802 research outputs found

    Two-Variable Logic on Data Trees and XML Reasoning

    Get PDF
    International audienceMotivated by reasoning tasks in the context of XML languages, the satisfiability problem of logics on data trees is investigated. The nodes of a data tree have a label from a finite set and a data value from a possibly infinite set. It is shown that satisfiability for two-variable first-order logic is decidable if the tree structure can be accessed only through the child and the next sibling predicates and the access to data values is restricted to equality tests. From this main result decidability of satisfiability and containment for a data-aware fragment of XPath and of the implication problem for unary key and inclusion constraints is concluded

    On the analysis of stochastic timed systems

    Get PDF
    The formal methods approach to develop reliable and efficient safety- or performance-critical systems is to construct mathematically precise models of such systems on which properties of interest, such as safety guarantees or performance requirements, can be verified automatically. In this thesis, we present techniques that extend the reach of exhaustive and statistical model checking to verify reachability and reward-based properties of compositional behavioural models that support quantitative aspects such as real time and randomised decisions. We present two techniques that allow sound statistical model checking for the nondeterministic-randomised model of Markov decision processes. We investigate the relationship between two different definitions of the model of probabilistic timed automata, as well as potential ways to apply statistical model checking. Stochastic timed automata allow nondeterministic choices as well as nondeterministic and stochastic delays, and we present the first exhaustive model checking algorithm that allows their analysis. All the approaches introduced in this thesis are implemented as part of the Modest Toolset, which supports the construction and verification of models specified in the formal modelling language Modest. We conclude by applying this language and toolset to study novel distributed control strategies for photovoltaic microgenerators

    Query Answering in Probabilistic Data and Knowledge Bases

    Get PDF
    Probabilistic data and knowledge bases are becoming increasingly important in academia and industry. They are continuously extended with new data, powered by modern information extraction tools that associate probabilities with knowledge base facts. The state of the art to store and process such data is founded on probabilistic database systems, which are widely and successfully employed. Beyond all the success stories, however, such systems still lack the fundamental machinery to convey some of the valuable knowledge hidden in them to the end user, which limits their potential applications in practice. In particular, in their classical form, such systems are typically based on strong, unrealistic limitations, such as the closed-world assumption, the closed-domain assumption, the tuple-independence assumption, and the lack of commonsense knowledge. These limitations do not only lead to unwanted consequences, but also put such systems on weak footing in important tasks, querying answering being a very central one. In this thesis, we enhance probabilistic data and knowledge bases with more realistic data models, thereby allowing for better means for querying them. Building on the long endeavor of unifying logic and probability, we develop different rigorous semantics for probabilistic data and knowledge bases, analyze their computational properties and identify sources of (in)tractability and design practical scalable query answering algorithms whenever possible. To achieve this, the current work brings together some recent paradigms from logics, probabilistic inference, and database theory

    Terminological reasoning with constraint handling rules

    Get PDF
    Constraint handling rules (CHRs) are a flexible means to implement \u27user-defined\u27 constraints on top of existing host languages (like Prolog and Lisp). Recently, M. Schmidt-Schauß and G. Smolka proposed a new methodology for constructing sound and complete inference algorithms for terminological knowledge representation formalisms in the tradition of KLONE. We propose CHRs as a flexible implementation language for the consistency test of assertions, which is the basis for all terminological reasoning services. The implementation results in a natural combination of three layers: (i) a constraint layer that reasons in well- understood domains such as rationals or finite domains, (ii) a terminological layer providing a tailored, validated vocabulary on which (iii) the application layer can rely. The flexibility of the approach will be illustrated by extending the formalism, its implementation and an application example (solving configuration problems) with attributes, a new quantifier and concrete domains

    Utilization of timed automata as a verification tool for real-time security protocols

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Computer Engineering, Izmir, 2010Includes bibliographical references (leaves: 85-92)Text in English; Abstract: Turkish and Englishxi, 92 leavesTimed Automata is an extension to the automata-theoretic approach to the modeling of real time systems that introduces time into the classical automata. Since it has been first proposed by Alur and Dill in the early nineties, it has become an important research area and been widely studied in both the context of formal languages and modeling and verification of real time systems. Timed automata use dense time modeling, allowing efficient model checking of time-sensitive systems whose correct functioning depend on the timing properties. One of these application areas is the verification of security protocols. This thesis aims to study the timed automata model and utilize it as a verification tool for security protocols. As a case study, the Neuman-Stubblebine Repeated Authentication Protocol is modeled and verified employing the time-sensitive properties in the model. The flaws of the protocol are analyzed and it is commented on the benefits and challenges of the model
    corecore