444 research outputs found

    Uncertainty management at the airport transit view

    Get PDF
    Air traffic networks, where airports are the nodes that interconnect the entire system, have a time-varying and stochastic nature. An incident in the airport environment may easily propagate through the network and generate system-level effects. This paper analyses the aircraft flow through the Airport Transit View framework, focusing on the airspace/airside integrated operations. In this analysis, we use a dynamic spatial boundary associated with the Extended Terminal Manoeuvring Area concept. Aircraft operations are characterised by different temporal milestones, which arise from the combination of a Business Process Model for the aircraft flow and the Airport Collaborative Decision-Making methodology. Relationships between factors influencing aircraft processes are evaluated to create a probabilistic graphical model, using a Bayesian network approach. This model manages uncertainty and increases predictability, hence improving the system's robustness. The methodology is validated through a case study at the Adolfo SuĂĄrez Madrid-Barajas Airport, through the collection of nearly 34,000 turnaround operations. We present several lessons learned regarding delay propagation, time saturation, uncertainty precursors and system recovery. The contribution of the paper is two-fold: it presents a novel methodological approach for tackling uncertainty when linking inbound and outbound flights and it also provides insight on the interdependencies among factors driving performance

    A Simulation Study to Investigate Runway Capacity Using TAAM

    Get PDF
    This study outlines a method to evaluate runway layouts using simulation, to aid in the airport planning and decision making process. As a sample study, the maximum throughput capacities of proposed expansion alternatives at Philadelphia International Airport (PHL), constrained at varying levels, are identified. The objective is to compare the ultimate airport capacities achievable for each of the different layouts to estimate their respective efficiencies in terms of runway system utilization. Given its capabilities for modeling at a very high level of detail and closely representing reality in terms of applicable separation standards and air traffic control procedures, TAAM (Total Airspace and Airport Modeller) is used to simulate each proposed alternative. Using the methodology proposed here, the baseline and the different alternatives were evaluated in terms of design functionality, sensitivity to technological and procedural improvements and overall utilization of potential capacity. Results indicate that the Diagonal concept layouts provide a better alternative, irrespective of the set of constraints on the airport

    3D-in-2D Displays for ATC.

    Get PDF
    This paper reports on the efforts and accomplishments of the 3D-in-2D Displays for ATC project at the end of Year 1. We describe the invention of 10 novel 3D/2D visualisations that were mostly implemented in the Augmented Reality ARToolkit. These prototype implementations of visualisation and interaction elements can be viewed on the accompanying video. We have identified six candidate design concepts which we will further research and develop. These designs correspond with the early feasibility studies stage of maturity as defined by the NASA Technology Readiness Level framework. We developed the Combination Display Framework from a review of the literature, and used it for analysing display designs in terms of display technique used and how they are combined. The insights we gained from this framework then guided our inventions and the human-centered innovation process we use to iteratively invent. Our designs are based on an understanding of user work practices. We also developed a simple ATC simulator that we used for rapid experimentation and evaluation of design ideas. We expect that if this project continues, the effort in Year 2 and 3 will be focus on maturing the concepts and employment in a operational laboratory settings

    Formal specification and analysis of take-off procedure using VDM-SL

    Get PDF
    traffic management system is a complex adaptive and safety critical system which requires considerable attention for its modelling and verification. Currently Air traffic control (ATC) systems are heavily dependent upon human intervention at airport causing accidents and delays because of failure of communication. The purpose of this study is to develop, plan, manage and verify aircrafts movement procedures at the airport surface that prevent delays and collisions. The airport surface is decomposed into blocks and represented by the graph relation. The state space of the system is described by identifying all the possible components of the system. The ground and local controls monitor queues of the aircrafts moving from taxiway to take-off. It is insured that once an aircraft is inserted into a queue, it is eventually removed from it after the next queue has become available. The take-off procedure is provided using graph theory and Vienna Development Method Specification Language (VDM-SL) and analyzed using VDM-SL toolbox. Formal specification of graph-based model, taxiways, aircrafts, runways and controllers is provided in static part of the model. The state space analysis describing take-off algorithms is provided by defining optimal paths and possible operations in dynamic model expediting the departure procedure. The model is developed by a series of refinements following the stepwise development approach. The delays at airport surface require effective safety and guidance protocols to control air traffic at the airport. In static model, the safety criteria are described in terms of invariants over the data types carrying critical information. The safety is insured by defining pre/post conditions in description of operations for changing state space of the system. Although the proposed study is focussed more on the safety component, however, the efficiency is not ignored. Document type: Articl

    Initial Investigation of Operational Concept Elements for NASA's NextGen-Airportal Project Research

    Get PDF
    The NextGen-Airportal Project is organized into three research focus areas: Safe and Efficient Surface Operations, Coordinated Arrival/Departure Operations Management, and Airportal Transition and Integration Management. The content in this document was derived from an examination of constraints and problems at airports for accommodating future increases in air traffic, and from an examination of capabilities envisioned for NextGen. The concepts are organized around categories of constraints and problems and therefore do not precisely match, but generally reflect, the research focus areas. The concepts provide a framework for defining and coordinating research activities that are, and will be, conducted by the NextGen-Airportal Project. The concepts will help the research activities function as an integrated set focused on future needs for airport operations and will aid aligning the research activities with NextGen key capabilities. The concepts are presented as concept elements with more detailed sub-elements under each concept element. For each concept element, the following topics are discussed: constraints and problems being addressed, benefit descriptions, required technology and infrastructure, and an initial list of potential research topics. Concept content will be updated and more detail added as the research progresses. The concepts are focused on enhancing airportal capacity and efficiency in a timeframe 20 to 25 years in the future, which is similar to NextGen's timeframe

    Reducing Runway Incursions: The Role of Collaboration, Education, and Training

    Get PDF
    Runway incursions are a major threat to aviation safety and can cause major delays and collisions that have significant human and financial implications for airlines. This study investigated how training, education, and collaboration may be improved to reduce the occurrence of runway incursions at airports. Data collection involved interviews, a focus group, and document analysis to explore the participants’ perceptions. The interviews and focus group involved a purposive sample of 12 pilots, air traffic controllers, airport administrators, and ground personnel. The interviews and focus group transcripts were chunked, coded, and patterns sought to form five key themes addressing the research question: exercising key safety practices, effective communication, a greater focus on scenario-based training, need for greater standardization, and more collaboration and partnership among stakeholders. The findings have the potential to influence Federal Aviation Administration’s (FAA) decision-making through resource allocation for improving runway safety, as well as to inform the prevention of runway incursions through improvements to education, training, and collaboration

    Airport Characterization for the Adaptation of Surface Congestion Management Approaches

    Get PDF
    Surface congestion management has received increased attention worldwide, largely due to its potential to mitigate operational inefficiencies and environmental impact. Most prior efforts have focused on demonstrations of a proposed congestion management approach at a particular airport, and not on the adaptation of a particular approach to a range of airport operating environments. This paper illustrates the challenges involved with adapting any class of surface congestion management approaches to different airports. Data and case studies from Boston Logan International Airport, New York’s LaGuardia Airport and Philadelphia International Airport are used to illustrate the diversity in operating environments. The paper then proposes techniques for characterizing airport surface operations using site surveys and operational data. Finally, it shows how these characterizations can be used for the adaptation of a given congestion management approach to different airports.This work was supported by the Federal Aviation Administration’s Office of Environment and Energy through MIT Lincoln Laboratory and the Partnership for AiR Transportation Noise and Emissions Reduction (PARTNER)

    Urban Air Mobility: Systematic Review of Scientific Publications and Regulations for Vertiport Design and Operations

    Get PDF
    Novel electric aircraft designs coupled with intense efforts from academia, government and industry led to a paradigm shift in urban transportation by introducing UAM. While UAM promises to introduce a new mode of transport, it depends on ground infrastructure to operate safely and efficiently in a highly constrained urban environment. Due to its novelty, the research of UAM ground infrastructure is widely scattered. Therefore, this paper selects, categorizes and summarizes existing literature in a systematic fashion and strives to support the harmonization process of contributions made by industry, research and regulatory authorities. Through a document term matrix approach, we identified 49 Scopus-listed scientific publications (2016–2021) addressing the topic of UAM ground infrastructure with respect to airspace operation followed by design, location and network, throughput and capacity, ground operations, cost, safety, regulation, weather and lastly noise and security. Last listed topics from cost onwards appear to be substantially under-represented, but will be influencing current developments and challenges. This manuscript further presents regulatory considerations (Europe, U.S., international) and introduces additional noteworthy scientific publications and industry contributions. Initial uncertainties in naming UAM ground infrastructure seem to be overcome; vertiport is now being predominantly used when speaking about vertical take-off and landing UAM operations
    • 

    corecore