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Abstract—Surface congestion management has received increased 
attention worldwide, largely due to its potential to mitigate 
operational inefficiencies and environmental impact. Most prior 
efforts have focused on demonstrations of a proposed congestion 
management approach at a particular airport, and not on the 
adaptation of a particular approach to a range of airport 
operating environments. This paper illustrates the challenges 
involved with adapting any class of surface congestion 
management approaches to different airports. Data and case 
studies from Boston Logan International Airport, New York’s 
LaGuardia Airport and Philadelphia International Airport are 
used to illustrate the diversity in operating environments. The 
paper then proposes techniques for characterizing airport 
surface operations using site surveys and operational data.  
Finally, it shows how these characterizations can be used for the 
adaptation of a given congestion management approach to 
different airports.      

Keywords-airport congestion control; departure planner;  
surface manager; deployment; performance characterization 

I.  INTRODUCTION 
Surface congestion is a problem faced by most major 

airports, and results in increased taxi times, fuel burn and 
emissions. A recent study of major US airports estimated that 
Philadelphia International Airport (PHL) was congested about 
16% of the time, and that more than 27% of its departures took 
off when the airport was in a congested state. The resultant 
taxi-out times, and therefore fuel burn, of these flights in 
congestion are nearly double their unimpeded values [1].  

Observations such as the above have motivated the 
development of airport surface congestion management 
strategies. These algorithms range from the aggregate 
approaches demonstrated at Boston (BOS) and Dallas Fort 
Worth (DFW), to the aircraft-specific approach tested at New 
York John F. Kennedy airport (JFK). Each of these approaches 
has been designed and tailored for one particular airport. 
However, there is a desire to successfully extend each of these 
approaches to other airports. System identification, namely, the 
detailed characterization of the airport operating environment 
and performance, is a critical step in this process, and is the 
focus of this paper.   

II. RELATED EFFORTS 
There have been several efforts in the United States and 

Europe to develop and implement surface congestion 
management strategies, especially in the context of Airport 
Collaborative Decision Making (A-CDM). Examples include 
the field-testing of the Pushback Rate Control strategy at BOS 
[2,3], the Tower Flight Data Manager (TFDM) demonstration 
at Dallas Fort Worth (DFW) airport [4], the field evaluation of 
the Collaborative Departure Queue Management concept at 
Memphis (MEM) airport [5], the Surface Congestion 
Management Program at New York JFK airport [6,7], the 
human-in-the-loop simulations of the Spot and Runway 
Departure Advisor (SARDA) concept at DFW [8], the trials of 
the Departure Manager (DMAN) concept [9] in Athens 
International airport (ATH) [10], and the Airport Collaborative 
Decision Making (A-CDM) implementations at London 
Heathrow (LHR), Frankfurt (FRA), Amsterdam (AMS), 
Helsinki (HEL) and Paris Charles de Gaulle (CDG) Airports 
[11]. There has also been increased interest from major airports 
in Asia (e.g., Bengaluru International Airport (BLR) in India, 
as well as China and Singapore [12]) in A-CDM. The above 
surface management approaches can be broadly classified as 
aggregate approaches that are implemented by the airport tower 
[2,3,4], airline-specific allocation approaches [5], and aircraft-
specific metering approaches [6-11]. 

Prior surface congestion management efforts have differed 
both in their implementation details and in the underlying 
algorithms. The specifics of implementation vary significantly 
depending on the operating procedures at the airport, the level 
of automation in the decision support tools, etc. However, it 
may be possible to deploy the same general congestion 
management algorithm at multiple airports with some tuning of 
parameters to suit the particular airport. In order to maximize 
the return on investment, it is desirable to develop techniques 
that will aid in the airport-specific adaptation of different 
surface congestion management algorithms. Such techniques 
will also enable the evaluation and comparison of different 
algorithmic approaches. 

It is important to note that airport-specific adaptation is 
essential for the practical implementation of any of the 
approaches mentioned in the previous section. Each of those 

*This work was sponsored by the Federal Aviation Administration (FAA) 
under Air Force Contract FA8721-05-C-0002. Opinions, interpretations, 
conclusions, and recommendations are those of the authors and are not 
necessarily endorsed by the United States Government. 
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algorithms requires the prediction of airport capacity and 
throughput, taxi times, and other performance characteristics 
over a range of operating conditions.  This paper addresses this 
critical need by proposing techniques for the characterization of 
different airport environments, with the ultimate objective of 
enabling widespread deployment of surface congestion 
management algorithms. The proposed techniques combine 
qualitative observations through site surveys and data 
visualization, with a quantitative analysis of operational data. 
The techniques characterize airport operations by identifying 
aspects that are common across multiple airports, as well as 
those that differ within the same airport, depending on 
operating conditions (e.g., runway configuration, weather 
conditions, demand levels, etc.) Finally, the proposed 
characterization approaches also help in estimating 
performance metrics that can be used in evaluating the benefits 
of different congestion mitigation schemes. 

III. DESIGN OF CONGESTION MANAGEMENT APPROACHES 

The overall process of designing a congestion management 
approach is illustrated in Figure 1. The main steps involved in 
this process are: (1) Airport Selection, where an airport with 
surface congestion problems are identified; (2) Airport 
Characterization, where the details of the operation relevant to 
surface congestion management at an airport are identified; (3) 
Algorithm Development, where specific surface congestion 
management approaches are created; (4) Implementation 
Design, where the protocols of the execution of the algorithms 
are developed for the airport; and (5) Operational Testing and 
Performance Evaluation, where the approach is tested and 
evaluated in the operational setting. Assuming candidate 
airports have been selected, each of the subsequent elements 
are discussed in more detail in the following sections, with the 
Airport Characterization piece receiving most attention given 
the focus of this paper. 

Airport Characterization

Algorithm Development
e.g., Aggregate, Airline-, Aircraft-specific approaches

Implementation Design
e.g., Operational procedures, DSTs

Operational Testing & Performance Evaluation
e.g., Live testing & analysis of algorithms

Site
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e.g., Identification of congested airports which could 

benefit from surface congestion management

 

Figure 1.  Overall design process for a congestion management approach. 

IV. AIRPORT CHARACTERIZATION METHODOLOGY 

The three key airport characterization elements described 
here are site visits, visualizations and operational data analysis, 
which work together iteratively to help researchers develop an 
understanding of the characteristics of a given airport. Three 
airports, Boston (BOS), LaGuardia (LGA) and Philadelphia 
(PHL), are used as case studies in the discussions in this paper. 
For reference, the layouts of the three airports are shown in 
Figure 2. 

BOS LGA

PHL  

Figure 2.  Airport diagrams of BOS, LGA, and PHL airports, showing 
number and orientations of runways. 

A. Site Visits 

Site visits allow researchers to get first-hand knowledge of 
the specific characteristics of individual airports which can be 
invaluable in determining their feasibility for surface 
congestion management. Primary benefits of visits include: 

 
 Better understanding of the physical layout of the airport, 

its equipment levels and operational characteristics such 
as carrier and fleet mix. 

 First-hand observations of operations to better understand 
standard procedures and current challenges at the airports. 

 Ability to gather expert opinions from air traffic control 
professionals at the airport to help understand operations, 
get answers to key questions relevant to surface 
congestion management and to identify potential 
opportunities for mitigation. 

 
An example of the assessment of physical layout of the 

airport, ATC tower and equipage levels from a site visit to 
LGA is provided in Figure 3. The management of pushback 
processes is of critical importance to surface congestion 
management techniques, and this figure highlights (in red 
boxes) the location of airline ramp towers at the airport from 
which the pushback control occurs. The layout of the FAA air 
traffic control tower is also illustrated, showing the locations 
of the personnel responsible for the various tasks in the tower, 
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what equipment they have available to them, and the nominal 
flow of the flight progress strips through the tower system 
(which mirror the physical movement of the aircraft through 
the airport processes). 
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Figure 3.  LGA site visit physical layout and equipage. 

An example of the insights that can be gained from site 
visits to LGA are presented in Figure 4. This shows the 
nominal arrival (in red) and departure (in green) taxi routes for 
one of the main configurations at the airport, as well as 
examples of some of the operational challenges (in magenta 
dashed line) identified through observations and expert 
discussions. These highlight where interactions between 
standard taxi operations (handled in the ATC tower at LGA) 
and pushback processes (initiated from the ramp towers) may 
occur and hence help inform the need for, and implementation 
strategies of, surface congestion management processes at that 
airport. Similar site visits have been conducted at other 
locations, including BOS and PHL. 

Arrivals

Departures

Extended departure taxi
route to queue aircraft
during periods of high

demand or with re-routes

Nominal departure taxi route via B and P

Nominal arrival taxi route:
depart 22, taxi via B and A

Single aircraft push-back
fully blocks alley-way

Single aircraft push-back
can block arrival taxi route

Queues observed to
form short of taxiway GG

(hand-off point between GCs)

 
Figure 4.  LGA site visit standard operations and challenge identification. 

B. Qualitative visualization of surface dynamics 

Site visits can provide significant insights into operations 
on a specific day, but a broader understanding of operations 
across a range of operating conditions (e.g., demand, airport 
configuration, weather conditions, etc.) can be gained through 
visualizations of surface traffic. In particular, data from the 
Airport Surface Detection Equipment, Model X (ASDE-X) 
surveillance system provides track data for individual flights 
on the airport surface at a 1 Hz update rate. This data is being 

archived for a number of airports, which in turn allows 
detailed traffic visualizations to be created for those sites using 
appropriate mapping software. This provides a dynamic look 
into aircraft movements on the surface under different 
operating conditions to better understand: 

 
 Surface procedures, e.g., in terms of standard taxi routes; 

runway exit, entry and crossing locations; aircraft holding 
locations, etc. 

 Surface characteristics, e.g., in terms of typical aircraft 
queuing locations. 

 Dynamics of demand as a function of gate, terminal and 
runway throughout the operating day. 

 Dynamics of interactions, e.g., between arrivals and 
departures on runways, taxiways and ramp areas. 
 

Each of these characteristics is relevant for surface 
congestion management, either in terms of defining the need 
for or informing specific implementation approaches. An 
example of some of these insights is illustrated in the 
visualization snapshot from LGA operating under 
configuration 22 | 13 shown in Figure 5.  

Departure 
Queues

Holding 
Area

Arrival/Departure 
Interaction

Standard 
Taxi Routes

 
Figure 5.  LGA visualization snapshot. 

This is an example of a heavy-demand departure queue for 
runway 13, with departures again represented by green icons 
and arrivals by red icons. It highlights several of the airport 
characteristics identified above. Firstly, the locations of the 
departing aircraft clearly define the standard taxi routes for 
this configuration, and confirm the taxi routes identified from 
the site visit illustrated in Figure 4. Secondly, the location of 
stationary aircraft identified from the ASDE-X data, shown by 
the two yellow boxes, allows queue boxes to be identified. 
Defining queue boxes is an important element of surface 
congestion management as the numbers of aircraft in these 
areas are essential control variables. In this period of high 
demand, the queue extends all the way to the opposite end of 
the departure runway. The need to cross the arrival runway 
adds to the congestion and is a dynamic which would also 
need to be taken into account in any congestion management 
strategy. 
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Departing aircraft with ground holds add more congestion 
and are handled differently at every airport. The light blue box 
is a waiting area for such aircraft. Because LGA does not have 
much free surface space, the location changes with each 
configuration. 

Lastly, the interaction between arrivals and departures can 
be seen occurring in the inset. In this example, there are gate 
conflicts for some arriving aircraft. Since they cannot 
immediately proceed to their gate, they must instead pass by 
their gate and wait in the area highlighted in orange. Once the 
gate is free, an aircraft joins the departure queue and slowly 
moves back to its gate. 

 
The visualizations for PHL were used to study similar 

characteristics. One unique finding, specifically in 
configuration 9R | 9L, is that departure queues during periods 
of high demand often extended far enough back on the main 
taxiway to block several of the ramp areas. The visualizations 
may also lead to more questions. In the process of defining 
queue boxes it was noted that departure runway 27L has five 
feeder taxiways, but the visualizations did not reveal any 
specific method for determining which taxiway the next 
departing aircraft would come from. Such questions can be 
noted and then asked during site visits for further clarification. 

C. Operational Data Analysis 

There are various sources of operational data which can be 
used to perform analyses of relevance to surface congestion 
management, including ASDE-X archives and the Aviation 
System Performance Metrics (ASPM) database. While ASDE-
X was originally designed to enhance safety, its high 
accuracy/update rate allows the surveillance data to be of high 
value to the airport characterization task. The availability of 
ASDE-X at the 35 OEP airports in the US makes it particularly 
attractive for this effort. However, much of the analyses 
presented below can be carried out with data from the ASPM 
database, which provides the Out, Off, On and In (OOOI) times 
of flights in the US National Airspace System. More detailed 
analyses, such as the measurement of departure queues and 
runway utilization, require the high-fidelity of ASDE-X data. 
The following sections present some of the key analyses which 
can be conducted to inform surface congestion management 
approaches. 

1) Diversity of runway configuration use 
In order to adapt a congestion management strategy to a 

particular airport, it is first important to identify the runway 
configurations that are most commonly used as this impacts 
which configurations are most important from a surface 
congestion management perspective. The frequencies of 
runway configuration usage at BOS, LGA and PHL in the 
summer months of 2011 derived from ASDE-X data are 
presented in Figure 6.  

We see that while BOS is predominantly in one of two 
configurations (4R, 4L | 9, 4R and 22L, 27 | 22R, 22L), while 
LGA is significantly more heterogeneous in its configuration 
usage. By contrast, PHL spends nearly 77% of the time in the 
some variant of the 27R | 27L configuration, since there are 
only occasional operations on runways 35/17 and 26. From an 

adaptation perspective, algorithms at PHL and BOS will need 
to be tuned for two main configurations in order to be valid 
over 95% of the time, where as those at LGA will need to adapt 
to five different configurations in order to be valid to the same 
extent. 

33L | 27
22L, 22R | 15R

27 | 33L

22L, 27 | 22R, 22L

4R, 4L | 9, 4R

BOS Runway Configuration Usage; 6/1/11-8/31/11

47%

47%

 
 

4 | 4
4 | 13

4 | 31
13 | 4, 13

22 | 13

22 | 22

22 | 31

31 | 4

31 | 31

LGA Runway Configuration Usage; 6/1/11-8/31/11

12%

26%

17%

37%

 
 

9R | 9R
9L | 9L

27L | 27L

27R | 27R

9R | 9L

27R | 27L

PHL Runway Configuration Usage; 6/1/11-8/31/11

17%

77%

 
Figure 6.  Runway configuration usage at BOS, LGA and PHL. 

 

2) Airline operations mix 
As part of airport characterization, it is necessary to study 

the mix of airline operations at a given airport in order to 
choose an appropriate congestion management strategy. This 
data analysis defines who the main airline stakeholders are for 
each airport. Any sort of air traffic operations change will 
require involving the relevant airlines in the process and 
adjusting the algorithm to any specifications or requirements 
from the airlines. The airline operations mix at BOS, LGA and 
PHL are shown in Figure 7.  In these case studies, we see PHL 
is a hub for USAirways, with 68% of airport operations 
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occurring by this dominant carrier. Conversely, BOS and LGA 
operations are divided among more carriers. 

The airline mix at a given airport will influence the type of 
congestion management strategy chosen. An airport which is 
dominated by one airline, as in the case of an airline hub, 
could more easily utilize an airline-specific congestion 
management strategy, whereas an airport where the operations 
are more equally split amongst several airlines might be more 
suitable for an aggregate solution, not tailored to any one 
specific airline.  
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Figure 7.  Airline mix at BOS, LGA and PHL. 

3) Traffic demand/taxi time characteristics 
Because the operations for each configuration can vary 

significantly, the airport surface dynamics must be analyzed 
for each configuration separately in order to create the most 
effective congestion management strategy. Once the dominant 
configurations have been established for a given airport, the 
surface operation can be characterized for the dominant 
configurations. The three figures below show the dynamics of 
aircraft demand, taxiing, and queuing for the dominant 
configuration at BOS, LGA and PHL respectively. Studying 
the magnitude and scope of such metrics can inform both the 
need for surface congestion management and the potential 
benefits derived. 

The average values for active departures, queue sizes and 
taxi times over Summer 2011 are shown in Figure 8. The 
active departures are the number of departing aircraft which 
have pushed back from the gate but have not yet taken off. We 
see there is a similarity in the shape of the curves for active 
departures, queue size and taxi time within each airport. As 
expected, an increase in departure demand correspondingly 
increases taxi times and queue sizes. 

One characteristic worth noting is the difference in the 
magnitude and dynamics of demand between each of the 
airports. We see BOS exhibits relatively low demand 
throughout the day with congestion peaking at the evening 

push. LGA exhibits congestion throughout the day, with 
increased levels seen in the morning and evening. By contrast, 
PHL demand shows a peak roughly every two hours. This is 
attributed to PHL being a hub airport for USAirways, 
exhibiting a banking effect as typical for airline hub 
connections. 
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Figure 8.  Traffic demand & taxi time characteristics for BOS, LGA & PHL. 

Looking at these plots can help inform the need for surface 
congestion management strategies. At BOS, the periods of 
congestion are fairly sporadic, with a typical evening time 
period of congestion. An airport like this may only need to 
utilize congestion management techniques during a certain 
time period of the day. LGA, by contrast, has fairly constant 
congestion throughout the day. Such an airport could benefit 
from consistent use of congestion management techniques. At 
PHL, demand rises and falls quickly so a solution might only 
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be used intermittently here. These differences could be applied 
more generally as classes of airports for deploying similar 
congestion management algorithms at multiple airports. 

Both the queue sizes and taxi time measurements can be 
used for predicting potential benefits of various surface 
congestion management techniques. These are also key 
metrics to be used in the next phase of algorithm development 
for tailoring a given strategy to an individual airport. 

 
4) Throughput saturation curves 

ASDE-X data is also used to model the throughput 
characteristics of a given airport.  A useful characterization of 
the throughput performance is to consider the plot of the 
takeoff rate (or departure rate) as a function of the number of 
active departures [2,13].  This plot for the 22 | 13 runway 
configuration at LGA is show in Figure 9. The throughput plots 
typically exhibit saturation in the departure rate beyond a 
certain number of active departures, and are therefore referred 
to as throughput saturation curves. Key parameters associated 
with these plots include the number of active departures 
corresponding to saturation, and the associated sustained 
departure throughput (about 11 aircraft and 0.6 departures/min 
respectively, in Figure 9). We also note that the standard 
deviation associated with the sustained departure throughput 
can be quite high, due to the different sources of uncertainty in 
airport operations, such as, arrival demand, ATC workload, 
downstream airspace constraints, fleet mix, etc. 
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Figure 9.  Throughput saturation curve for 22 | 13 runway configuration at 

LGA. The solid line shows the mean, and the dotted lines show one standard 
deviation from the mean values. 

The throughput saturation curves can differ significantly 
between two configurations at the same airport, as is illustrated 
in Figures 10 and 11 for the 9R | 9L and 27R | 27L 
configurations at PHL. A comparison of the two figures shows 
that although the same two physical runways are being used in 
each configuration with the directions reversed, the runway 
configuration that uses runway 27R for arrivals and 27L for 
departures achieves a significantly higher departure throughput 
(mean of 48 departures/hour) that the one that uses 9R for 
arrivals and 9L for departures (mean of 42 departures/hour). 
We also note that the 27R | 27L runway configuration saturates 
at a lower value of active departures than 9R | 9L. One possible 
explanation for both the above observations is that the use of 
the outer parallel runway for arrivals increases the number of 
active crossings of the departure runway, thereby decreasing 
the departure throughput. The significant differences in the 
throughput saturation curves implies that the algorithms 
described in Section V will need to be tuned to different 
parameters depending on the runway configuration. 
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Figure 10.  Throughput saturation curve for 27R | 27L configuration at PHL. 
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Figure 11.  Throughput saturation curve for 9R | 9L configuration at PHL. 

Configurations across different airports that look similar at 
first glance can in reality have significantly different 
throughput saturation curves, due to differences in overall 
airport layout, runway lengths, procedures, etc. Figure 12 
shows the throughput saturation curve for the 22L, 27 | 22R, 
22L configuration at BOS, which is similar to the 9R | 9L 
configuration at PHL in the sense that the outer runway is used 
for arrivals and the inner one is used for departures. There are 
occasional departures on 22L as well, but 22R and 22L are 
treated as a single runway in operational practice.  
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Figure 12.  Throughput saturation curve for 22L, 27 | 22R, 22L configuration 
at BOS. 

Despite the similarity between the two sets of operations, 
we note that the throughput saturation curves (Figures 11 and 
12) are considerably different, possibly because of the 
differences in their operational procedures, airport layout, etc. 
Throughput saturation curves also illustrate the differences 
between theoretical and empirical capacity estimates, which 
can differ due to factors such as airport layout, procedures and 
human factors [14,15]. 

Finally, the throughput saturation curves also demonstrate a 
key benefit of limiting the number of active departures, 
namely, the deterioration in departure throughput at very high 
levels of departure traffic. This phenomenon is clearly seen in 
Figure 10, where the departure throughput initially increases, 
but then starts to decrease as the number of active departure 
exceeds 20 aircraft. It is conjectured that very high levels of 
traffic increase complexity and controller workload, and result 
in a deterioration of performance. 
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V. ALGORITHM DEVELOPMENT 

The underlying logic in most of the airport management 
efforts mentioned in Section I relies on determining some 
indicator of congestion on the surface, and then trying to 
control pushbacks to maintain that indicator below some value. 
The level of traffic on the surface and the length of the 
departure queue are the quantities most often used as an 
indicator of surface congestion. For instance, the Pushback 
Rate Control protocol tested in 2010 controlled pushbacks in 
order to maintain the number of active departures on the 
surface below a predetermined value, denoted NCtrl [2].  Other 
approaches, such as A-CDM, control pushbacks during periods 
in which the demand exceeds the declared capacity [11]. The 
algorithms therefore require (1) the prediction of the indicator 
variable, and (2) determination of the threshold value beyond 
which pushbacks will be controlled. The threshold value is 
sometimes determined manually by an expert on the field [5-7], 
and sometimes from the throughput saturation plots described 
in the previous section [2,4].  By contrast, the variant of 
Pushback Rate Control tested in 2011 used operational data to 
determine the optimal pushback rate as a function of the 
predicted length of the departure runway queue at the next time 
period, and used the current observations of the number of 
taxiing departures and the length of the departure queue to 
predict the departure runway queue at the next time period [3]. 
A common feature in nearly all the approaches is the need to 
accurately predict airport throughput in some time period, 
which can be done, for instance, using the throughput 
saturation plots of Section IV, and the observed number of 
active departures. 

Table I presents the values of sustained departure 
throughput and the number of active departures at which the 
throughput saturates, for different runway configurations at 
BOS, LGA and PHL. These values can be determined through 
an analysis of the corresponding throughput saturation plots. 

TABLE I.  SUSTAINED DEPARTURE THROUGHPUT AND CORRESPONDING 
NUMBER OF ACTIVE DEPARTURES, FOR DIFFERENT RUNWAY CONFIGURATIONS 

AT BOS, LGA AND PHL. 

  Saturation point   
(# active dep.) 

Sustained dep. 
throughput (ac/hr) 

BOS 
4R, 4L | 9, 4R 17 48 

22L, 27 | 22R, 22L 13 45 

LGA 

22 | 13 11 36 

31 | 4 15 40 

22 | 31 18 42 

4 | 13 15 36 

PHL 
27R | 27 L 12 48 

9R | 9L 20 40 

 

After the initial development of a congestion management 
algorithm, the next step is to assess its potential impacts 
through simulations. The data analysis presented in Section IV 
can be used to develop “what-if” simulations, in order to 
estimate the impacts of the algorithms being considered for 
implementation [2,16]. In addition to assessing the potential 

pool of benefits achievable with a particular algorithm (for 
example, a particular choice of NCtrl [2]), simulations can also 
help evaluate potential challenges (such as an increase in gate-
use conflicts due to departure metering) prior to 
implementation. 

For example, prior work showed that if the taxi-out times of 
all flights in congestion periods (that is, they pushed back when 
the number of departures on the surface exceeded the saturation 
point) was decreased to their expected value when the airport 
was at the saturation point, there would be significant 
reductions in taxi-out times, fuel burn, and emissions [1]. PHL, 
under such a policy, would benefit from an approximately 
13.5% decrease in these quantities, resulting in savings of 2.9 
million gallons of jet fuel, nearly 22,000 kg of HC, more than 
212,000 kg of CO and more than 37,000 kg of NOx per year. 
BOS, although less congested than PHL, would benefit from a 
6.5% decrease in these impacts, or the estimated savings of 
900,000 gallons of jet fuel per year, along with 6,000 kg of HC, 
64,000 kg of CO and 11,000 kg of NOx savings annually [1]. 
Simulations show that LGA, when similarly controlled to its 
saturation value, would save an estimated 242,000 gallons of 
fuel in the 31 | 4 configuration alone, even after gate-conflicts 
with arriving aircraft were resolved. Such simulation-based 
estimates of the benefits potential of the final refined algorithm 
can be then be compared to the benefits actually achieved in 
the operational setting, as described next.  

VI. IMPLEMENTATION DESIGN 

Once a candidate surface congestion management algorithm 
has been developed, it is necessary to design implementation 
strategies which allow it to be tested in an operational setting. 
The factors which need to be considered when developing an 
implementation design for any particular airport include: 

 
 Airport/ATC tower operating characteristics. 
 Algorithm information input requirements. 
 Algorithm execution platform. 
 Algorithm output format. 
 Algorithm execution procedures. 

 
1) Airport/ATC operating characteristics 
This includes factors such as whether the pushbacks are 

ramp tower or FAA tower-controlled, equipage levels in the 
various towers, and the layout of the ATC tower. The primary 
pushback management location is critical because this impacts 
to whom the congestion management recommendations should 
be presented. The site visits previously described allow many 
of these factors to be established early in the assessment of the 
suitability of an airport for surface congestion management 
such that any constraints or opportunities afforded at a site can 
be accounted for. 

  
2) Algorithm information input requirements 
Different information input requirements may exist 

depending on the specifics of the algorithmic implementation. 
Estimates of capacity and demand at suitable time horizons 
into the future are of critical importance to all surface 
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congestion management implementations, as they drive the 
expected congestion levels. Capacity estimates are largely 
driven by availability of reliable forecasts of airport 
configuration and weather conditions (e.g., visibility, ceiling, 
etc.) which impact airport arrival and departure rates. In terms 
of demand forecasts, aggregate pushback rate implementation 
schemes require availability of overall demand estimates over 
a suitable time horizon, while airline-specific allocation 
approaches may require the forecast demand to be 
disaggregated by carrier. Aircraft-specific approaches may 
additionally require the aggregate demand to be broken down 
into which exact flights are forecast to be pushing-back in 
specific time bins into the future. The availability (or 
otherwise) of these data will play a large role in the type of 
congestion management algorithm suitable for a given airport. 

 
3) Algorithm execution platform 
Many of the field trials of surface congestion management 

conducted to date have produced their own platform for 
algorithm execution. For example, Phase 1 of the BOS field 
trials [2] utilized a paper-based procedure relying on 
researchers in the ATC tower to gather the appropriate input 
data (e.g., from visual observation of operations and through 
other tower computer systems) together with pre-computed 
throughput saturation curves to manually determine the 
appropriate pushback rate in 15 minute intervals. Phase 2 of 
the trials at BOS evolved to use tablet computer devices into 
which the key input data was entered, and the recommended 
aggregate pushback rates were then calculated automatically 
(using the same curves as the manual process). By contrast, 
the implementations at JFK, MEM and DFW have used 
dedicated decision support tools (DSTs) in the tower into 
which key input data is either automatically populated (if 
suitable electronic feeds are available) or manually entered by 
controllers or airline personnel. 

 
4) Algorithm output format 
The algorithm execution platform generally corresponds to a 

form of output to manage surface congestion. For example, the 
initial paper-based procedures at BOS resulted in a congestion 
management recommendation in terms of a suggested 
pushback rate communicated by color-coded cards to the gate 
controller in the ATC tower. This information was 
subsequently displayed on the tablet device when that was the 
algorithm execution platform in later trials, while dedicated 
DST displays were employed in the JFK, MEM and DFW 
implementations. 

 
5) Algorithm execution procedures 
All of the elements above are brought together into specific 

procedures to execute the chosen algorithm. For example, this 
would cover the roles and responsibilities for different 
researchers and/or ramp/airline/ATC tower personnel when 
conducting surface congestion management with the system. 
An example of the resulting implementation design used in the 
Phase 2 BOS trials is shown in Figure 13.  

 

Tablet 1:
Data input

Tablet 2:
Recommended

push-back
rate display

BOS Tower Cab

Capacity
(Airport Configuration,
Weather Conditions
(VMC/IMC))

Demand
(Aircraft with Ground/Local
Control, Expected arrivals)

 
Figure 13.  BOS field trial example implementation. 

BOS is an FAA tower-controlled pushback airport, where 
the pushback rate recommendation is made to a gate 
controller. In this implementation, researchers entered the 
required algorithmic inputs into a tablet device (shown on the 
right), which in turn used the appropriate throughput 
saturation curve (pre-computed from ASDE-X data analysis) 
to determine the recommended push rate. The researchers in 
this implementation verified the recommendation with the 
tower supervisor, after which it was transmitted to a second 
tablet device located at the gate control position for execution. 

It is seen that the aggregate control approach adopted in the 
BOS implementation could be accomplished entirely from 
within the FAA tower (albeit with the knowledge of other 
airport stakeholders). By contrast, schemes developed for JFK 
and MEM required active real-time participation of many 
other stakeholders, in particular constantly updated demand 
information from airlines at those airports. 

VII. OPERATIONAL TESTING AND PERFORMANCE 

EVALUATION 

1) Operational testing 
Once surface congestion management algorithms have been 

developed and implementation strategies designed, it is 
possible to test their performance in an operational setting. 
The scope of testing opportunities has varied for the different 
airport activities to date: the DFW operational testing totaled 
two weeks, the BOS trials conducted testing over two summer 
periods (35 total test days), while the JFK activities have been 
tested operationally for over a year.  Extensive operational 
testing is a critical element to ensure validity and robustness to 
a wide range of operational conditions for any surface 
congestion management scheme and/or as a basis for 
algorithm refinement (shown by the feedback in Figure 1). 
 

2) Performance evaluation: Benefits/cost assessment 
Operational testing also generates large amounts of data which 
enable benefits/costs to be estimated. Benefits are typically 
assessed by comparing appropriate performance measures 
before and after surface congestion management 
implementation, with other relevant operational factors being 
as equal as possible. Given the overall objectives of these 
activities, assessment of congestion metrics before and after 
implementation are of particular interest, particularly in terms 
of taxi times, fuel burn and emissions production. For 
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example, the two field trials at BOS resulted in a 56-67 kg 
decrease in fuel burn per gate-held flight (depending on gate 
APU use), resulting in a total saving of 6,900-8,200 gallons of 
fuel and 68-80 metric tonnes of CO2 emissions reduction over 
the trial period. Decision-makers are often interested in the 
“monetizable” impact of the deployment of a given system, 
and in the case of surface congestion management, impacts 
can be converted into passenger value of time, aircraft direct 
operating cost and fuel burn costs using standard FAA 
techniques [17]. There are also newly emerging multipliers to 
estimate the cost impacts of environmental impacts (e.g., from 
reduced engine emissions on the ground) as well [18]. 
 

3) Performance evaluation: Airport performance 
It is also important to assess whether there are any adverse 

consequences of the approaches, such as loss in departure 
capacity (discussed here) as well as impacts to other airport 
stakeholders (airlines, ground crews, etc.). There are several 
operational constraints specific for airports, which manifest 
themselves in the throughput characteristics. It is important to 
account for these effects when designing a departure 
management strategy. Inter-departure separations which drive 
throughput depend on several factors such as the weight classes 
of the leading and trailing aircraft, and their departure fixes. Air 
traffic controllers generally have formal or informal target 
inter-departure separations, and these can be compared with 
actual operations to identify sources of inefficiency. 
Operational separations can vary both above and below the 
target values. For example, conservative departure separations 
can cause the separations to be larger than the targets. On the 
other hand, certain techniques such as the use of two crossing 
runways for departures, can allow departures to take place with 
lesser separations. Figure 14 shows a graphical representation 
of departure separations at BOS when departures are on the 
two parallel runways 22R and 22L. Since both runways use the 
same departure fix, they operate as a single runway. The height 
of each spike denotes the weight class of the leading aircraft, 
while the width denotes the target departure separation. It can 
be seen that the first departure requires a separation of 65 
seconds after it. However, there is an additional 15-second gap 
before the next departure actually occurs. On the other hand, 
the next two departures happen precisely at the completion of 
the target departure separations. It should be noted that the 
width of each spike also depends on the weight class of the 
trailing aircraft, the runway configuration as well as airport-
specific considerations. However, the procedure is the same for 
identifying opportunities for improving departure efficiency. 
When consistently tracked over several months, departure 
spacing can be used to measure the average operational 
performance of the airport [19]. 

 
Figure 14.  Successive departures from runways 22R and 22L at BOS. 

In addition to assessing nominal airport performance, 
departure spacing plots can be used to evaluate the 
performance of surface management strategies, in particular, to 
identify periods when the runway was starved (a highly 
undesirable state if demand exists). By investigating time 
periods in which departure separations were larger than usual, 
one can determine whether the increased gaps were due to a 
lack of aircraft in the departure runway queue, and whether 
departure metering was responsible for the starvation of the 
runway queue [16].  

Another metric of airport performance is runway 
utilization. If runway utilization is maintained during departure 
metering, it is reasonable to expect that gate-hold times will 
translate into taxi-out time reduction. Runway utilization is 
estimated by determining (using ASDE-X data) what 
percentage of each 15-min interval corresponded to a departure 
on takeoff roll, aircraft crossing the runway, arrivals (that 
requested landing on the departure runway) on final approach, 
departures holding for takeoff clearance, etc. Figure 15 shows 
the runway utilization on an evening during the Pushback Rate 
Control trials at BOS in 2010 [16]. It is seen that between 1745 
and 2000 hours, when gate-holds were experienced, the runway 
utilization of the primary departure runway (33L) was 
maintained near 100%, with a persistent departure queue as 
well.  

 
Figure 15.  Runway utilization of the primary departure runway (33L) 

during field-tests of the Pushback Rate Control strategy in 2010 [16]. 

VIII. SUMMARY 

This paper laid the groundwork necessary for the successful 
implementation of surface congestion management strategies, 
namely the characterization of the airport operating 
environment. The proposed approach to airport characterization 
combined site surveys and the qualitative visualization of 
surface surveillance data with the quantitative analysis of 
operational data from various sources. The analysis techniques 
proposed incorporate factors such as airport and tower cab 
layouts, locations of surface queues, runway configurations, 
throughput saturation and taxi times under each configuration, 
traffic demand patterns, air carrier mix, etc. In addition to 
tuning the parameters of the congestion control algorithms, the 
paper also proposed metrics for evaluating the impact of field 
tests and implementation. It is believed that the establishment 
of approaches for airport-specific adaptations will be essential 
for the widespread deployment of surface congestion 
management strategies, and ultimately the mitigation of the 
fuel burn, emissions and noise impacts of airport surface 
operations.  
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