet protocol (IP) based wireless sensor networks and a Sensinode Devkit, for an IPv6 over low power wireless personal area network (6LoWPAN). The measurements are taken from the developed test bed and channel simulator for different kinds of scenarios. The detailed analysis of the FH scheme is done to determine its usefulness against interference from other wireless systems, especially wireless local area networks (WLANs), and the robustness of the scheme to combat fading or frequency selective fading

    From MANET to people-centric networking: Milestones and open research challenges

    Get PDF
    In this paper, we discuss the state of the art of (mobile) multi-hop ad hoc networking with the aim to present the current status of the research activities and identify the consolidated research areas, with limited research opportunities, and the hot and emerging research areas for which further research is required. We start by briefly discussing the MANET paradigm, and why the research on MANET protocols is now a cold research topic. Then we analyze the active research areas. Specifically, after discussing the wireless-network technologies, we analyze four successful ad hoc networking paradigms, mesh networks, opportunistic networks, vehicular networks, and sensor networks that emerged from the MANET world. We also present an emerging research direction in the multi-hop ad hoc networking field: people centric networking, triggered by the increasing penetration of the smartphones in everyday life, which is generating a people-centric revolution in computing and communications

    A Survey on Wireless Security: Technical Challenges, Recent Advances and Future Trends

    Full text link
    This paper examines the security vulnerabilities and threats imposed by the inherent open nature of wireless communications and to devise efficient defense mechanisms for improving the wireless network security. We first summarize the security requirements of wireless networks, including their authenticity, confidentiality, integrity and availability issues. Next, a comprehensive overview of security attacks encountered in wireless networks is presented in view of the network protocol architecture, where the potential security threats are discussed at each protocol layer. We also provide a survey of the existing security protocols and algorithms that are adopted in the existing wireless network standards, such as the Bluetooth, Wi-Fi, WiMAX, and the long-term evolution (LTE) systems. Then, we discuss the state-of-the-art in physical-layer security, which is an emerging technique of securing the open communications environment against eavesdropping attacks at the physical layer. We also introduce the family of various jamming attacks and their counter-measures, including the constant jammer, intermittent jammer, reactive jammer, adaptive jammer and intelligent jammer. Additionally, we discuss the integration of physical-layer security into existing authentication and cryptography mechanisms for further securing wireless networks. Finally, some technical challenges which remain unresolved at the time of writing are summarized and the future trends in wireless security are discussed.Comment: 36 pages. Accepted to Appear in Proceedings of the IEEE, 201

    An efficient multichannel wireless sensor networks MAC protocol based on IEEE 802.11 distributed co-ordinated function.

    Get PDF
    This research aimed to create new knowledge and pioneer a path in the area relating to future trends in the WSN, by resolving some of the issues at the MAC layer in Wireless Sensor Networks. This work introduced a Multi-channel Distributed Coordinated Function (MC-DCF) which takes advantage of multi-channel assignment. The backoff algorithm of the IEEE 802.11 distributed coordination function (DCF) was modified to invoke channel switching, based on threshold criteria in order to improve the overall throughput for wireless sensor networks. This work commenced by surveying different protocols: contention-based MAC protocols, transport layer protocols, cross-layered design and multichannel multi-radio assignments. A number of existing protocols were analysed, each attempting to resolve one or more problems faced by the current layers. The 802.15.4 performed very poorly at high data rate and at long range. Therefore 802.15.4 is not suitable for sensor multimedia or surveillance system with streaming data for future multichannel multi-radio systems. A survey on 802.11 DCF - which was designed mainly for wireless networks –supports and confirm that it has a power saving mechanism which is used to synchronise nodes. However it uses a random back-off mechanism that cannot provide deterministic upper bounds on channel access delay and as such cannot support real-time traffic. The weaknesses identified by surveying this protocol form the backbone of this thesis The overall aim for this thesis was to introduce multichannel with single radio as a new paradigm for IEEE 802.11 Distributed Coordinated Function (DCF) in wireless sensor networks (WSNs) that is used in a wide range of applications, from military application, environmental monitoring, medical care, smart buildings and other industry and to extend WSNs with multimedia capability which sense for instance sounds or motion, video sensor which capture video events of interest. Traditionally WSNs do not need high data rate and throughput, since events are normally captured periodically. With the paradigm shift in technology, multimedia streaming has become more demanding than data sensing applications as such the need for high data rate protocol for WSN which is an emerging technology in this area. The IEEE 802.11 can support data rates up to 54Mbps and 802.11 DCF was designed specifically for use in wireless networks. This thesis focused on designing an algorithm that applied multichannel to IEEE 802.11 DCF back-off algorithm to reduce the waiting time of a node and increase throughput when attempting to access the medium. Data collection in WSN tends to suffer from heavy congestion especially nodes nearer to the sink node. Therefore, this thesis proposes a contention based MAC protocol to address this problem from the inspiration of the 802.11 DCF backoff algorithm resulting from a comparison of IEEE 802.11 and IEEE 802.15.4 for Future Green Multichannel Multi-radio Wireless Sensor Networks

    A supporting infrastructure for Wireless Sensor Networks in Critical Industrial Environments

    Get PDF
    Tese de doutoramento no Programa de Doutoramento em Ciências e Tecnologias da Informação apresentada à Faculdade de Ciências e Tecnologia da Universidade de Coimbra.As Redes de Sensores Sem Fios (RSSFs) têm uma aplicabilidade muito elevada nas mais diversas áreas, como na indústria, nos sistemas militares, na saúde e nas casas inteligentes. No entanto, continuam a existir várias limitações que impedem que esta tecnologia tenha uma utilização extensiva. A fiabilidade é uma destas principais limitações que tem atrasado a adopção das RSSFs em ambientes industriais, principalmente quando sujeitos a elevadas interferências e ruídos. Por outro lado, a interoperabilidade é também um dos principais requisitos a cumprir nomeadamente com o avanço para o paradigma da Internet of Things. A determinação da localização dos nós, principalmente dos nós móveis, é, também ele, um requisito crítico em muitas aplicações. Esta tese de doutoramento propõe novas soluções para a integração e para a localização de RSSFs que operem em ambientes industriais e críticos. Como os nós sensores são, na maioria das vezes, instalados e deixados sem intervenção humana durante longos períodos de tempo, isto é, meses ou mesmo anos, é muito importante oferecer processos de comunicação fiável. No entanto, muitos problemas ocorrem durante a transmissão dos pacotes, nomeadamente devido a ruídos, interferências e perda de potência do sinal. A razão das interferências deve-se à existência de mais do que uma rede ou ao espalhamento espectral que ocorre em determinadas frequências. Este tipo de problemas é mais severo em ambientes dinâmicos nos quais novas fontes de ruído pode ser introduzidas em qualquer instante de tempo, nomeadamente com a chegadas de novos dispositivos ao meio. Consequentemente, é necessário que as RSSFs tenham a capacidade de lidar com as limitações e as falhas nos processos de comunicação. O protocolo Dynamic MAC (DunMAC) proposto nesta dissertação utiliza técnicas de rádio cognitivo (CR) para que a RSSF se adapte, de forma dinâmica, a ambientes instáveis e ruidosos através da selecção automática do melhor canal durante o período de operação. As RSSFs não podem operar em isolação completa do meio, e necessitam de ser monitoradas e controladas por aplicações externas. Apesar de ser possível adicionar a pilha protocolar IP aos nós sensores, este procedimento não é adequado para muitas aplicações. Para estes casos, os modelos baseados em gateway ou proxies continuam a apresentar-se preferíveis para o processo de integração. Um dos desafios existentes para estes processos de integração é a sua adaptabilidade, isto é, a capacidade da gateway ou do proxy poder ser reutilizado sem alterações por outras aplicações. A razão desta limitação deve-se aos consumidores finais dos dados serem aplicações e não seres humanos. Logo, é difícil ou mesmo impossível criar normas para as estruturas de dados dada a infinidade de diferentes formatos. É então desejável encontrar uma solução que permita uma integração transparente de diferentes RSSFs e aplicações. A linguagem Sensor Traffic Description Language (STDL) proposta nesta dissertação propõe uma solução para esta integração através de gateways e proxies flexíveis e adaptados à diversidade de aplicações, e sem recorrer à reprogramação. O conhecimento da posição dos nós sensores é, também ele, crítico em muitas aplicações industriais como no controlo da deslocação dos objectos ou trabalhadores. Para além do mais, a maioria dos valores recolhidos dos sensores só são úteis quando acompanhados pelo conhecimento do local onde esses valores foram recolhidos. O Global Positioning Systems (GPS) é a mais conhecida solução para a determinação da localização. No entanto, o recurso ao GPS em cada nó sensor continua a ser energeticamente ineficiente e impraticável devido aos custos associados. Para além disso, os sistemas GPS não são apropriados para ambientes in-door. Este trabalho de doutoramento propõe-se actuar nestas áreas. Em particular, é proposto, implementado e avaliado o protocolo DynMAC para oferecer fiabilidade às RSSFs. Para a segunda temática, a linguagem STDL e o seu motor são propostos para suportar a integração de ambientes heterogéneos de RSSFs e aplicações. As soluções propostas não requerem reprogramação e suportam também serviços de localização nas RSSFs. Diferentes métodos de localização foram avaliados para estimar a localização dos nós. Assim, com estes métodos as RSSFs podem ser usadas como componentes para integrar e suportar a Futura Internet. Todas as soluções propostas nesta tese foram implementadas e validadas tanto em simulação com em plataformas práticas, laboratoriais e industriais.The Wireless Sensor Network (WSN) has a countless number of applications in almost all of the fields including military, industrial, healthcare, and smart home environments. However, there are several problems that prevent the widespread of sensor networks in real situations. Among them, the reliability of communication especially in noisy industrial environments is difficult to guarantee. In addition, interoperability between the sensor networks and external applications is also a challenge. Moreover, determining the position of nodes, particularly mobile nodes, is a critical requirement in many types of applications. My original contributions in this thesis include reliable communication, integration, localization solutions for WSNs operating in industrial and critical environments. Because sensor nodes are usually deployed and kept unattended without human intervention for a long duration, e.g. months or even years, it is a crucial requirement to provide the reliable communication for the WSNs. However, many problems arise during packet transmission and are related to the transmission medium (e.g. signal path-loss, noise and interference). Interference happens due to the existence of more than one network or by the spectral spread that happens in some frequencies. This type of problem is more severe in dynamic environments in which noise sources can be introduced at any time or new networks and devices that interfere with the existing one may be added. Consequently, it is necessary for the WSNs to have the ability to deal with the communication failures. The Dynamic MAC (DynMAC) protocol proposed in this thesis employs the Cognitive Radio (CR) techniques to allow the WSNs to adapt to the dynamic noisy environments by automatically selecting the best channel during its operation time. The WSN usually cannot operate in complete isolation, but it needs to be monitored, controlled and visualized by external applications. Although it is possible to add an IP protocol stack to sensor nodes, this approach is not appropriate for many types of WSNs. Consequently, the proxy and gateway approach is still a preferred method for integrating sensor networks with external networks and applications. The problem of the current integration solutions for WSNs is the adaptability, i.e., the ability of the gateway or proxy developed for one sensor network to be reused, unchanged, for others which have different types of applications and data frames. One reason behind this problem is that it is difficult or even impossible to create a standard for the structure of data inside the frame because there are such a huge number of possible formats. Consequently, it is necessary to have an adaptable solution for easily and transparently integrating WSNs and application environments. In this thesis, the Sensor Traffic Description Language (STDL) was proposed for describing the structure of the sensor networks’ data frames, allowing the framework to be adapted to a diversity of protocols and applications without reprogramming. The positions of sensor nodes are critical in many types of industrial applications such as object tracking, location-aware services, worker or patient tracking, etc. In addition, the sensed data is meaningless without the knowledge of where it is obtained. Perhaps the most well-known location-sensing system is the Global Positioning System (GPS). However, equipping GPS sensor for each sensor node is inefficient or unfeasible for most of the cases because of its energy consumption and cost. In addition, GPS is not appropriate in some environments, e.g., indoors. Similar to the original concept of WSNs, the localization solution should also be cheap and with low power consumption. This thesis aims to deal with the above problems. In particular, in order to add the reliability for WSN, DynMAC protocol was proposed, implemented and evaluated. This protocol adds a mechanism to automatically deal with the noisy and changeable environments. For the second problem, the STDL and its engine provide the adaptable capability to the framework for interoperation between sensor networks and external applications. The proposed framework requires no reprogramming when deploying it for new applications and protocols of WSNs. Moreover, the framework also supports localization services for positioning the unknown position sensor nodes in WSNs. The different localization methods are employed to estimate the location of mobile nodes. With the proposed framework, WSNs can be used as plug and play components for integrating with the Future Internet. All the proposed solutions were implemented and validated using simulation and real testbeds in both the laboratory and industrial environments

    Emerging Communications for Wireless Sensor Networks

    Get PDF
    Wireless sensor networks are deployed in a rapidly increasing number of arenas, with uses ranging from healthcare monitoring to industrial and environmental safety, as well as new ubiquitous computing devices that are becoming ever more pervasive in our interconnected society. This book presents a range of exciting developments in software communication technologies including some novel applications, such as in high altitude systems, ground heat exchangers and body sensor networks. Authors from leading institutions on four continents present their latest findings in the spirit of exchanging information and stimulating discussion in the WSN community worldwide
    • …
    corecore