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Abstract

Probabilistic data and knowledge bases are becoming increasingly important in academia
and industry. They are continuously extended with new data, powered by modern
information extraction tools that associate probabilities with knowledge base facts. The
state of the art to store and process such data is founded on probabilistic database
systems, which are widely and successfully employed. Beyond all the success stories,
however, such systems still lack the fundamental machinery to convey some of the valuable
knowledge hidden in them to the end user, which limits their potential applications
in practice. In particular, in their classical form, such systems are typically based on
strong, unrealistic limitations, such as the closed-world assumption, the closed-domain
assumption, the tuple-independence assumption, and the lack of commonsense knowledge.
These limitations do not only lead to unwanted consequences, but also put such systems
on weak footing in important tasks, querying answering being a very central one. In this
thesis, we enhance probabilistic data and knowledge bases with more realistic data models,
thereby allowing for better means for querying them. Building on the long endeavor of
unifying logic and probability, we develop different rigorous semantics for probabilistic
data and knowledge bases, analyze their computational properties and identify sources
of (in)tractability and design practical scalable query answering algorithms whenever
possible. To achieve this, the current work brings together some recent paradigms from
logics, probabilistic inference, and database theory.
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Chapter 1

Introduction

1.1 Logic and Probability

Logic is known as the science of modeling and reasoning. In mathematical logics, reasoning
is performed over statements, which have a (potential) truth value, such as being true
or false. Such statements are of a certain form and have a precise meaning, where the
former refers to the syntax, and the latter to the semantics of the logical language.
Reasoning is then the task of entailing implicit consequences from an explicitly given set
of sentences using a sound procedure.

Despite its deeply theoretical nature, logic has been unusually effective in computer
science, as noted in (J. Halpern, Harper, Immerman, Kolaitis, Vardi, and Vianu 2001),
with applications to artificial intelligence (AI), knowledge representation and reasoning,
finite model theory, databases, model checking, computational complexity, program
verification, planning and software modeling, among others. Despite its effectiveness,
traditionally, logical reasoning takes place in a deterministic universe, where any statement
is either true or false, with no intermediate truth value. However, for a variety of reasons,
which we will elaborate later, in artificial intelligence, it is often desirable to have a
rigorous framework, in which one can form uncertain statements.

Probability theory is the most widely adopted mathematical framework to formally
capture the concept of uncertainty. First axiomatized by (Kolmogorov 1933), probability
theory is now the universally accepted model of uncertainty. Essentially, probability
theory provides the foundations for modeling probabilistic events; that is, events, or
statements, which can be true or false with some degree of probability. Pearl’s develop-
ment of Bayesian Networks (BNs), a type of probabilistic graphical model, was a key
step in AI (Pearl 1988). The intuition behind their success is the capacity of compactly
representing a joint probability distribution over an event space. Important to note is
that advances in probabilistic graphical models have led to the field of statistical, or
probabilistic AI, which separated itself from classical approaches to AI.

The motivation behind marrying logic and probability is to combine the capacity of
probability theory to handle pervasive uncertainty with the capacity of mathematical
logic to exploit the structure of formal argument. We will take a first glance at some
proposals to provide a historical background and discuss some milestones in the area.

Unifying Logical and Probabilistic Approaches

Unifying logic and probability has been a very old endeavor, dating back to scientists such
as Leibniz, Boole and Carnap; for a detailed historical background on the subject, we refer
the reader to (Hailperin 1984). In the context of AI, perhaps the most ambitious work
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was Nilsson’s probabilistic logic (Nilsson 1986), which is an extension of propositional
logic, in that it allows linear inequalities representing probability bounds for propositions.
Nilsson’s logic is later supported by an axiomatization in (Fagin, J. Y. Halpern, and
Megiddo 1990). It is also extended to incorporate conditional probabilities and a deductive
calculus is given in (Frisch and Haddawy 1994). Halpern proposes and expressive first-
order probabilistic logic (J. Y. Halpern 1990) and makes a distinction between subjective
and statistical interpretation of probabilities. There is a vast literature on combining
logic and probability; see especially (J. Y. Halpern 2003) and (Bacchus 1990) and the
references therein. Importantly, many of these expressive formalisms turned out to be
computationally very demanding, if at all decidable.

Given the undesirable computational properties of expressive models, most of the
subsequent approaches were based on probabilistic graphical models, which have a rather
simple logical structure. Arguably, one of the most recent milestones in combining logic
and probability was the notion of weighted model counting. It is with the help of this
elegant notion, that logical models (as for traditional AI) and probabilistic graphical
models (as for probabilistic AI) are considered to be essentially tightly connected (Chavira
and Darwiche 2008). As the name suggests, (propositional) model counting is the task of
counting the number of satisfying assignments of a given propositional formula, which is a
natural extension of satisfiability (SAT) of propositional formulas. Weighted model count-
ing additionally incorporates a weight function over the set of all possible assignments.
Unsurprisingly, it has been noted that probabilistic inference in Bayesian networks
can be reduced to performing weighted model counting over weighted propositional
theories (Chavira and Darwiche 2008). Thus, weighted model counting, being a purely
logical notion, serves as the common ground among many different formalisms. As a
consequence, logical and probabilistic models are becoming closer and analogously to
SAT solvers (of the automated reasoning community), recent years witness significant
effort in building solvers that can do model counting and beyond.

Another major milestone was through the shift from propositional probabilistic models
to relational probabilistic models in AI. In propositional logic, one is concerned with
propositions and their interrelationships, which does not provide adequate means for
modeling relational domains, which are very common in real life. In other words, as
opposed to first-order languages, propositional logic can not express logical relationships
and properties that involve the parts of a statement smaller than the elementary state-
ments making it up. As a very simple example, consider the propositions “tim is a finch”,
“tim likes seed” and “there is a finch that likes seed”. By simple common sense reasoning,
one can exploit that the proposition “there is a finch that likes seed” is actually already
a consequence of the previous propositions. On the other hand, it is not possible to
make such a deduction in propositional logic unless this is explicitly modeled in this way,
since logical relationships and properties that involve parts of elementary propositions
such as their subjects and predicates are not taken into consideration. The expressive
power of BNs and similar models is essentially propositional. As Russell points out, the
world is uncertain and it has things in it (Russell 2015), which identifies the need for the
combination of probabilistic models with first-order representations. Thus, recent work
focuses on statistical and relational AI (Getoor and Taskar 2007; Raedt, Kersting, and
Natarajan 2016), which are relational representations of probabilistic graphical models.
Statistical relational models build on ideas from probability theory and logic while
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incorporating tools from databases and programming languages to represent structure.
These models typically employ simplifying assumptions on the logical language as well
as on the probabilistic model to keep the resulting formalism simple and can thus also
be viewed as modest versions of more elaborate models such as (J. Y. Halpern 2003)
and (Bacchus 1990).

We take these desiderata further in taking into consideration the shift to Big Data
oriented models. Unfortunately, most of the simplifying assumptions underlying common
probabilistic data models turn out to be inadequate for many application domains. The
striving research question is: Is it possible to develop more realistic data models to marry
logic and probability in the context of probabilistic Big Data? This question brings us
to the core ideas underlying the thesis.

1.2 Probabilistic Data and Knowledge Bases

In recent years, there has been a strong interest in building large-scale probabilistic
knowledge bases from data in an automated way, which has resulted in a number of
systems, such as DeepDive (Shin et al. 2015), NELL (Mitchell et al. 2015), Reverb (Fader,
Soderland, and Etzioni 2011), Yago (Hoffart, Suchanek, Berberich, and Weikum 2013),
Microsoft’s Probase (Wu, Li, Wang, and Zhu 2012), IBM’s Watson (D. A. Ferrucci 2012),
and Google’s Knowledge Vault (Dong et al. 2014). These systems continuously crawl the
Web and extract structured information, and thus populate their databases with millions
of entities and billions of tuples. The research centered around large-scale knowledge
bases serves as a new era in unifying logic and probability.

To what extent can these search and extraction systems help with real-world use cases?
This turns out to be an open-ended question. While being at their infancy, systems
such as DeepDive are now routinely used to build knowledge bases for domains such as
paleontology, geology, medical genetics, and human movement; see e.g. (Ku, Hicks, Hastie,
Leskovec, Ré, and Delp 2015) and (Peters, Zhang, Livny, and Ré 2014); it also serves as
an important tool for the fight against human trafficking (Greenemeier 2015). IBM’s
Watson is revolutionizing health-care systems (D. Ferrucci, Levas, Bagchi, Gondek, and
Mueller 2013) and many other application domains of life sciences. Google’s Knowledge
Vault has compiled more than a billion facts from the Web and is primarily used to
improve the quality of search results on the Web. Currently, it can even estimate the
trustworthiness of more than 119M sources (Dong et al.) using the extensive knowledge
stored (Marsden 2015).

From a broader perspective, the quest for building large knowledge bases serves as a new
dawn for AI research. Fields such as information extraction, natural language processing
(e.g., question answering), relational and deep learning, knowledge representation and
reasoning, and databases are taking initiative towards a common goal. Querying large-
scale probabilistic knowledge bases is commonly regarded to be at the heart of these
efforts. Perhaps the most visible application of these probabilistic knowledge bases is in
search engines. Nowadays, the standard list of relevant web pages is often augmented
with a table of structured data that pertains to the search query. For instance, the
search for Mozart (Figure 1.1a) or Beethoven (Figure 1.1b) shows a box identifying
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(a) Mozart (b) Beethoven

Figure 1.1: Information boxes for the Google search (a) Mozart and (b) Beethoven. The
information boxes are linked to the underlying knowledge base that provides
basic information about the search entities.

their children, spouse, students, place of birth, et cetera, which is clearly linked to the
underlying knowledge base.

Beyond all the success stories, however, probabilistic knowledge bases still lack the
fundamental machinery to convey some of the valuable knowledge hidden in them to the
end user (Weikum, Hoffart, and Suchanek 2016), which seriously limits their potential
applications in practice. For instance, the information shown next to search results in
Google search is highly curated, only showing facts that the search engine provider is
absolutely certain about. Other, more uncertain information is hidden from the user.
Moreover, there is no support for asking higher-level queries on top of these databases.
Even asking for a simple join query, “is there a composer who knows both Mozart and
Beethoven”, is currently beyond the scope of these systems (Dong, Gabrilovich, Heitz,
Horn, Lao, Murphy, Strohmann, Sun, and Zhang 2014), despite the fact that a potential
answer, Haydn, is an entity known by the probabilistic knowledge base (Figure 1.2a).
What makes this simple join query so hard to process and why can this knowledge not
be transmitted to the user? These questions constitute our global motivation and the
answers are linked to deep theoretical problems as well as to technical limitations, as we
outline next.

1.2.1 Probabilistic Databases

Most importantly, many large-scale knowledge bases are essentially probabilistic. To go
from the raw text to structured data, information extraction systems employ a sequence
of statistical machine learning techniques, from part-of-speech tagging until relation
extraction (Mintz, Bills, Snow, and Jurafsky 2009). For knowledge-base completion –
the task of deriving new facts from existing knowledge – statistical relational learning
algorithms make use of embeddings (Bordes, Weston, Collobert, and Bengio 2011; Socher,
Chen, Manning, and Ng 2013) or probabilistic rules (De Raedt, Dries, Thon, Van den
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(a) Haydn (b) Is there a composer who knows Mozart
and Beethoven?

Figure 1.2: Inability to perform high-level queries on large knowledge base systems.
Even though Mozart (Figure 1.1a), Beethoven (Figure 1.1b), and Haydn (Fig-
ure 1.2a) are all entities known by the probabilistic knowledge base, the ques-
tion whether there is a composer who knows both Mozart and Beethoven (Fig-
ure 1.2b) cannot be answered by this system.

Broeck, and Verbeke 2015; Wang, Mazaitis, and Cohen 2013). In both settings, the
output is a predicted fact with its probability. It is therefore common to interpret such
knowledge through a probabilistic semantics.

The most basic model is that of tuple-independent probabilistic databases (PDBs) (Su-
ciu, Olteanu, Ré, and Koch 2011), which indeed underlies many of these systems (Dong,
Gabrilovich, Heitz, et al. 2014; Shin, Wu, Wang, De Sa, Zhang, and Ré 2015). According
to the PDB semantics, each database tuple is an independent Bernoulli random vari-
able, and all other tuples have probability zero, enforcing a closed-world assumption
(CWA) (Reiter 1978).

Probabilistic databases typically lack a suitable handling of incompleteness in practice.
In particular, each of the above systems encodes only a portion of the real-world, and
this description is necessarily incomplete. For example, according to YAGO, the average
number of children per person is 0.02 (Galárraga, Razniewski, Amarilli, and Suchanek
2017). However, when it comes to querying, most of these systems employ the CWA,
i.e., any fact that is not present in the knowledge base is assigned the probability 0, and
thus assumed to be impossible, although it actually has some unknown probability in
[0, 1]. As a closely related problem, it is common practice to view every extracted fact as
an independent Bernoulli variable, i.e., any two facts are probabilistically independent.

Example 1.1 We illustrate the above serious deficiencies on the following very simple
tuple-independent PDB, which assigns the probability 0.5 to several self-explaining facts:

〈Composer(haydn) : 0.5〉 , 〈TeacherOf(haydn, beethoven) : 0.5〉 ,
〈Knows(haydn, beethoven) : 0.5〉 , 〈FriendOf(haydn,mozart) : 0.5〉 .
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Under the CWA, all the missing facts have the probability 0, i.e., they are false. Conse-
quently, the following two queries both evaluate to the probability 0 over the PDB:

Q1 := ∃x (TeacherOf(x, beethoven) ∧ BornIn(x, austria)),
Q2 := ∃x (Person(x) ∧ ¬Person(x)).

In particular, the fact BornIn(haydn, austria) is assumed to have the probability 0 (i.e.,
to be false); however, this assumption may be incorrect. Indeed, BornIn(haydn, austria)
may even have the probability 1 (i.e., may be true), which would result in Q1 having the
probability 0.5.

On the other hand, Q2 is unsatisfiable and should always have the probability 0, no
matter how incomplete the PDB is. That is, the CWA forces a very flat representation,
which makes it impossible to even distinguish a satisfiable query from an unsatisfiable one.
Furthermore, under tuple-independence, the query

Q3 := ∃x (TeacherOf(x, beethoven)∧Knows(x, beethoven))

evaluates to the probability 0.5 · 0.5 = 0.25. But Haydn being a teacher of Beethoven
already implies him knowing Beethoven; so, the probability for Q3 should actually be
0.5, instead. ♦

These observations become more dramatic once combined with another limitation of
these systems; namely, the lack of commonsense knowledge, which brings us to ontological
knowledge bases.

1.2.2 Ontological Knowledge and Probabilistic Knowledge Bases
The lack of commonsense knowledge is one of the main reasons why some obvious answers
can not be retrieved from the PDBs. This shows up in real-world applications of PDBs:
especially, in the context of Web search, where the structured information results are
linked to the underlying knowledge base.

Example 1.2 A simple join query asking whether there is a composer who knows both
Mozart and Beethoven,

Q4 := ∃x (Composer(x)∧Knows(x, beethoven)∧Knows(x,mozart)),

is evaluated to the probability 0 and thus cannot be evaluated correctly by these
systems (Dong, Gabrilovich, Heitz, et al. 2014). The answer to this query is actually in
the knowledge base: it is known that Haydn is (i) a composer, (ii) a friend of Mozart,
and (iii) one of the teachers of Beethoven. ♦

In fact, both queries “friend of Mozart”, and “teacher of Beethoven”, retrieve the
correct information pointing to Haydn, a composer known by the knowledge base.
However, explicit information about Knows(haydn,mozart) is missing, and hence this
fact is evaluated to the probability 0 by the CWA.

It is hard to process this simple join query, because current PDBs lack commonsense
knowledge: Human beings know that two persons who are friends know each other.
Reasoning exploits such basic knowledge to deduce implicit consequences from data,
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and this kind of knowledge is essential for querying large-scale PDBs in an uncontrolled
environment, i.e., the internet. Therefore, incorporating commonsense knowledge is
very important, which is inherently connected to giving up the above completeness
assumptions of standard PDBs (CWA and probabilistic independence of facts).

The crucial need to relax the independence assumption has already been recognized in
several recent approaches, which are based on Markov logic networks (MLNs) (Gribkoff
and Suciu 2016a). All these approaches have in common that they also allow for
modeling logical knowledge. However, since they are based on grounding probabilistically
independent factors of the MLN with known constants, they essentially only allow for
encoding propositional logical knowledge, and not fully fledged first-order knowledge, as
it already occurs in (rather restricted) ontology languages that are used to formulate
commonsense knowledge. That is, MLNs cannot express unknown individuals (also
called nulls), as illustrated by the following example.

Example 1.3 Consider the constraint “everyone has a parent”. Unless the parent of
an individual a is explicitly mentioned in the PDB, in an MLN this constraint means
that a must be assigned a “parent” from the known individuals; that is, a completely
random person mentioned in the database. This is due to the semantics of MLNs and
databases, which employ the closed-domain assumption. Even more dramatically, as the
number of objects in the database is fixed, this semantics forces the parent of relation to
be cyclic, i.e., some individuals will be marked as both ancestor and descendant of some
other individuals, which is clearly absurd. ♦

The closed-domain assumption, the assumption that fixes the domain of discourse to a
finite set of known constants, is incorporated as a de facto standard in almost all statistical
relational models; well-known examples are MLNs (Richardson and Domingos 2006),
relational Bayesian networks (Jaeger 1997), and function-free variants of probabilistic
logic programs such as ProbLog (De Raedt, Kimmig, and Toivonen 2007). Unfortunately,
operating over a closed domain has strong consequences as illustrated in the example.

Ontologies, on the other side, are first-order theories that formalize domain-specific
knowledge, thereby allowing for automated reasoning. The most prominent ontology
languages in the literature are based on Datalog± (Calì, Gottlob, and Kifer 2013; Calì,
Gottlob, and Lukasiewicz 2012; Calì, Gottlob, and Pieris 2012), also studied under
the name of existential rules, and on Description Logics (DLs) (Baader, Calvanese,
McGuinness, Nardi, and Patel-Schneider 2007). Interpreting databases under com-
monsense knowledge in the form of ontologies is closely related to ontology-based data
access (OBDA) (Poggi, Lembo, Calvanese, De Giacomo, Lenzerini, and 2008), which has
been widely studied in the context of classical databases, and also addresses the need for
open-world querying. In an OBDA scenario, a database query is mediated by a logical
interface to make implicit commonsense knowledge explicit: allowing for open-world
querying, this results in more complete set of answers for the query.

In this dissertation, we enhance large-scale PDBs with more realistic data models,
thereby allowing for better means for querying. We develop different rigorous semantics
for probabilistic data and knowledge bases, analyse their computational properties
and identify sources of in/tractability and design practical scalable query answering
algorithms whenever possible. To achieve this, the current work brings together some
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recent paradigms from database theory and logic for probabilistic query evaluation and
related inference tasks.

1.3 Structure of the Thesis
The thesis is organized in four parts. Part I gives an overview of the work, provides
the motivational desiderata and settles the foundational background. Part II focuses on
probabilistic databases and on common database query languages. Part III combines
probabilistic databases with logical theories, which we refer to as probabilistic knowledge
bases. Part IV includes conclusions and an outlook.

Part I: Overview and Foundations. This part is dedicated to provide a general moti-
vation of the work and to give an overview of the foundations of the respective fields
that are relevant to the thesis.

Chapter 1. This chapter provides a general introduction and illustrates the main
observations that motivated this work. We start with a rather high-level motivation,
which is followed by more concrete desiderata illustrated on simple, concrete examples.

Chapter 2. This chapter introduces the main notions used in the thesis. The first section
gives an overview on first-order logic. Subsequently, a small introduction to probability
theory is given. This chapter also contains basics of the theory of computation and a
short introduction to computational complexity theory. We finally note that this part
also settles some notation used in this work, which is used throughout the thesis.

Part II: Probabilistic Databases. This part presents the results on Probabilistic
Databases and is organized in three chapters. This part also serves as the basis for the
results presented in Part III.

Chapter 3. This chapter provides an introduction to databases from a model-theoretic
perspective, and contains a review of known results from database theory as well as an
overview of existing results on probabilistic query evaluation in PDBs. The connection
between probabilistic query evaluation and weighted model counting is also summarized.
This chapter also contains the first results presented in the thesis which mainly extend
from the results from (Ceylan, Darwiche, and Van den Broeck 2016) and from (Borgwardt,
Ceylan, and Lukasiewicz 2017). At the end, this chapter contains an extensive review
of the state of the art in PDBs. Importantly, since this work covers a wide spectrum
ranging from PDBs to much more sophisticated models including ontologies, some of
the related work is deferred to the relevant chapters to allow for a more incremental
presentation.

Chapter 4. This chapter introduces open-world probabilistic databases, which is proposed
as a new data model for probabilistic databases. The main difference between PDBs
and open-world probabilistic databases is that the latter does not employ the CWA.
We provide a deep discussion of the semantic differences between these models and
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compare them with respect to the goals identified in this work. Apart from the semantic
results, this chapter also contains a thorough complexity analysis with respect to a
wide range of database queries. This analysis includes a data complexity dichotomy
result and an efficient lifted inference algorithm. The main results presented here have
been previously published in (Ceylan, Darwiche, and Van den Broeck 2016), which was
awarded the Marco Cadoli Best Student Paper Prize in the 15th International Conference
on Principles of Knowledge Representation and Reasoning, 2016. An abridged version of
this paper has also appeared as an invited publication in (Ceylan, Darwiche, and Van
den Broeck 2017). We significantly extend these results with a detailed treatment of
different query languages as well as with new results that go beyond the data complexity.

Chapter 5. In this chapter, two alternative inference tasks for probabilistic databases;
namely finding the most probable database and the most probable hypothesis for a
given query are studied. Both of these problems are inspired by the maximal posterior
probability computations of Probabilistic Graphical Models. These inference tasks can be
helpful to exploit the full potential of probabilistic databases. A very detailed complexity
analysis is provided for both problems. Most of the results presented in this chapter are
based on the previous publication (Ceylan, Borgwardt, and Lukasiewicz 2017). In this
work, we additionally close some open problems identified in earlier work, while also
paving the way for new open problems.

Part III: Logic and Probabilistic Knowledge Bases. This part extends the results
from Part II to also incorporate commonsense knowledge in the form of ontologies. In
this setting, database queries are additionally equipped with the expressive power of the
ontologies. Following a common naming convention in the field, we refer to such queries
as ontology-mediated queries. The presentation is organized in three chapters.

Chapter 6. This chapter is dedicated to provide an overview of the prominent ontology
languages in the literature. More precisely, we cover Description Logics and Datalog±

programs, each of which represents a family of knowledge representation formalisms.
In particular, we focus on the paradigm of ontology-mediated query answering in
these formalisms and recall the computational complexity of this task in the respective
languages. This chapter concludes with a discussion regarding the connection between
ontology-mediated query answering and (probabilistic) databases.

Chapter 7. In this chapter, the problems introduced in Part II are extended to the
case of ontology-mediated queries based on Datalog±. As a result, this chapter is
organized in three main sections in correspondence with Chapters 3, 4 and 5, respectively.
First, we extend our results from Chapter 3 and study probabilistic ontology-mediated
query evaluation for PDBs. Afterwards, we study probabilistic ontology-mediated query
evaluation for open-world probabilistic databases; thus, extend our results from Chapter 4.
The study in these sections builds on the previous publication (Borgwardt, Ceylan, and
Lukasiewicz 2017) and is also related to (Ceylan, Lukasiewicz, and Peñaloza 2016).
Finally, we revisit the most probable database and most probable hypothesis problems
from Chapter 5 in the context of ontology-mediated queries based on earlier work (Ceylan,
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Borgwardt, and Lukasiewicz 2017). In each of these sections, we provide a thorough
complexity analysis. This chapter concludes with an overview of the related work and
possible directions for future research.

Chapter 8. In this chapter, Bayesian ontology languages are investigated. These
languages extend classical Description Logics with the capability of representing and
reasoning over uncertain domains. First, we study ontology-mediated query evaluation
in Bayesian ontology languages together with two other reasoning problems, called
most likely context and most likely world. Afterwards, we propose a novel monitoring
approach that combines the power of ontology languages with dynamic BNs. The
resulting formalism is then called dynamic Bayesian ontology languages and allows
to make projections about the future states of a system. Bayesian ontology language
were first proposed in (Ceylan and Peñaloza 2014b) (see also the related workshop
paper (Ceylan and Peñaloza 2014a)), and further studied in (Ceylan and Peñaloza
2014c); afterwards, combined in a journal a paper (Ceylan and Peñaloza 2017) as part of
a special issue. This thesis includes a rather minor part of these early results as they are
based on standard reasoning tasks (and some of these results were obtained earlier than
the thesis work). Our focus is on query answering and our results significantly extend
on early work previously presented in (Ceylan and Peñaloza 2015b) by a treatment of
arbitrary ontology languages, and many more details. A proof-of-concept implementation
for reasoning in Bayesian ontology languages was described in (Ceylan, Mendez, and
Peñaloza 2015). Dynamic Bayesian ontology languages were first proposed in (Ceylan
and Peñaloza 2015a). There are less closely related publications, which are excluded
from the thesis, such as (Ceylan, Lukasiewicz, Peñaloza, and Tifrea-Marciuska 2017).

Part IV: Conclusions. This part consists of only Chapter 9, which summarizes the
current work and provides possible directions for future work.

Remark. I served as the main author in the publications listed above and I was
always supported by exceptional co-authors, namely Stefan Borgwardt, Adnan Darwiche,
Thomas Lukasiewicz, Rafael Peñaloza, and Guy Van den Broeck. The work (Ceylan,
Darwiche, and Van den Broeck 2016) is an outcome of a research visit to University of
California, Los Angeles (Automated Reasoning Lab, led by Prof. Adnan Darwiche). I
also did benefit from the oppurtunity of conducting several short-term visits to University
of Oxford, which resulted in a long-term collaboration with Prof. Thomas Lukasiewicz.
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Chapter 2

Foundations

This chapter introduces some of the main notions used in this thesis. In order to allow for
a more incremental presentation, some of the preliminaries are deferred to later chapters
as they only become relevant after those chapters. The first section gives an overview
on first-order logic. Subsequently, a small introduction to probability theory is given
to an extend that is relevant for the current work. At the end, this chapter contains
the very basics of the theory of computation and a short introduction to computational
complexity theory.

2.1 First-Order Logic
Logic is known as the science of reasoning. In mathematical logics, reasoning is performed
over declarative sentences (or statements), which have a (potential) truth value, such as
being true or false. Such sentences are of a certain form and have a precise meaning,
where the former refers to the syntax, and the latter to the semantics of the logical
language. Reasoning is then the task of entailing implicit consequences from an explicitly
given set of sentences using a sound procedure.

There are a plethora of logical languages with different types of reasoning tasks in the
literature and we assume familiarity with propositional and quantified Boolean logic. We
only recall first-order logic as most of the languages that happen to appear in this work,
are essentially fragments of first-order logic. We only give a brief overview, whereby
we also settle some basic notation; for a broader introduction to mathematical logic,
we refer to standard texts from the literature (Ebbinghaus, Flum, and Thomas 1994;
Enderton 2001; Fitting 1996; Van Dalen 2004).

We focus on the function-free fragment of first-order logic (FOL). First, we introduce
some basic notions (syntax and semantics of FOL); then, we recall some of the classi-
cal results (i.e., soundness and completeness), and finally we discuss some restricting
assumptions (i.e., finite, fixed domain assumptions) of first-order logic, all of which are
crucial ingredients of this work.

Definition 2.1 (vocabulary, terms, atoms) A relational vocabulary, denoted by σ,
consists of sets R of predicate, C of constant, and V of variable (names). The function
ar : R 7→ N associates a natural number to each predicate P ∈ R that defines the
(unique) arity of P. A term is either a constant or a variable. An atom is of the form
P(s1, . . . , sn), where P is an n-ary predicate, and s1, . . . , sn are terms. A ground atom is
an atom without variables. ♦

For ease of presentation and to avoid ambiguity (in operator precedence), it is customary
to use some auxiliary symbols such as “, ”, “(”, and “)” as part of the vocabulary. We

13



Chapter 2 Foundations

will make use of such symbols to increase readability without further notice. We will
often not mention the vocabulary explicitly if it is clear from the context.
Definition 2.2 (logical connectives, quantifiers) The logical connectives are nega-
tion (¬), conjunction (∧) and disjunction (∨). The logical quantifiers in FOL are
existential quantifier (∃) and universal quantifier (∀). ♦

First-order formulas are inductively built from atomic formulas, i.e., atoms, using the
logical constructors and quantifiers, as defined next.
Definition 2.3 (formula, sentence) Given a relational vocabulary σ, a first-order
formula is defined by the syntax rule

Φ := P(s1, . . . , sn) | ¬Φ | Φ ∧ Φ | ∃x.Φ,

where P is an n-ary predicate, s1, . . . , sn are terms, and x is a variable. A literal is
either an atom or its negation. A quantifier-free formula is a formula that does not use
a quantifier. A variable x in a formula Φ is quantified, or bound if it is in the scope of a
quantifier; otherwise, it is free. A (first-order) sentence is a first-order formula without
any free variables, also called a closed formula, or Boolean formula. A (first-order) theory
is a set of first-order sentences. ♦

We use the standard shorthand notation and write Φ ∨ Ψ in place of ¬(¬Φ ∧ ¬Ψ);
Φ→ Ψ in place of ¬Φ ∨Ψ; Φ↔ Ψ in place of (Φ→ Ψ) ∧ (Ψ→ Φ). We also abbreviate
the existentially quantified formulas of the form ¬∃x.¬Φ with ∀x.Φ. Finally, the truth
symbols > and ⊥ are used to abbreviate formulas of the form Φ ∨ ¬Φ, and Φ ∧ ¬Φ,
respectively.

We use a vector notation to denote a sequence of variables x1, . . . , xn by ~x. The set
of free variables in Φ is denoted by FV(Φ), and we write Φ(~x) where FV(Φ) = {~x}. It
is often very useful to consider syntactic fragments of first-order logic formulas, as we
define next.
Definition 2.4 (FO-fragments) Let FO be the class of first-order formulas. The class
of existential first-order formulas (∃FO) consists of first-order formulas of the form
∃~x.Φ(~x), where Φ is any Boolean combination of atoms. The class of universal first-order
formulas (∀FO) consists of first-order formulas of the form ∀~x.Φ(~x), where Φ is any
Boolean combination of atoms.

A disjunctive clause is a finite disjunction of literals. A conjunctive clause is a
finite conjunction of literals. The class of formulas in existential conjunctive normal
form (∃CNF) consists of first-order formulas of the form ∃~x.Φ(~x); the class of formulas
in universal conjunctive normal form (∀CNF) consists of first-order formulas of the form
∀~x.Φ(~x), where Φ is a conjunction of disjunctive clauses.

The class of formulas in existential disjunctive normal form (∃DNF) consists of formulas
of the form ∃~x.Φ(~x); the class of formulas in universal disjunctive normal form (∀DNF)
consists of formulas of the form ∀~x.Φ(~x), where Φ is a disjunction of conjunctive clauses.

The class of formulas in conjunctive normal form (CNF) consists of ∃CNF and ∀CNF
formulas. The class of formulas in disjunctive normal form (DNF) consists of ∃DNF and
∀DNF formulas. A formula is positive if it contains only positive literals. We also write
kCNF, or kDNF to denote the class of formulas, where k denotes the maximal number
of atoms that a clause can contain. ♦
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So far, we purely focused on the syntax and have not yet associated any meaning to
these syntactic entities. We shall set up a correspondence between a first-order formula
and its meaning in the outside world. The semantics of FOL is given by first-order
interpretations, which we define next.

Definition 2.5 (semantics) Given a relational vocabulary σ, a first-order interpreta-
tion is a pair I = (∆I , ·I), where ∆I is a non-empty domain, and ·I is an interpretation
function that maps every constant name a to an element aI ∈ ∆I of the domain, and
every predicate name P with arity n to a subset PI ⊆ (∆I)n of the domain. A variable
assignment is a function ν : V 7→ ∆I that maps variables to domain elements. Given
an element e ∈ ∆I and a variable x ∈ V, we write ν[x 7→ e] to denote the variable
assignment that maps x to e, and that agrees with ν on all other variables. For an
interpretation I and a variable assignment ν, we define

– aI,ν = aI for all constant names a ∈ C,
– xI,ν = ν(x) for all variable names x ∈ V,
– PI,ν = PI for all predicate names P ∈ R.

Given an interpretation I and a variable assignment ν, the satisfaction relation (|=) is
inductively defined as

– I, ν |= P(s1, . . . , sn) if (sI,ν
1 , . . . , sI,ν

n ) ∈ PI,ν ,
– I, ν |= ¬Φ(~x) if I, ν 6|= Φ(~x),
– I, ν |= Φ(~x) ∧Ψ(~y) if I, ν |= Φ(~x) and I, ν |= Ψ(~y),
– I, ν |= ∃x.Φ(~y) if there exists e ∈ ∆I such that I, ν[x 7→ e] |= Φ(~y),

The truth value of sentences does not depend on any variable assignment; thus, assign-
ments are omitted in this case. An interpretation I is a model of a theory T , denoted
I |= T , if I satisfies all sentences of T . ♦

The distinction between a theory and a sentence in first-order logic is a more conceptual
one if we focus on finite theories. In fact, semantically, a finite first-order theory T is
equivalent to a sentence

∧
α∈T α, which we denote as sen(T ).

Definition 2.6 (validity, consistency) A sentence α is valid if it is satisfied by all
interpretations and invalid, otherwise. A theory T is valid if all sentences of T are
valid. A theory T is consistent (or satisfiable) if it has a model and inconsistent (or
unsatisfiable), otherwise. ♦

We now define different types of reasoning services that are of interest. In a broad
sense, reasoning is about entailing implicit consequences from a given set of facts, and it
is therefore crucial to understand the notion of logical consequence.

Definition 2.7 (entailment, consequence) Let T , T ′ be first-order theories. Then,
T entails T ′, written T |= T ′, if for all models I of T it holds that I |= T ′. In this case,
T ′ is a consequence of T . ♦

With a slight abuse of notation, we write T |= α instead of T |= {α}, where {α}
denotes a singleton theory containing the sentence α. Classical reasoning problems are
formulated as decision problems, i.e., problems that have a yes/no answer. Formulated
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as a decision problem; the entailment problem is to decide whether T |= T ′ for a given
theory T and T ′ of first-order logic. Analogously, for a given theory T , the consistency
problem is to decide whether the theory T is consistent; the validity problem is to decide
whether the theory is valid. Non-entailment (complement of entailment), inconsistency
and invalidity checking are then the dual problems, respectively.

In essence, these reasoning problems are all tightly connected. A theory T is incon-
sistent if and only if T |= ⊥. Conversely, the entailment T |= T ′ holds if and only if
the theory {¬sen(T )} ∪ T ′ is inconsistent. A theory T is valid if and only it is entailed
by the empty theory, denoted {} |= T , or |= T , in short. Due to such well-known
correspondences, we will mainly focus on the entailment problem in the sequel.

Concepts such as satisfiability and validity are purely semantic features, and so is
the entailment relation. This, however, is not the only possible point of view. In the
end, formulas are syntactic objects, and it is possible and desirable to define a calculus
for deriving conclusions from the given premises that is purely syntactic, in order to
allow for automated reasoning. These are known as proof procedures for first-order logic;
among these, semantic tableux (Smullyan 1968), resolution (Robinson 1965), natural
deduction (Gentzen 1935; Stanisław 1934) and Hilbert-style proof systems (Hilbert 1923)
are well-known. In a (Hilbert-style) deductive system (or proof system), deduction is
a finite sequence of formulas, in which each formula is either an axiom in the theory
or is obtained from previous formulas by a rule of inference. It is beyond the scope of
this work to provide details on these calculi; for an in-depth analysis of these methods,
we refer the reader to (Fitting 1996). On the other hand, no matter which proof
procedure is considered, there are certain properties that are highly desired to hold.
Most importantly, the proof procedure should match the semantics of the logic, which is
characterized by soundness and completeness properties of the proof calculi.

Definition 2.8 (soundness, completeness) Let T , T ′ be first-order theories and `
denote a deduction system for first-order logic. Then, the deduction system ` is sound
if T ` T ′ implies T |= T ′. Conversely, the deduction ` is complete if T |= T ′ implies
T ` T ′ ♦

Intuitively, for a proof procedure, soundness means that all the proofs are also
semantic consequences, and completeness means that all semantic consequences have
proofs. Verification of soundness is rather easy as compared to completeness of a proof
system for first-order logic, and the first completeness result is given in (Gödel 1929).

Theorem 2.9 (soundness and completeness of FOL) There exists a sound and
complete deduction system for first-order logic. More formally, let T , T ′ be first-order
theories. Then, there exists a deduction system ` such that

T |= T ′ if and only if T ` T ′.

Although first-order logic admits a sound and complete calculus, it is well known that
any sound and complete calculi for first-order logic may require an infinite amount of
time, in general. Thus, such a procedure may not terminate as we discuss in more depth
in Section 2.3. This has motivated the study of fragments of first-order logic, of which,
there are a plethora.
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Fragments of First-Order Logic

In this thesis, we are concerned with several fragments of first-order logic; most of which
result from i) syntactic, ii) semantic, or iii) domain-specific restrictions. We have already
identified some well-known syntactic fragments of the class of first-order logic formulas
in Definition 2.4. The precise correspondence between the formalisms studied in the
thesis and first-order logic is to be presented in the remaining chapters in detail.

Informally, databases can be viewed as first-order interpretations over a fixed, finite
domain operating under the closed-world assumption. On the other hand, ontology
languages typically employ the open-world assumption and do not pose any restrictions
on the domain, while being mostly syntactic fragments of first-order logic. Thus, first-
order logic serves as a general unifier for the understanding of the different notions
presented in the thesis.

We note, however, that fragments of first-order logic can differ significantly from each
other. Especially, first-order logic restricted to finite structures (Libkin 2004), as in
database theory, can make a significant difference. Many key classical theorems and
techniques break down when restricted to finite structures. Conversely, a great many
results, which are native to finite model theory have no classical counterpart.

We assumed familiarity with propositional logic and quantified Boolean logic. Never-
theless, each of these formalisms are essentially very restricted cases of first-order logic.
Propositional logic is a special case, where the set of predicates consists of only 0-arity
predicates (called propositions) and no logical quantifier is allowed. To distinguish from
first-order representations, we denote propositions in lower case letters such as x, y.
Similarly, we use small case Greek letters such as ϕ and ψ to refer to propositional
formulas. Quantified Boolean logic, on the other hand, is an extension of propositional
logic that also allows logical quantification over propositions with the usual semantics.

2.2 Probability Theory
Traditionally, logical reasoning takes place in a deterministic universe, where any given
variable is assigned a certain value, and any statement is either true or false, with no
intermediate truth value. However, for a variety of reasons, both within mathematics and
logics, it is often desirable to have a rigorous framework, in which one can form uncertain
statements; that is, statements, which are not true or false with definite certainty, but
hold only with an intermediate degree.

Probability theory is the most widely adopted mathematical framework to formally
capture the concept of uncertainty (Kolmogorov 1933). The basic intuition behind
the probability theory is the notion of randomness. Imagine, for instance, an exper-
iment, that can possibly produce a number of outcomes, while the precise outcome
can not be determined with certainty. In probability theory, such randomness can be
captured through random variables (allowing assignments to variables at random) and
events (statements which can be true or false with some degree).

At a purely formal level, probability theory can be seen as a branch of measure theory.
Following a measure-theoretic perspective, it is possible to define a sample space, that is,
the set of outcomes of an experiment, and then model events as measurable subsets of
this sample space, and random variables as measurable functions on this sample space.
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Table 2.1: Worlds over the random variables Vh = {F, S,C}. P specifies a joint probability
distribution over Vh, as shown on the right-most column.

Worlds F S C P(ωi)

ω0 0 0 0 0.441
ω1 0 0 1 0.049
ω2 0 1 0 0.105
ω3 0 1 1 0.105
ω4 1 0 0 0.012
ω5 1 0 1 0.018
ω6 1 1 0 0.081
ω7 1 1 1 0.189

In this way, it is possible to obtain a probability distribution over the set of outcomes
(of an experiment), which, in turn, allows us to reason over uncertain situations.

In this work, we purely focus on spaces that are finite and are thus completely
characterized through a finite set of random variables. Given these assumptions on
the space, we are able to provide the basics of probability theory relevant to our
purpose without the need for giving a detailed overview on measure theory; for a broader
introduction to probability theory, we refer to the standard literature in the field (Durrett
2010).

We only focus on discrete random variables; in particular, on Bernoulli random
variables. It is worth noting, however, that the restriction to Bernoulli random variables,
is mainly for ease of presentation, and it can easily be relaxed to capture any discrete
random variable. In the following, we will deliberately use the term random variable in
place of Bernoulli random variable without further notice.

Definition 2.10 (world, sample space, event space) Let V be a finite set of ran-
dom variables. A possible world ω over V is a valuation over V , which maps every
random variable to a single truth value. The sample space Ω over V is the set of all
worlds over V . The event space A over V is the powerset of the sample space Ω. ♦

Intuitively the sample space describes all the possible outcomes, or possible worlds, of
all the sources of randomness and an event is simply a set of outcomes. From a broader
perspective, one is typically interested only in measurable event spaces defined over some
sample space. Nevertheless, it is easy to see that the sample and event space, as they
are defined here, trivially form a measurable space since they are finite.

Example 2.11 Consider a set of random variables Vh = {F, S,C}, where, the random
variables F, S, and C are designated to model measurements of fever, systolic pressure,
and cholesterol, respectively. More precisely, for some patient, F = 1, denotes having
high fever, S = 1, denotes having high systolic pressure, and C = 1 denotes having high
cholesterol. The worlds over Vh are then as shown in Table 2.1. Using set notation, we
can alternatively represent worlds as follows

ω0 = {F = 0, S = 0,C = 0}, . . . , ω7 = {F = 1, S = 1,C = 1}.

18



2.2 Probability Theory

The sample and event space is then given as

Ωex =
⋃

0≤i≤7
{ωi} , Aex = 2Ωex ,

respectively. For instance, the set {ω6, ω7} ∈ Aex defines an event, which is satisfied by
the worlds ω6 and ω7. In more concrete terms, this event encodes the worlds where the
events high fever (F = 1) and high systolic pressure (S = 1) are observed, or realized.♦

A probability measure is a function, which maps each event in a measurable event
space to a value in [0, 1], while at the same time, satisfying certain properties.

Definition 2.12 (probability measure) Let A be a non-empty set. A probabil-
ity measure is a function P : A 7→ [0, 1] such that:

– P(∅) = 0,
– P(A ) = 1,
– P(

⋃
i εi) =

∑
i P(εi) for countable disjoint εi ∈ A . (countably additive) ♦

We introduced the notions of sample and event space, which are completely charac-
terized by random variables, and defined the concept of probability measure over such
spaces. Putting all together, we are speaking of probability spaces.

Definition 2.13 (probability space) Let Ω be the sample space, and A the event
space defined over a finite set of random variables V . Then, the triple (Ω,A ,P), where
P is a probability measure over A , forms a probability space. ♦

We specify the probability space of interest with the help of a finite set of random
variables and view events as sets of worlds. As there can be exponentially many worlds
in the number of the random variables, in order to write an event of interest, one has
to enumerate all worlds that define this event. This is certainly not the best possible
representation for events. An alternative is to form an event language to be able to
compactly represent sets of worlds. We, therefore, view events as propositional formulas,
built inductively from elementary events, using logical connectives.

Definition 2.14 (event language) Let V be a set of random variables, an elementary
event over V is either of the form X = 1, or of the form X = 0, where X ∈ V . An event
θ is then inductively defined by the grammar rule

θ := e | ¬θ | θ ∧ θ ,

where e is an elementary event over V . ♦

As usual, disjunction (∨) and implication (→) are used as syntactic sugar in the language.
Sometimes, we write “, ” in place of “ ∧ ”, if there is no danger of ambiguity.

In essence, events are propositional formulas defined over a set of random variables.
As a consequence of this, we can identify a world that an event encodes through the
(propositional) entailment relation: a world ω satisfies an event θ, if and only if ω |= θ.

The probability spaces defined with the help of a finite set of discrete random variables,
are essentially discrete. Therefore, the probability measure P induces a joint discrete
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probability distribution over the valuations of the set of random variables. There are
numerous ways of representing joint probability distributions; a naïve approach is to
enumerate all the worlds along with a probability value as shown in Table 2.1. The
probability of an arbitrary event θ can then be computed from the given joint probability
distribution as

P(θ) :=
∑
ω|=θ

P(ω),

by summing over the probabilities of the worlds ω that satisfy the formula θ. Specifically,
events can be seen as queries posed on top of a probabilistic model, which can hold with
some probability. Often, while posing the query, one may also have some new evidence
about the world; such evidence, itself, can also be formulated as an event. To incorporate
such observations, or evidence, one studies the conditional probability of a (query)-event
given an (evidence)-event.

Definition 2.15 (conditional probability) The conditional probability of an event
θ1 given another event θ2 is given by

P(θ1 | θ2) := P(θ1 ∧ θ2)
P(θ2) ,

where P(θ2) > 0. ♦

Conditional dependencies constitute natural, real-world phenomena, which can be
observed in different domains. For instance, the probability of observing a thunderstorm
on a sunny day is relatively low, compared to a rainy day. As a completely different
example, people with high hypercholesterolemia are more likely to have a heart attack
compared to people without this condition.

With the help of conditional probabilities, we also obtain another way of specifying
a joint probability distribution. Instead of assigning a probability to each world, we
specify the conditional probabilities over elementary events, which is then sufficient to
define a joint probability distribution. As we will elaborate in depth later (in the context
of probabilistic graphical models), such representations are much more succinct once
combined with some additional assumptions.

Definition 2.16 (joint probability distribution) Let V = {X1 . . . , Xn} be a finite
set of random variables and Θ a set of conditional probabilities P(Xi | Xi+1, . . . , Xn) for
all valuations of the random variables Xi, 1 ≤ i ≤ n. The joint probability distribution
over V is then given by the chain rule

P(X1, . . . , Xn) :=
n∏

i=1
P(Xi | Xi+1, . . . , Xn),

from the given conditional probabilities. ♦

It is thus possible to recover a probability distribution from a given set of conditional
probabilities. Besides, encoding conditional dependencies explicitly helps us to filter the
important parameters for our query.
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Example 2.17 Consider our running example. P specifies a probability distribution
over the valuations of random variables in Vh

P(ω0) = P(F = 0, S = 0,C = 0) = 0.041,
. . .

P(ω7) = P(F = 1, S = 1,C = 1) = 0.189,

as given in Table 2.1. For example, the conditional probability P(F = 0 | S = 0), i.e., the
probability of the event F = 0 given S = 0, can be computed as

P(F = 0 ∧ S = 0)
P(S = 0) ,

which is given by

P(ω0) + P(ω1)
P(ω0) + P(ω1) + P(ω4) + P(ω5) = 0.49

0.52 ≈ 0.94.

In practical terms, this means that whenever the patient has high systolic pressure, it
is highly likely (94%) that the patient also has high fever. In this completely synthetic
example, having high fever is strongly associated with having high systolic pressure. ♦

In general, the conditional probability of an event θ1 given an event θ2 is not equal
to P(θ1), i.e., the unconditional probability of θ1, as already illustrated in the example.
The special case where P(θ1 | θ2) = P(θ1), we say that θ1 is independent of θ2; more
precisely, θ1 is independent of θ2 if observing θ2 does not change the probability of θ1.
Definition 2.18 (independence) Let {θ1, . . . , θn} be a finite set of events. These
events are (mutually) independent if it holds that

P(θ1 ∧ . . . ∧ θn) = P(θ1)× . . .× P(θn).

A set V = {X1 . . . , Xn} of random variables are said to be (mutually) independent if

P(X1, . . . , Xn) = P(X1)× . . .× P(Xn),

holds for all valuations of the random variables Xi. ♦

In the remainder of this text, we will specify the probability space through a set of
random variables, as explained here.

2.3 Complexity Theory
This section briefly introduces basic elements of computational complexity theory. We
first recall basics of the theory of computation based on Turing machines. This is
followed by a discussion on Turing complexity classes and different reducibility notions.
Afterwards, the theory of computation is being revisited with an alternative computation
model that is based on circuits, followed by an overview of circuit complexity classes
and the respective reducibility notions. For an in-depth coverage of the theory of
computation as well as complexity theory, we refer the reader to the excellent books in
the literature (Arora and Barak 2009; Hopcroft and Ullman 1979; Papadimitriou 1994;
Sipser 1996).
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2.3.1 Turing Machines
The mathematical modeling of computation is achieved through a simple, and yet very
powerful model, i.e., the Turing machine, as first proposed by Alan Turing (Turing 1936).
A Turing machine is very similar to a finite automaton, with the difference of having an
unlimited memory. Formally, a (deterministic) Turing machine is defined as follows.

Definition 2.19 A (deterministic) Turing machine (TM) is a tuple (Q,Σ,Γ, δ, q0, qa, qr)
where Q, Σ, Γ are all finite sets and
− Q is the set of states,
− Σ is the input alphabet, which does not contain the blank symbol ,
− Γ is the tape alphabet, where ∈ Γ and Σ ⊆ Γ
− δ : Q × Γ 7→ Q × Γ × {L,R} is a partial function, called the transition function,

where L is left shift, R is right shift.
− q0 ∈ Q is the starting state,
− qa ∈ Q is an accepting state,
− qr ∈ Q is a rejecting state. ♦

A Turing machine can read from an input tape and write to an output tape. Given an
input string, it operates on finite number of states in accordance to a transition function
that specifies the actions of moving the head right (R), or left (L). The computation
continues until the TM enters an accepting or rejecting state; such states are also called
a Halting state. A nondeterministic TM is defined in the same way as a deterministic
TM except the fact that the transition function is not deterministic anymore:

δ : Q× Γ 7→ P(Q× Γ× {L,R}).

Intuitively, a deterministic TM specifies a single computation path, while a non-
deterministic TM can specify exponentially many such paths. As a consequence, a
nondeterministic TM serves as a more succinct model. Clearly, this does not imply
that it is more powerful than a deterministic TM. In fact, it is well-known that any
nondeterministic TM can be simulated with a deterministic one; obviously, at potential
cost of an exponentially larger representation. For other types of TMs, and the relations
among them, we refer the reader to (Sipser 1996).

The collection of strings accepted by a TM M is the language of M , denoted L(M). If
L(M) for a TM M , then L is said to be Turing-recognizable (or recursively enumerable).
Notice that there are three possibilities for computations of a TM M on an arbitrary
input: M either accepts, or rejects, or enters an infinite loop on an input (i.e., it never
reaches a Halting state). A restricted model of TMs is the decider (or halting) TM,
which halt on all inputs by accepting or rejecting. A language is called decidable (or
recursive) if some TM decides it and undecidable, otherwise.

As defined here, a decider Turing machine can only accept or reject; that is, its output
is always binary. This definition can be generalized to Turing machines that can also
output a string as in (Sipser 1996).

Definition 2.20 A function f : Σ∗ 7→ Σ∗ is computable if some Turing machine M , on
every input w, halts with just f(w) on its tape. ♦
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The connection between decision problems and languages is obvious: a decision
problem can be specified in terms of a language. Thus, we will generally speak problems
instead of languages.

A canonical example of an undecidable problem is the halting problem: given a TM M
and an input w, does M halt on w? The undecidability of the halting problem is typically
shown using Cantor’s (simple and yet very powerful) diagonalisation argument (Cantor
1891). Although being Turing-recognizable, the halting problem is an undecidable
problem, implying that Turing machines are more powerful than decider machines.
Nevertheless, some languages are not even Turing-recognizable, which is a consequence
of the fact that there are uncountably many languages and only countably many TMs.

Recall that, for the entailment problem, there is a sound and complete deduction
system in first-order logic. However, we deferred to this section whether such a procedure
could at the same time be terminating. By independent results of Church and Turing,
any sound and complete deduction system for fist order logic is non-terminating.
Theorem 2.21 (Church and Turing 1936) Entailment in first-order logic is unde-
cidable.

As pointed out before, many results in first-order logic do not hold when restricted
to finite structures. Unfortunately, this is not the case for entailment, which remains
undecidable even over finite structures.
Theorem 2.22 (Trakhtenbrot 1950) Entailment in first-order logic over finite struc-
tures is undecidable.

In contrast to these undecidability results, many fragments of first-order logic have
already been identified to be decidable; see (Börger, Grädel, and Gurevich 1997), for
an excellent review. Nevertheless, decidability does not necessarily imply that the
computational problem can be solved in practice, as the amount of resources, such as
time and space, is very much limited in the real-world. This is the driving force behind
the study of computational complexity theory.

Time and Space Complexity. Computational complexity theory is about classifying
computational problems according to the resources needed to solve the problem, providing
much more refined views about the computational difficulty of the problem. We, therefore,
first recall how time and space is measured based on the underlying computational model
of Turing machines.
Definition 2.23 Let M be a deterministic TM that halts on all inputs. The time
complexity of M is the function f : N 7→ N, where f(n) is the maximum number of steps
that M uses on any input of length n. ♦

Using standard conventions, we call a TM M , a f(n)-time bounded TM if M runs in
time f(n). More generally, we speak of polynomial-time TMs if f(n) is a polynomial
function and we use the same terminology for other classes, such as exponential functions.
Space complexity is then defined analogously.
Definition 2.24 Let M be a deterministic TM that halts on all inputs. The space
complexity of M is the function f : N 7→ N, where f(n) is the maximum number of tape
cells (memory) that M uses on any input length n. ♦
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We use the same naming conventions as in the time complexity and speak of polynomial
space TMs, exponential space TMs, et cetera. Finally, time and space complexity for
nondeterministic Turing machines can be defined analogously.

We now recall some complexity classes, which are defined based on these measures.
Our analysis is separated in two parts; first, we present decision-theoretic complexity
classes (and oracle machines) and then functional complexity classes.

Decision-Theoretic Complexity Classes. Decision problems have either yes or no as
answers; by decision-theoretic complexity classes, we refer to classes that encompass
only decision problems. Perhaps the most well-known complexity class is polynomial
time (P), which captures precisely those problems that can be decided on a polynomial
time Turing machine. P is widely considered as the class of problems that are realistically
solvable on a computer and such problems are sometimes also called tractable.

Definition 2.25 P is the class of languages that can be decided by a polynomial time
deterministic Turing machine. ♦

The nondeterministic variant of P, the class NP, encompasses many other interesting
problems, which are not known to be in P.

Definition 2.26 NP is the class of languages that can be decided on a polynomial time
nondeterministic Turing machine. ♦

Knowing that a problem is in NP, alone, is not very satisfactory as it does not imply
anything regarding the difficulty of the problem as the lower bound of the complexity
of the problem remains open. The notion of reduction plays a key role in this respect,
as it provides us with the right means to determine the difficulty of a problem, i.e., by
relating it to the difficulty of other problems. For showing NP-hardness, polynomial
time many-one reductions are de facto standard reductions. Many-one reductions date
back to (Post 1944) and (Shapiro 1956); polynomial time many-one reductions are due
to Karp and are thus also know as Karp reductions (Karp 1973).

Definition 2.27 A language L1 is polynomial time many-one reducible to a language L2,
written L1 ≤P L2, if there exists a polynomial time computable function f : Σ∗ 7→ Σ∗,
where for every input w, it holds that

w ∈ L1 if and only if f(w) ∈ L2.

The function f is called polynomial time reduction of L1 to L2. ♦

We say that a language L is NP-complete if L ∈ NP and every language H ∈ NP is
polynomial time many-one reducible to L. Throughout the thesis, we always assume
polynomial time many-one reductions unless explicitly stated otherwise. Besides, the
concept of completeness generalizes to other decision-theoretic complexity classes in the
obvious way.

(Cook 1971) and (Levin 1973) proved the first NP-complete problem, namely, satisfi-
ability of propositional formulas (SAT) by a direct reduction from a nondeterministic
Turing machine, which paved the way for many other NP-complete problems. For
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example, 3SAT, that is, the problem of deciding satisfiability of propositional formulas
in 3CNF, is NP-complete.

The complexity class PP (Gill 1977) is very central for problems related to counting
and is thus relevant for the complexity of probabilistic inference tasks. For example,
probabilistic inference in Bayesian networks is PP-complete (Littman, Majercik, and
Pitassi 2001), as discussed in Chapter 5.
Definition 2.28 PP is the set of languages recognized by a polynomial time nonde-
terministic Turing machine that accepts an input if and only if more than half of the
computation paths are accepting. ♦

There are alternative definitions of PP based on probabilistic Turing machines, which
are equivalent to the given definition. The canonical problem for PP is MAJSAT; that
is, given a propositional formula ϕ, the problem of deciding whether the majority of the
assignments to ϕ are satisfying. Note that majority serves as a default threshold value,
but this threshold can be modified by introducing artificial success and failure branches
into the nondeterministic Turing machine. In other words, it is possible to decide whether
the number of satisfying assignments of ϕ are greater than some threshold value in
PP. Obviously, this is a generalization of NP, which searches for a single satisfying
assignment, i.e., a single solution. More PP-complete problems related to propositional
satisfiability can be found in (Bailey, Dalmau, and Kolaitis 2007).

Importantly, PP is closed under truth table reductions (Beigel, Reingold, and Spielman
1995); in particular, this implies that PP is closed under complement, union and
intersection. PP contains NP and is contained in PSpace which is defined next.
Definition 2.29 PSpace is the class of languages that can be decided by a polynomial
space deterministic Turing machine. ♦

For example, checking whether an arbitrary quantified Boolean formula is valid is
a canonical PSpace-complete problem. NPSpace is the nondeterministic variant of
PSpace that defines the class of languages that can be decided by a polynomial space
nondeterministic Turing machine. Savitch has proven that PSpace =NPSpace (Savitch
1970). The classes Exp and NExp are then the exponential time analogs of P and NP,
respectively, which are defined as follows.
Definition 2.30 Exp (resp., NExp) is the class of languages that can be decided
by an exponential time deterministic Turing machine (resp., nondeterministic Turing
machine). ♦

An example of an NExp-complete problem is the satisfiability of first-order formulas
from the two variable fragment of first-order logic as shown in (Grädel, Kolaitis, and
Vardi 1997). Checking satisfiability of Schönfinkel–Bernays formulas, that is, formulas
of the form ∃∀.Φ, is also a well-known example of a NExp-complete problem (Lewis
1980). The classes 2Exp, N2exp, … are defined analogously. The relations between
these complexity classes can be summarized as follows

P ⊆ NP ⊆ PP ⊆ PSpace = NPSpace ⊆ Exp ⊆ NExp,

where only the containments P ⊂ Exp and NP ⊂ NExp are known to be strict, both of
which follow from the time hierarchy theorem (Cook 1972).
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Figure 2.1: A portion of the polynomial time hierarchy is shown on the left-hand side
where arrows denote inclusion relationship. On the right-hand side, the
relationship of PP and PPNP to the first level of the PH is depicted.

Oracle Machines and Hierarchies. Oracle machines constitute another interesting
phenomenon in computational complexity. Intuitively, an oracle is a black box, which is
able to produce an answer to a problem. Many interesting problems can be captured by
Turing machines that have an oracle access.

Definition 2.31 An oracle for a language L is an external device that is capable of
reporting whether for any string w ∈ L. An oracle Turing machine is a Turing machine
with an oracle tape and additional states qquery, qyes and qno. Let w denote the string
in the oracle tape of the Turing machine. Then, whenever the Turing machine enters
the state qquery, it moves to state qyes if the oracle accepts w and it moves to state qno
otherwise. We write ML to denote a Turing machine M with an access to an oracle for
the language L. ♦

If the language L in the oracle of ML is complete for a class C, we write MC. We next
define the polynomial hierarchy, which contains many natural problems (Stockmeyer
1976).

Definition 2.32 Let ∆P
0 = ΣP

0 = ΠP
0 = P. Then, the polynomial hierarchy (PH) is

given as

∆P
i+1 = PΣP

i , ΣP
i+1 = NPΣP

i , ΠP
i+1 = coNPΣP

i

for some i ≥ 0. ♦

For example, given a quantified Boolean formula of the form ∃~x ∀~y.ϕ, deciding whether
it is valid is ΣP

2 -complete. Conversely, if we consider formulas of the form ∀~x ∃~y.ϕ, then
the decision problem is ΠP

2 -complete.
Consider now a nondeterministic Turing machine with an NP oracle, which answers yes

if and only if majority of its runs are accepting. This precisely describes the complexity
class PPNP. Intuitively, for every run, to decide whether it is an accepting run, such
a machine can use the power of the NP oracle. The relation of PP and PPNP to the
PH (along with a portion of the PH) is depicted in Figure 2.1.
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Another class of interest is NPPP, which intuitively combines search and optimization
problems (in the reverse direction of PPNP). A natural canonical problem for this class
is EMAJSAT (Littman, Goldsmith, and Mundhenk 1998); that is, given a propositional
formula ϕ and a set of distinguished variables ~x from ϕ, is there an assignment µ to
~x-variables such that majority of the assignments τ that extend µ satifies ϕ. NPPP

appears as a very fundamental class for probabilistic inference and planning tasks. For
instance, maximal posterior inference in Bayesian Networks is NPPP-complete (Park
and Darwiche 2004b).

Similar to the polynomial hierarchy, it is possible to define a counting hierarchy (CH),
which includes classes such as PPPP; for a logical characterization and for canonical
problems in this hierarchy, please see (Torán 1991; Wagner 1986).

Functional Complexity Classes. All the complexity classes considered so far are of a
decision-theoretic nature. On the other hand, many problems require answers which are
not necessarily binary. Decision problems ask whether a solution exists, whereas func-
tional, counting problems ask how many different solutions exist. Functional complexity
classes capture this type of problems. We introduce FP, which is the functional analog
of the decision-theoretic complexity class P.

Definition 2.33 FP is the class of functions f : {0, 1}∗ 7→ {0, 1}∗ computable by a
polynomial time deterministic Turing Machine. ♦

Valiant introduced the class #P (Valiant 1979a), and proved that the computation
of the permanent of 0-1 matrices is #P-complete, which is in sharp contrast with the
computation of the determinant. Note that the definition of an oracle TM (see Defi-
nition 2.31) is generalized to a functional oracle such that it is also able to query and
retrieve non-binary values.

Definition 2.34 A function f : {0, 1}∗ 7→ N is in #P if there exists a polynomial
p : N 7→ N and a polynomial time deterministic Turing machine M such that for every
x ∈ {0, 1}∗, it holds that

f(x) = |{y ∈ {0, 1}p(|x|) | M answers y on the input x}| ♦

The canonical problem for #P is #SAT; that is, given a propositional formula ϕ, the
task of computing the number of satisfying assignments to ϕ.

Several types of reductions exist for #P (and for classes beyond #P), while the most
common being the so-called polynomial time Turing reductions, also known as Cook
reductions (Cook 1971). Informally, Turing reductions generalize many-one reductions
in the sense that they also allow access to an oracle.

Definition 2.35 A function f is #P-complete under polynomial time Turing reductions
if it is in #P and every g ∈ #P is in FPf . ♦

Turing reductions are defined similarly for decision-theoretic complexity classes. Nev-
ertheless, Turing reductions are rather uncommon for these classes. For instance, the
PH collapses to the first level under polynomial time Turing reductions, which is widely
believed not to be true. Therefore, many-one reductions give rise to a richer, more
delicate, hierarchy for decision-theoretic classes.
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Turing reductions have also been criticized in the context of functional complexity
classes, as many classes above #P appear to be not closed under polynomial time
Turing reductions (Durand, Hermann, and Kolaitis 2005). Alternatively, parsimonious
reductions (Simon 1977) are known, which require the number of solutions of the problem
to be preserved in the reduction. Unfortunately, this is a very strong condition and can
not be satisfied for many problems. Subtractive reductions, as proposed in (Durand,
Hermann, and Kolaitis 2005), relax this condition as they make it possible to count
the number of solutions by first overcounting them and then carefully subtracting any
surplus. Several interesting problems, such as counting the number of perfect matchings
in a bipartite graph, are known to be #P-hard under polynomial time Turing reductions,
while it is still an open problem whether this also holds under subtractive reductions.
For detailed discussions on comparisons of different types of reductions, see (Durand,
Hermann, and Kolaitis 2005; Ladner, Lynch, and A. Selman 1975).

In this work, #P-hardness is with respect to polynomial time Turing reductions,
unless explicitly specified otherwise. (Valiant 1979b) has shown several #P-complete
problems under Turing reductions. Notably, in Valiant’s words, there are problems,
which are easy to decide hard to count: for example, satisfiability of a propositional
formula in 2CNF can be decided in polynomial time, whereas counting the number of
models of a propositional monotone formula in 2CNF is already #P-hard under these
reductions (Provan and Ball 1983).

On The Relations Between PH, PP and #P. Intuitively, the class PP can be seen as
the decision counterpart of the counting class #P. (Toda and Watanabe 1992) prove an
inclusion result, which asserts that PH ⊆ P#P; that is, a polynomial time deterministic
Turing machine with access to a #P oracle is capable of deciding all problems in the
polynomial hierarchy. Their result holds even under 1-Turing reductions, i.e., even when
the #P oracle can be queried only once. The close connection between PP and #P is
then given by Toda’s theorem, which proves PPP = P#P (Toda 1989). Toda’s theorem
is actually stronger than this well-known result: it asserts that PPPH ⊆ PPP. The
relationship among these classes is given as

PP,PH ⊆ PPPH ⊆ PPP = P#P ⊆ NPPP ⊆ PPPP ⊆ CH ⊆ PSpace.

2.3.2 Boolean Circuits

We briefly revisit an alternative computation model for the theory of computing that is
based on circuits. For a detailed treatment of the subject, please consult the relevant
literature (Vollmer 1999).

For every n ∈ N, a n-input, single output Boolean circuit is a directed acyclic graph,
in which every node is either an AND, OR, NOT or a MAJORITY gate and one of
these gates is designated as the output gate. Each gate is a processor that computes the
corresponding Boolean function. The semantics of AND, OR, NOT gates are as usual.
MAJORITY gates output 1 if and only if the majority of its inputs are 1. The maximal
number of incoming edges for a gate is called its fan-in.
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Note that a circuit can only capture an input of a certain, fixed size. To be able to
represent languages (of arbitrary size) in terms of circuits, we need the notion of a circuit
family.

Definition 2.36 A circuit family C is an infinite list of circuits {Cn | n ∈ N}, where Cn

has n input variables. We say that C decides a language L over {0, 1} if for every string
w, w ∈ L if and only if Cn(w) = 1. ♦

The size of a circuit is measured in the number of the gates that it contains. A
circuit is said to be minimal in size if there is no smaller circuit equivalent to it. A
circuit family {Cn | n ∈ N} is minimal if every Cn is minimal. The size complexity of a
circuit family {Cn | n ∈ N} is given by a function f : N 7→ N, where the size of Cn is at
most f(n).

Analogously, we can define the depth complexity of a circuit family. The depth of a
circuit is the depth of the underlying graph; a circuit is said to be minimal in depth if
there is no circuit equivalent to it with smaller depth. Finally, the depth complexity of a
circuit family {Cn | n ∈ N} is given by a function f : N 7→ N, where the depth of Cn is
at most f(n).

Then, the circuit complexity of a language is the size complexity of a minimal circuit
family for that language. The circuit depth complexity of a language is the depth
complexity of a minimal circuit family for that language.

The types of gates and their fan-in depends on the particular circuit class. Important
circuit classes are given in terms of NC, AC and TC hierarchies.

Definition 2.37 NC, AC and TC represent a different complexity class hierarchy where
– NCi consists of the languages recognized by Boolean circuits with depth O(logi(n))

and polynomial number of constant fan-in AND and OR gates.
– ACi consists of the languages recognized by Boolean circuits with depth O(logi(n))

and polynomial number of unbounded fan-in AND and OR gates.
– TCi consists of the languages recognized by Boolean circuits with depth O(logi(n))

and a polynomial number of unbounded fan-in AND, OR and MAJORITY gates.
Then the hierarchies NC, AC and TC are respectively defined as

NC :=
⋃
i

NCi , AC :=
⋃
i

ACi , TC :=
⋃
i

TCi.
♦

Unlike Turing machines, Boolean circuits are non-uniform models of computation;
that is, inputs of different size are processed by different circuits. Every member of
a circuit family {Cn | n ∈ N} can be associated with a different type of input. It is
therefore common to impose some uniformity conditions that require the existence of
some resource-bounded Turing machine that, on input n, produces a description of the
individual circuit Cn.

For instance, if there exists a polynomial time deterministic Turing machine that can
produce such a circuit, then this entails polynomial time-uniformity. Unfortunately,
polynomial time-uniformity is too strong when constant depth circuit classes such as AC0

and TC0 are considered. The most widely accepted uniformity condition for these classes
is DLogTime-uniformity, bounding the computation in accordance to a logarithmic
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time deterministic Turing machine. Our primary concern is regarding constant depth
circuits and they are related to some well-known classes as

NC0 ⊆ AC0 ⊂ TC0 ⊆ NC1 ⊆ LogSpace ⊆ NLogSpace ⊆ P.

An arithmetic problem that is in AC0 is binary addition. Note, however, that calculating
the parity of an input is possible with NC1 circuits, while this problem cannot be decided
by any uniform AC0 circuit as shown in a breakthrough result by (Furst, Saxe, and
Sipser 1984). Thus, the inclusion between these classes is strict. Moreover, as majority
can be uniformly reduced to parity, this, in particular, implies that the majority cannot
be decided by any uniform AC0 circuit. As a consequence, the inclusion between AC0

and TC0 is also strict. An arithmetic problem that can not be decided in AC0, but turns
out to be complete for TC0 under DLogTime-uniformity is binary multiplication (Hesse,
Allender, and Barrington 2002).

These classes are very closely linked to descriptive complexity theory (Immerman
1999), which characterizes complexity classes by the type of logic needed to express the
languages in them. Specifically, each logical system produces a set of queries expressible
in it; once restricted to finite structures, these queries correspond to the computational
problems of traditional complexity theory. For example, FO formulas over finite structures
can be encoded into AC0 circuits. More precisely, FO extended with the BIT operator
is equivalent to AC0. TC0 is closely linked to FO extended with counting quantifiers as
in (Wagner 1986). Besides, FO with a transitive closure operator equals NLogSpace; if
furthermore, the transitive closure operator is also symmetric, it equals to LogSpace.
Similar correspondences are very fundamental for database theory.

30



Part II

Probabilistic Databases
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Chapter 3

Preliminaries, First Results and State of the Art

This chapter introduces some of the main notions used in this thesis. First a model-
theoretic view on databases is presented, which is going to be relevant throughout the
thesis. Subsequently, probabilistic databases are introduced; in particular, the tuple-
independent probabilistic database model. An overview of existing results regarding the
complexity of probabilistic query evaluation in probabilistic databases is given, which is
then followed by some new results. At the end, this chapter contains a survey of related
work on probabilistic databases.

3.1 Database Theory

Relational databases are de facto standard tools for data management: they provide
sophisticated means for storing, processing, and querying data sources. In principle,
a relational database is nothing but a structured collection of things. Having put in
this generality, it is unclear how such a structured collection can be effective in storing,
processing, or querying information. Thanks to the pioneering work of (Codd 1972), a
mathematical model for relational databases has been formulated, known as relational
algebra, allowing users to fetch and process specific information from a database, in a
principled and sound manner.

3.1.1 The Model-Theoretic View on Databases

Intellectual roots of databases are in first-order logic (Abiteboul, Hull, and Vianu 1995);
in particular, in finite model theory (Libkin 2004). Thus, we adopt the model-theoretic
perspective and view databases as first-order structures over some fixed domain.

Definition 3.1 (database) Let σ be a finite relational vocabulary, which consists of
finite sets R of predicate, C of constant, and V of variable names. A σ-atom is a ground
atom over the vocabulary σ. A database D over a relational vocabulary σ is a finite set
of σ-atoms. ♦

We usually omit the vocabulary σ from the notation, if it is clear from context. A
classical representation of a relational database is in terms of database tables, which
organizes sets of atoms, relative to the predicate names. Each table corresponds to a
predicate and its rows correspond to ground atoms of that predicate, which are also
called records, facts, or tuples.

Example 3.2 Let us consider a database Dm given in Table 3.1, in terms of three
database tables, corresponding to the predicates StarredIn, DirectedBy and Awarded,
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respectively. For example, the last row in the DirectedBy table is interpreted as the
ground atom DirectedBy(winterSleep, ceylan). This database is represented as

Dm := {StarredIn(deNiro, taxiDriver), . . . ,Awarded(winterSleep, palmed’Or)},

in set notation. We will use both notations interchangeably. ♦

The query semantics is then given as a first-order semantics, which takes the additional
assumptions employed in databases also into account.

Definition 3.3 (semantics) Let σ be a finite relational vocabulary, which consists of
finite sets R of predicate, C of constant, and V of variable names. A database D over σ
defines a first-order interpretation over σ, where

i) the domain is given as ∆D = C, (closed-domain assumption)

ii) aD = a, for all constants a ∈ C, (standard name assumption)

iii) (a1, . . . , an) ∈ PD iff P(a1, . . . , an) ∈ D, for all Pn ∈ R, (closed-world assumption)

The satisfaction relation |= is then defined, as before. We say that a database D satisfies
a formula Φ if D |= Φ. ♦

Let us have a closer look at this semantics and highlight some of the important
differences with classical first-order semantics, which will be critical throughout this
work. The closed-domain assumption (CDA) restricts the domain of an interpretation
to a finite, fixed set of constants; namely, to database constants. As a matter of fact,
such interpretations presume that the domain is complete. The standard name assump-
tion (SNA) ensures a bijection between the database constants and the domain: it is
not possible to refer to the same individual in the domain with two different constant
names. Last, but certainly not least, the closed-world assumption (CWA) of databases
forces anything that is not known to be true, to be false (Reiter 1978); that is, databases
make the data completeness assumption. Besides, under the closed domain and standard
name assumptions, it is easy to see that the given semantics coincides with the Herbrand
semantics (Hinrichs and Genesereth 2006). Briefly, a Herbrand interpretation over σ
maps every σ-atom to either true, or false. Then, a database is simply a Herbrand
interpretation, where the atoms that appear in the database are mapped to true, while
ones not in the database are mapped to false, according to the closed-world assumption.

The simplifying assumptions of databases are useful for a variety of reasons. At the
same time, it becomes very easy to produce some undesirable consequences under these
assumptions as we will elaborate. We will revisit some of these assumptions, and discuss
their implications, in depth, in the sequel, and illustrate our major motivation from this
perspective.

The most fundamental task in databases is query answering; that is, given a database D
and a formula Φ(x1, . . . , xn) of first-order logic, to decide whether there exists assignments
to free variables x1, . . . , xn, such that the resulting formula is satisfied by the database.

Importantly, here the variable assignments are of a special type, also called substitutions.
Formally, a substitution [x/t] replaces all occurrences of the variable x by some database
constant t in some formula Φ[x, y], denoted Φ[x/t].

34



3.1 Database Theory

Table 3.1: A database Dm represented in terms of relational database tables.

StarredIn

deNiro taxiDriver
foster taxiDriver
thurman pulpFiction
travolta pulpFiction

DirectedBy

pulpFiction tarantino
taxiDriver scorsese
whiteRibbon haneke
winterSleep ceylan

Awarded

pulpFiction palmed’Or
taxiDriver palmed’Or
whiteRibbon fibresci
winterSleep palmed’Or

Given these preliminaries, we can now formulate query answering as a decision problem.
Note that, we will mostly focus on the special case of this problem, called Boolean query
answering, which we will also refer as query evaluation.

Definition 3.4 (query answering, evaluation) Let σ be a relational vocabulary;
Φ(x1, . . . , xn) be a first-order formula over σ; and D be a database over σ. Then, query
answering is to decide whether D |= Φ[x1/a1, . . . , xn/an] for a given substitution (answer)
[x1/a1, . . . , xn/an] to free variables x1, . . . , xn. For a Boolean formula Φ, Boolean query
answering, or simply query evaluation, is to decide whether D |= Φ. ♦

There exists a plethora of query languages in the literature. Classical database query
languages range from the well-known conjunctive queries to arbitrary first-order queries,
which we briefly introduce.

Definition 3.5 (query languages) A conjunctive query over σ is an existentially
quantified formula ∃~x.Φ(~x, ~y), where Φ(~x, ~y) is a conjunction of σ-atoms. A Boolean
conjunctive query over σ is a conjunctive query without free variables. A union of
conjunctive queries is a disjunction of conjunctive queries. A union of conjunctive query
is Boolean if it does not contain any free variable. The class of Boolean unions of
conjunctive queries is denoted as UCQ.

We always focus on Boolean queries throughout this thesis unless explicitly mentioned
otherwise. Unions of conjunctive queries are the most common database queries used,
in practice; thus, they will also be emphasized in this work. Besides, note that full
relational algebra corresponds to the class of first-order formulas (modulo some operators).
Therefore, we include fragments of the class of first-order formulas as query languages in
our analysis. In particular, we study ∃FO, ∀FO and FO queries, introduced in Chapter 2,
as query languages. Besides, we sometimes use different syntactic forms to represent
relational queries, such as CNF or DNF.

We also speak of matches for Boolean queries. Informally, a match is an assignment
to the variables in the query such that the resulting ground query is satisfied by the
database.

Definition 3.6 (match) Let Q be a Boolean query over σ, D a database over σ and
V(Q) be the set of variables that occur in Q. A mapping ϕ : V(Q) 7→ C is called a
match for the query Q in D if D |= ϕ(Q). ♦

For existentially quantified queries, it is sufficient to find a single match, to satisfy
a given Boolean query evaluation. Conversely, for universally quantified queries, all
mappings must result in a match in order to satisfy the query. Let us now briefly illustrate
these notions on the database Dm given in Table 3.1 and on a simple conjunctive query.
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Example 3.7 Let us consider again the database Dm and the non-Boolean query

Qt(x) := ∃y StarredIn(x, y) ∧ DirectedBy(y, tarantino),

which asks for actors that starred in a Tarantino movie. Answers to such queries are
tuples from the database. For example, Qt(x) has two answers in the given database,
e.g. [x/thurman] and [x/travolta]. For each of these answers, there is a match, namely
[y/pulpFiction], for the resulting Boolean query. We focus on Boolean variants of these
queries. Answers to such queries are either true or false. For example, the query

∃x, y StarredIn(x, y) ∧ DirectedBy(y, tarantino),

where all variables are existentially quantified, returns true on the given database since
there is a match for the query. ♦

Importantly, UCQ denotes a class of queries (in analogy to ∃FO, ∀FO, and FO);
thus, strictly speaking, it is not an abbreviation for “unions of conjunctive queries”.
Nevertheless, we will slightly abuse this notation for unions of conjunctive queries and
write “a UCQ Q” instead of “a UCQ query Q”.

From a conceptual perspective relational databases can also be viewed as propositional
models, where every atom is mapped to a different proposition. Similarly, a database
query can be rewritten into a propositional formula by naïvely grounding the query over
the database constants and then replacing each ground atom in the resulting formula
with a propositional variable. The propositional representation of the query is commonly
known as the lineage of the query and can be exponentially large in the size of the
database.

3.1.2 On The Complexity of Query Evaluation in Databases

When analysing the complexity of query evaluation, we follow Vardi’s taxonomy to obtain
a fine-grained analysis of the computational complexity (Vardi 1982). The combined
complexity of query evaluation is calculated by considering all the components, i.e., the
database, and the query, as part of the input. The bounded-arity combined complexity
(or simply bounded-arity complexity) assumes that the maximum arity of the predicates
is bounded by an integer constant. The data complexity is calculated only based on the
size of the database, i.e., the query is assumed to be fixed.

Both data and combined complexity are fairly standard in database theory. Another
common approach is to fix the schema, that is, the set of predicates in the signature.
We instead only bound the arity of the predicates, which is clearly more general than
fixing the schema.

Query evaluation is very efficient in data complexity. As already noted in Chapter 2,
the class of FO queries over finite structures can be encoded into AC0 circuits.

Proposition 3.8 (Immerman 1999) Query evaluation for FO queries is in AC0 in
data complexity.

If we additionally consider the query as part of the input, query evaluation becomes
NP-hard even for conjunctive queries.
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Proposition 3.9 (Chandra and Merlin 1977) Query evaluation is NP-complete for
unions of conjunctive queries and PSpace-complete for FO queries in combined com-
plexity.

It is well-known that this hardness result does not apply to acyclic conjunctive
queries, which remain in polynomial time (Yannakakis 1981) and even in AC1 as shown
in (Gottlob, Leone, and Scarcello 2001). Other combined complexity results are directly
related to the logical characterization of the polynomial hierarchy.

Proposition 3.10 Query evaluation is NP-complete for ∃FO queries and coNP-
complete for ∀FO queries in combined complexity.

Furthermore, all the hardness results remain valid for the bounded-arity case. We
base our analysis on these known results and extend them to the problems studied in
the thesis.

3.2 Probabilistic Databases
Classical databases are deterministic: every fact stored in the database is true with
absolute certainty, and all the remaining facts are assumed to be false, by the closed-world
assumption. As it is the case for classical first-order logic, it is not possible to form
statements with intermediate truth values, in classical databases.

On the other hand, there are many sources of uncertainty in the real-world, some of
which are already highlighted in the general introduction: data is nowadays extracted
using automated techniques from the Web, mostly based on data mining or machine
learning techniques, which do not necessarily produce a probability distribution, but come
with confidence values, and are usually interpreted probabilistically after appropriate
transformations are made. Data integration from diverse sources is another source for
uncertainty (Dong, Halevy, and Yu 2007). In domains where predictive and stochastic
modeling is needed, data usually comes with some probabilistic information. Sensor
readings, which are widely used nowadays, are error-prone, and thus are yet another
source for uncertainty. Unavoidably, the probabilistic modeling is closely related to the
respective application. In this work, we usually abstract away from subtle, practical
differences and assume that the data is encoded into a particular probabilistic database
model.

The literature on probabilistic databases is sparse and there exists many different
types of probabilistic database models. We refer the interested reader to (Suciu et al.
2011) for details of these models and we focus on a particular model.

3.2.1 Tuple-Independent Probabilistic Databases
We adopt the simplest probabilistic database model, which is based on the tuple-
independence assumption. Syntactically, tuple-independent probabilistic databases gen-
eralize classical databases by associating every tuple with a probability value.

Definition 3.11 A probabilistic database (PDB) P for a vocabulary σ is a finite set
of tuples of the form 〈t : p〉 , where t is a σ-atom and p ∈ (0, 1]. Moreover, if 〈t : p〉 ∈ P
and 〈t : q〉 ∈ P , then p = q. ♦
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Table 3.2: The probabilistic database Pm represented in terms of database tables. Each
row is interpreted as a probabilistic atom 〈t : p〉, where t is a (ground) atom
and p represents its probability.

StarredIn P

deNiro taxiDriver 0.7
foster taxiDriver 0.2
thurman pulpFiction 0.1
travolta pulpFiction 0.3

DirectedBy P

pulpFiction tarantino 0.8
taxiDriver scorsese 0.6
whiteRibbon haneke 0.7
winterSleep ceylan 0.8

Awarded P

pulpFiction palmed’Or 0.2
taxiDriver palmed’Or 0.9
whiteRibbon fibresci 0.7
winterSleep palmed’Or 0.6

Table 3.2 shows an example PDB Pm; as before, each row in a table represents an
atom, which is now also associated with a probability value. Semantically, a PDB can
be viewed as a factored representation of exponentially many possible worlds (classical
databases), each of which has a probability to be true. Both in the AI (De Raedt,
Kimmig, and Toivonen 2007; Poole 1997; Sato 1995; Sato and Kameya 1997) and
database literature (Suciu et al. 2011), this is commonly refered as the possible world
semantics.

In PDBs, each database atom is viewed as an independent Bernoulli random variable
by the tuple-independence assumption. Each world is then simply a classical database,
which sets a choice for all database atoms in the PDB. Furthermore, the closed-world
assumption forces all atoms that are not present in the database, to have probability
zero.

Definition 3.12 A PDB P for vocabulary σ induces a unique probability distribution
PP over the set of σ-interpretations (possible worlds) D such that

PP(D) =
∏
t∈D

PP(t)
∏
t/∈D

(1− PP(t)),

where the probability of each atom is given as

PP(t) =
{ p if 〈t : p〉 ∈ P

0 otherwise.

Whenever the probabilistic database is clear from the context, we simply write P(t),
instead of PP(t). We say that a database is induced by a PDB P if it is a possible
world (with a non-zero probability) of P. ♦

Observe that the choice of setting PP(t) = 0 for tuples missing from PDB P is a
probabilistic counterpart of the closed-world assumption. We will revisit this choice in
Chapter 4. Let us now illustrate the semantics of PDBs on a simple example.
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Example 3.13 Consider again the PDB Pm given in Table 3.2. Furthermore, we
define the database D1, which consists of only the atoms StarredIn(deNiro, taxiDriver),
DirectedBy(taxiDriver, scorsese), and Awarded(taxiDriver, palmed’Or).

The probability of the world D1 can then be computed by multiplying the probabilities
of the atoms that appear in D1 with the dual probability of the atoms that do not appear
in D1 as follows

P(D1) = 0.7 · (1− 0.2) · (1− 0.1) · (1− 0.3)
(1− 0.8) · 0.6 · (1− 0.7) · (1− 0.8)
(1− 0.2) · 0.9 · (1− 0.7) · (1− 0.6). ♦

Query languages remain the same in PDBs in the syntactic sense, but the queries
are now interpreted through the possible world semantics. As we formalize next, this
amounts to walking through all the possible worlds and summing over the probabilites
of those worlds which satisfy the query.
Definition 3.14 (query semantics) Let Q be a Boolean query and P be a PDB.
The probability of Q in the PDB P is defined as

PP(Q) =
∑

D|=Q

PP(D).

where D ranges over all possible worlds. ♦

In general, there are exponentially many worlds and in some cases, it is unavoidable
to go through all of them in order to compute the probability. This is very infeasible,
but as we shall see later, in some cases, computing the query probability is actually easy.
Example 3.15 Consider again the PDB Pm. In order to evaluate the Boolean query

Q := ∃x, y StarredIn(x, y) ∧ Awarded(y, palmed’Or)
on Pm, we can naïvely check, for each world D, whether D |= Q. One such world is D1
as it clearly satisfies D1 |= Q. Afterwards, we only need to sum over the probabilities of
the worlds, for which the satisfaction relation holds, in order to obtain the probability of
the query. ♦

In the given example, it is easy to compute the probability of the query. Notably,
this is the case for any PDB and not only for our toy PDB once we focus on the data
complexity. The next section is dedicated to give an understanding of easy and hard
queries along with some new results.

3.2.2 On the Complexity of Inference in Probabilistic Databases
In this section, we provide a short overview on existing complexity results for inference
in (tuple-independent) Probabilistic Databases including a data complexity dichotomy
result. We also present some new combined complexity results. In our analysis, we are
interested in the decision problem of probabilistic query evaluation, as defined next.
Definition 3.16 (probabilistic query evaluation) Given a PDB P , a query Q and
a threshold value p ∈ [0, 1), probabilistic query evaluation, denoted PQE, is to decide
whether PP(Q) > p. PQE is parametrized with a particular query language; thus, we
write PQE(Q) to define PQE on the class of Q queries. ♦
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Remark. Within the scope of this thesis, we make the following assumptions for the
complexity study. We always allow the threshold value to depend on the input. Notice
that this is a reasonable assumption since the probability computation obviously depends
on the data. We also assume that the threshold values as well as the probability values
are always given as rational numbers from the interval [0, 1].

When the probabilistic database is clear from the context, we will simply write P(Q)
in place of PP(Q). Besides, we note that there are other possible ways of defining
this decision problem. For instance, the comparison operator for the threshold can be
<, ≤, or ≥ (instead of >). We fix the operator > as it is more common in the AI
literature (Darwiche 2009). Moreover, as we focus on PDBs, the event probabilities are
always directly encoded in the input. We show that it is always possible to reduce the
test for ≥ to the test for >, and vice versa for certain probability distributions. To show
this, we define a rational number

ε = 0. 0 . . . 0︸ ︷︷ ︸
n

1,

where n refers to a precision that is strictly more than the precision of any world in the
probability distribution. Whenever such a value, called ε-value, is computable in a very
efficient way, operators ≥ and > can be used interchangeably and the same holds for the
operators ≤ and <.

Lemma 3.17 Let P be a probability distribution, where the ε-value can be computed in
AC0. Then, for any event θ, deciding P(θ) > p can be reduced to deciding P(θ) ≥ p+ε in
AC0 and deciding P(θ) ≥ p can be reduced to deciding P(θ) ≥ p− ε in AC0. Similarly,
deciding P(θ) < p can be reduced to deciding P(θ) ≤ p− ε in AC0 and deciding P(θ) ≤ p
can be reduced to deciding P(θ) < p+ ε in AC0.

Proof. Suppose that an ε-value of the probability of each world can be computed in
AC0. For instance, this is the case for PDBs: the maximal precision of a world in a
PDB can be at most m · n, where n is the probability value with the highest precision
and m is the number of atoms in the PDB. To obtain an ε-value, we can simply shift
this number by 1 bit. This requires addition and bit shifting, all of which is in AC0. Let
now θ be an event for which we want to decide whether P(θ) > p. It is easy to verify
that P(θ) > p if and only if P(θ) ≥ p+ ε. Conversely, let now θ be an event for which
we want to decide whether P(θ) ≥ p. It is easy to verify that P(θ) ≥ p if and only if
P(θ) > p− ε. Analogous arguments hold also for < and ≤.

Lemma 3.17 certainly gives us some liberty in the use of the operators ≥ and >. In
the remaining of this text, we will not distinguish between ≥ and > in the proof details
and will simply use them interchangeably, without further notice.

Overview of Existing Results: A Data Complexity Dichotomy

The data complexity of query evaluation depends heavily on the structure of the query.
In a remarkable result, Dalvi and Suciu proved in 2012 the following dichotomy: the
probability of a UCQ can be computed either in FP or it is #P-hard on any PDB.
Using the terminology from (Dalvi and Suciu 2012), we say that queries are safe if the
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ỹ x̃

R

C D

(a) QNH := ∃x, y C(x) ∧ R(x, y) ∧ D(y)

x̃

ỹ

RC, D

(b) QH := ∃x, y C(x) ∧ R(x, y) ∧ D(x)

Figure 3.1: Venn diagram for the queries QNH (non-hierarchical) and QH (hierarchical).

computation problem is in FP, and unsafe, otherwise. Probabilistic query evaluation, as
defined here, is the corresponding decision problem. It is easy to see that this problem is
either in P or it is PP-complete as a corollary to the result of Dalvi and Suciu.

Corollary 3.18 (Dalvi and Suciu 2012) PQE(UCQ) is either in P or it is PP-
complete for PDBs in data complexity under polynomial-time Turing reductions.

Proof. Let a UCQ Q be safe for PDBs. Then, for any PDB P , the computation problem
P(Q) uses only polynomial time. As a consequence, it is possible to decide whether the
probability exceeds a given threshold p in polynomial time. Thus, PQE(UCQ) is in P for
all safe UCQ queries.

Conversely, let a UCQ Q be unsafe for PDBs. Then, there exists a PDB P such that
computing P(Q) is #P-hard under polynomial-time Turing reductions. Let us loosely
denote by P(Q) the problem of computing P(Q). We need to show that PP is contained
in PPQE(Q).

To show this, let A be any other problem in PP. By assumption, its computation
problem, denoted #A, is contained in FPP(Q), i.e., there is a polynomial-time Turing
machine with oracle P(Q) that computes the output for #A. We can adapt this Turing
machine then to compare the output to some threshold, which means that A is contained
in PP(Q). We also know that P(Q) is contained in FPPQE(Q) as we can perform a binary
search over the interval [0, 1] to compute the precise probability P(Q). This implies
that A is contained in PC where C = FPPQE(Q). Finally, note that the intermediate
oracle does not provide any additional computational power (as this computation can
be performed by the polynomial time Turing machine and the oracle PQE(Q) can be
queried directly). This shows that A is in PPQE(Q), which proves the result.

We use the same terminology also for the associated decision problem: we say that
a query Q is safe if the PQE(Q) is in P, and unsafe, otherwise. (Grädel, Gurevich,
and Hirsch 1998) were the first to consider a dichotomy and later, Dalvi and Suciu
prove a dichotomy result, which applies to a subclass of conjunctive queries, commonly
refered as the small dichotomy result. As it gives nice insights on the larger dichotomy
result, we briefly look into this, while also taking the opportunity to introduce some
intricate notions; all these notions are relevant in the remaining of the thesis. The small
dichotomy applies to all conjunctive queries without self-joins, i.e., conjunctive queries
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C(x) ∧ R(x, y) ∧ D(x)

C(b) ∧ R(b, y) ∧ D(b)

R(b, a)

C(a) ∧ R(a, y) ∧ D(a)

R(a, b)

Figure 3.2: Decomposition tree of a safe query for the grounding [x/a, y/b] (left branch)
and [x/b, y/a] (right branch). Different branches of the tree do not share an
atom, which ensures independence.

with non-repeating relation symbols. It asserts that a self-join free query is hard if and
only if it is nonhierarchical and it is safe, otherwise. It is therefore crucial to understand
hierarchical and nonhierarchical queries.

Definition 3.19 (hierarchical queries) Let Q be a conjunctive query. For any vari-
able x that appears in the query Q, its x-cover, denoted x̃, is defined as the set of all
relation names that have the variable x as an argument. Two covers x̃ and ỹ are pairwise
hierarchical if and only if x̃ ∩ ỹ 6= ∅ implies x̃ ⊆ ỹ or ỹ ⊆ x̃. A query Q is hierarchical if
every cover x̃, ỹ is pairwise hierarchical; otherwise, it is called nonhierarchical. ♦

Let us consider the query QNH := ∃x, y C(x) ∧ R(x, y) ∧ D(y). Observe that this query
is not hierarchical since the relation R occurs in both covers x̃ and ỹ (as depicted in
Figure 3.1a). As shown in (Dalvi and Suciu 2007), this simple join query is already
unsafe. However, removing any of the atoms from this query results in a safe query.
For example, the query ∃x, y C(x) ∧ R(x, y) is hierarchical and thus safe. The query
QH := ∃x, y C(x) ∧ R(x, y) ∧ D(x), as shown in Figure 3.1b, is another example of a safe
query.

The intuition behind a safe query is the query being recursively decomposable into
sub-queries such that each such sub-query is probabilistically independent. Let us
consider the query QH as it admits a decomposition, and is safe. We can first ground
over x, which results in a query of the form ∃y C(a) ∧ R(a, y) ∧ D(a) for a grounding
[x/a]. The atoms in the resulting query do not share a relation name or a variable and
since we additionally assume tuple-independence, it follows that the probability of each
atom is independent. Thus, their probabilities can be computed separately and combined
afterwards using appropriate rules of probability.

Note that our observation for the independence is also valid for all different groundings
of QH. For example, the groundings QH[x/a] and QH[x/b], are probabilistically indepen-
dent since after applying a grounding over y, we obtain mutually disjoint sets of ground
atoms. In other words, once x is mapped to different constants, then all mappings for y
will result in different sets of atoms. As a result, their probabilities can be computed
separately and combined afterwards. The decomposition of the safe query QH is depicted
in Figure 3.2 in terms of a tree. The key ingredient in this example is related to the
variable x, which serves as a separator variable in the first place and allows us to further
simplify the query.
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C(x) ∧ R(x, y) ∧ D(y)

C(b) ∧ R(b, y) ∧ D(y)︸ ︷︷ ︸
!

R(b, a)

C(a) ∧ R(a, y) ∧ D(y)︸ ︷︷ ︸
!

R(a, b)

Figure 3.3: Decomposition tree of an unsafe query for the grounding [x/a, y/b] (left
branch) and [x/b, y/a] (right branch). Different branches of the tree share
D-atoms, which makes them dependent.

Definition 3.20 (separator variable) Let Q be a first-order query. A variable x in
Q is a separator variable if x appears in all atoms of Q and for any two different atoms
of the same relation R, the variable x occurs in the same position. ♦

Note that the query QNH has no separator variable since neither x, nor y serve
as a separator variable. On an intuitive level, this means that the query can not
be decomposed into independent sub-queries. For example, two different groundings
QNH[x/a] and QNH[x/b] are not independent for QNH since they do not necessarily result
in mutually exclusive sets of atoms once grounded over y as shown in Figure 3.3.

The small dichotomy theorem uses other rules of probability theory to further simplify
the query; we refer to (Suciu et al. 2011), for further details. The dichotomy for unions
of conjunctive queries is much more intricate and a characterization of safe queries is
unfortunately not easy. Thus, Dalvi and Suciu define an algorithm that computes the
probability of all safe queries by recursively applying the simplification rules on the query.
This algorithm is complete, i.e., when the algorithm fails on the query, then the query is
unsafe. Later, a lifted inference algorithm, called LiftR, was proposed in (Gribkoff, Van
den Broeck, and Suciu 2014b), which was also proven to be complete. For details, we
refer to the relevant literature and defer some details to Chapter 4, where we lift the
dichotomy for unions of conjunctive queries to an open-world semantics. Note that this
is achieved by a modified lifted inference algorithm, called LiftR

O, which properly extends
the existing algorithm LiftR.

Safety is thus a property that can be completely determined for unions of conjunctive
queries in polynomial time in data complexity (based on a complete algorithm). A
natural question that could arise is whether a similar classification would be possible
for arbitrary first-order queries. Unfortunately, safety is not a decidable property for
the class of FO queries as noted in (Suciu et al. 2011). It is a simple consequence of the
undecidability of finite satisfiability (Trakhtenbrot 1950). Consider the unsafe UCQ QNH
and an arbitrary FO query Q that does not share any relation names with QNH. It is
then easy to see that QNH ∧Q is safe if and only if Q is unsatisfiable.

Proposition 3.21 (Suciu et al. 2011) Safety is undecidable for FO queries.

Clearly, this negative result does not mean that first-order queries can not be evaluated
over PDBs. Leaving aside the classification of the queries, we can show that PQE(FO) is
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PP-complete. Importantly, the hardness result holds even for ∃FO and ∀FO queries. At
first sight, this PP-hardness result may seem obvious since PP-hardness already holds
for unions of conjunctive queries as a result of the dichotomy. Recall, however, that
the dichotomy is shown under polynomial time Turing reductions. It is open whether
there exists a UCQ query, for which probabilistic query evaluation is PP-hard under
polynomial time many-one reductions. Our hardness result implies that this is the case
for ∃FO or ∀FO queries.

Theorem 3.22 PQE(∃FO), PQE(∀FO), PQE(FO) are PP-complete for PDBs in data
complexity.

Proof. Let P be a PDB, Q a FO query and p ∈ (0, 1] a threshold value. Let us de-
note by P the probability distribution induced by P. There are exponentially many
databases (worlds) D induced by P, each of which holds with some probability. We
now create multiple copies of each world in such a way that the uniform distribution
over all thus generated worlds is equivalent to P when each copy is taken to represent
its original world. Given this uniform distribution over the worlds, we now consider a
nondeterministic Turing machine, where each branch corresponds to one of these worlds.
Each branch of the nondeterministic Turing machine represents an accepting run if
the test D |= Q is positive for the corresponding world D (which can be verified in
polynomial time in data complexity). Moreover, for threshold values properly above (re-
spectively, below) 0.5, we introduce artificial success (respectively, failure) branches
into the nondeterministic Turing machine such that satisfying the original threshold
corresponds to having a majority of successful computations. Then, the answer to the
probabilistic query entailment problem is yes if and only if the nondeterministic Turing
machine answers yes in the majority of its runs, which proves membership.

As for the lower bound, we first prove the result for ∀FO queries by reducing the
following problem. Let Φ := Cc x1, . . . , xn ϕ denote a quantified Boolean formula, where
C represents the counting quantifier and ϕ = ϕ1 ∧ · · · ∧ ϕk is a propositional formula in
3CNF, defined over the variables x1, . . . , xn. Deciding the validity of such formulas is
PP-complete (Wagner 1986). Intuitively, this amounts to checking whether there are c
assignments for x1, . . . , xn that satisfy ϕ. For the reduction, we consider the following
∀FO query

QSAT := ∀x, y, z ( L(x) ∨ L(y) ∨ L(z) ∨ R1(x, y, z)) ∧
(¬L(x) ∨ L(y) ∨ L(z) ∨ R2(x, y, z)) ∧
(¬L(x) ∨ ¬L(y) ∨ L(z) ∨ R3(x, y, z)) ∧
(¬L(x) ∨ ¬L(y) ∨ ¬L(z) ∨ R4(x, y, z)) ,

which is used to encode the satisfaction conditions of the formula Φ. Furthermore, we
define the PDB PΦ that stores the structure of Φ as follows.

– For each variable xi, 1 ≤ i ≤ n, PΦ contains the atoms 〈L(xi) : 0.5〉, where we view
each xi as a database constant.

– The clauses ϕi are described with the help of the predicates R1, …, R4, each of
which corresponds to one type of clause. For example, if we have the clause
ϕi = x1 ∨ ¬x2 ∨ ¬x4, we add the atom 〈R3(x4, x2, x1) : 0〉 to PΦ, which enforces
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via QSAT that either ¬L(x4), ¬L(x2) or L(x1) holds. All other R-atoms that do not
correspond in such a way to one of the clauses, we add with probability 1 to PΦ.

Claim. The formula Φ is valid if and only if PPΦ(QSAT) ≥ c · (0.5)n

Suppose that Φ is valid. Then, there are at least c different assignments τ to the
variables x1, . . . , xn that satisfy ϕ. For each satisfying assignment τ , we define a database
D that contains an atom L(xi) if and only if τ sets xi to true in Φ. Moreover, we add all
R-atoms that are in PΦ with probability 1. It is easy to see that each such database D
is a world induced by PΦ and satisfies D |= QSAT (as each such world is in one-to-one
correspondence with a satisfying valuation). Finally, it suffices to observe that there are
only n probabilistic atoms in PΦ; namely the atoms L(xj), 1 ≤ i ≤ n, that correspond
to the variables in Φ. Thus, every database D induced by PΦ has the probability 0.5n.
By our assumption, there are c satisfying assignments τ to Φ; thus, it follows that
PPΦ(QSAT) ≥ c · (0.5)n.

For the other direction, let PPΦ(QSAT) ≥ c · (0.5)n. Then, each database D induced by
PΦ sets a choice for the nondeterministic atoms L(x1), . . . , L(xn) and each such database
has the probability (0.5)n (as there are only n nondeterministic atoms in the PDB). As
a consequence, there must exist at least c databases induced by PΦ that satisfies D |= Q.

For each such database D, we define a corresponding assignment τ to the vari-
ables x1, . . . , xn such that xi is mapped to true in τ if and only if L(xi) ∈ D. It is then
easy to verify that τ |= ϕ. As there are c different assignments τ that satisfy ϕ, we
conclude that the formula Φ is valid. This proves PP-hardness for ∀FO queries.

Finally, observe that the negation of QSAT is an ∃FO query and PP is closed under
complement as it is closed under truth table reductions (Beigel, Reingold, and Spielman
1995). Thus, this hardness also holds for ∃FO queries.

Notice that the query in the given reduction uses the power of negation, which makes
the many-one reduction possible. It remains open whether there exists a positive query,
for which probabilistic query evaluation is PP-hard under many-one reductions. We now
continue our analysis with combined complexity results.

Beyond Existing Results: The Combined Complexity

In the context of (probabilistic) databases, the study of combined complexity seems to
be mostly ignored in the literature. This is mainly due to the fact that data complexity
often captures the real-world complexity of the relevant problems in a more adequate
manner. On the other hand, it is not hard to imagine scenarios where a safe query (in
data complexity) could require super-polynomial time in the query. Similar observations
motivated some work on this subject; for instance, there is recent work to isolate cases
where PQE is tractable in combined complexity (Amarilli, Monet, and Senellart 2017) .

There is yet another subtle reason for (mostly) abandoning combined complexity
analysis in PDBs, which is of a very technical nature: all existing data complexity results
are shown under Turing reductions, which leads to the collapse of many interesting
classes, which could possibly make a difference in the case of combined complexity. Our
combined complexity analysis, as any other result in this work except from dichotomy
results, are under many-one reductions, and therefore, we obtain more fine-grained
characterizations.
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We first show that probabilistic query evaluation for unions of conjunctive queries is
complete for PPNP in combined complexity.

Theorem 3.23 PQE(UCQ) is PPNP-complete for PDBs in combined complexity.

Proof. Let P be a PDB, Q a UCQ and p ∈ (0, 1] a threshold value. As before, we define
a nondeterministic Turing machine as in the proof of Theorem 3.22. Differently, the
test D |= Q is NP-complete in combined complexity (and it remains in NP for ∃FO
queries). The answer to this test can be retrieved from the oracle machine, which proves
membership.

In order to show hardness, we reduce the following problem: decide validity of formulas
of the form

Φ := Cc x1, . . . , xm∃y1, . . . , yn ϕ1 ∧ ϕ2 ∧ · · · ∧ ϕk ,

where every ϕi is a propositional clause over x1, . . . , xm, y1, . . . , yn, and k,m, n≥ 1. Φ is
valid if and only if, for at least c of the partial assignments µ to x1, . . . , xm, the formula

∃y1, . . . , yn µ(ϕ1 ∧ϕ2 ∧ · · · ∧ϕk),

is true. This is a PPNP-complete problem (Wagner 1986). To simplify the proof, we
also assume, without loss of generality, that ϕ contains all clauses of the form xj ∨ ¬xj ,
1 ≤ j ≤ m, and similarly yj ∨ ¬yj , 1 ≤ j ≤ n; clearly, this does not affect the existence
or number of satisfying assignments for ϕ. We also assume that each clause ϕj contains
exactly three literals. This is also without loss of generality, since otherwise we can
introduce additional existentially quantified variables to abbreviate the clauses, or
duplicate literals if the clauses are too short. We define the PDB PΦ for the reduction
as follows.

– For each variable xj , 1 ≤ j ≤ m, it contains the atoms 〈L(xj , 0) : 0.5〉 and
〈L(xj , 1) : 0.5〉.

– Each clause ϕj is described with the help of a predicate M(·, ·, ·, j) of arity 4,
which encodes the satisfying assignments for ϕj . For example, consider the clause
ϕj = x2 ∨ ¬y4 ∨ y1. For the satisfying assignment x2 7→ true, y4 7→ true, y1 7→ false,
we add the atom M(1, 1, 0, j) with probability 1, and similarly for all other satisfying
assignments. There are at most 7 satisfying assignments for each clause.

Furthermore, we define the UCQ

QΦ := (∃y1, . . . , yn ψ1 ∧ · · · ∧ ψk) ∨ (∃x L(x, 0) ∧ L(x, 1)),

where each ψj is a conjunction that is derived from ϕj depending on the types of the
involved variables. We describe the details again on the example clause ϕj = x2∨¬y4∨y1.
The satisfaction of this clause is encoded by the conjunction

ψj = M(i, y4, y1, j) ∧ L(x2, i),

where i is an additional existentially quantified variable that is local to ψj , and j is fixed.
Intuitively, ψj asserts that the truth assignment for x2, y4, and y1 (given by x2, i, and y1,
respectively) satisfies ϕj . Note that the variables y1, . . . , yn have to be mapped to 0 or 1,
since otherwise they cannot satisfy the M-atoms. Moreover, observe that an alternative
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way of satisfying QΦ is due to the last clause in QΦ: it applies when L-atoms represent an
inconsistent assignment (in Φ) for at least one variable of the form xj . Note that, in this
case, the query can be satisfied without actually satisfying the original formula Φ. This
happens only if the PDB contains both 〈L(xj , i1) : 0.5〉, 〈L(xj , i2) : 0.5〉 for different i1
and i2. As there are 2m nondeterministic atoms in PΦ, there are 4m worlds; among them,
(4m − 3m) satisfy the last clause of the query QΦ, which corresponds to an inconsistent
valuation in Φ. Based on the given construction, and these observations, we now prove
the following claim.

Claim. Φ is valid if and only if PPΦ(QΦ) ≥ 0.52m(4m − 3m + c).

Suppose that Φ is valid. Then, there are at least c assignments µ for x1, . . . , xm such
that each of these assignments admit an extension τ to the variables y1, . . . , yn such that
τ |= ϕ. For each partial valuation µ, we define a database Dµ such that it contains all
atoms from PΦ that occur with probability 1. Moreover, Dµ contains an atom L(xj , 1)
if xj is mapped to true in µ, and an atom L(xj , 0) if xj is mapped to false in µ. It
is easy to see that each such database Dµ is induced by the PDB PΦ. Besides, since
each of these assignments µ admit an extension τ to the variables y1, . . . , yn such that
τ |= ϕ, it follows that Dµ |= (∃y1, . . . , yn ψ1 ∧ · · · ∧ ψk), as all satisfying assignments are
already encoded in the database. In particular, this implies that Dµ |= QΦ for c worlds.
Recall also that (4m − 3m) worlds satisfy the last clause in the query (which captures
the inconsistent valuations). As every world has the probability (0.5)2m, we conclude
that PPΦ(QΦ) ≥ 0.52m(4m − 3m + c).

Conversely, if PPΦ(QΦ) ≥ 0.52m(4m − 3m + c), then there are at least c worlds that
satisfy the first clause in QΦ. For each of those worlds D, we define a partial assignment
µD such that a variable xj is mapped to true if L(xj , 1) ∈ D and it is mapped to false
if L(xj , 0). Moreover, D |= (∃y1, . . . , yn ψ1 ∧ · · · ∧ ψk) implies that there is a satisfying
mapping for the y-variables in the database. Recall that, this can only be the case if a
variable yj is either mapped to 0 or to 1 due to the structure encoded in M-atoms. We
define an extension τD of µD, which maps a variable yj to true if and only if it is mapped
to 1 in the database and to false, otherwise. It is easy to verify that τD |= ϕ. Thus, for
c partial assignments, the formula ∃y1, . . . , yn ϕ1 ∧ · · · ∧ ϕk is satisfiable; meaning that,
the formula Φ must be valid.

Importantly, in the hardness proof of Theorem 3.23, all the predicates are of a bounded
arity; that is, the proof already applies to the bounded-arity combined complexity and
so do the remaining results in this section.

Theorem 3.24 PQE(∃FO) and PQE(∀FO) is PPNP-complete for PDBs in combined
complexity.

Proof. The lower bounds follow from Theorem 3.23 and similarly the membership for
∃FO queries. For universal queries, the only difference is that the verification step D |= Q,
that needs to be performed for each world D, is coNP-complete in combined complexity.
This implies a PPcoNP upper bound, which is equivalent to PPNP.

Query evaluation is already PSpace-complete in databases for FO queries. Therefore,
we immediately obtain the following result.
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Table 3.3: Data, bounded-arity and combined complexity results for probabilistic query
evaluation in PDBs. The data complexity dichotomy is by Dalvi and Suciu and
holds under polynomial time Turing reductions. All the remaining results are
original contributions and hold under polynomial time many-one reductions.

Query
Languages

Probabilistic Query Evaluation in PDBs

data bounded-arity combined

UCQ P vs PP [Corollary 3.18] PPNP [Theorem 3.23] PPNP [Theorem 3.23]

∃FO, ∀FO PP [Theorem 3.22] PPNP [Theorem 3.24] PPNP [Theorem 3.24]

FO PP [Theorem 3.22] PSpace [Theorem 3.25] PSpace [Theorem 3.25]

Theorem 3.25 PQE(FO) is PSpace-complete for PDBs in combined complexity.

Proof. Let P be a PDB, Q a FO query and p ∈ [0, 1), a threshold value. Consider a
polynomial-space bounded nondeterministic Turing machine that enumerates all (expo-
nentially many) worlds D, and performs the test D |= Q for those worlds; then, adds up
their probabilities if the test is successful. Finally, the machine answers yes if and only
if the resulting probability exceeds the given threshold, which proves membership.

Hardness is immediate since query evaluation problem in databases for FO queries is
already PSpace-hard in combined complexity (even if we assume that the arity of the
predicates are bounded). To simulate this problem, we define a PDB P , which contains
all the atoms from a given arbitrary D with probability 1. Then, for any FO query Q,
we have that D |= Q if and only if PP(Q) ≥ 1.

All the results given in this section are summarized in Table 3.3. All the results
except the data complexity dichotomy (a corollary to the result of (Dalvi and Suciu
2012)) are original contributions. We later show that this dichotomy can be further
strengthened (by employing some reasonable assumptions) and all the other results
provide a baseline for remaining analysis.

3.2.3 Relations to Weighted Model Counting

Weighted model counting (WMC) is a natural problem that extends model counting (MC)
by associating a weight to every model. Our interest stems from the fact that probabilistic
query evaluation on a probabilistic database can be reduced to WMC, and, therefore,
the theory for WMC can be deployed to perform query evaluation.

In the scope of this thesis, we are concerned with first-order model counting (FOMC)
and weighted first-order model counting (WFOMC), which generalize MC and WMC of
propositional models. We give a brief background on these problems and describe the
connection to query evaluation on probabilistic databases.
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Definition 3.26 (WFOMC) Given a first-order formula Φ over a vocabulary σ with a
fixed, finite domain, let Γ be the set of σ-literals and w : Γ 7→ R be a weight function.
The weighted first-order model count of Φ is defined as

WFOMC(Φ, w) :=
∑
I|=Φ

∏
I|=l

w(l) ,

where I is a first-order interpretation over the fixed domain and l ranges over the literals
in Γ. The first-order model count of Φ, denoted FOMC(Φ) is the special case of WFOMC
where w(l) = 1 for all literals l ∈ Γ. The symmetric first-order model count of Φ,
denoted SWFOMC(Φ, w), is the special case of WFOMC where for any two literals l and
l′ belonging to the same predicate, it holds that w(l) = w(l′). ♦

Propositional variants of these problems are defined in the exact same way by replacing
the first-order formula with a propositional one and first-order literals with propositional
literals. Clearly, there is no notion of symmetric model counting in the propositional
setting.

The connection to probabilistic query evaluation in probabilistic databases is then
immediate: given a PDB P and a Boolean query Q

PP(Q) = WFOMC(Q,w),

where the weight function w is defined such that for all probabilistic atoms 〈l : p〉 ∈ P ,
we set w(l) = p and w(¬l) = 1− p whereas for all σ-atoms t that do not appear in P,
we set w(t) = 0 and w(¬t) = 1.

Notice that a similar correspondence can be achieved with WMC and using the lineage
representation of the query relative to the probabilistic database. More formally, let ϕ
be the lineage of Q in the given PDB then

P(ϕ) = WMC(ϕ,w),

where the weight function w is defined as before, with the obvious difference that it now
ranges over propositional literals.

While the lineage representation is relatively common, grounding is usually not very
efficient, as discussed. Furthermore, it is hard to capture inherent symmetries that may
be present in the data using the lineage representation. Performing inference directly on
first-order structures is typically more efficient. The differences in the computational
complexity of FOMC, WFOMC and SWFOMC give nice insights on this issue: Recall the
query C(x)∧R(x, y)∧D(y), which is unsafe over PDBs in data complexity. Interestingly,
the (unweighted) model count of this query can still be computed in polynomial time
and remains so if we allow weights that are symmetric, see (Beame, Van den Broeck,
Suciu, and Gribkoff 2015), for details and complexity-theoretic assumptions.

On the other hand, first-order model counting comes with its own problems. One
obvious issue is the domination problem: predicates with higher arity naturally contain
more groundings than those of with lower arity. As a consequence, the total model
count tends to be dominated by the higher arity predicates. Although obvious, this
problem appears to be overlooked to the best of our knowledge. One way of tackling
this problem can be to define domain and range restrictions so that the groundings do
not grow artificially in the size of the domain.
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3.3 State of the Art in Probabilistic Databases
Historical Background, Semantics and Relations to AI

Research on probabilistic databases is almost as old as traditional databases as stated
in (Suciu et al. 2011). Our focus is only on the closely related approaches; for an extended
overview, we refer the interested reader to the relevant literature. We note the seminal
work of (Fuhr and Rölleke 1997), which has been very important in probabilistic database
research as well as the first formulation of possible world semantics in the context of
databases by (Imieliński and Lipski 1984).

Possible world semantics has its roots in philosophy and logic and is formalized
by (Hintikka 1969) and (Kripke 1963). In artificial intelligence, it has been widely
employed in PGMs (Darwiche 2009; Koller and Friedman 2009), which dates back to
Bayesian Networks (Pearl 1988). Early applications of possible world semantics in
first-order representations can be found in Sato’s distribution semantics (Sato 1995) and
in Poole’s independent choice logic (Poole 1997). Over time, it also became the standard
semantics for probabilistic logic programming (De Raedt, Kimmig, and Toivonen 2007)
and similarly for probabilistic formal verification (Sato and Kameya 1997).

There is a subtle, but important, issue to note regarding the possible world semantics.
Observe that it only defines the method of extending the classical semantics of the
underlying formalism (i.e., database, logic program, et cetera) to a probabilistic setting.
Hence, all these extended formalisms still have their differences in the semantics as a
natural consequence of the differences of the underlying formalisms.

Dichotomy-Related Results

Grädel, Gurevich, and Hirsch were the first to consider a dichotomy and they have
shown, for instance that the simple query C(x) ∧ R(x, y) ∧ C(y) is #P-hard. Later,
Dalvi and Suciu proved the small dichotomy result. The first support for first-order
queries in probabilistic databases is in (Fink, Olteanu, and Rath 2011). Moreover, a
small dichotomy result for queries with negation has been obtained in (Fink and Olteanu
2016). Other dichotomy results extend the dichotomy for unions of conjuncive queries
in other directions; some allow for disequality ( 6=) joins in the queries (Olteanu and
Huang 2008) and some for inequality (<) joins in the queries (Olteanu and Huang 2009).
There is also a trichotomy result over queries with aggregation (Ré and Suciu 2009).
The common ground in all these dichotomy results is the fact that they classify queries
as being safe or unsafe (while the data is not fixed). A different approach is to obtain a
classification relative to the structure of the underlying database and it has been proven
in (Amarilli, Bourhis, and Senellart 2016), for instance, that every query formulated in
Monadic Second Order logic can be evaluated in linear time over PDBs with a bounded
tree-width.

Inference Techniques

Query answering over PDBs translates into weighted model counting (Gribkoff, Suciu,
and Van den Broeck 2014). Most of the existing approaches to model counting are
based on propositional models (Chakraborty, Fried, Meel, and Vardi 2015; Chavira
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and Darwiche 2008; Gomes, Sabharwal, and B. Selman 2006) and are linked to PDBs
through lineage representations. More promising approaches are based on weighted
first-order model counting, which exploit inherent symmetries without the explicit need
of grounding to a lineage representation (Beame, Li, Roy, and Suciu 2017; Gribkoff, Van
den Broeck, and Suciu 2014b).

In general, probabilistic inference is computationally a very demanding task. The most
common approach in PGMs as well as in PDBs is to use some approximate algorithms,
mostly based on Markov Chain Monte Carlo (MCMC) algorithms; see for instance (Niu,
Ré, Doan, and Shavlik 2011) and (Shin et al. 2015). Unfortunately, these algorithms do
not provide any guarantees and therefore are less desirable from a theoretical perspective.

Another prominent approach is based on knowledge compilation (Cadoli and Donini
1997; Darwiche and Marquis 2002; B. Selman and Kautz 1996), which is an important
branch of knowledge representation and AI that aims at solving difficult AI problems
such as satisfiability, validity, implication, and substitution in an efficient manner, by
compiling the problem into a target language in which it can be solved efficiently:
the computational overhead is pushed into an off-line preprocessing phase, which is
amortised over a large number of on-line queries. There are many target languages
used in knowledge compilation, ranging from traditional ones such as binary decision
diagrams (BDDs), ordered BDDs (OBDDs), and negation normal forms (NNFs) to more
sophisticated formalisms like deterministic decomposable NNFs (d-DNNFs), free BDDs
(FBDDs), and sentential decision diagrams (SDDs). Different compilation algorithms can
solve efficiently different classes of problems, in time polynomial in the size of compiled
expression (Darwiche and Marquis 2002).

Recent decades witnessed a shift in AI research towards probabilistic models, and
knowledge compilation has been adopted accordingly towards addressing hard proba-
bilistic inference tasks such as model counting, or threshold probability computing, where
typically the former is #P-hard, and the latter PP-hard. Knowledge compilation is
widely employed on propositional models (Darwiche and Marquis 2002) and there are
already solvers designed for decision problems that belong to complexity classes such
as PP and beyond.

Knowledge compilation has also been effective on first-order models (Van den Broeck,
Taghipour, Meert, Davis, and Raedt 2011). It is also gaining growing attention
in PDBs (Jha and Suciu 2013). A different form of knowledge compilation in PDBs
is based on factorising PDBs and queries (Olteanu and Schleich 2016). In particular,
the notion of tensor factorization characterizes very promising knowledge compilation
techniques in the broader sense, which have, e.g., been applied to knowledge base comple-
tion (Socher et al. 2013), i.e., the problem of predicting non-existing from existing facts in
a knowledge base. Tensor factorization has recently also been applied to PDBs (Krompaß,
Nickel, and Tresp 2014).

Systems

Most probabilistic relational database management systems, such as MystiQ (Boulos,
Dalvi, Mandhani, Mathur, Ré, and Suciu 2005) and SPROUT (Fink, Hogue, Olteanu,
and Rath 2011), are based on the tuple-independence assumption, i.e., any two facts in
the database are assumed to be probabilistically independent. In parallel, the crucial
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need to relax this independence assumption has already been recognized in several
recent approaches, which are based on Markov logic networks (MLNs) (Gribkoff and
Suciu 2016b). Here, the PDB is viewed as a set of weighted facts in an MLN; additional
soft/hard constraints are imposed through a set of weighted/unweighted rules from MLNs.
In particular, the recent system SlimShot (Gribkoff and Suciu 2016b) reduces such PDBs
to tuple-independent PDBs with additional logical constraints; it also provides certain
accuracy guarantees. Other related approaches based on Markov logic networks, like
Tuffy (Niu et al. 2011) and DeepDive (Shin et al. 2015), use MCMC for probabilistic
inference, or a variant called MC-SAT (Poon and Domingos 2006). In general, such
approximating algorithms do not provide any accuracy guarantees as already pointed
out (and also have computational efficiency problems; cf. (Gribkoff and Suciu 2016b)).
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Open-World Probabilistic Databases

We revisit the choice for the CWA in probabilistic knowledge bases. We observe that the
CWA is violated in their deployment, which makes it problematic to reason, learn, or
mine on top of these databases. We will argue the following salient points in detail. First,
query answering under the CWA does not take into account the effect the open-world
can have on the query probability. This makes it impossible to distinguish queries
whose probability should intuitively differ. Second, knowledge bases are part of a larger
machine learning loop that continuously updates beliefs about facts based on new textual
evidence. From a Bayesian learning perspective (Bishop 2006), this loop can only be
principled when learned facts have an a priori non-zero probability. The CWA does not
accurately represent this mode of operation and puts it on weak footing. Third, the
CWA is problematic for higher level tasks that one is usually interested in performing
on probabilistic databases, including some principled approaches to knowledge base
completion and mining. Finally, we note that these issues are not temporary: it will
never be possible to complete probabilistic knowledge bases of even the most trivial
relations, as the memory requirements quickly become excessive. This already manifests
itself today: statistical classifiers output facts at a high rate, but only the most probable
ones make it into the knowledge base, and the rest is truncated, losing much of the
statistical information. For example, 99% of the tuples in NELL have a probability
larger than 0.91.

We propose an alternative semantics for probabilistic knowledge bases to address these
problems, based on the open-world assumption (OWA). As opposed to the CWA, the
OWA does not presume that the knowledge of a domain is complete. Hence, anything that
is not in the knowledge base remains possible. Our proposal for open-world probabilistic
databases (OpenPDBs) builds on the theory of imprecise probabilities, and credal sets
in particular (Levi 1980), to allow interval-based probabilities for open tuples. In the
most-basic setting, OpenPDBs make explicit the probability threshold that decides which
facts make it into the knowledge base. All facts in the open-world must have a lower
probability that bounds their contribution to the probability of possible worlds. This
framework provides more meaningful answers, in terms of upper and lower bounds on
the query probability.

4.1 Problems in Probabilistic Databases
We now take a critical view on PDBs and illustrate certain limitations, which are inherent
to the semantics of PDBs and the widely employed assumptions. The CWA presumes
a complete knowledge about the domain being represented, and this assumption is
warranted in many cases (Reiter 1978). For example, when a flight does not appear in
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Table 4.1: The probabilistic database Pc represented in terms of database tables.

StarredIn P

willsmith ali 0.9
willsmith sharktale 0.8
jadasmith ali 0.6
arquette scream 0.7
pitt mrmssmith 0.5
jolie mrmssmith 0.7
jolie sharktale 0.9

Couple P

arquette cox 0.6
pitt jolie 0.8
thornton jolie 0.6
pitt aniston 0.9
kunis kutcher 0.7

an airline database, we can be sure that it never took place. In what follows, we assess
the adequacy of the CWA for probabilistic knowledge bases such as NELL, DeepDive,
and Knowledge Vault.

4.1.1 Distinguishing Queries

The fact that many queries evaluate to the probability zero makes it impossible to
distinguish a large class of queries, which should intuitively differ. We will briefly
illustrate this effect by considering several queries on the PDB Pc of Table 4.1.

Example 4.1 (specificity) Consider the PDB Pc represented as probabilistic database
tables in Table 4.1 and the following queries

Q1(x, y) := ∃z StarredIn(x, z) ∧ StarredIn(y, z) ∧ Couple(x, y),
Q2 := ∃x, y, z StarredIn(x, z) ∧ StarredIn(y, z) ∧ Couple(x, y).

Let us consider the queries Q1(pitt, jolie) and Q2. From a logical perspective, Q1(pitt, jolie)
entails Q2, i.e., Q1(pitt, jolie) |= Q2. In other words, the pattern specified by Q1(pitt, jolie)
is only a special case of the pattern specified by Q2. As a consequence, the reasonable
expectation in an open-world setting is that P(Q2) > P(Q1(pitt, jolie)), since there exist
a large number of couples for which we do not yet have information, could satisfy the
query Q2. Under the CWA, however, P(Q2) = P(Q1(pitt, jolie)) = 0.28 in the PDB Pc.♦

Example 4.1 shows that query semantics under the CWA fails to distinguish a query
from a particular instance of this query. Our next example considers two logically
incomparable queries that have varying level of support in the database.

Example 4.2 (support) Consider now the following queries Q1(willsmith, jadasmith)
and Q1(thornton, aniston). The former query is supported by two facts in the PDB Pc,
while the latter query is supported by none, which should make it less likely. Conversely,
the number of tuples to be added to the PDB Pc to satisfy Q1(thornton, aniston) are more
than the number of tuples to be added to the PDB Pc to satisfy Q1(willsmith, jadasmith).
Observe, however, that

P(Q1(thornton, aniston)) = P(Q1(willsmith, jadasmith)) = 0,

i.e., both of the queries evaluate to zero under the CWA. ♦
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Example 4.2 shows that queries that do not have a matching answer in the database
are viewed to be the same by the query semantics, even though these queries clearly
have different levels of support in the database. The following example takes these
observations to the extreme, by comparing the probabilities of a satisfiable query with
an unsatisfiable query.

Example 4.3 (satisfiability) Consider again the query Q1 and the query

StarredIn(x, y) ∧ ¬StarredIn(x, y).

The latter is an unsatisfiable query, but it evaluates to the same probability as Q1, that
is, a satisfiable query; more concretely, both queries evaluate to the probability zero on
the PDB Pc. ♦

In a nutshell, the CWA forces a very flat representation, and as a consequence, it
becomes impossible to even distinguish a satisfiable query from an unsatisfiable one
by comparing their probabilities. Importantly, these counterintuitive results are not
synthetic, i.e., they are observed in real-world data as well, as we will illustrate later.

4.1.2 An Unfounded Learning Loop

The Bayesian learning paradigm is a popular view on machine learning, where the learner
maintains beliefs about the world as a probability distribution, and updates these beliefs
based on data, to obtain a posterior distribution. Probabilistic data (and knowledge)
bases can be cast into this principled framework as follows.

Suppose we are building a probabilistic knowledge base from scratch. The first step of
Bayesian learning is to come up with a prior belief about the facts in the database. Next,
as we read the web, we incorporate more evidence into our distribution. For example,
suppose we observe two web pages, da and db, and are interested in querying for Q2 as
defined above. Then, we may have

P(Q2) = 0.01, P(Q2 | da) = 0.09, P(Q2 | da, db) = 0.08,

that is, our prior belief is that the probability of Q2 is 1%, but after observing the
information on web page da, that probability becomes 9%. When additionally observing
web page db, giving evidence to the contrary, the belief drops to 8%.

This sequence is a typical run of Bayesian learning. Unfortunately, it is not the mode
of operation for large-scale PDBs as they currently function. A typical run would instead
be

P(Q2) = 0, P(Q2 | da) = 0.09, P(Q2 | da, db) = 0.08,

The difference is subtle, but important. The first induction, from a belief of 0% to 9% is
impossible to obtain from a single probability distribution P and violates the axioms
of belief update. When Q2 is impossible according to P, it remains impossible after
observing evidence. Consequently, the Bayesian learning paradigm fails in practice. More
precisely, given a PDB at time t, such systems gather data Dt to obtain a new model
Pt+1(.) = Pt(. |Dt). Systems continuously add facts f , that is, set Pt+1(f) > 0, whereas
previously Pt(f) = 0; an impossible induction for Bayesian learning.
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Figure 4.1: Box plot of probabilistic knowledge base probabilities with 2nd to 3rd quartile
in gray. YAGO only provides an estimate of the mean probability per relation.

4.1.3 Knowledge Base Completion, Mining and Evaluation

The CWA permeates higher-level tasks that one is usually interested in performing on
probabilistic databases. Consider for example the knowledge base completion task, where
we want to learn new facts to add to the database, using the facts that are already
present. A natural approach to knowledge base completion is to learn a probabilistic
model from training data. Consider for example a probabilistic rule (De Raedt et al.
2015; Wang, Mazaitis, and Cohen 2013) of the form

StarCouples(x, y) 0.8←−− StarredIn(x, z), StarredIn(y, z),Couple(x, y).

encoding the fact that if the query StarredIn(x, z), StarredIn(y, z),Couple(x, y) succeeds on
a database, there is an 80% probability that we should derive the fact StarCouples(x, y).
To evaluate the quality of this rule to predict the star couples relation, the standard
approach would be to take the current probabilistic database together with labeled
training data

D = {StarCouples(willsmith, jadasmith), StarCouples(pitt, jolie)}

and quantify the conditional likelihood of the rule (Sutton and McCallum 2011). Unfor-
tunately, by the CWA, the rule predicts P(StarCouples(willsmith, jadasmith)) = 0 because
the fact Couple(willsmith, jadasmith) is missing from the database. The rule gets the
worst likelihood score of zero, regardless of its performance on other tuples in the training
data. Indeed, our probabilistic database semantics tell us that the absence of a single
tuple can make StarCouples(willsmith, jadasmith) impossible, invalidating the entire rule,
which is otherwise highly accurate.

Another high-level task is to mine frequent patterns in the knowledge base. Given
the probabilistic database the goal would, for instance, be to find interesting patterns,
such as the pattern that many couples star in the same movie, and report it to the data
miner. Again, the CWA will underestimate the expected frequencies of these patterns,
and stand in the way of progress (Galárraga, Teflioudi, Hose, and Suchanek 2013).
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4.1.4 Truncating and Space Blow-up
Figure 4.1 shows the distribution of the probabilities in popular data and knowledge
bases. These automatically constructed PDBs seem hardly probabilistic. Most tuples
have a very high probability, placing PDBs into an almost crisp setting, in practice. The
underlying reason is that these systems retain only a small fraction of the discovered
facts. Facts with a probability below a threshold are discarded, violating the CWA. In
fact, PaleoDeepDive contains a wider range of probabilities, because it was obtained
from the authors before truncation. This mode of operation is not an oversight, but
a necessity. It is simply not possible to retain all facts. Consider, for instance, the
Sibling relation over a domain of 7 billion people. Storing a single-precision probability
for all Sibling facts would require 196 exabytes of memory; two orders of magnitude
more than the estimated capacity available to Google (Munroe 2015). Moreover, note
that the distribution of probabilities for such a closed-world database would be vastly
different from the current ones, and instead be highly skewed towards zero. This issue of
truncating and quadratic blow-up is inherent to probabilistic knowledge bases and has
to be acknowledged in their semantics.

4.2 Open-World Probabilistic Databases
Our central observation is that large scale knowledge bases are incomplete by their nature
and systems used to build such knowledge bases should incorporate these characteristics
into the query semantics. A feasible approach in this context would be to relax the
probabilities of facts that are not in the database to a default probability interval, which is
very different from the closed-world assumption of PDBs, which requires the probabilities
of such facts to be zero. Our proposal on open-world probabilistic databases builds on
the theory of imprecise probabilities to allow default, interval-based probabilities for the
atoms that are not in the database. Syntactically, an open-world probabilistic database
is a pair of a probabilistic database and a predefined threshold value.
Definition 4.4 (syntax) An open-world probabilistic database (OpenPDB) is a pair
G = (P, λ), where P is a probabilistic database and λ ∈ [0, 1]. ♦

The semantics of OpenPDBs is based on completing probabilistic databases. Intuitively,
an OpenPDB denotes a partial specification over a vocabulary and needs to be completed
by assigning a probability value from an interval [0, λ] to each of the open tuples.
Definition 4.5 (completion) A λ-completion of a probabilistic database P is another
probabilistic database that is obtained as follows. For each atom t that does not appear
in P, we add an atom 〈t : p〉 to P for some p ∈ [0, λ]. ♦

An OpenPDB induces a set of PDBs, each of which differs in the probabilities of the
open tuples. Therefore, while a closed probabilistic database induces a unique probability
distribution, an OpenPDB induces a (credal) set of probability distributions. A credal set
is a closed convex set of probability distributions over a shared set of random variables.
Definition 4.6 (OpenPDBs) An open probabilistic database G = (P, λ) induces a
credal set of probability distributions KG such that distribution P belongs to KG if and
only if P is induced by some λ-completion of the PDB P. ♦
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Table 4.2: The OpenPDB Gc = (Pc, 0.5) induces an infinite set of PDBs. Rows depicted
in orange color represent open tuples that can take on any rational probability
value from the default probability interval [0, 0.5].

StarredIn P

willsmith ali 0.9
willsmith sharktale 0.8
jadasmith ali 0.6
arquette scream 0.7
pitt mrmssmith 0.5
jolie mrmssmith 0.7
jolie sharktale 0.9
pitt ali [0, 0.5]
pitt fightclub [0, 0.5]
arquette fightclub [0, 0.5]
... ... [0, 0.5]

Couple P

arquette cox 0.6
pitt jolie 0.8
thornton jolie 0.6
pitt aniston 0.9
kunis kutcher 0.7
willsmith jadasmith [0, 0.5]
arquette jolie [0, 0.5]
pitt kutcher [0, 0.5]
... ... [0, 0.5]

Intuitively, an OpenPDB represents all possible ways to extend a PDB with new tuples
from the open-world, with the restriction that the probability of these unknown tuples
can never be larger than λ.

Example 4.7 Consider the PDB Pc given before. Then, the pair Gc = (Pc, 0.5) denotes
an OpenPDB where open tuples can have the probability at most 0.5. Clearly, there
are infinitely many possible completions of Gc. Consider, for instance, the following
completions

P0 = Pc ∪ {〈t : 0〉 | t is an open atom in the PDB Pc},
P0.5 = Pc ∪ {〈t : 0.5〉 | t is an open atom in the PDB Pc}.

These completions are special since they uniformly set all of open atoms to the
same probability value. Observe, furthermore, that these completions induce different
probability distributions, both of which belong to KGc . ♦

Query semantics now has to take into account sets of probability distributions, and
provide query probabilities in terms of upper and lower probability values.

Definition 4.8 (query semantics) Let Q be a Boolean query and G be an OpenPDB.
The probability interval of Q in the OpenPDB G is defined as KG(Q) = [PG(Q),PG(Q)],
where

PG(Q) = min
P∈KG

P(Q) and PG(Q) = max
P∈KG

P(Q). ♦

We will discuss the consequences of this semantics in more detail and compare it
with the semantics of PDBs, in the next section. At this point, we confine ourselves to
highlighting the basic semantic properties of OpenPDBs.

Example 4.9 Consider the OpenPDB Gc = (Pc, 0.5) and suppose that an atom t is
open in OpenPDB Gc. We then have PGc

(t) = 0 and PGc(t) = λ by the query semantics.
For instance, the ground query Q = StarredIn(pitt, fightclub) evaluates to the probability
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0 in PDBs, as the probability of the tuple StarredIn(pitt, fightclub) is set to 0 by the
CWA. As for Gc, it is easy to see that

PGc
(Q) = 0 and PGc(Q) = 0.5.

The lower probability of Q remains the same due to the completion that assigns all
open atoms the probability 0, while the upper probability increases due the following
completion P0.5 ♦

The open-world assumption has been introduced as the opposite of the CWA (Reiter
1978). Under the OWA, a set of tuples no longer corresponds to a single interpretation.
Instead, a database corresponds to the set of interpretations that extend it. A similar
effect is achieved by OpenPDBs: a set of probabilistic tuples no longer corresponds to a
single distribution. Instead, probabilistic database corresponds to the set of distributions
that extend it. In restricting the probabilities of open tuples to lie in [0, λ], OpenPDBs
follow a rich literature on interval-based probabilities (J. Y. Halpern 2003), credal
networks (Cozman 2000). Moreover, to assume a default probability interval is clearly a
form of default reasoning (Reiter 1980).

4.2.1 Open-World Probabilistic Databases in Practice

We discuss the implications of the open-world setting before moving to a detailed technical
analysis. First, we go through the motivating examples provided in Section 4.1, and
highlight the differences in OpenPDBs.

Example 4.10 (specificity) Recall that both of the following queries

Q1(pitt, jolie) = StarredIn(pitt, z), StarredIn(jolie, z),Couple(pitt, jolie),
Q2 = StarredIn(x, z), StarredIn(y, z),Couple(x, y),

evaluate to the same probability in the PDB Pc as explained in Example 4.1. We already
noted that Q1(pitt, jolie) entails Q2, leading us to expect that P(Q2) > P(Q1(pitt, jolie))
assuming our knowledge is not complete. This is indeed the case for the OpenPDB
Gc = (Pc, 0.5) for upper probabilities. It holds that PGc(Q2) > PGc(Q1(pitt, jolie)) since
there are many worlds with non-zero probability that entail Q2 but not Q1(pitt, jolie).
Notice that the lower probabilities remain unchanged. ♦

This shows that, in the open-world, it becomes possible to distinguish a query from a
particular instance of this query, by comparing their respective upper probabilities.

Example 4.11 (support) Consider now again the queries Q1(willsmith, jadasmith) and
Q1(thornton, aniston). Despite the fact that the first query has more support than the
second one in Pc, both queries evaluate to the probability 0 in Pc, as identified in
Example 4.2. In the OpenPDB Gc = (Pc, 0.5), we obtain

P(Q1(willsmith, jadasmith)) > P(Q1(thornton, aniston)) > 0,

meaning that we can distinguish the queries in terms of the relative support in the data.♦
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Clearly, in the open-world setting, it becomes even possible to distinguish queries that
do not have a matching answer in the database since such queries typically have different
levels of support in the database. We have also observed that an unsatisfiable query is
in some cases as likely as a satisfiable one in the closed-world. How are such queries
evaluated in the open-world?

Example 4.12 (satisfiability) Consider again the query Q1 and the unsatisfiable
query StarredIn(x, y) ∧ ¬StarredIn(x, y). Recall that both queries evaluate to the prob-
ability zero on the PDB Pc. In the open-world setting, the upper probability of a
satisfiable query will always be greater than the upper probability of an unsatisfiable
query unless all the matches for the query are explicitly set to the probability 0 by the
PDB. Moreover, any unsatisfiable query will still have a zero upper probability. ♦

These synthetic examples underline the difference in the semantics of PDBs and
OpenPDBs. However, do we really encounter similar examples in the real-world data,
which can benefit from an open-world perspective? To elaborate on this question, we
have extracted a portion from NELL concerning movies, actors, directors, etc. We
conclude this section with this real-world example.

Example 4.13 (real-world data) Consider the following queries constructed based
on a portion of the NELL database:

Q1 := Actor(pattinson) ∧Workedfor(pattinson, hardwicke) ∧ Director(hardwicke).
Q2 := ∃xActor(x) ∧ StarredIn(x, trainspotting) ∧Movie(trainspotting) ∧ ¬Director(x).
Q3 := ∃xActor(pattinson) ∧Workedfor(pattinson, x) ∧ Director(x).

All of the above queries have probability zero on the NELL database, yet we know they
correspond to factually true statements. These queries, however, can be distinguished
in an open-world setting, as they have varying levels of support. For example, we
observe that Q1 entails Q3, and posing these queries in the open-world setting, we
indeed obtain P(Q3) > P(Q1) for any non-zero threshold λ. For instance, P(Q3) = 0.82
and P(Q1) = 0.51 for λ = 0.3. The query Q2 finds actors that starred in the movie
Trainspotting and did not direct a movie. Interestingly, there is no world satisfying this
query in the NELL database. Evaluating Q2 in OpenPDBs yields P(Q2) = 0.98 and
P(Q2) = 0.78 with thresholds 0.7 and 0.3, respectively. These answers are clearly more
in line with what one would expect. ♦

4.2.2 Query Answering in Open-World Probabilistic Databases

We study the following decision problems that extend probabilistic query evaluation to
consider lower and upper probabilities for queries.

Definition 4.14 (upper, lower probabilistic query evaluation) Given an Open-
PDB G, a query Q and a value p ∈ [0, 1), upper probabilistic query evaluation, denoted
PQE, is to decide whether PG(Q) > p and lower probabilistic query evaluation denoted
PQE, is to decide whether PG(Q) > q. Both PQE and PQE are parametrized with a
particular query language; thus, we write PQE(Q) (respectively, PQE(Q)) to define
PQE (respectively, PQE) on the class of Q queries. ♦
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OpenPDBs model an infinite set of PDBs, and it may seem like an unsurmountable
task to efficiently compute the probability intervals KG(Q). As we will prove later, the
problem can be simplified to consider only extremal probability distributions that are
obtained by setting the probability values of all elementary events to one of the extreme
points.

Definition 4.15 Let G = (P, λ) be an arbitrary OpenPDB; we call a probability
distribution P ∈ KG an extremal distribution if for all open atoms t, either P(t) = λ or
P(t) = 0 holds. ♦

By Theorem 4.16, to compute the upper and lower probability bounds, it is sufficient
to consider the distributions, where open atoms can take on the probability λ or 0 , i.e.,
no intermediate choices need to be examined.

Theorem 4.16 Let G be an arbitrary OpenPDB and Q an FO query. There exist
extremal distributions P,P ∈ KG such that P(Q) = PG(Q), and P(Q) = PG(Q).

Proof. First, note that the functions PG : FO 7→ [0, λ] and PG : FO 7→ [0, λ] are well-
defined w.r.t. the set KG , i.e., the existence of a maximum (resp., minimum) is ensured
by the properties of credal sets. We need to show that the maximal (resp., minimal)
probabilities of queries can always be obtained from the extreme probability distributions.
We prove the claim only for P as P can be treated analogously.

To simplify the proof, we use the lineage representation of the database atoms, which
can be realized simply by introducing a propositional literal pt for every atom t. Similarly,
we focus on the lineage of the query, which can be obtained by first grounding the query
and then converting it into a propositional formula by replacing every tuple in the
ground query with its lineage. It is well-known that every first-order query relative to a
finite structure has a corresponding propositional lineage representation and thus our
assumption is without loss of generality. Since any propositional formula is equivalent to
a formula in 3CNF, we can further assume that the lineage is in 3CNF. Moreover, for
simplicity we assume that the CNF contains exactly three clauses. Thus, it suffices to
prove the claim for 3CNF formulas ϕ = c1 ∧ . . . ∧ cn where ci = (¬)li1 ∨ (¬)li2 ∨ (¬)li3 .

Suppose that there is a probability distribution P, where the probabilities of k (positive)
literals in ϕ are set to intermediate probability values from the interval (0, λ). We prove
that, for each such literal l, there is (at least) one extreme assignment to l that does
not decrease the probability of ϕ. Formally, given P, we define two new probability
distributions Pl=λ and Pl=0 such that Pl=λ(lij) = P(lij) and Pl=0(lij) = P(lij) for all lij
different from l and Pl=λ(l) = λ, and Pl=0(l) = 0.

Claim. Either Pl=λ(ϕ) ≥ P(ϕ), or Pl=0(ϕ) ≥ P(ϕ) holds.

To prove the claim, suppose that Pl=λ(ϕ) < P(ϕ), i.e., the probability of ϕ = c1∧ . . .∧ cn

decreases if we increase the probability of l to λ. We make a case analysis.

Case 1. Assume that the literal l appears only positively in ϕ. This immediately leads
to a contradiction since, if for every clause ci, l appears positively, then the probability
of ϕ is clearly monotone in l. Thus, Pl=λ(ϕ) ≥ P(ϕ).

Case 2. Assume that the literal l appears only negatively in ϕ. If for every clause
ci, l appears negatively, then the probability of ϕ is antitone in l. This immediately
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implies that Pl=0(ϕ) ≥ P(ϕ) since further decreasing the probability of l increases the
probability of ϕ.

Case 3. Assume that the literal l appears both positively and negatively in ϕ. We can
summarize all clauses where l appears positively with the formula

l ∨
( (

(¬)u1 ∨ (¬)u2
)
∧ . . . ∧

(
(¬)ur ∨ (¬)ur+1

)︸ ︷︷ ︸
∆1

)
,

and similarly the clauses where l appears negatively with the formula

¬l ∨
( (

(¬)v1 ∨ (¬)v2
)
∧ . . . ∧

(
(¬)vs ∨ (¬)vs+1

)︸ ︷︷ ︸
∆2

)
.

Moreover, let ∆3 be the conjunction of all clauses where the literal l does not appear.
Thus, we obtain (l ∨∆1) ∧ (¬l ∨∆2) ∧∆3 as a rewriting of ϕ. We can compute the
probability of ϕ = (l ∨∆1) ∧ (¬l ∨∆2) ∧∆3 by applying inclusion-exclusion (see the
description of Step 5 in Algorithm 1) as

P(ϕ) =− P(l ∨∆1)− P(¬l ∨∆2)− P(∆3)
+ P((l ∨∆1) ∨ (¬l ∨∆2)) + P((l ∨∆1) ∨∆3) + P((¬l ∨∆2) ∨∆3)
− P((l ∨∆1) ∨ (¬l ∨∆2) ∨∆3).

Note that P((l ∨∆1) ∨ (¬l ∨∆2)) = P((l ∨∆1) ∨ (¬l ∨∆2) ∨∆3) = 1, which yields

P(ϕ) = −P(l ∨∆1)− P(¬l ∨∆2)− P(∆3) + P(l ∨∆1 ∨∆3) + P(¬l ∨∆2 ∨∆3).

We can now decompose the terms that are independent, for instance, l and ∆1 are
independent from each other; thus, we can decompose the disjunction (l ∨∆1) using the
independence assumption as P(l ∨∆1) = (1− (1− P(l)) · (1− P(∆1))) and apply other
well-known simplifications to obtain

P(ϕ) =− P(l ∨∆1)− P(¬l ∨∆2)− P(∆3) + P(l ∨∆1 ∨∆3) + P(¬l ∨∆2 ∨∆3)

= −
(
1−

(
1− P(l)

)
·
(
1− P(∆1)

))
−

(
1−

(
1− P(¬l)

)
·
(
1− P(∆2)

))
− P(∆3)

+
(
1−

(
1− P(l)

)
·
(
1− P(∆1 ∨∆3)

))
+

(
1−

(
1− P(¬l)

)
·
(
1− P(∆2 ∨∆3)

))
= −

(
1−

(
1− P(l)

)
·
(
1− P(∆1)

))
−

(
1− P(l) ·

(
1− P(∆2)

))
−

(
P(∆3)

)
+

(
1−

(
1− P(l)

)
·
(
1− P(∆1 ∨∆3)

))
+

(
1− P(l) ·

(
1− P(∆2 ∨∆3)

))
.
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We simplify P(ϕ) further and obtain

P(ϕ) = −
(
1−

(
1− P(l)

)
·
(
1− P(∆1)

))
−

(
1− P(l) ·

(
1− P(∆2)

))
−

(
P(∆3)

)
+

(
1−

(
1− P(l)

)
·
(
1− (1− (1− P(∆1)) · (1− P(∆3))

))
+

(
1− P(l) ·

(
1− (1− (1− P(∆2)) · (1− P(∆3))

))
= −

(
P(∆1) + P(l)− P(l) P(∆1)

)
−

(
1− P(l) + P(l) P(∆2)

)
−

(
P(∆3)

)
+

(
P(∆3) + P(∆1)− P(∆1) · P(∆3) + P(l)− P(l) · P(∆3)

− P(l) · P(∆1)− P(l) · P(∆1) · P(∆3)
)

+
(
1− P(l) + P(l) · P(∆3) + P(l) · P(∆2) + P(l) · P(∆2) · P(∆3)

)
.

After applying cancellations, we obtain P(ϕ) = P(∆3) ·
(

P(l) · (P(∆1)−P(∆2))−P(∆1)
)
.

Consider now the probability distributions Pl=0 and Pl=λ. It is easy to see that

P(∆1) = Pl=λ(∆1) = Pl=0(∆1) = α,

P(∆2) = Pl=λ(∆2) = Pl=0(∆2) = β,

P(∆3) = Pl=λ(∆3) = Pl=0(∆3) = γ

as i) both Pl=0, and Pl=λ are equivalent to the given probability distribution P modulo
the probability assignments for l and ii) ∆1, ∆2, ∆3 are all probabilistically independent
from l. Recall that Pl=λ(ϕ) < P(ϕ), and thus

γ ·
(

Pl=λ(l) · (α− β)− α
)
< γ ·

(
P(l) · (α− β)− α

)
,

which holds if and only if either Pl=λ(l) > P(l), or α < β. It is easy to see that the
former would immediately contradict with our assumption. Suppose that α < β holds
and consider the distribution Pl=0. As before, we can compute Pl=0(ϕ) as

Pl=0(ϕ) = γ ·
(

Pl=λ(l) · (α− β)− α
)

= γ ·
(
0 · (α− β)− α

)
= −γ · α

= γ ·
(

P(l) · (α− α)− α
)
≥ γ ·

(
P(l) · (α− β)− α

)
= P(ϕ).

This shows that if Pl=λ(ϕ) < P(ϕ) then Pl=0(ϕ) ≥ P(ϕ). Therefore, this concludes our
case analysis and proves the claim.

Observe that this argument can be applied repeatedly until there is no such literal left,
i.e., all literals are assigned a probability value that is extreme. Clearly, this procedure
terminates, and implies that, for any probability distribution that is maximal, but not
extreme, we can find a corresponding extreme distribution that is also maximal.

As a consequence of Theorem 4.16 query answering in OpenPDBs can be performed
by focusing on extremal distributions. More precisely, there are exponentially many
extremal distributions, each of which sets the probability of (at least) one atom to a
different extreme.
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As for PDBs, probabilistic query evaluation in OpenPDBs is a computationally
demanding task. We show, however, that probabilistic query evaluation in OpenPDBs
does not incur a computational overhead compared to probabilistic query evaluation
in PDBs if we restrict ourselves to unions of conjunctive queries. In what follows, we
discuss the implications of these properties on these queries and present two different
approaches for computing the query probabilities.

A Naïve Reduction to PDBs for Unions of Conjunctive Queries

Theorem 4.16 suggests a naïve query answering algorithm: generate all extreme dis-
tributions P, compute P(Q), and report the minimum and maximum. Obviously, this
procedure is ensured to terminate. Nevertheless, this naïve approach is exponential in
the number of open-world atoms.

For unions of conjunctive queries, the monotone satisfaction relation allows us to further
simplify query evaluation. In essence, we can simply choose the minimal (resp. maximal)
bound for every atom and the resulting probability for the UCQ is ensured to be minimal
(resp. maximal). Thus, the lower probabilities of conjunctive queries in OpenPDBs can
be computed using a standard PDB algorithm. To compute the upper bounds, we can
construct a new PDB from the OpenPDB by adding all the open tuples with default
upper probabilities λ and simply reuse a standard algorithm developed for PDBs.

Theorem 4.17 Let G = (P, λ) be an arbitrary OpenPDB, Q a UCQ and Pλ the
completion that sets the probabilities of all open tuples to λ. Then, it holds that

KG(Q) = [PP(Q),PPλ
(Q)].

Proof. We prove the result for the upper bound: PG(Q) = PPλ
(Q). The proof for the

lower bound PG(Q), can be obtained analogously. It is easy to see that the function
PG : UCQ 7→ [0, λ] is monotone. By Definition 4.6, we know that PPλ

∈ KG . Thus, we
obtain PG(Q) ≥ PPλ

(Q). To show the other direction, i.e., PG(Q) ≤ PPλ
(Q), assume

by contradiction that PG(Q) > PPλ
(Q). Then, by Theorem 4.16, there exists a PDB

P̂ that uses only the extreme points for the open tuples ( i.e., induces an extreme
distribution) and that satisfies PP̂(Q) = PG(Q) > PPλ

(Q). Since Pλ and P̂ induce
different distributions, there must exist at least one atom t for which PP̂(t) = 0 and
PPλ

(t) = λ. Then, by the monotonicity of P on unions of conjunctive queries, it follows
that PP̂(Q) ≤ PPλ

(Q), which leads to a contradiction.

Notice that the construction in Theorem 4.17 is efficient. It adds all the atoms to the
PDB, which grows polynomially in the domain size. Unfortunately, this is impractical
for PDBs with a large domain. Indeed, on the Sibling example from Section 4.1.4, the
upper bound would have to be computed on a 196 exabyte closed-world PDB. Thus, an
important question is whether this grounding can be avoided. We investigate this in the
next section.

The Quest for Efficient Probabilistic Query Evaluation

To achieve a practical query evaluation algorithm for unions of conjunctive queries, we
are interested in finding methods to compute the upper probability of a UCQ without
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the need of explicit grounding. Observe first that in OpenPDBs, we can easily recover
the upper (resp. lower) probability of a query from the lower (resp.upper) probability of
its negation as shown next.

Lemma 4.18 Let G = (P, λ) be an OpenPDB and Q a first-order query; it holds that
PG(Q) = 1− PG(¬Q) and PG(Q) = 1− PG(¬Q).

Proof. This is a simple consequence of the query semantics, which asserts that either
D |= Q or D |= ¬Q must hold for any database D and query Q. On this level, the
semantics forces completeness, and therefore, it is never the case that neither D |= Q
nor D |= ¬Q holds. By this argument, for any probability distribution P, it holds that
P(Q) = 1 − P(¬Q) and thus any probability distribution is closed under complement
relative to the queries. Using this and the existence of maximal and minimal distributions
in OpenPDBs, we obtain

PG(Q) = max{P(Q) | P ∈ KG}
1− PG(Q) = 1−max{P(Q) | P ∈ KG}

= min{1− P(Q) | P ∈ KG}
= min{P(¬Q) | P ∈ KG}
= PG(¬Q).

Given the OpenPDB G and the query Q, let P (respectively, P) be the extremal
distribution from KG that maximizes (respectively, minimizes) the query probability;
that is, PG(Q) = P(Q) and PG(Q) = P(Q) where P is an extremal distribution in KG
that maximizes the query probability.

We now present an algorithm; called LiftR
O: it performs operations on monotone ∀CNF

formulas, which are unions of CNF formulas, as we describe later. Given a UCQ Q,
we consider its negation ¬Q, which is equivalent to a query in monotone ∀CNF, and
Lemma 4.18 states the immediate connection.

Algorithm 1 computes upper bounds of CNF queries on OpenPDBs (as lower bounds
can be computed with any closed-world PDB algorithm). CNF formulas are dual to
unions of conjunctive queries. Hence, this algorithm also computes the probability of
UCQ queries by Lemma 4.18: practically, this is achieved by taking the negation of the
query and all literals, and returning the complement of the resulting probability.

Preprocessing. The algorithm to be presented assumes that any input query is pre-
processed such that (i) it does not contain any constant symbols and (ii) all variables
appear in the same order in each predicate occurrence in Q. This preprocessing can be
done in polynomial time in data complexity and thus it is efficient.

Preprocessing is needed for several reasons; most importantly, in order to capture all
safe queries by an algorithm. We will explain how this preprocessing helps after the
details of the algorithm are presented. We first give the details of the preprocessing.

Definition 4.19 (shattering, ranking) A first-order query Q is shattered if it does
not contain any constants. A first-order query Q is ranked if there exists a total order
≺ on its variables such that for every atom R(~x) of arity k ≥ 2, whenever xi, xj occur
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in R(~x) and xi occurs before xj then xi ≺ xj ; in particular, no atom contains the same
variable twice. ♦

We do not give a detailed overview of the preprocessing that consists of shattering
and ranking. Instead, we briefly explain the process of ranking on a simple example.

Example 4.20 Consider the query ∃x, y S(x, y) ∧ S(y, x), which is not ranked, since
the variables x and y occur in different orders in the same predicate. To rank this query,
we first split the predicate S into three predicates Sx≺y, Sy≺x and Sx=x. We then define
a total order % on the database constants (say a and b) and split the S-atoms in the
PDB such that all occurrences of

– S(a, b) is replaced with Sx≺y(a, b) if a ≺ b,
– S(a, b) is replaced with Sy≺x(b, a) if b ≺ a,
– S(a, a) is replaced with Sx=x(a),
– S(b, b) is replaced with Sx=x(b).

This ensures that all appearances of the variables in some atom respects the order. Then,
the ranking of the query ∃x, y S(x, y) ∧ S(y, x) is given as

∃x, y (Sx≺y(x, y) ∧ Sy≺x(x, y)) ∨ ∃xSx=x(x)

Intuitively, this preprocessing partitions the predicates and the corresponding atoms in
the database with respect to some ordering. It is easy to see that this transformation
preserves the semantics; for details, see (Dalvi and Suciu 2012). ♦

It has been shown that the preprocessing does not affect the probability computation
in PDBs: let Q be a query, P be a PDB, and Qr, Pr, their rankings. Then, it holds
that PP(Q) = PPr (Qr). This clearly translates to OpenPDBs since once a λ-completion
is chosen for all open atoms, we obtain a single ranked PDB.

Ranking can be done in linear time in PDBs, but for OpenPDBs, this is unfortunately
not the case, since we also have to consider the open atoms. Thus, in the worst case, the
polynomial blow-up seems to be unavoidable in OpenPDBs. However, ranking is only
needed for repeating relation symbols, i.e., if the query is self-join free, then this is not
needed. Therefore, this preprocessing can be limited to repeating relation symbols so
as to avoid to polynomial blow-up as much as possible. In the presented algorithm, we
assume that the query and the PDB are preprocessed in this way.

Lifted Inference Algorithm. Algorithm 1 is an adaptation of the LiftR algorithm pre-
sented in (Gribkoff, Van den Broeck, and Suciu 2014b), which goes back to the algorithm
of (Dalvi and Suciu 2012). This algorithm is called LiftR

O, where O stands for open.

Step 0. Recall that the given UCQ is negated in the preprocessing to obtain a ∀CNF
query Q. As a result, all atoms appear negatively in Q. The base case of the algorithm
applies when the query is simply a negated ground atom ¬t. In this case the probability
of the query is trivial to compute: if the atom appears in the PDB with a probability
p, then the algorithm returns (1− p); otherwise, it is an open atom and the algorithm
returns (1− λ).
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Algorithm 1 LiftR
O(Q,P, λ,C), abbreviated by L(Q,P)

Require: A negated UCQ Q, PDB P, threshold value λ, and domain ∆.
Ensure: The lower probability P(Q) in the OpenPDB (P, λ) over domain ∆.

1: Step 0 Base of Recursion
2: if Q = ¬t, where t is a ground atom then
3: if 〈t : p〉 ∈ P then return (1− p)
4: else return (1− λ) . Default values for open atoms
5: Step 1 Rewriting of Query
6: Convert Q to UCNF: QUCNF := (∀~xQ1) ∨ . . . ∨ (∀~y Qm)
7: Step 2 Decomposable Disjunction . Probabilistically independent disjuncts
8: if m > 1 and QUCNF = Q1 ∨Q2 where Q1 ⊥ Q2 then
9: q1 ← L(Q1,P|Q1

) and q2 ← L(Q2,P|Q2
)

10: return 1− (1− q1) · (1− q2)
11: Step 3 Inclusion-Exclusion
12: Apply cancellations/minimizations on Q.
13: if m > 1 but QUCNF has no independent sub-query Qi then
14: return

∑
s⊆m(−1)|s|+1 · L(

∧
i∈sQi,P|∧i∈sQi

)

15: Step 4 Decomposable Conjunction . Probabilistically independent conjuncts
16: Convert Q back to CNF: QCNF := ∀~xQ1 ∧ ... ∧Qk

17: if Q = Q1 ∧Q2 where Q1 ⊥ Q2 then
18: return (L(Q1,P|Q1

) · L(Q2,P|Q2
))

19: Step 5 Decomposable Universal Quantifier . Prob. independent projection
20: if Q has a separator variable x then
21: let T be all constants as x-argument in P
22: qc ←

∏
t∈T L(Q[x/t],P|x=t

) . Ground and recurse over known atoms
23: qo ← L(Q[x/t], ∅) for some t ∈ ∆ \ T . Recurse over a canonical open atom
24: return qc · q|∆\T |

o . Generalize the computation to the size of the domain
25: Step 6 Fail

Step 1. The first step is to rewrite the query Q into a union (disjunction) of CNF
sentences, called union CNF, or UCNF. For example, the CNF formula

(R(x) ∨ S(y, z)) ∧ (S(x, y) ∨ T(x)),

can be rewritten as the disjunction of the CNF formulas, given as

R(x) ∧ S(x, y) and R(x) ∧ T(x) and S(y, z) ∧ S(x, y) and S(y, z) ∧ T(x).

The intuition behind this transformation is to produce multiple disjuncts from the given
CNF in order to make (disjunctive) independencies explicit (if there are any). Note that
such a rewriting does not always produce multiple disjuncts, in which case the formula
is clearly also a CNF.
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Step 2. The second step applies when the resulting UCNF has multiple disjuncts (or
equivalently if it is not a CNF). The algorithm checks whether it is possible to partition
the query into two UCNF formulas such that Q := Q1 ∨ Q2, where Q1 and Q2 do not
share any relational symbols, denoted Q1 ⊥ Q2, which ensures independence of Q1 and
Q2. Then, it applies the probabilistic decomposition rule for disjunction:

P(Q) = 1− (1− P(Q1)) · (1− P(Q2)).

It is easy to verify the correctness of this decomposition provided that Q1 and Q2 are
independent terms and the latter is ensured by the fact that they do not share any
relation symbols. The main idea in the second step (as well as in the remaining steps)
is to recurse on simplified queries, using standard simplification rules of probability.
Importantly, in the various recursions, the algorithm shrinks the set of atoms in the
given PDB P . Specifically, P|Q denotes the subset of P that only contains atoms for the
predicates that appear in Q.

Step 3. The third step also applies only when the UCNF has multiple disjuncts and
recurses using the inclusion-exclusion principle:

P(Q) =
∑
s⊆m

(−1)|s|+1 · P(∧i∈sQi).

The key aspect in this step is to apply cancellations before the inclusion-exclusion step.
The idea is to remove redundancies from the query and minimize it by checking for CNF
formulas that are implied by others. This can be done using standard algorithms (Sagiv
and Yannakakis 1980). An alternative is to use the Möbius function to detect the term
to be cancelled as in (Dalvi and Suciu 2012). Either way, it is important to note that
these manipulations are only on the query and therefore are independent of the database.

Step 4. In the fourth step the query is rewritten back as a CNF. Then the algorithm
checks for independent sets of clauses in the CNF such that Q = Q1 ∧ Q2, where Q1
and Q2 do not share any relational symbols. If this is the case, then it applies the
probabilistic decomposition rule for conjunction

P(Q) = P(Q1) · P(Q2).

Step 5. The fifth step is the workhorse of LiftR
O, and the key difference with the LiftR

algorithm of (Gribkoff, Van den Broeck, and Suciu 2014b). It searches for a special
variable, called a separator. A separator is a variable that appears in every atom in Q.
This means that for any two distinct instantiations t1, t2 of the separator, the queries
Q[x/t1] and Q[x/t2] are independent. Hence, by multiplying P(Q[x/t]) for all t in the
domain ∆, we obtain P(Q).

The implementation of step five in LiftR
O performs one key optimization over this

simple multiplication. First, note that x appears in exactly one argument position in Q
for every predicate. We call these arguments the x-arguments. Step five partitions the
constants in the domain into two sets: (i) the constants T that appear as x-arguments
in the tuples in P, and (ii) all other constants, denoted by ∆ \ T .
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For (i), LiftR
O still enumerates all instantiations of x and computes their probability

separately. For (ii), it suffices to compute the probability of a single instantiation of x.
All instantiations with constants from ∆ \ T will have the same probability, as they do
not depend on the tuples in P. The probability of their conjunction is computed by
exponentiation. Moreover, in the recursive calls for [x/t], we can pass along the subset
of tuples P|x=t where all x-arguments are constant t.

Step 6. Finally, LiftR
O can fail in step six, yielding no answer. We will discuss the

meaning of this step in the next section.

4.2.3 Data Complexity Results

We now study the data complexity of upper and lower probabilistic query evaluation.
We start our analysis with unions of conjunctive queries, and discuss the implications of
Algorithm 1, in detail. Afterwards, we extend our results to other database queries.

Results for Unions of Conjunctive Queries

Using the terminology from (Dalvi and Suciu 2012), we say that queries are safe if the
associated decision problem is in P, and unsafe, otherwise. The dichotomy of (Dalvi and
Suciu 2012) is supported by an algorithm similar to LiftR

O. When this algorithm fails, then
the query is #P-hard. When it does not fail, it runs in P. This dichotomy-supporting
algorithm has one major difference compared to LiftR

O, aside from our support for open-
world inference. When it applies the inclusion-exclusion step, it performs cancellations
to avoid computing some of the recursive steps (whereas Suciu’s algorithm implements
this with the so-called Möbius function). This is a key aspect of the algorithm that
ensures efficiency for all safe queries. Based on Theorem 4.17 and Corollary 3.18 we can
lift the dichotomy result for UCQ queries in PDBs to OpenPDBs.

Corollary 4.21 (dichotomy) PQE(UCQ) and PQE(UCQ) are either in P, or it is
PP-complete for OpenPDBs in data complexity. Moreover, a UCQ is safe in OpenPDBs
if and only if it is safe in PDBs.

We already emphasized that the reduction given in Theorem 4.17 for the class of safe
queries can be inefficient in practical terms as the construction results in a polynomial
blow-up. Similarly; the preprocessing step in LiftR

O algorithm, can be polynomial.
Ignoring the preprocessing, we show that, LiftR

O extended with cancellations in the
inclusion-exclusion step, runs in linear time, if we also assume unit arithmetic cost, that
is, the complexity of all arithmetic operations in the algorithm is fixed.

Theorem 4.22 Let Q be a safe UCQ and G an OpenPDB. Then, LiftR
O computes

PG(Q) (respectively PG(Q)) in time polynomial in data complexity. Furthermore, if we
assume unit arithmetic cost, then all safe queries can be evaluated in linear time (on the
preprocessed OpenPDB) in data complexity.

Proof. First, we show that the number of calls in the recursion tree of Algorithm 1 is
linear in the size of P (i.e., the number of database atoms). We can ignore calls below
each invocation of Line 23, as these calls no longer depend on P. For the remaining
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calls to LiftR
O, we show a constant upper bound on how many calls are added when

a single tuple t is added to P. We say that a LiftR
O-call covers an atom if that atom

appears in its P-argument. In Step 5, the separator variable must appear in every atom,
which means that the separator variable must appear in t as well. Hence, of the child
calls generated in Line 22, at most one can cover t. The number of calls that cover t is
therefore bounded above by the number of recursive calls that can be generated in Steps
2–4. These steps are independent of P , and only a function of the query. Therefore, the
number of calls covering t is at most a constant in the size of P . Every call to LiftR

O must
cover at least one atom (ignoring the constant cost of Line 23 and its calls with empty
databases), which bounds the number of calls to be linear in P. Second, we show that
the computations inside each individual call to LiftR

O admit an overall linear complexity.
When adding an atom t to P, the calls that cover t are of two types: (1) calls that do
not cover another atom in P except for t, and (2) calls that already cover another atom
in P.

(1) Because of database restriction operators such as P|x=c throughout Algorithm 1,
the calls of type 1 all have the minimum required database as an argument, that is,
|P| = 1. Thus we have a constant data complexity for non-recursive computations
in calls of type 1.

(2) To analyze the complexity of type-2 calls, we make the standard assumption that
the domain has a given one-to-one correspondence with the integers. This allows
for the operation P|x=c to be implemented in linear time for all c simultaneously
(i.e., Step 5 has linear data complexity sans the recursive calls). The complexity of
type-2 calls thus grows linearly with P.

In total, adding an atom to P will add a constant number of type-1 calls, whose internal
computations all have constant data complexity. It will also increase the runtime of
a constant number of type-2 calls by a constant. This gives an overall linear data
complexity.

This, in particular, implies that the algorithm LiftR, which is a special case of LiftR
O,

also runs in linear time. Besides, we already noted that the preprocessing can be
polynomial in OpenPDBs, while it remains linear in PDBs. Overall, these imply a
stronger dichotomy for PDBs.

Corollary 4.23 PQE(UCQ) for PDBs is either in linear time, or it is PP-complete if
we assume fixed precision for the probability values in the PDB.

Note that we also relaxed the unit arithmetic cost assumption: for PDBs, it is sufficient
to assume that the precision of the probability values do not grow arbitrarily. This is
needed to fix the cost of the multiplication, for which the best time bounds known are
above linear time.

Corollary 4.23 extends the dichotomy of (Dalvi and Suciu 2012) from polynomial
time to linear time if we assume fixed precision for probability values. Surprisingly, this
observation appears to be novel in the PDB literature. Existing linear-time probabilistic
query evaluation complexity results, such as the work by (Fink and Olteanu 2016), do
not apply to unions of conjunctive queries, nor to the dichotomy-supporting algorithm
of (Dalvi and Suciu 2012).
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Results Beyond Unions of Conjunctive Queries

Let us first start by a simple observation for OpenPDBs, which is very useful in the
remaining of this chapter. By Lemma 4.18, we know that P(Q) = 1 − P(¬Q). In
particular, this implies that

PG(Q) > p if and only if it is not the case that PG(¬Q) ≥ 1− p,
PG(Q) > p if and only if it is not the case that PG(¬Q) ≥ 1− p.

for any OpenPDB G, query Q and threshold value p. Besides, since ∀FO and ∃FO
queries are dual to each other, the probabilistic query evaluation for these queries can be
reduced to each other by taking the complement of the respective problem. In essence, all
complexity results for the problem PQE(∀FO), obtained in this section immediately hold
for the complement of the problem PQE(∃FO), and vice versa. Similarly, all complexity
results for the problem PQE(∀FO) hold for the complement of the problem PQE(∃FO),
and vice versa. We refer this as the duality property and use it to simplify the proofs of
some of the theorems. Practically speaking, this allows us to state the results regarding
both to ∃FO and ∀FO queries, while providing the proof details only for one of these
classes.

For unions of conjunctive queries, we have seen that the data complexity dichotomy
in PDBs can be lifted to OpenPDBs: all safe queries remain safe. This was possible,
because the satisfaction relation for unions of conjunctive queries is monotone. How
does the picture look like for more expressive queries, where the monotone satisfaction
relation does not hold any more? Obviously, there is no easy way of determining the
completion that maximizes or minimizes the query probability as before.

Therefore, the striving questions are the following ones: can a safe query become hard
for ∀FO and ∃FO queries? The next theorem answers this question using some involved
techniques.

Theorem 4.24 There exists a ∀FO query Q, for which PQE(Q) is in polynomial time
for PDBs, whereas PQE(Q) is NP-complete for OpenPDBs. There exists a ∃FO query Q,
for which PQE(Q) is in polynomial time for PDBs, whereas PQE(Q) is coNP-complete
for OpenPDBs.

Proof. We prove the result for universal queries, which, by the duality property, entails
the result for existential queries. The proof is composed of several steps, all based on
techniques that may be interesting on their own right. To simplify the presentation, we
therefore first provide an overview of the proof and the details follow afterwards.

First, we consider a ∀FO query, called QSAT that is known to be unsafe. Second, we
transform the query QSAT into a query QEQ that consists of individually safe clauses (al-
though QEQ itself remains unsafe). Moreover, our transformation ensures that the queries
QSAT and QEQ are equisatisfiable. Even more is actually true: there is a one-to-one
mapping between the models of these queries.

Our final transformation on the query applies an interesting technique to produce a
safe query from QEQ. Recall that QEQ consists of only safe clauses and yet it is not safe.
The main reason is that the terms produced in the inclusion-exclusion step are hard to
evaluate. Put in more intuitive terms, clauses in QEQ are probabilistically dependent of
each other, and this serves as the source for hardness. We manipulate these clauses so
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that they become independent, which in turn helps us to come up with a query, called
QSAFE, that is safe for PDBs. We then prove that QSAFE is indeed safe for PDBs.
Claim 1. The ∀FO query QSAFE is safe for PDBs.
QSAFE is defined in such a way that all the unsafe terms will cancel out during the

exhaustive application of the inclusion-exclusion rule; that is the main reason why QSAFE
is safe for PDBs. We finally show that this is not the case for OpenPDBs, by providing
a reduction from satisfiability of propositional 3CNF formulas.
Claim 2. The ∀FO query QSAT is NP-hard for OpenPDBs.

This implies that a query that is safe for PDBs is NP-hard for OpenPDBs. Therefore,
it only remains to show that QSAT is in NP for OpenPDBs, which is immediate: for
any OpenPDB and query Q, we can simply guess a completion P and check whether
PP(Q) > p and D |= Q in polynomial time in data complexity using a nondeterministic
Turing machine. This concludes the overview of the proof. We now provide the details
of the individual claims and their corresponding constructions.

From QSAT to QEQ. We show how to transform QSAT into an equisatisfiable query
QEQ, using a special type of Tseitin transformation (Tseitin 1968). The idea is to detect
the unsafe fragments in each clause of QSAT and replace them recursively with fresh
atoms until the clause is safe. While doing so, we also add additional clauses to the
formula, which assert the equivalence of the freshly introduced atom to the old formula,
ensuring the overall equisatisfiability of QSAT and QEQ.

We omit the full details of this transformation (as it is well-known), but explain it
on a small example. Consider, for instance a clause ∀x, y L(x) ∨ L(y) ∨ R1(x, y), which
is not safe as there is no separator variable. To transform this query, we define a
fresh atom Z(x, y) to be equivalent to the formula L(y) ∨ R1(x, y), which results in the
following query:

∀x, y
(
L(x) ∨ Z(x, y)

)
∧

(
Z(x, y)↔ (L(y) ∨ R1(x, y))

)
.

Notice that the first conjunct is already safe. The second conjunct in the query can
further be simplified as

∀x, y
(

Z(x, y)→ (L(y) ∨ R1(x, y))
)
∧

(
( L(y) ∨ R1(x, y))→ Z(x, y)

)
≡

∀x, y
(
¬Z(x, y) ∨ L(y) ∨ R1(x, y)

)
∧

(
(¬L(y) ∧ ¬R1(x, y)) ∨ Z(x, y)

)
.

Note that the first clause is also safe as there y is a separator variable (and afterwards
x serves as a separator variable). However, the last clause is not in disjunctive form but
can be decomposed into two disjunctive clauses(

¬L(y) ∨ Z(x, y)
)
∧

(
Z(x, y) ∨ ¬R1(x, y)

)
,

both of which are safe. Clearly, we can apply this transformation to any universally
quantified formula, and it will eventually result in a (potentially) large conjunction
of clauses, each of which is individually safe. As a consequence, we obtain a query
QEQ :=

∧
qi(x, y, z), where each qi(x, y, z) is a safe clause over the variables x, y and z.

By construction, it is easy to see that any model of QSAT can be extended to a model of
QEQ, by interpreting the freshly introduced atoms to be equivalent to the sub-formula
they replaced.
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From QEQ to QSAFE. We have already observed that every clause qi(x, y, z) in the
query QEQ :=

∧
1≤i≤n qi(x, y, z) is safe, while the query itself is still not safe. As noted

before, the reason is hidden in the inclusion-exclusion terms that are hard to evaluate.
We define the following formula

QSAFE := ∀x, y, z
∧

1≤i≤n

(
qi ∨ ¬Hi

)
∧

∧
1<i≤n

(
¬H1 ∨ ¬Hi

)
∧

2<i≤n

(
¬H2 ∨ ¬Hi

)
. . .

∧
(
¬Hn−1 ∨ ¬Hn

)
∧

( ∨
1≤i≤n

Hi
)
,

where Hi is a zero-arity predicate. Let us give some insight on this formula. Note that the
second part of the formula consists of only Hi-atoms. The last clause simply says that at
least one of the atoms Hi must be true. Together with the other clauses, the second part
of the formula asserts that exactly one atom Hk, for some 1 ≤ k ≤ n can be true, and all
the remaining atoms Hi, 1 ≤ i 6= k ≤ n must be false. This has direct implications on
the first part of the formula where the clauses qi from the original formula QEQ appear.
Briefly stated, if we choose to satisfy the k-th atom, Hk, then this means all clauses
qi ∨ ¬Hi will be trivially satisfied for i 6= k. Intuitively, this means that their influence
on the query probability will be fixed, and only qk ∨ ¬Hk will be counted. We are now
ready to prove the claim.

Observe that the clauses in QSAFE of the form ¬Hi ∨ qi consist of multiple atoms
that are not connected by a relational variable. This makes the clauses independent.
Therefore, the entire query can be written as (¬Hi ∧∆) ∨ (qi ∧∆), which is a UCNF.
Applying this transformation to all clauses (all such clauses have disconnected Hi-atoms),
we obtain a large union, on which we can perform inclusion-exclusion in Step 3. The
detailed implementation of inclusion-exclusion for PDBs (cf. (Gribkoff, Van den Broeck,
and Suciu 2014b)) removes a large number of unsatisfiable CNF clauses from this union.
Afterwards, all remaining CNF formulas in the union have the form

βk = ¬H1 ∧ · · · ∧ Hk ∧ qk ∧ . . .¬Hn,

that is, one Hi-atom for every i, and containing exactly one positive atom Hk with a
corresponding clause qk(x, y, z). The entire UCNF is then given by

∨n
i=1 βi. Importantly,

note that the individual formulas βi are mutually exclusive, removing the need for
any nonsingular combination of βi-terms in the inclusion-exclusion formula. Thus, the
inclusion-exclusion rule computes

PP(QSAFE) =
m∑

i=1
PP(βi),

for some arbitrary PDB P . Then, since qi and H-atoms do not share any relation name,
we can further decompose the query as

PP(βi) = PP(qi) · PP(¬H1 ∧ · · · ∧ Hi ∧ . . .¬Hn)
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where the first term of the multiplication is safe by construction and it is easy to see
that the second term is also safe. Thus, we obtain

PP(QSAFE) =
m∑

i=1
PP(qi) · PP(¬H1 ∧ · · · ∧ Hi ∧ . . .¬Hn),

which allows us to conclude that QSAFE is safe for PDBs and thus the proof of Claim 1.
What remains is to prove the Claim 2. We define an OpenPDB Gϕ = (Pϕ, 1) over a

vocabulary σ that contains the relation symbols from QSAFE (thus also from QEQ) as
well as some additional constants (while assuming at least 3 of them). Intuitively QSAFE
encodes (in a loose sense) the satisfaction conditions of a given 3CNF formula ϕ. We
also define the PDB Pϕ that stores the structure of ϕ as follows.

– Pϕ contains all atoms 〈Hi : 0.5〉 for 1 ≤ i ≤ n.
– The clauses ϕi are described with the help of the predicates R1, …, R4, each of

which corresponds to one type of clause (as in the constructions in Chapter 3). All
other R-atoms that do not correspond in such a way to one of the clauses, we add
with probability 1 to Pϕ.

– All the remaining atoms (that are directly related to the satisfaction of QEQ) are
left open. In other words, there are only n probabilistic atoms.

Based on these constructions, we now prove that the formula Φ is satisfiable if and
only if PGϕ(QSAFE) ≥ n · (0.5)n. Let us assume that PGϕ(QSAFE) ≥ n · (0.5)n. This
implies that there exists a completion Pλ that sets a choice for the open atoms such
that PPλ

(QSAFE) ≥ n · (0.5)n. By the structure of QSAFE, we already know that there
are n different configurations of the Hi-atoms, each with probability (0.5)n. This means
that all qi(x, y, z), 1 ≤ i ≤ n must be satisfied by a distinct database with probability
(0.5)n. Note, however, all these databases differ only with respect to the Hi-atoms. Apart
from H-atoms, all the atoms are deterministic in the completion; that is, they either are
in the completion with probability 1, or are excluded. This implies that there exists
a database D that satisfies all qi(x, y, z), 1 ≤ i ≤ n. We now define a propositional
assignment τ such that it maps a variable u in ϕ to true if and only if L(u) ∈ D. It is
then easy to show that τ |= ϕ.

Conversely, let us assume that ϕ is satisfiable and let τ be a satisfying assignment of ϕ.
We define the completion Pτ as follows. We add all atoms 〈Hi : 0.5〉 for 1 ≤ i ≤ n to
the completion Pτ . Moreover, we add 〈L(u) : 1〉 if τ maps u to true; otherwise, we add
〈L(u) : 0〉 to the completion Pτ . Notice that all Z-atoms are introduced to be equivalent
to some L-atom (in the construction of the query). To preserve this, we also add the
respective Z-atoms, either with probability 0, or 1, depending on the L-atoms.

As before, there are n configurations of Hi-atoms, each with 0.5n probability. For each
such configuration exactly one qi must be satisfied, which holds since each database D
induced by Pτ differs only on the H-atoms and it is easy to verify that each of them satisfies
D |= qi for all 1 ≤ i ≤ n. Thus, we obtain that PPλ

(QSAFE) ≥ PPτ (QSAFE) = n · (0.5)n,
which concludes the proof of the claim and the result.

Therefore, we conclude that a safe ∀FO (respectively ∃FO) query in PDBs can become
NP-hard (respectively, coNP-hard) in OpenPDBs. We can then extend our treatment
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to unsafe queries: can a query that is PP-complete in PDBs become harder for ∀FO and
∃FO queries in OpenPDBs? The answer is again positive.

Theorem 4.25 PQE(∀FO) is NPPP-complete and PQE(∃FO) is coNPPP-complete for
OpenPDBs in data complexity.

Proof. We again only prove the result for universal queries, as the problems are dual. Let
G = (P, λ) be an OpenPDB, Q a ∀FO query and p ∈ [0, 1). Consider a nondeterministic
Turing machine with a PP oracle: first nondeterministically guess a λ-completion P̂ and
then verify whether PP̂(Q) > p. This verification step is in PP as shown in Theorem 3.22,
which proves membership.

As for the lower bound, we reduce the following problem. Let

Φ := ∃x1, . . . , x` Cc y1, . . . , ym ϕ,

denote a quantified Boolean formula, where C represents the counting quantifier and
ϕ = ϕ1∧· · ·∧ϕk is a propositional formula in 3CNF, defined over the variables x1, . . . , x`,
y1, . . . , ym. Deciding the validity of such formulas is NPPP-complete (Wagner 1986).
Intuitively, this amounts to checking whether there is a partial assignment for x1, . . . , x`

that admits at least c extensions to y1, . . . , ym that satisfy ϕ. To reduce the problem
to upper probabilistic query evaluation, we consider again the universally quantified
query QSAT given in the proof of Theorem 4.24. As before, QSAT is used to encode
the satisfaction conditions of the formula Φ together with the PDB PΦ that stores the
structure of Φ. The PDB PΦ is given as follows: for each variable yj , 1 ≤ j ≤ m, PΦ
contains the atoms 〈L(yj) : 0.5〉, where we view each yj as a constant. As in the proof of
Theorem 4.24, the clauses ϕi are described with the help of the predicates R1, …, R4. All
other R-atoms that do not correspond in such a way to one of the clauses, we add with
probability 1 to PΦ. Finally, we define the OpenPDB GΦ = (PΦ, 1). The construction
provided for QSAT and GΦ is clearly polynomial. Furthermore, the query is fixed, and
only PΦ depends on Φ. We now prove the following claim.

Claim. The formula Φ is valid if and only if PGΦ(QSAT) ≥ c · (0.5)m.

Suppose that Φ is valid. Then, for some assignment µ of the variables x1, . . . , x`, there
are at least c different assignments τ extending µ to the variables y1, . . . , ym that satisfy
Φ. We use the assignment µ in order to set a choice for all open atoms L(xi), 1 ≤ i ≤ `.
More precisely, we define the λ-completion Pµ that contains 〈L(xi) : 1〉 if µ sets xi to
true and contains 〈L(xi) : 0〉, otherwise. Intuitively, every assignment of the existentially
quantified variables in Φ corresponds to a different completion and the assignment µ is
realized by the completion Pµ.

Moreover, observe that for each satisfying assignment τ extending µ to the vari-
ables y1, . . . , ym, there exists a database D induced by Pµ. We can define such a
database D as follows: add all atoms to D that are in Pµ with probability 1 and add
every atom L(yj) to D if and only if τ sets yi to true. It is easy to see that each
such database satisfies D |= QSAT. Finally, it suffices to observe that there are only m
nondeterministic atoms in Pµ; namely the atoms L(yj), 1 ≤ j ≤ m that correspond to
the y-variables in Φ. Thus, every database D induced by Pµ has the probability 0.5m.
By our assumption, there are c satisfying assignments τ extending µ; thus, it follows
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that PPµ(QSAT) = c · (0.5)m, which implies PG(QSAT) ≥ c · (0.5)m as a consequence of
the query semantics in OpenPDBs.

For the other direction, let PGΦ(QSAT) ≥ c · (0.5)m. Then, there exists a λ-completion
Pµ such that PPµ(QSAT) ≥ c · (0.5)m. Moreover, each database D induced by Pµ sets
a choice for the nondeterministic atoms L(y1), . . . , L(ym) and each such database has
the probability (0.5)m (as there are only m nondeterministic atoms in the PDB). As a
consequence, there must exist at least c databases induced by Pµ that satisfies D |= Q.

We define an assignment µ to the variables x1, . . . , x` such that xi is mapped to true
in µ if and only if 〈L(xi) : 1〉 ∈ Pµ. Then, for each database D induced by Pµ and
that satisfies D |= QSAT, we define an assignment τ that sets yj to true if and only
if L(yj) ∈ D. It is then easy to verify that τ |= Φ and that τ properly extends µ to
a complete assignment. As there are c different assignments τ that extend µ while
satisfying ϕ, we conclude that the formula Φ is valid.

Nevertheless, we still have not clarified the complexity of evaluating the lower proba-
bilities of universal queries (and upper probabilities of existential queries) for OpenPDBs.
By reusing some ideas from Theorem 4.25, we show the following result.

Theorem 4.26 PQE(∀FO) is coNPPP-complete and PQE(∃FO) is NPPP-complete for
OpenPDBs in data complexity.

Proof. We prove the first statement and the latter is entailed by duality. Let G = (P, λ)
be an OpenPDB, Q a ∀FO and p ∈ [0, 1). Consider a nondeterministic Turing machine
with access to a PP oracle, which is used to first guess a λ-completion Pλ and then to
verify whether PPλ

(Q) ≤ p using the PP oracle. The verification can be done in PP
since the test PPλ

(Q) > p is in PP as shown before and PP is closed under complement.
Finally, the Turing machine answers no if and only if the test for verification is positive.
This proves membership.

We prove the lower bound is obtained in an analogous fashion to the proof of Theo-
rem 4.25. We reduce the problem of deciding validity of formulas of the form

Φ := ∀x1, . . . , x` Cc y1, . . . , ym ϕ,

which is dual to the problem we considered before. Moreover, we assume the exact
same construction for G = (PΦ, 1) and QSAT as in the proof of Theorem 4.25 with the
only difference being that the x-variables are now universally quantified. We prove the
following claim.

Claim. The formula Φ is valid if and only if PGΦ(QSAT) ≥ c · (0.5)m.

Suppose that Φ is valid. Consider any λ-completion Pλ that sets a choice for the
open atoms L(x1), . . . , L(x`). We define an instantiation µ such that µ maps xi to true
if and only if 〈L(xi) : 1〉 is in the PDB Pλ. Since Φ is valid, we know that for any
instantiation of the variables x1, . . . , x`, there exists at least c assignments τ that extends
this instantiation to the variables y1, . . . , ym satisfying ϕ. Thus, there must exists at
least c assignments τ extending µ such that τ |= ϕ.

It is easy to see that each such assignment τ defines a database Dτ induced by the
PDB Pλ and that Dτ |= QSAT. As before, every Dτ has the probability 0.5m since there
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Figure 4.2: Complexity map for the data complexity results in OpenPDBs in comparison
to PDBs .

are m nondeterministic atoms. This proves that for any completion the probability of
the given query can not be less than c · (0.5)m, which yields PGΦ(QSAT) ≥ c · (0.5)m.

For the other direction, we know that regardless of the completion Pλ that is chosen, it
holds that Pλ(QSAT) ≥ c · (0.5)m. Moreover, every completion corresponds to a valuation
µ of the x-variables in Φ and for each such assignment can be extended to c satisfying
assignments, as before.

Observe that every world induced by a completion Pλ has the probability 0.5m. Thus,
in order to satisfy PGλ

(QSAT) ≥ c · (0.5)m, there have to be c databases induced by Pλ

satisfying QSAT. We have shown that each such database Dτ corresponds to a satisfying
assignment τ that extends µ such that τ |= ϕ. Hence, there must be at least c such
assignments. Finally, since we proved this for an arbitrary completion (hence, for an
arbitrary valuation of the x-variables), we conclude that the Φ is valid.

So far, the main results assert that upper probabilistic query evaluation is NPPP-complete
and lower probabilistic query evaluation is coNPPP-complete in data complexity for
both ∃FO and ∀FO queries. These upper bounds easily transfer to the case of first-order
queries by similar arguments and we obtain our final result in data complexity.

Theorem 4.27 PQE(FO) is coNPPP-complete and PQE(FO) is NPPP-complete for
OpenPDBs in data complexity.

Overview of the Data Complexity Results

Our results regarding the data complexity is summarized in Figure 4.2. First of all, we
have shown that the data complexity dichotomy in PDBs for unions of conjunctive queries
can be lifted to OpenPDBs. We also have presented an algorithm, LiftR

O that avoids
polynomial blow-up whenever possible. By the properties of LiftR

O, we also observed that
the original dichotomy of PDBs can be strengthened under mild assumptions. More
precisely, by fixing the precision of the probabilities in the input PDB, all safe queries
can be computed in linear time in PDBs (as depicted on the left-hand side of Figure 4.2).
Unfortunately, this is not always the case for OpenPDBs.
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We then extended our analysis to nonmonotone queries (see right hand side of Fig-
ure 4.2), which resulted in a richer complexity landscape. Once negation is allowed in
the query atoms, it is not always possible to find the best completion in polynomial time.
Instead, we may need to guess such a completion. This already shows up for safe queries
in PDBs: they can remain safe or become (co)NP-complete in OpenPDBs. A similar
effect is observed for PP-complete queries, which can remain PP-complete, or become
(co)NPPP-complete.

4.2.4 Combined Complexity Results
We also study the combined complexity of probabilistic query evaluation in OpenPDBs.
We first look into bounded-arity combined complexity. Our first result is for unions of
conjunctive queries, which coincides with the bounded-arity combined complexity results
in PDBs.

Theorem 4.28 PQE(UCQ) and PQE(UCQ) is PPNP-complete for OpenPDBs in bounded-
arity combined complexity.

Proof. Let G = (P, λ) be an OpenPDB, Q a UCQ and p ∈ [0, 1). To show membership,
we employ Theorem 4.16 and consider the extreme distributions by induced by the
completions P and Pλ, respectively. Since the arity of the predicates is bounded, the
size of these completions is also bounded by a polynomial. Thus, we can reduce the
upper (resp. lower) probabilistic query evaluation to probabilistic query evaluation
in the PDB Pλ (resp. P), which is in PPNP by Theorem 3.23. Hardness also follows
from Theorem 3.23, which asserts that PQE(UCQ) is PPNP-hard for PDBs.

Interestingly, bounded-arity complexity appears to be the same as the data complexity
for ∃FO and ∀FO queries. As shown in the next two theorems, this is mainly due to the
power of the classes NPPP and coNPPP, which do not gain additional computational
power by another NP or coNP oracle.

Theorem 4.29 PQE(∀FO) is NPPP-complete and PQE(∃FO) is coNPPP-complete for
OpenPDBs in bounded-arity combined complexity.

Proof. By the duality property, it is sufficient to prove the result for universal queries. Let
G = (P, λ) be an OpenPDB, Q a ∀FO query and p ∈ [0, 1). Consider a nondeterministic
Turing machine with a PPNP oracle: first nondeterministically guess a λ-completion
P̂ (that is of size polynomial in bounded-arity complexity) and then verify whether
PP̂(Q) > p. This verification can be done using the PPNP oracle as shown in Theo-
rem 3.24. This implies an upper bound NPC, where C = PPNP. Then, using Toda’s
result (Toda 1989), which asserts that PPPH ⊆ PPP, it is easy to see that C ⊆ PPP

and thus NPC = NPPP. This problem is clearly NPPP-hard in bounded-arity combined
complexity as is already in data complexity by Theorem 4.25.

Theorem 4.30 PQE(∀FO) is coNPPP-complete and PQE(∃FO) is NPPP-complete for
OpenPDBs in bounded-arity combined complexity.

Proof. We prove the result for universal queries. Let G = (P, λ) be an OpenPDB, Q a
∀FO query and p ∈ [0, 1). Consider a nondeterministic Turing machine with access to a
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PPNP oracle that is used to first guess a λ-completion P̂ (that is of size polynomial in
bounded-arity complexity) and then to verify whether PP̂(Q) ≤ p using the PPNP oracle.
The verification can be done in PPNP by Theorem 3.24. Finally, the Turing machine
answers no if and only if the test for verification is positive. This proves membership to
coNPC, where C = PPcoNP = PPNP. Then, analogous arguments to those in the proof
of Theorem 4.29 imply membership in coNPPP based on Toda’s result (Toda 1989).
This problem is clearly coNPPP-hard in bounded-arity complexity as is already in data
complexity by Theorem 4.26.

As for first-order queries, the complexity of classical query evaluation again dominates
the complexity of probabilistic query evaluation in OpenPDBs.

Theorem 4.31 PQE(FO) and PQE(FO) are PSpace-complete for OpenPDBs in bounded-
arity combined complexity.

Proof. Let G = (P, λ) be an OpenPDB, Q a FO query and p ∈ [0, 1). Consider a
polynomial space bounded nondeterministic Turing machine that enumerates exponentially
many completions, each of which is of polynomial size. Then, for each of these completions
P̂ , it tests whether PP̂(Q) > p, which is in PSpace by Theorem 3.25. PSpace-hardness
follows from Theorem 3.25.

The study of combined complexity is a somewhat intricate notion in OpenPDBs in
the following sense: since neither the arity nor the schema is fixed, a completion, which
is a PDB, can grow exponentially. Thus, we face a very high complexity. Furthermore,
we still need to perform probabilistic inference over exponentially large completions.
These highly intractable classes are beyond the focus of our work, but for the sake of
completeness, we provide a simple upper bound.

Theorem 4.32 PQE(FO) and PQE(FO) are both in ExpSpace for OpenPDBs in com-
bined complexity.

Proof. Let G = (P, λ) be an OpenPDB, Q an FO query and p ∈ [0, 1). Consider
an exponential space bounded Turing machine that enumerates all completions in
exponential space. Then, for each of these completions P̂, it tests whether PP̂(Q) > p.
Since P̂ is exponential size, this test is in ExpSpace.

This concludes our complexity analysis. Next, we give an overview of the results and
discuss related work.

4.2.5 Overview of the Results, Outlook and Related Work
We observe that large scale knowledge bases are incomplete by their nature and argue
this characteristic should be incorporated into the semantics. Our proposal is called
OpenPDBs, where atoms that are not in the database still remain possible with some
default probability. This is in contrast with PDBs, where atoms that do not appear in
the database are assigned a probability 0 by the CWA.

Our work builds on the foundations of tuple-independent PDBs (Suciu et al. 2011), as
surveyed in Chapter 3. In particular, we extend the dichotomy result of Dalvi and Suciu,
for unions of conjunctive queries to OpenPDBs. As a side contribution, we observe
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Table 4.3: Data, bounded-arity and combined complexity results for upper and
lower (without parenthesis) probabilistic query evaluation in OpenPDBs.

Query
Languages

Lower/Upper Probabilistic Query Evaluation in OpenPDBs

data bounded-arity combined
UCQ P vs PP

[Theorem 4.17]
[Corollary 4.21]

PPNP

[Theorem 4.28]
in ExpSpace
[Theorem 4.32]

∃FO (co)NPPP

[Theorem 4.25]
(co)NPPP

[Theorem 4.29]
in ExpSpace
[Theorem 4.32]

∀FO (co)NPPP

[Theorem 4.26]
(co)NPPP

[Theorem 4.30]
in ExpSpace
[Theorem 4.32]

FO (co)NPPP

[Theorem 4.27]
PSpace
[Theorem 4.31]

in ExpSpace
[Theorem 4.32]

that the original dichotomy for PDBs is stronger: under reasonable assumptions all safe
queries can be computed in linear time.

The results of our complexity analysis are summarized in Table 4.3, where the com-
plexity of upper and lower probabilistic query evaluation can be distinguished by the
parenthesis, i.e., lower probabilistic query evaluation is read without parenthesis. The
complexity results align very well with probabilistic query evaluation in PDBs for unions
of conjunctive queries (except for the combined complexity). Notably, probabilistic query
evaluation is not harder in bounded-arity combined complexity for ∃FO and ∀FO queries.
The precise relation between the dichotomy results is already emphasized in Figure 4.2.

A key challenge in OpenPDBs is to restrict the open-world to provide tighter probability
bounds, which is an aspect to be revisited in Chapter 7, where we propose a specific
approach to exclude spurious possible worlds, and limit the probability mass of open
atoms. Our proposal extends OpenPDBs with an additional knowledge representation
layer allowing us to obtain more informative probability bounds.

OpenPDBs are credal representations, and thus are also closely related to credal
networks (Cozman 2000). Note that our complexity results align with that of credal
networks which also show an increase from P to NP and from PP to NPPP (De Campos
and Cozman 2005) compared to Bayesian networks (Darwiche 2009). Besides, one
source of hardness for probabilistic inference in credal networks is due to the conditional
dependencies encoded in the network structure, which is very different from OpenPDBs
as such dependencies stem from the query in OpenPDBs.

The high level motivation of this work is clearly linked to open-world reasoning. We
note that the OWA is common for deterministic knowledge bases, mostly based on
Datalog± and Description Logics and it is a driving force for these technologies over
classical databases. A detailed overview of these formalisms is given in Chapter 6.

In OpenPDBs, we assume a fixed and finite domain. Probabilistic reasoning with
an unknown number of objects is an important problem that comes with its own
challenges (Milch, Marthi, Russell, Sontag, Ong, and Kolobov 2007), which is an
interesting direction. We will revisit open-domain models in Part III in the context
of ontology-mediated queries. To avoid explicit reasoning about all tuples individually
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is the topic of lifted inference (Poole 2003). OpenPDBs bring together the high-level
reasoning of lifted inference and the data-centric reasoning of probabilistic databases.
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Chapter 5

Maximal Posterior Computations for Probabilistic
Databases

Forming the foundations of large-scale knowledge bases, probabilistic databases have
been widely studied in the literature. In particular, probabilistic query evaluation has
been investigated intensively as a central inference mechanism. However, despite its
power, query evaluation alone cannot extract all the relevant information encompassed
in large-scale knowledge bases. To exploit this potential, we study two inference tasks;
namely finding the most probable database and the most probable hypothesis for a given
query, both of which are inspired by the maximal posterior probability computations
in Probabilistic Graphical Models (PGMs) (Koller and Friedman 2009). We, therefore,
first provide an overview on Bayesian Networks (Pearl 1988), an instance of PGMs, and
then describe how similar computations can be useful in the context of probabilistic
databases.

5.1 Probabilistic Graphical Models

Real-world domains are usually very complex and the parameters that need to be taken
into consideration to model such domains can thus be relatively high. Consider a typical
scenario from a medical domain, where a patient might have multiple possible diseases,
might show different symptoms, and might possess several test results; that is to say,
there may be many parameters that need to be taken into consideration while modeling
such a domain. Notably, many of these parameters are probabilistically related to each
other; for instance, having high systolic pressure may be related to having high fever with
some probability. Note that this is in contrast with the strong independence assumption
of PDBs.

These domains can be characterized in terms of a set of random variables, where each
random variable defines a property of the domain we are interested in monitoring. In
essence, we need to specify a joint distribution over the event space in order to be able
to do inference over the model. On the other hand, specifying this joint probability
distribution naïvely; for instance, by enumerating all possible worlds over the event space,
is already a very demanding task in the computational sense. For 20 parameters, we
need to enumerate 220 many possible worlds, which leads to a state explosion, already in
the modeling phase (before any inference is performed). The key insight in PGMs is to
be able to represent a joint probability distribution in a relatively compact manner, by
exploiting the structural properties in the probability distribution. The high-level idea
is to encode the conditional independence assumptions into a graph structure, which
typically results in an exponentially more succinct representation of the joint probability
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f s 0.7 0.3
f ¬s 0.6 0.4
¬f s 0.5 0.5
¬f ¬s 0.1 0.9

f ¬f

0.3 0.7

s ¬s

f 0.9 0.1
¬f 0.3 0.7

Figure 5.1: The BN Bh over the variables Vh = {F, S,C}, where conditional probabilities
are depicted using tables. Following notational conventions, we write x in
place of X = 1 and ¬x in place of X = 0 to denote elementary events.

distribution. As an instance of PGMs, we focus on Bayesian Networks (Pearl 1988),
which led to a breakthrough in artificial intelligence research; for other models, we refer
the reader to (Koller and Friedman 2009).

5.1.1 Bayesian Networks
Bayesian networks (BNs) are probabilistic graphical models that compactly represent
the joint probability distribution over a state space (Pearl 1988).

Definition 5.1 (Bayesian network) Let V be a finite set of random variables. A
Bayesian network (BN) over V is a pair B= (G,Θ), where G= (V,E) is a directed acyclic
graph, and Θ contains, for every random variable X ∈ V , a conditional probability
distribution PB(X |π(X)) for X, given its parents π(X). ♦

The key insight in BNs is that the underlying directed acyclic graph encodes condi-
tional independence assumptions in an effective manner. Put in Nilsson’s words, every
variable X ∈V in a BN is conditionally independent of its non-descendants, given its
parents (Nilsson 1998). Every BN B thus defines the unique joint probability distribution:

PB(V ) =
∏

X∈V

PB(X | π(X))

over its variables V (see Definition 2.16). As before, a joint valuation ω of the variables
V is called a world.

Definition 5.2 (probabilistic inference) Given a BN B over V , an event e over V ,
and a threshold value p ∈ [0, 1), probabilistic inference in Bayesian networks is to decide
whether PB(e) > p. ♦

In general, probabilistic inference in Bayesian networks is PP-complete (Littman,
Majercik, and Pitassi 2001). Intuitively, the combinatorial aspect is related to the
treewidth of the underlying graph. Thus, if the treewidth is small enough, inference
becomes tractable.
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Table 5.1: The joint probability distribution induced by the BN Bh.

Worlds F S C PBh
(ωi)

ω0 × × × .441
ω1 × × X .049
ω2 × X × .105
ω3 × X X .105
ω4 X × × .012
ω5 X × X .018
ω6 X X × .081
ω7 X X X .189

Example 5.3 Consider the BN Bh over the variables Vh = {F, S,C} depicted in Fig-
ure 5.1. It models a simplified health care assistance scenario by defining a joint
probability distribution over the different states of a patient. As in Example 2.11, the
variables F, S, and C denote high fever, high systolic pressure, and high cholesterol,
respectively. Following conventional notations, we write f instead of F = 1 and ¬f instead
of F = 0 and similarly for other random variables. The probability for the patient to
have high systolic pressure is then given as

PBh
(s) = PBh

(s | f) · PBh
(f) + PBh

(s | ¬f) · PBh
(¬f)

= .9 · .3 + .3 · .7 = .48.

Conditional probabilities are specified in a compact way through the BN; thus, typically,
the worlds (where the random variable evaluates to true) do not need to be enumerated
to compute the probability. ♦

Importantly, the joint probability distribution that is defined by the BN Bh is exactly
the same as the one given in Table 2.1 from Example 2.11. Differently, Bh is a more
succinct representation.

5.1.2 Maximal Posterior Computations in Bayesian Networks
Computing the maximal posterior probability of a distinguished set of variables, given
evidence about another set of variables, is one of the key computational problems in
PGMs. In its general form, this problem is studied under the name of maximum a
posteriori hypothesis (MAP), where the hypothesis refers to an instantiation of a set of
distinguished variables. The most probable explanation (MPE) is a special case of MAP,
where the distinguished variables and the evidence variables cover all variables in the
model. The decision problem for MPE is defined as follows.

Definition 5.4 (MPE) Let B be a Bayesian network over V , p ∈ [0, 1) a threshold
value and e an event. MPE is to decide whether there exists an instantiation v of V such
that PB(v, e) > p. ♦

The corresponding function problem is to compute an instantiation v that maximizes
the probability PB(v, e) > p. Intuitively, this corresponds to finding a world with the
maximal probability where the given event is true.
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Table 5.2: The probabilistic database Pv encodes dietary regimes of some individuals,
and the friendship relation among those individuals.

Vegetarian
alice 0.7
bob 0.9
chris 0.6

FriendOf
alice bob 0.7
alice chris 0.8
bob chris 0.1

Eats
bob spinach 0.7
chris mussels 0.8
alice broccoli 0.2

Meat
shrimp 0.7
mussels 0.9
seahorse 0.3

Example 5.5 Consider again the BN Bh and suppose that we are interested in the
event s. It is easy to see that the instantiation f, c maximizes the objective function, as
ω7 = {f, c, s} is the world with maximal probability where s holds. ♦

Formulated as a decision problem, MPE is NP-complete (Littman 1999; Shimony
1994). Note that MPE only allows for complete explanations, which may produce many
redundancies in real applications. It is therefore more interesting to obtain partial
explanations for events and, as opposed to MPE, this is possible for MAP.

Definition 5.6 (MAP) Let B be a Bayesian network over V , p ∈ [0, 1) a threshold
value, e an event and X ⊆ V a set of distinguished variables. MAP is to decide whether
there exists an instantiation x of the variables X such that PB(x, e) > p. ♦

The corresponding function problem is defined analogously. In this case, we are not
necessarily interested in identifying a particular world, but a partial explanation, in the
form of an event, also called context, with the maximal probability.

Example 5.7 Consider again the BN Bh and suppose that we are interested in the
event s and let {F} be the singleton set that represents the set of distinguished variables.
The task is to find an instantiation x of {F} which maximizes PBh

(x, s). There are two
possible instantiations with

PBh
(f, s) = 0.27 > 0.21 = PBh

(¬f, s),

which means that the instantiation f needs to be chosen to maximize the posterior
probability. ♦

MAP is NPPP-complete (Park and Darwiche 2004b); that is, significantly harder than
MPE under widely accepted complexity assumptions. Both for MPE and MAP, we need
to compute an explanation, which is the intuitive reason behind the NP-hardness. The
difference appears in the probability computation. The probability computation is easy
for MPE, as we only need to compute the probability of a world. For MAP, we have to
compute the probability of partial explanations, or equivalently events, which is PP-hard.
For further details, we refer to (Darwiche 2009).

5.2 Explanations for Probabilistic Database Queries
Probabilistic query evaluation is the key inference task underpinning probabilistic
knowledge bases. This is a natural problem and serves as the core task. Let us briefly
revisit probabilistic query evaluation on the PDB given in Table 5.2.
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Example 5.8 Consider the PDB Pv given in Table 5.2 and the conjunctive query

Qfr = ∃x, y Qveg(x) ∧ FriendOf(x, y) ∧Qveg(y),

through which we can ask the probability of vegetarians being friends with vegetarians.
In the given PDB, alice, bob, and chris are all vegetarians and friends with each other
(with some probability). The query

Qfr[x/bob] = ∃y Qveg(bob) ∧ FriendOf(bob, y) ∧Qveg(y)

is a special case of Qfr which asks whether bob has vegetarian friends. Its probability
can be computed as P(Qfr[x/bob]) = 0.9 · 0.1 · 0.6 = 0.054. ♦

For this example, suppose we observe that Qfr[x/bob] is true and would like to learn what
best explains this observation relative to the underlying probabilistic database. To be
able to explain such an observation, we need different inference tasks than probabilistic
query answering. We revisit this example after providing a principled approach for
dealing with such tasks.

Inspired by the maximal posterior probability computations in PGMs, we investigate
the problem of finding most probable explanations for probabilistic queries in order to
exploit the potential of such large databases to their full extent. Both MPE and MAP
translate to probabilistic databases in a natural way through the rich structure of queries
and, as natural counterparts of the MPE and MAP problems in PGMs, these inferences
can be used in a variety of applications that involve prediction or diagnosis tasks.

The most probable database problem (analogous to MPE), first proposed in (Gribkoff,
Van den Broeck, and Suciu 2014a), is the problem of determining the (classical) database
with the largest probability that satisfies a given query. Intuitively, the query defines
constraints on the data, and the goal is to find the most probable database that satisfies
these constraints. We also introduce a more intricate notion, called most probable
hypothesis, which only asks for partial databases satisfying the query (analogous to
MAP). The most probable hypothesis contains only atoms that contribute to the
satisfaction condition of the query, which allows to more precisely pinpoint the most
likely explanations of the query.

We study the computational complexity of the corresponding decision problems,
denoted by MPD and MPH, respectively, for a variety of query languages, ranging from
unions of conjunctive queries to first-order queries, and provide a detailed complexity
analysis. Our results provide detailed insights about the nature of these problems.

5.2.1 The Most Probable Database Problem
The need for alternative inference mechanisms for probabilistic knowledge bases has been
observed before, and the most probable database problem has been proposed in (Gribkoff,
Van den Broeck, and Suciu 2014a).
Definition 5.9 Let P be a probabilistic database and Q a query. The most probable
database for Q over P is given by

arg max
D|=Q

P(D),

where D ranges over all worlds induced by P. ♦
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Table 5.3: The most probable database for the query Qfr over the PDB Pv.

Vegetarian
alice 0.7
bob 0.9
chris 0.6

FriendOf
alice bob 0.7
alice chris 0.8
bob chris 0.1

Eats
bob spinach 0.7
chris mussels 0.8
alice broccoli 0.2

Meat
shrimp 0.7
mussels 0.9
seahorse 0.3

The intuition is very straight-forward: a probabilistic database defines a probability
distribution over exponentially many classical databases, and the most probable database
is the element in this collection that has the highest probability, while still satisfying the
given query. This can be seen as the best instantiation of a probabilistic model, and
hence analogous to MPE in BNs (Darwiche 2009).

Recall our running example and the given PDB Pv. We can now filter the most
probable database that satisfies the query

Qfr = ∃x, y Qveg(x) ∧ FriendOf(x, y) ∧Qveg(y).

Intuitively, the atoms Vegetarian(alice), Vegetarian(bob), FriendOf(alice, bob) need to be
included in the most probable database, as they satisfy the query with the highest
probability (compared to other possible matches). Since the query is monotone, for the
remaining atoms, we only need to decide whether including them results in a higher
probability than excluding them, which amounts to deciding whether their probability is
greater than 0.5. Table 5.3 shows the most probable database for Qfr over the PDB Pv,
where all atoms that belong to the most probable database are highlighted.

We now show that identifying the most probable database can be more cumbersome if
we consider other query languages; in particular, ∀FO queries.

Example 5.10 Consider again the PDB Pv and the query

Qveg = ∀x, y ¬Vegetarian(x) ∨ ¬Eats(x, y) ∨ ¬Meat(y),

which defines the constraints of being a vegetarian, which is violated by the atoms
Vegetarian(chris), Eats(chris,mussels) and Meat(mussels). Therefore, the most probable
database for Qveg cannot contain all three of them, i.e., one of them has to be re-
moved (from the explanation). In this case, it is easy to see that Vegetarian(chris) needs
to be removed, as it has the lowest probability among them. Thus, the most probable
database (in this case unique) contains all atoms of Pv that have a probability above 0.5,
except for Vegetarian(chris).

Suppose now that we have observed Qfr[x/bob], and we are interested in finding an
explanation for this observation under the constraint of Qveg, which is specified by the
query

Qvf = Qfr[x/bob] ∧Qveg.

Observe that Vegetarian(chris) and FriendOf(bob, chris) must be in the explanation to
satisfy Qfr[x/bob]. Moreover, either Eats(chris,mussels) or Meat(mussels) has to be
excluded from the most probable database since otherwise Qveg will be violated. The
resulting most probable database is highlighted in Table 5.4. ♦
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Table 5.4: The most probable database for the query Qvf over the PDB Pv.

Vegetarian
alice 0.7
bob 0.9
chris 0.6

FriendOf
alice bob 0.7
alice chris 0.8
bob chris 0.1

Eats
bob spinach 0.7
chris mussels 0.8
alice broccoli 0.2

Meat
shrimp 0.7
mussels 0.9
seahorse 0.3

We now formulate the most probable database as a decision problem, denoted by
MPD, and investigate its computational complexity. Our formulation is analogous to the
decision variants of maximal posterior computations in BNs.

Definition 5.11 (MPD) Let Q be a query, P a probabilistic database and p ∈ (0, 1]
a threshold. MPD is the problem of deciding whether there exists a database D that
satisfies Q with P(D) > p. MPD is parametrized with a particular query language; thus,
we write MPD(Q) to define MPD on the class Q of queries. ♦

As before, it is possible to reduce the test for ≥ to the test for >, and vice versa in the
decision problem, which follows from analogous arguments to those given in Lemma 3.17.

Data complexity results for MPD

Our first result concerns the well-known class of unions of conjunctive queries: we show
that MPD can be solved using at most logarithmic space and polynomial time. More
precisely, our result asserts that it is possible to encode the MPD problem uniformly into
a class of TC0 circuits.

Theorem 5.12 MPD(UCQ) is in DLogTime-uniform TC0 in data complexity.

Proof. Let P be a PDB, Q a UCQ and p ∈ [0, 1) a threshold value. In principle, we
can enumerate all the databases induced by the PDB P and decide whether there is
a database that satisfies Q and has a probability greater or equal than p. This would
require exponential time, as there are potentially exponentially many databases (worlds)
induced by a probabilistic database. Fortunately, this can be avoided, as the satisfaction
relation for union of conjunctive queries is monotone: once a database satisfies a UCQ,
then any superset of this database will satisfy the UCQ. We can, therefore, design an
algorithm, which initiates the database with the atoms resulting from a match for the
query (where the match is over the atoms that appear with a positive probability in
the PDB P) and extends this to a database with maximal probability, as follows: it
adds only those atoms from the PDB P to the database that appear with a probability
higher than 0.5, ensuring to obtain the database with the maximal probability. As a
consequence, all these databases satisfy Q and if, furthermore, there is a database D
among them with P(D) ≥ p, then the algorithm answers yes; otherwise, it answers no.

It is easy to see that this algorithm is correct. However, if performed naïvely, as
described, it results in a polynomial blow-up: there are polynomially many matches for
the query (in data complexity), and for each match, constructing a database requires
polynomial time and space. Observe, on the other hand, that we can uniformly access
every match through an AC0 circuit, and we can avoid explicitly constructing a database
for each such match. More concretely, since we are only interested in the probability of
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the resulting database, we can perform an iterated multiplication over the probabilities
of the individual atoms: if 〈a : q〉 ∈ P, where q > 0.5, we multiply with q, otherwise,
we multiply with 1− q. Notice that we can perform such iterated multiplication with
TC0 circuits that can be constructed in DLogTime (Hesse, Allender, and Barrington
2002). Finally, it is sufficient to compare the resulting number with the threshold value
p. This last comparison operation can also be done using uniform AC0 circuits. This
puts MPD(UCQ) in DLogTime-uniform TC0 in data complexity.

This low data complexity result triggers an obvious question: what are the sources of
tractability? The answer is partially hidden behind the fact that the satisfaction relation
for unions of conjunctive queries is monotone. This allows us to reduce the search space
to polynomially many databases, which are obtained from different matches of the query,
in a unique way. Is the monotonicity a strict requirement for tractability? It turns
out that the TC0 upper bound can be strengthened towards all existential queries, i.e.,
existentially quantified formulas that allow negations in front of query atoms.

Theorem 5.13 MPD(∃FO) is in DLogTime-uniform TC0 in data complexity.

Proof. Let P be a PDB, Q a ∃FO query and p ∈ [0, 1), a threshold value. Analogously
to the proof of Theorem 5.12, we can design an algorithm that initiates the database
with the positive atoms from a match, while now also keeping the record of the negative
atoms from this match. We can again enumerate all the matches, and for each such
match, perform an iterated multiplication over the probabilities of the atoms. The only
difference is that now we need to exclude the atoms from the database which appear
negatively in the match to ensure the satisfaction of the query. Thus, for all probabilistic
atoms 〈a : q〉 ∈ P , we check whether ¬a appears in the match, and if so, then we multiply
with 1−q; otherwise, we check whether q > 0.5 and multiply with q, if this test is positive
and multiply with 1− q, if this test is negative. It is then sufficient to compare the result
of each multiplication with the threshold value p: if one of the resultant multiplications
is greater than or equal to p, then the algorithm answers yes; otherwise, it answers no.
It is easy to verify the correctness of this algorithm.

By similar arguments as in the proof of Theorem 5.12, we can check the matches in
AC0, perform the respective multiplications in TC0 and the respective comparisons in
AC0. Thus, MPD(∃FO) is in DLogTime-uniform TC0 in data complexity.

In some sense, the tractability result presented implies that nonmonotonicity is not
harmful if we restrict our attention to existential queries. This is because the nonmono-
tonicity involved here is of a limited type and does not lead to a combinatorial blow-up.
This picture changes once we focus on universally quantified queries: nonmonotonicity
combined with universal quantification creates nondeterministic choices, which we use to
prove an NP-hardness result for the most probable database problem.

We note that this result is very similar to the hardness result obtained in (Gribkoff,
Van den Broeck, and Suciu 2014a). Additionally, we show that the complexity bound is
tight even if we consider FO queries.

Theorem 5.14 MPD(∀FO) is NP-complete in data complexity, and so is MPD(FO).

Proof. We first show that MPD(FO) can be solved in NP. Let P be a PDB, Q a FO
query and p ∈ [0, 1), a threshold value. To solve the decision problem, we first guess
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a world D, and then verify both that the query is satisfied, i.e., D |= Q, and that the
threshold is met, i.e., P(D) ≥ p. Note that all these computations can be done using a
nondeterministic Turing machine since only the first step is nondeterministic, and both
of the verification steps can be done in polynomial time in data complexity.

To prove the hardness, we provide a reduction from the satisfiability of propositional
3CNF formulas. Let ϕ =

∧
i ϕi be a propositional formula in 3CNF. Recall the ∀FO

query QSAT (from Theorem 3.22), which we again use to encode the satisfaction conditions
of ϕ. Without loss of generality, let us denote with u1, . . . , un the propositional variables
that appear in ϕ.

We then define the PDB Pϕ, depending on ϕ, as follows. For each propositional
variable uj , we add the probabilistic atom 〈L(uj) : 0.5〉 to the PDB Pϕ. The clauses ϕj

are described with the help of the predicates R1, …, R4, each of which corresponds to
one type of clause (as in Theorem 3.24). The construction provided for QSAT and Pϕ

is clearly polynomial. Furthermore, the query is fixed, and only Pϕ depends on ϕ. We
now show that MPD can be used to answer the satisfiability problem of ϕ, using this
construction.

Claim. The 3CNF formula ϕ is satisfiable if and only if there exists a database D
induced by Pϕ such that P(D) ≥ (0.5)n and D |= QSAT (where n is the number of
variables appearing in ϕ).

To prove the claim, suppose that ϕ is satisfiable and let µ be such a satisfying
assignment. We define a world D such that it contains all the atoms of the form L(uj)
if and only if µ(uj) 7→ 1 in the given assignment. Moreover, D contains all the atoms
which are assigned the probability 1 in Pϕ. It is easy to see that D is one of the worlds
induced by Pϕ. Observe further that Pϕ contains n nondeterministic atoms, each with
0.5 probability. By this argument, the probability of D is clearly (0.5)n. It only remains
to show that D |= QSAT, which is easy to verify.

For the other direction, let D |= QSAT and P(D) ≥ (0.5)n for some world D. We define
an assignment µ by setting the truth value of uj to 1 if L(uj) ∈ D, and to 0 otherwise.
Every world contains exactly one assignment for every variable, by our construction.
Thus, the assignment µ is well-defined. It is easy to verify that µ |= ϕ.

This concludes our analysis for the data complexity. To reflect the cases where the
constraints themselves (specified in terms of queries) can be arbitrarily large, we next
investigate the combined complexity for the most probable database problem.

Combined complexity results for MPD

As pointed before, once the query is considered to be part of the input, the complexity of
the most probable database problem is typically dominated by the complexity of query
answering in databases. Unsurprisingly, we obtain the following result.

Theorem 5.15 MPD(UCQ) and MPD(∃FO) are both NP-complete in combined com-
plexity.

Proof. We first prove that MPD(∃FO) can be solved in NP. Let P be a PDB, Q a FO
query and p ∈ [0, 1), a threshold value. To solve the decision problem, we guess a
world D, and a mapping ϑ, which maps the variables in the query Q to the database
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constants. Let us denote by ϑ(Q) the ground query that results from applying the
mapping ϑ. Finally, we only need to verify whether ϑ(Q) is a match for the query, i.e.,
D |= ϑ(Q) and whether the threshold is met by the database, i.e., P(D) ≥ p. It is easy
to see that the overall computation can be done using a single nondeterministic Turing
machine as the verifications can be done in polynomial time. Thus, we conclude that
MPD(∃FO) is in NP, in combined complexity.

As for hardness, we provide a straightforward reduction from the UCQ evaluation
problem in databases: given a UCQ Q and a database D, decide whether D |= Q. This
problem is NP-hard in combined complexity (even if we assume that the arity of the
predicates is bounded). To simulate this problem, we simply define a PDB P which
contains all the atoms from D with probability 1. Then, we immediately obtain that
D |= Q if and only if there is a database D′ such that P(D′) ≥ 1 and D′ |= Q.

In essence, this shows that MPD is not harder than query answering for UCQ and ∃FO
queries in combined complexity. This holds since the nondeterministic computation for
the most probable database, and for the mapping (to find a match) can be combined into
a single nondeterministic machine. This approach clearly does not work for ∀FO queries,
for which query satisfaction test is coNP-complete in combined complexity. Indeed, in
what follows, we show that the computational complexity goes one level higher in the
polynomial hierarchy for ∀FO queries.

Theorem 5.16 MPD(∀FO) is ΣP
2 -complete in combined complexity.

Proof. Let P be a PDB, Q a ∀FO query and p ∈ [0, 1), a threshold value. To prove
membership, consider a nondeterministic Turing machine with a (co)NP oracle: given
a PDB P, a universally quantified query Q, and a threshold p ∈ (0, 1], we can decide
whether there exists a database D such that P(D) ≥ p, by first guessing a database D,
and verifying whether (i) P(D) ≥ p and (ii) D |= Q. Verification of (i) can be done in
deterministic polynomial time and (ii) can be done in coNP, using the oracle. This
proves a ΣP

2 upper bound.
To show hardness, we provide a reduction from the validity problem for quantified

Boolean formulas of the form Φ = ∃u1, . . . , un ∀v1, . . . , vm ϕ, where ϕ is a propositional
formula. This problem is ΣP

2 -complete (Stockmeyer 1976). We use the PDB PΦ that
contains all atoms 〈L(uj) : 0.5〉 for the existentially quantified variables uj , and the two ad-
ditional atoms 〈L(0) : 0〉 and 〈L(1) : 1〉. The query is then defined as QΦ = ∀v1, . . . , vm ψ,
where ψ is obtained from ϕ by replacing all propositional variables u by L(u). Impor-
tantly, in this construction, existentially quantified variables in ϕ are viewed as constants
in the query, and universally quantified variables in ϕ are still universally quantified in
the query, but now range over the database constants instead of the truth values true
and false. Obviously, this construction is polynomial in the size of ϕ; thus, it is sufficient
to prove the following claim.

Claim. The QBF Φ is valid if and only if there exists a database D induced by PΦ that
satisfies QΦ such that P(D) ≥ (0.5)n.

Assume that Φ is valid. Then, there exists a valuation µ for u1, . . . , un such that all
extensions τ to v1, . . . , vm satisfy ϕ. We choose the database D such that L(uj) ∈ D if
and only if µ(uj) = 1, L(1) ∈ D, and L(0) /∈ D. Hence, we obtain that P(D) = (0.5)n. To
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show that D |= QΦ, consider an assignment ι for v1, . . . , vm in QΦ that assigns a constant
to each vj . We define the extension τ of µ to the propositional variables v1, . . . , vm by
setting τ(vj) = 1 if and only if L(ι(vj)) ∈ D. Since by assumption τ satisfies ϕ, it must
be the case that ι satisfies ψ.

Conversely, let D |= Qϕ be such that P(D) ≥ (0.5)n. We define the valuation µ
for u1, . . . , un by setting µ(uj) = 1 iff L(uj) ∈ D. Consider now any extension τ of µ
to v1, . . . , vm. We obtain a corresponding assignment for the variables in QΦ by setting
ι(vj) = τ (vj). Since D must satisfy L(1) and cannot satisfy L(0), we know from D |= QΦ
that τ satisfies ϕ.

Our final result concerns first-order queries, for which we show that the PSpace upper
bound for query evaluation is preserved also for MPD.

Theorem 5.17 MPD(FO) is PSpace-complete in combined complexity for FO.

Proof. Let P be a PDB, Q a FO query and p ∈ [0, 1), a threshold value. As for
membership, we can enumerate all exponentially many databases D induced by P in
polynomial space, and for each of them, check whether D |= Q and whether P(D) ≥ p,
both of which can again be done in polynomial space.

Hardness is immediate since the query evaluation problem in databases for first-order
queries is already PSpace-hard in combined complexity (even if we assume that the
arities of the predicates are bounded). To simulate this problem, we define a PDB P
that contains all the atoms from a given arbitrary D with probability 1. Then, for any
FO query Q, we have that D |= Q if and only if there is a database D′ induced by P
such that P(D′) ≥ 1 and D′ |= Q.

This concludes our analysis for the most probable database problem in the context of
PDBs, and this problem is revisited later for ontology-mediated queries. We now present
an overview of the results.

Overview of the Complexity Results for MPD

All of the complexity results for the most probable database problem are summarized in
Table 5.5. One of the major results asserts that MPD is tractable for unions of conjunctive
queries in data complexity, which is then strengthened to the class of existential queries.
In more concrete terms, our results imply that the most probable database for these
query languages can be computed in logarithmic space and the overall computation can
be encoded uniformly into a class of TC0 circuits.

Surprisingly, we observe a sharp contrast between the complexity of MPD(∃FO) and
MPD(∀FO): the problem for universal queries appears one level higher in the polynomial
hierarchy in all cases. This contrast is sharper in data complexity under widely accepted
complexity-theoretic assumptions: existential queries are highly tractable (in TC0),
whereas universal queries are NP-hard for MPD. This latter has already been observed
in (Gribkoff, Van den Broeck, and Suciu 2014a); it is easy to show that MPD remains in
NP for the class of first-order queries in data complexity.

In combined complexity, the complexity of MPD is typically dominated by the com-
plexity of query evaluation in databases with the only exception being universal queries.
That is, even though query evaluation is coNP-complete for ∀FO queries, MPD turns out
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Table 5.5: Data, bounded-arity and combined complexity results for MPD for database
queries. Results with ‘≤’ denote membership; all the rest are completeness
results.

Query
Languages

Most Probable Database in PDBs

data bounded arity combined

UCQ ≤ TC0 [Theorem 5.12] NP [Theorem 5.15] NP [Theorem 5.15]

∃FO ≤ TC0 [Theorem 5.13] NP [Theorem 5.15] NP [Theorem 5.15]

∀FO NP [Gribkoff et al.] ΣP
2 [Theorem 5.16] ΣP

2 [Theorem 5.16]

FO NP [Theorem 5.14] PSpace [Theorem 5.17] PSpace [Theorem 5.17]

to be one level higher in the polynomial hierarchy for these queries; namely, ΣP
2 -complete.

Note also that all the combined complexity results presented here are in their strongest
form in the following sense: all the hardness results already apply even if we assume
that the arities of the predicates are bounded by a fixed constant.

The complexity bounds are tight for all cases except for the TC0 upper bounds.
Unfortunately, it remains open whether the given TC0 bound is tight for both UCQ and
∃FO queries. At first sight, a lower bound may seem obvious as i) there is a multiplication
involved in the computation of MPD and ii) even binary integer multiplication is known
to be TC0-hard under DLogTime-reduction (Immerman 1999). However, it is not
clear how to simulate multiplication in our decision problem since the threshold (that
relates to the result of the multiplication) is itself the input to the problem. In order
to set the threshold appropriately, we need to know something about the result of the
multiplication. This cyclic dependency indicates that we probably need a problem where
the threshold can be set without any prior knowledge regarding the multiplication. We
next define such a problem.

Definition 5.18 (MSB of multiplication) Given two integers l1 and l2, each with exactly
with m bits, decide whether the most significant bit (MSB) of the multiplication l1 · l2 is
1, provided that the result is printed in 2m bits with possibly leading zero’s. ♦

Obviously, this is a special case of binary multiplication; that is, given integers l1 and
l2, the problem of deciding whether the i-th bit of the multiplication is 1 (Hesse, Allender,
and Barrington 2002). Note also that these problems generalize to iterated multiplication
in the obvious way. The reduction from deciding the MSB of binary multiplication to
our problem is straight-forward as we can simply set the threshold to (0.5). It is easy to
see that our problem is at least as hard as deciding the MSB of binary multiplication.

To the best of our knowledge, deciding the MSB of binary multiplication has not been
considered in the literature before. Thus, it is open whether deciding the MSB of binary
multiplication is TC0-hard. Unfortunately existing reductions for proving hardness of
multiplication do not apply to the most significant bit; in particular, such reductions
deliberately use the medium bits, which are somewhat more difficult to compute than the
most significant bit. We explicitly introduce this problem as it may be of independent
interest.
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Table 5.6: The most probable hypothesis for the query Qvf over Pv.

Vegetarian
alice 0.7
bob 0.9
chris 0.6

FriendOf
alice bob 0.7
alice chris 0.8
bob chris 0.1

Eats
bob spinach 0.7
chris mussels 0.8
alice broccoli 0.2

Meat
shrimp 0.7
mussels 0.9
seahorse 0.3

5.2.2 The Most Probable Hypothesis Problem
Finding the most probable database is important, as it identifies the most likely state of
a probabilistic database relative to a query. However, it has certain limitations, which are
analogous to the limitations of finding the most probable explanations in PGMs (Koller
and Friedman 2009). Most importantly, one is always forced to choose a complete
database although the query usually affects only a subset of the atoms. In other words,
it is usually not the case that the whole database is responsible for the goal query to be
satisfied. To be able to more precisely pinpoint the explanations of a query, we introduce
the following more intricate notion.

Definition 5.19 The most probable hypothesis for a query Q over a PDB P is

arg max
H|=Q

∑
D|=H

P(D),

where H ranges over sets of atoms t and negated atoms ¬t such that t occurs in P , and
H |= Q holds if and only if all worlds induced by P that satisfy H also satisfy Q. ♦

Intuitively, the most probable hypothesis contains atoms only if they contribute to
the satisfaction of the query. In other words, for the most probable hypothesis, we allow
partial explanations. It is still the case that an explanation has to satisfy the query, but
to do so, it does not need to make a decision for all of the database atoms. Indeed, it is
possible to specify some positive and negative atoms that ensure the satisfaction of the
query, regardless of the truth value of the remaining database atoms.

Conversely, any database D with D |= H must satisfy Q, and thus the most probable
database can be seen as a special case of the most probable hypothesis that has to
contain all atoms from a PDB (positively or negatively). We denote the sum inside the
maximization, i.e., the probability of the explanation by P(H). Differently from PGMs,
the probability of the explanation can be computed by simply taking the product of the
probabilities of the (negated) atoms in H. This is a consequence of the independence
assumption and will influence the complexity results as we will elaborate later.

Example 5.20 Consider again our running example with the PDB Pv and recall the
query Qvf := Qveg ∧Qfr[x/bob] where

Qveg := ∀x, y ¬Vegetarian(x) ∨ ¬Eats(x, y) ∨ ¬Meat(y),
Qfr[x/bob] := ∃y Qveg(bob) ∧ FriendOf(bob, y) ∧Qveg(y).

Recall that the most probable database for Qvf contains many redundant atoms. The
most probable hypothesis H for the query Qvf contains only 4 atoms as given in Table 5.6:
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as before orange highlighting denotes positive atoms, while the red one denotes negated
atoms, i.e., ¬Eats(chris,mussels). Notice that all of these atoms directly influence
the satisfaction of the query and thus are part of the explanation. Since the most
probable hypothesis contains less atoms, in general, it is more informative than the
most probable database. Moreover, we can compute the probability of the hypothesis by
P(H) = 0.9 · 0.6 · 0.1 · (1− 0.8) = 0.0108. ♦

Whereas the most probable database represents full knowledge about all facts, which
corresponds to the common closed-world assumption for (probabilistic) databases, the
most probable hypothesis may leave atoms of P unresolved, which can be seen as a kind
of open-world assumption (although the atoms that do not occur in P are still false).
MPH is defined as a decision problem as follows.

Definition 5.21 (MPH) Let Q be a query, P a PDB, and p ∈ (0, 1] a threshold.
MPH is the problem of deciding whether there exists a hypothesis H that satisfies Q
with P(H) ≥ p. MPH is parametrized with a particular query language; thus, we write
MPH(Q) to define MPH on the class Q of queries. ♦

Data complexity results for MPH

We again start our analysis with unions of conjunctive queries and show that, as is the
case for MPD, MPH can also be solved using at most logarithmic space and polynomial
time.

Theorem 5.22 MPH(UCQ) is in DLogTime-uniform TC0 in data complexity.

Proof. Let P be a PDB, Q a UCQ and p ∈ [0, 1), a threshold value. It has already been
observed that the satisfaction relation for union of conjunctive queries is monotone, i.e.,
the fact that once a database satisfies a UCQ, then any superset of this database satisfies
the UCQ. Clearly, this also applies to partial explanations: the databases extending the
hypothesis H satisfy the query only if H (extended with all atoms that have probability 1)
is already a match for the query. This means that the hypothesis must be a subset of a
ground instance of one of the disjuncts of the UCQ Q. The major difference from MPD
is that, once the explanation is found, we do not need to consider the other database
atoms in the PDB. As before, there are only polynomially many such hypotheses in
the data complexity, and they can be encoded uniformly into AC0 circuits, as in the
proof of Theorem 5.12. Moreover, their probabilities can be computed in TC0 and the
comparison with the threshold p can be done again in AC0. This puts MPH(UCQ) in
DLogTime-uniform TC0 in data complexity.

Recall that, for MPD, it was possible to generalize the data tractability result from
unions of conjunctive queries to existential queries. It is therefore interesting to know
whether the same holds for MPH. Does MPH remain tractable if we consider existential
queries? The answer is unfortunately negative: to be able to verify a test such as H |= Q,
we need to make sure that all extensions D of H satisfy the query and this test is hard
once we allow negations in front of query atoms. We illustrate the effect of negations
with a simple example.
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Example 5.23 Consider the following ∃FO query

Q := ∃x, y (A(x) ∧ ¬B(x, y)) ∨ (¬A(x) ∧ ¬B(x, y)).

To decide MPH on an arbitrary PDB, we could walk through all (partial) matches for
the query and then verify H |= Q. However, observe that this verification is not in
polynomial time, in general, as there are interactions between the query atoms and these
interactions need to be captured by the explanation itself. For instance, the A-atoms in Q
are actually redundant and it is enough to find an explanation that satisfies ∃x, y ¬B(x, y)
for some mapping. ♦

We next provide a reduction from the validity problem of 3DNF formulas, proving that
MPH is coNP-hard for existential queries. It is easy to see that this is also a matching
upper bound.

Theorem 5.24 MPH(∃FO) is coNP-complete in data complexity.

Proof. Let P be a PDB, Q an ∃FO query and p ∈ [0, 1) a threshold value. As for
membership, consider a nondeterministic Turing machine, which enumerates all partial
matches forming the hypothesis H and answers yes if and only if P(H) ≥ p and there is
no database D that satisfies D |= H while D 6|= Q.

To prove the hardness, we provide a reduction from the validity of propositional
3DNF formulas. Let ϕ =

∨
i ϕi be a propositional formula in 3DNF. We first define the

following ∃FO query

QVAL := ∃x, y, z ( L(x) ∧ L(y) ∧ L(z) ∧ R1(x, y, z)) ∨
(¬L(x) ∧ L(y) ∧ L(z) ∧ R2(x, y, z)) ∨
(¬L(x) ∧ ¬L(y) ∧ L(z) ∧ R3(x, y, z)) ∨
(¬L(x) ∧ ¬L(y) ∧ ¬L(z) ∧ R4(x, y, z))

which is later used to encode the validity conditions of ϕ. Without loss of generality, let
us denote with u1, . . . , un the propositional variables that appear in ϕ. We then define
the PDB Pϕ, depending on ϕ, as follows.

– For each propositional variable uj , we add the probabilistic atom 〈L(uj) : 0.5〉 to
the PDB Pϕ.

– The conjuncts ϕj are described with the help of the predicates R1, …, R4, each
of which corresponds to one type of conjunct. For example, if we have a clause
ϕj = u1 ∧ ¬u2 ∧ ¬u4, we add the atom 〈R3(u4, u2, u1) : 1〉 to PΦ, which enforces
via QVAL that the conjunct that includes all atoms ¬L(u4), ¬L(u2) and L(u1) can
be true. All other atoms Ri(uk, ul, um) that do not correspond in such a way to
one of the clauses, we add with probability 0 to PΦ.

The construction provided for QVAL and Pϕ is clearly polynomial. Furthermore, the
query is fixed, and only Pϕ depends on ϕ. We now show that MPH can be used to
answer the validity problem of ϕ, using this construction.

Claim. The 3DNF formula ϕ is valid if and only if there exists a hypothesis H over PΦ
such that P(H) ≥ 1 and H |= QVAL.
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To prove the claim, suppose that ϕ is valid. We show that the empty hypothesis
H = ∅ satisfies both P(H) ≥ 1 and H |= QVAL. It is easy to see that P(H) = 1 in Pϕ

as it encodes all possible databases, i.e., worlds. Let us assume by contradiction that
there exists a database D that extends the hypothesis, H |= D, but does not satisfy the
query, i.e., D 6|= QVAL. Then, we can use this database to define a valuation for the given
propositional formula: define an assignment µ by setting the truth value of uj to 1 if
L(uj) ∈ D, and to 0; otherwise. Every world contains exactly one assignment for every
variable, by our construction. Thus, the assignment µ is well-defined. But then, it is
easy to see that this implies µ 6|= ϕ, which contradicts the validity of ϕ.

For the other direction, let H be a hypothesis such that P(H) ≥ 1 and H |= QVAL.
This can only be the case if the H is the empty set (as otherwise P(H) ≤ 0.5). This
means that any database D induced by Pϕ must satisfy the query. It is easy to see that
every database is in one-to-one correspondence with a propositional assignment; thus,
we conclude the validity of QVAL.

Having shown that MPH is harder than MPD for existential queries, one may wonder
whether this is also the case for universal queries. We now show that MPH has the same
complexity as MPD for universal queries.

Theorem 5.25 MPH(∀FO) is NP-complete in data complexity.

Proof. Let P be a PDB, Q a ∀FO query and p ∈ [0, 1), a threshold value. To show
membership, we nondeterministically guess a hypothesis H such that the satisfaction
relation H |= Q is ensured. To do so, assume without loss of generality that the universal
query is of the form

Q := ∀x1, . . . , xn

∧
i

qi(x1, . . . , xn),

for some finite number i, n > 0, where each qi(x1, . . . , xn) is a clause over x1, . . . , xn.
Our goal is to find a hypothesis that satisfies this query and that meets the threshold
value p. To satisfy a universal query, we need to identify all database atoms that could
possibly invalidate the query and rule them out. Thus, we consider the negation of the
given query

¬Q = ∃x1, . . . , xn

∨
i

¬qi(x1, . . . , xn),

which encodes all database atoms that could possibly invalidate the original query Q.
Furthermore, to make the effect of the database atoms more concrete, we consider all
possible groundings of this query. Let us denote by ¬Q[x1/a1, . . . xn/an] a grounding
with database constants ai. Clearly, there are polynomially many such groundings in
data complexity. We need to ensure that none of the clauses in any of the groundings
is satisfied by the hypothesis. Note that this can be achieved by including, for every
clause, an atom into the hypothesis that contradicts the respective clause. For example,
suppose that a grounding of the query is

(A(a) ∧ ¬B(b)) ∨ . . . ∨ (¬C(c) ∧ ¬D(d)).

Then, for the first clause, we have to either add the atom ¬A(a) or the atom B(b) to the
hypothesis, and similarly for the last clause. The subtlety is that we cannot deterministi-
cally decide which atoms to include into the hypothesis (as there are interactions across
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clauses as well as across different groundings). Therefore, we nondeterministically guess
each such choice. In essence, while constructing the hypothesis, we rule out everything
that could invalidate the original query. As a consequence, we ensure that H |= Q. It
only remains to check whether P(H) ≥ p, which can be done in polynomial time. Thus,
we obtain an NP upper bound in data complexity.

Hardness is analogous to the proof of Theorem 5.14. Therefore, we consider the
same construction; namely, given a 3CNF formula ϕ, we define QSAT and Pϕ, as in
Theorem 5.14 where only Pϕ depends on ϕ. The construction is polynomial; thus, it
suffices to prove the correctness of the following claim.

Claim. The 3CNF formula ϕ is satisfiable if and only if there exists a hypothesis H
over Pϕ such that P(H) ≥ (0.5)n and H |= QSAT (where n is the number of variables
appearing in ϕ).

Soundness of this claim is immediate as we can define a hypothesis H based on a
satisfying assignment µ of ϕ, as in Theorem 5.14, whereby we ensure that H |= QSAT
and P(H) ≥ (0.5)n. For completeness, it is sufficient to observe that whenever there
exists a hypothesis H with H |= QSAT and P(H) ≥ (0.5)n, there is at least one (although
possibly more) database D such that H |= D and D |= QSAT, which we can use to define
a satisfying assignment µ of ϕ. Thus, we conclude that MPH(∀FO) is NP-complete in
data complexity.

MPH is coNP-complete for ∃FO queries (by Theorem 5.24) and NP-complete for ∀FO
queries (by Theorem 5.25). By considering a particular query, which combines the power
of existential and universal queries, we are able to show ΣP

2 -hardness for MPH.

Theorem 5.26 MPH(FO) is ΣP
2 -complete in data complexity.

Proof. Let P be a PDB, Q a FO query and p ∈ [0, 1), a threshold value. Consider a
nondeterministic Turing machine with a (co)NP oracle: given a PDB P, a first-order
query Q, and a threshold p ∈ (0, 1], we can decide whether there exists a hypothesis H
such that P(H) ≥ p by first guessing a hypothesis H, and verifying whether (i) P(H) ≥ p
and (ii) for all databases D that extend H and are induced by P, it holds that D |= Q.
Verification of (i) can be done in deterministic polynomial time and (ii) can be done in
coNP (the complement is equivalent to the existence of an extension D and a valuation
for the query variables that falsifies Q). This shows that MPH(FO) is in ΣP

2 in data
complexity.

As for hardness, we provide a reduction from validity of quantified Boolean formulas
of the form Φ = ∃u1, . . . , un∀v1, . . . , vm ϕ, where ϕ is in 3DNF. Checking validity of
such formulas is known to be ΣP

2 -complete. For the reduction, we consider the following
query Q = QVAL ∧ Qs where QVAL is the ∃FO query from Theorem 5.24 that encodes
the validity conditions and Qs is a ∀FO query defined as

Qs := ∀x(¬E(x) ∧ L(x)) ∨ (E(x) ∧ ¬L(x)) ∨ F(x).

Moreover, we define a PDB PΦ such that
– for each variable u that appears in ϕ, PΦ contains the atom 〈L(u) : 0.5〉.
– for every existentially quantified variable uj , PΦ contains the atom 〈E(uj) : 0.5〉.
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– for every universally quantified variable vj , PΦ contains the atom 〈F(vj) : 1〉.
– every conjunction in ϕ are described with the help of the predicates R1, …, R4, each

of which corresponds to one type of conjunctive clause. For example, if we have
ϕj = u1 ∧ ¬u2 ∧ ¬u4, we add the atom 〈R3(u4, u2, u1) : 1〉 to PΦ, which enforces
via QVAL that the clause that includes all atoms ¬L(u4), ¬L(u2) and L(u1) can be
true. Moreover, all the remaining Ri-atoms have probability 0.

In this construction, QVAL encodes the 3DNF and Qs helps us to distinguish between
the existentially and universally quantified variables through the E- and F-atoms.

Claim. The quantified Boolean formula Φ is valid if and only if there exists a hypothesis
H over PΦ such that P(H) ≥ (0.5)2n and H |= Q.

Suppose that Φ is valid. Then, there exists a valuation µ of u1, . . . , un, such that all
valuations τ that extend this partial valuation (by assigning truth values to v1, . . . , vm)
satisfy ϕ. We define a hypothesis H depending on µ as follows. For all assignments
uj 7→ 1 in µ, we add L(uj) to H; if, on the other hand, uj 7→ 0 in µ we add ¬L(uj) to
H. Moreover, to satisfy the query Qs, for every L(uj) ∈ H, we add ¬E(uj) to H, and
analogously, for every ¬L(uj) ∈ H, we add E(uj) to H. By this construction, there are
clearly 2n atoms in H, each of which has the probability 0.5 in Pϕ. Hence, it holds that
P(H) = (0.5)2n. Finally, it is sufficient to observe that all databases D which extend H
must satisfy the query Q as every such database is in one-to-one correspondence with a
valuation τ that extends µ.

For the other direction, we assume that there exists a hypothesis H over PΦ such
that P(H) ≥ (0.5)2n and H |= Q. This implies that H contains at most 2n atoms that
have probability 0.5 in Pϕ (and possibly some deterministic atoms). Furthermore, since
H |= Qs, we know that H contains each E-atom either positively or negatively, and it also
contains the complementary L-atom. Since these are already 2n atoms, H cannot contain
any L-atoms for the universally quantified variables vj . We can thus define a valuation µ
for u1, . . . , un simply by setting uj 7→ 1 if L(uj) ∈ H and uj 7→ 0 if ¬L(uj) ∈ H. It is easy
to see that the extensions τ of µ are in one-to-one correspondence with the databases
that extend H, and that ϕ evaluates to true for all of these assignments.

With this result, we conclude the data complexity analysis for MPH and investigate
the combined complexity of MPH next.

Combined complexity results for MPH

In the combined complexity, the first result is a rather trivial one, and shows that the
complexity of UCQ evaluation is a dominating factor for MPH(UCQ).

Theorem 5.27 MPH(UCQ) is NP-complete in combined complexity.

Proof. Let P be a PDB, Q a UCQ and p ∈ [0, 1), a threshold value. As for the combined
complexity, we can guess a hypothesis, compare its probability to the threshold in
polynomial time, and verify that it satisfies one of the disjuncts of Q. MPH(UCQ) is
therefore in NP in combined complexity.

It is easy to adopt the naïve reduction from the proof of Theorem 5.15 in order to
show hardness. More precisely, given a database D and a query Q, we define a PDB
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P, which contains all the atoms from D with probability 1. We obtain that D |= Q if
and only if there is a hypothesis H such that P(H) ≥ 1 and H |= Q. This gives us a
matching lower bound and we conclude that MPH(UCQ) is NP-complete in combined
complexity.

Our next result is a surprising one, as it shows that the complexity of MPH for ∃FO
queries is two levels higher in the polynomial hierarchy than the complexity of MPH for
unions of conjunctive queries. This is also in contrast with MPD(∃FO) that is in NP in
combined complexity.

Theorem 5.28 MPH(∃FO) is ΣP
3 -complete in combined complexity.

Proof. Let P be a PDB, Q an ∃FO and p ∈ [0, 1), a threshold value. For membership,
consider a nondeterministic Turing machine with a ΣP

2 oracle. We can first guess a
hypothesis H, and verify first (in polynomial time) that the threshold is met, i.e.,
P(H) ≥ p. It only remains to verify that for all databases D induced by the PDB
extending H, it holds that D |= Q. Observe that the complement of the latter problem
can be verified in ΣP

2 : guess a database D such that D extends H, and check in coNP
whether D 6|= Q. This yields a ΣP

3 upper bound for the problem.
We now show ΣP

3 -hardness. Consider a quantified Boolean formula of the form

Φ = ∃u1, . . . , un∀v1, . . . , vm∃w1, . . . , wk ϕ,

where ϕ = ϕ1 ∧ . . . ∧ ϕl is in CNF. Checking validity of such formulas is known to be
ΣP

3 -complete. We provide a reduction from this problem. We start by defining a PDB
PΦ as follows:

– For every existentially quantified variable uj , PΦ contains the atoms 〈L(uj , 0) : 0.5〉
and 〈L(uj , 1) : 0.5〉.

– For every universally quantified variable vj , PΦ contains the atom 〈S(vj) : 0.5〉.
– For the existentially quantified variables wj , we only add the two atoms 〈T(1) : 1〉

and 〈T(0) : 0〉 to PΦ.
We now construct a query from the given propositional formula:

– For every clause ϕj , we construct a disjunction ψj by replacing the proposi-
tional variables with appropriate L-atoms, S-atoms, or T-atoms. For instance, for
ϕj = u1 ∨ ¬u2 ∨ v3 ∨ ¬w6, we use

ψj = L(u1, 1) ∨ L(u2, 0) ∨ S(v3) ∨ ¬T(w6).

The atom L(u1, 1) indicates that the existentially quantified variable u1 should be
true, and dually for L(u2, 0). The atom S(v3) says that the universally quantified
variable v3 should be true, and we negate such atoms if the variable is negated
in the clause. Finally, ¬T(w6) expresses a similar condition on the remaining
existentially quantified variable. Note that here w6 is a variable, while u1, u2, v3
are constants from PΦ.

– For all existentially quantified variables ui, we additionally define the formulas

ψei = (¬L(ui, 0) ∨ ¬L(ui, 1)) ∧ (L(ui, 0) ∨ L(ui, 1)).
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– We finally construct the existential query

QΦ = ∃w1, . . . , wn

∨
1≤j≤l

ψj ∧
∧

1≤i≤n

ψei .

Intuitively, PΦ together with ψ1, . . . , ψl encodes the satisfaction condition of the for-
mula, while ψe1 , . . . , ψen force the hypothesis to contain the L-atoms for the existentially
quantified variables u1, . . . , un.

Claim. The formula Φ is valid if and only if there exists a hypothesis H over PΦ such
that P(H) ≥ (0.5)2n and H |= QΦ.

Assume that Φ is valid. Then there exists a valuation µ for u1, . . . , un, such that all
extentions τ of ν to v1, . . . , vm admit an extension ι to w1, . . . , wk that satisfies ϕ. We
choose the hypothesis H as follows. We add L(uj , 1) and ¬L(uj , 0) to H if ν(uj) = 1,
and otherwise we add ¬L(uj , 1) and L(uj , 0) to H. Hence, we have P(H) = (0.5)2n.
Now, for any database D that is induced by PΦ and extends H, we must have T(1) ∈ D
and T(0) /∈ D, and for each universally quantified variable vj , D fixes a truth value via
the atom S(vj). This defines an extension τD of µ by setting τD(vj) = 1 if and only if
S(vj) ∈ D. By assumption, we know that there is an extension ιD of τD to the remaining
variables such that ϕ is satisfied. We can hence satisfy QΦ in D by mapping each wj

to 1 if ιD(wj) = 1, and to 0 otherwise. This shows that H |= QΦ.
Conversely, suppose that P(H) ≥ (0.5)2n for some hypothesis H, i.e., H |= QΦ. By

construction of the query, for every existentially quantified variable uj , H must contain
the two atoms L(uj , 0) and L(uj , 1), one positively and the other negatively, to satisfy
the query. This implies that, for H to achieve the threshold (0.5)2n, it must contain
exactly two L-atoms for each existentially quantified variable uj (and it can contain some
deterministic atoms). To show that Φ is valid, we now define the partial assignment
µ such that µ(uj) = 1 if L(uj , 1) ∈ H (thus, ¬L(uj , 0) ∈ H), and µ(uj) = 0; otherwise.
Consider now any extension τ of µ to v1, . . . , vm, and construct the extension D of H
by adding S(vj) if and only if τ(vj) = 1. We must also add T(1) to D. It is easy
to see that P(D) > 0. Hence, by assumption there must be an instantiation η of the
query variables w1, . . . , wk that satisfies QΦ. We define the extension ιη of τ to the
propositional variables w1, . . . , wk by setting ιη(wj) = 1 iff T(η(wj)) ∈ D. Due to the
construction of QΦ, this extension must satisfy ϕ, and hence we know that Φ is valid.

What appears to be also surprising is that MPH for universal queries is not as hard as
MPH for existential queries.

Theorem 5.29 MPH(∀FO) is ΣP
2 -complete in combined complexity.

Proof. Consider a nondeterministic Turing machine M with a (co)NP oracle: Given a
PDB P, a universal query Q, and a threshold p ∈ (0, 1], we can decide whether there
exists a hypothesis H such that P(H) ≥ p by first guessing a hypothesis H, and verifying
whether (i) P(H) ≥ p and (ii) for all databases D that extend H and are induced by P ,
it holds that D |= Q. Verification of (i) can be done in deterministic polynomial time
and (ii) can be done in coNP (the complement is equivalent to the existence of an
extension D and a valuation for the query variables that falsifies Q).
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Table 5.7: Data, bounded-arity combined, combined complexity results for MPH for
database queries. Result with ‘≤’ denotes membership; all the rest are
completeness results.

Query
Languages

Most Probable Hypothesis in PDBs

data bounded-arity combined

UCQ ≤ TC0 [Theorem 5.22] NP [Theorem 5.27] NP [Theorem 5.27]

∃FO coNP [Theorem 5.24] ΣP
3 [Theorem 5.28] ΣP

3 [Theorem 5.28]

∀FO NP [Theorem 5.25] ΣP
2 [Theorem 5.29] ΣP

2 [Theorem 5.16]

FO ΣP
2 [Theorem 5.26] PSpace [Theorem 5.30] PSpace [Theorem 5.30]

To show hardness, we provide a reduction from the validity problem for quantified
Boolean formulas of the form Φ = ∃u1, . . . , un ∀v1, . . . , vm ϕ, as in the proof of Theo-
rem 5.16. The construction for the PDB PΦ and the query QΦ is exactly the same. The
correctness of the following claim can be shown using analogous arguments to those
in Theorem 5.16, we can show that the QBF Φ is valid if and only if there exists a
hypothesis H over PΦ that satisfies QΦ such that P(H) ≥ (0.5)n.

Our final result for this section concerns the combined complexity of MPH for FO
queries. By similar arguments to those in Theorem 5.17, we immediately obtain a tight
complexity bound for FO queries.

Theorem 5.30 MPH(FO) is PSpace-complete in combined complexity.

Overview of the Complexity Results for MPH

All of the results regarding the most probable hypothesis are summarized in Table 5.7.
We first showed a data tractability result concerning unions of conjunctive queries
analogous to MPD. As before, this is the only result with no matching lower bound.
Unlike MPD, however, ∃FO queries are proven to be coNP-complete for MPH in data
complexity. Besides, MPH remains NP-complete for ∀FO queries, but turns out to be
ΣP

2 -complete for first-order queries in data complexity.
For the combined case, the complexity of MPH is typically higher than for MPD. This

is an expected phenomenon. What appears to be more surprising at first sight is the
following. Existential queries are more difficult than universal queries for MPH; that is,
the opposite of what has been observed for MPD. Detailed insights on this observation
are given in the respective proofs.

5.3 Related Work and Outlook
Diagnostic reasoning, also known as abductive reasoning (Eiter and Gottlob 1995) or
explanation, is an important problem in artificial intelligence and its applications, such
as natural language understanding, medical diagnosis, common-sense explanation, and
pattern recognition.
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Inspired by maximal posterior computations in PGMs, such as MAP and MPE, we
studied two decision problems for probabilistic databases, namely MPD and MPH. Note
that there exist other variants of MAP and MPE (Kwisthout 2011), and there are different
naming conventions across communities; here, we use the terminology from the BN
literature (Darwiche 2009).

As pointed out before, MPE is NP-complete and MAP is NPPP-complete in Bayesian
networks. So, how do our results compare to these results? Note that the difficulty in
BNs arises from the dependencies encoded in the network, whereas for MPD and MPH,
such dependencies are encoded in the query. Besides, we use the tuple-independence
assumption, which makes our results different. We also note that maximal posterior
probability computations have also been lifted to relational probabilistic models such as
Markov Logic Networks (Richardson and Domingos 2006).

In essence, all of our data complexity results for MPD are either in polynomial time,
or NP-hard. Can it be the case that MPD exhibits a dichotomy for universal queries (or
beyond)? In other words, is it possible to achieve a complete separation between P
and NP? Unfortunately, this remains open. Even though a dichotomy result has been
obtained in (Gribkoff, Van den Broeck, and Suciu 2014a), this result applies only to a
small fragment of universal queries. The precise classification of tractable queries is left
as future work.

We have identified other interesting connections with the literature, which need to
be explored further. For instance, MPH generalizes another well-studied problem in
the literature, that is, the problem of finding the shortest prime implicant of a given
propositional formula (Umans 2001). It is possible to view the most probable hypothesis
as the implicant of the query; however, it does not need to be shortest in the size, but
the one with the maximal probability. By adjusting the probabilities in a symmetric
way, MPH can simulate the shortest prime implicant problem. Similarly, our results
are closely related to propositional abductive reasoning (Eiter and Gottlob 1995). Such
connections are of future interest, for obtaining more fine-grained results.
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Logic and Probabilistic Knowledge Bases
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Chapter 6

Ontology Languages and Query Answering

We have discussed several limitations of PDBs, already in the general introduction, and
stated that the unrealistic assumptions employed in PDBs lead to even more dramatic
consequences once combined with another limitation of these systems; namely, the lack
of commonsense knowledge. Recall that the simple join query asking whether there is a
composer who knows both Mozart and Beethoven,

∃xComposer(x) ∧ Knows(x, beethoven) ∧ Knows(x,mozart),

from the introduction is evaluated to false although the facts FriendOf(haydn, beethoven),
TeacherOf(haydn,mozart) and Composer(haydn) are all in the knowledge base, and the
given query intuitively follows from the given facts. Human reasoning exploits basic
knowledge to deduce such implicit consequences from data; for instance, two persons
who are friends know each other, or someone who is a teacher of a person knows this
person and vice versa.

Clearly, we are talking about commonsense knowledge, a natural component of human
reasoning, which is not present in (probabilistic) databases. A common way of encoding
commonsense knowledge is in the form of ontologies. Ontologies are logical theories
that formalize domain-specific knowledge, thereby allowing for automated reasoning. A
popular paradigm to interpret incomplete data sources under commonsense knowledge in
the form of ontologies is called ontology-based data access (OBDA) (Poggi et al. 2008).

OBDA has been very widely studied in the context of classical databases, and is
also motivated by the need for open-world querying. In a nutshell, a database query
is mediated by a logical interface to make implicit commonsense knowledge explicit:
allowing for open-world querying, this results in more complete set of answers for the
query. For example, an ontological rule can encode the commonsense knowledge in the
given example and then the query will be evaluated to true under this knowledge.

In this work, we adopt the terminology from (Bienvenu, Cate, Lutz, and Wolter 2014)
and speak of ontology-mediated queries (OMQs), that is, database queries (typically,
unions of conjunctive queries) coupled with an ontology. The task of evaluating such
queries is then called ontology-mediated query answering (OMQA).

As we argued in Chapter 4, probabilistic databases are typically incomplete data
sources by their nature; arguably, even more than non-probabilistic data sources. At
the same time, probabilistic databases employ strong completeness assumptions, which
contradict their nature. We follow a common paradigm and incorporate commonsense
knowledge in probabilistic databases to alleviate these issues. Thus, this chapter is
dedicated to give a brief overview on common ontology languages and introduce the
paradigm of ontology-mediated query answering. We conclude this chapter by providing
a summary of the known complexity results for OMQA for different ontology languages.
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6.1 Ontology Languages
Ontology languages are mostly fragments of first-order logic which result from a simple
trade-off. On the one hand, an ontology language has to be expressive enough to encode
the domain-specific knowledge; on the other hand, the complexity of reasoning in this
language should remain relatively low.

We first introduce the Datalog± family of languages, also studied under the name of
existential rules in the literature, and then give an overview of the Description Logic (DL)
family (Baader, Calvanese, et al. 2007). These formalisms, together, encompass the
most-widely used knowledge representation languages in the context of ontology-based
data access.

6.1.1 Datalog±

The Datalog± family consists of Datalog variants, which extend plain Datalog by the
possibility of existential quantification in the rule heads, and by a number of other
features, and, at the same time, restrict the rule syntax in order to achieve tractability,
as stated in (Calì, Gottlob, and Lukasiewicz 2012).

Vocabulary. The domain and the vocabulary of Datalog± languages are the same as
for first-order logic. As a subtle difference, it is common to make a distinction between
known and unknown constants in Datalog±: unknown constants are used as placeholders
for unknown values and are usually referred as nulls. Note that nulls are not considered
to be part of database constants.

Datalog± Programs. We first introduce the so-called negative constraints (NCs). From
a database perspective, NCs can be seen as a special case of denial constraints over
databases (Staworko and Chomicki 2010). Formally, a negative constraint (NC) is a
first-order formula of the form ∀~xΦ(~x)→ ⊥, where Φ(~x) is a conjunction of atoms, called
the body of the NC, and ⊥ is the truth constant false. Consider, for example, the NCs

∀xWriter(x) ∧ Novel(x)→ ⊥, (6.1)
∀x, y ParentOf(x, y) ∧ ParentOf(y, x)→ ⊥. (6.2)

The former states that writers and novels are disjoint entities, whereas the latter asserts
that the ParentOf relation is antisymmetric.

To formulate more general ontological knowledge, tuple-generating dependencies are
introduced. Intuitively, such dependencies describe constraints on databases in the form
of generalized Datalog rules with existentially quantified conjunctions of atoms in rule
heads. Formally, a tuple-generating dependency (TGD) is a first-order formula of the
form ∀~xΦ(~x)→ ∃~yΨ(~x, ~y), where Φ(~x) is a conjunction of atoms, called the body of
the TGD, and Ψ(~x, ~y) is a conjunction of atoms, called the head of the TGD. Consider,
for example, the TGDs

∀x, y AuthorOf(x, y) ∧ Novel(y)→Writer(x), (6.3)
∀yNovel(y)→ ∃xAuthorOf(x, y) ∧Writer(x). (6.4)
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The first one states that anyone who authors a novel is a writer. The second one asserts
that all novels are authored by a writer. Note that TGDs can express the well-known
inclusion dependencies and join dependencies from database theory. A Datalog± program
(or ontology) Σ is a finite set of negative constraints and tuple generating dependencies.
A Datalog± program is positive if it consists of only TGDs, i.e., does not contain any
NCs.

Semantics. In essence, Datalog± languages are only syntactic fragments of first-order
logic, which also employ the standard name assumption, as in databases. Thus, a
first-order interpretation I is a model of an ontology Σ in the classical sense, i.e., if
I |= α for all α ∈ Σ. Given a database D defined over known constants and an ontology
Σ, we write mods(Σ,D) to represent the set of models of Σ that extend D, which is
formally defined as {I | I |= D, I |= Σ}. As a consequence, a database D is consistent
w.r.t. a Σ if mods(Σ,D) is non-empty.

Overview of the Datalog± Family. As we will discuss later, the entailment problem
in Datalog± ontologies is undecidable (Beeri and Vardi 1981), which motivated syntactic
restrictions on Datalog± ontologies (Baget, Mugnier, Rudolph, and Thomazo 2011; Calì,
Gottlob, and Kifer 2013; Calì, Gottlob, and Lukasiewicz 2012; Fagin, Kolaitis, Miller,
and Popa 2005; Krötzsch and Rudolph 2011).

There are a plethora of classes of TGDs; here, we only recall some basic classes.
The most important (syntactic) restrictions on TGDs studied in the literature are
guardedness (Calì, Gottlob, and Kifer 2013), stickiness (Calì, Gottlob, and Pieris
2012) and acyclicity, along with their “weak” counterparts, weak guardedness (Calì,
Gottlob, and Kifer 2013), weak stickiness (Calì, Gottlob, and Pieris 2012), and weak
acyclicity (Fagin, Kolaitis, et al. 2005), respectively.

A TGD is guarded, if there exists a body atom that contains (or “guards”) all body
variables. The class of guarded TGDs, denoted G, is defined as the family of all possible
sets of guarded TGDs. A key subclass of guarded TGDs are the linear TGDs with just
one body atom, which is automatically the guard. The class of linear TGDs is denoted
by L. Weakly guarded TGDs extend guarded TGDs by requiring only the body variables
that are considered “harmful” to appear in the guard (see (Calì, Gottlob, and Kifer
2013) for full details). The associated class of TGDs is denoted WG. It is easy to verify
that L ⊂ G ⊂WG.

Stickiness is inherently different from guardedness, and its central property can be
described as follows: variables that appear more than once in a body (i.e., join variables)
must always be propagated (or “stuck”) to the inferred atoms. A TGD that enjoys this
property is called sticky, and the class of sticky TGDs is denoted by S. Weak stickiness
generalizes stickiness by considering only “harmful” variables, and defines the class WS
of weakly sticky TGDs. Observe that S ⊂WS.

A set of TGDs is acyclic and belongs to the class A if its predicate graph is acyclic.
Equivalently, an acyclic set of TGDs can be seen as a non-recursive set of TGDs. A set
of TGDs is weakly acyclic, if its dependency graph enjoys a certain acyclicity condition,
which guarantees the existence of a finite canonical model; the associated class is denoted
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WA. Clearly, A ⊂ WA. Interestingly, it also holds that WA ⊂ WS (Calì, Gottlob, and
Pieris 2012).

Another key fragment of TGDs which deserves our attention are full TGDs, i.e.,
TGDs without existentially quantified variables. The corresponding class is denoted
by F. Restricting full TGDs to satisfy linearity, guardedness, stickiness, or acyclicity
yields the classes LF, GF, SF, and AF, respectively. It is known that F ⊂ WA (Fagin,
Kolaitis, et al. 2005) and F ⊂WG (Calì, Gottlob, and Kifer 2013).

Other classes of TGDs, which are not central to our analysis include tame (T); frontier-
guarded (FG), weakly frontier-guarded (WFG); sticky-join (SJ); weakly sticky-join (WSJ);
jointly acyclic (JA); frontier-one (F1); jointly guarded (JG); glut guarded (GG); glut
frontier guarded (GFG). The inclusion relationships between these classes relative to
their expressiveness are given as follows.

F1 ⊂ FG, WG ⊂WFG ⊂ GFG, WG ⊂ JG ⊂ GG,
WA ⊂ JA ⊂ GFG, JA ⊂ GG, WS ⊂WSJ,

S ⊂ SJ, L ⊂ SJ ⊂WSJ, S ⊂ T,G ⊂ T.

For details on these classes, we refer to the relevant literature (Baget et al. 2011; Calì,
Gottlob, and Pieris 2012; Gottlob, Manna, and Pieris 2013, 2014; Gottlob, Rudolph, and
Simkus 2014; Krötzsch and Rudolph 2011).

Notation. We usually omit the universal quantifiers in TGDs and NCs, and for clarity
we consider single-atom-head TGDs; however, our results can be easily extended to TGDs
with conjunctions of atoms in the head (except under the bounded-arity assumption).
Following the common convention, we will assume that NCs are part of all Datalog±

languages. When we focus only on positive programs, we make this explicit by annotating
the respective language with “+”; for example, G+ denotes the class of guarded programs
which do not contain any negative constraints.

Systems and Applications. RDFox (Nenov, Piro, Motik, Horrocks, Wu, and Banerjee
2015) is a highly scalable Datalog engine. Note that many of the Datalog± languages
can be encoded into a (possibly large) Datalog program. Linear, guarded, and sticky-
join languages of Datalog± are also supported by the Nyaya knowledge management
system (De Virgilio, Orsi, Tanca, and Torlone 2011). Traditionally, Datalog has been
used as a query language for databases. The most prominent application of Datalog±

languages are in the context of ontology-mediated query answering which we will discuss
later.

6.1.2 Description Logics
Description Logics (DLs) is a large family of logical formalisms that aim to combine
expressivity and efficient reasoning (Baader, Calvanese, et al. 2007). There are many DLs
proposed in the literature, ranging from the inexpressive EL (Baader, Brandt, and Lutz
2005) and DL-Lite (Artale, Calvanese, Kontchakov, and Zakharyaschev 2009), over the
prototypical expressive ALC (Schmidt-Schauß and Smolka 1991), to the very expressive
SROIQ (Horrocks, Kutz, and Sattler 2006). We provide an overview of these languages.
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Table 6.1: Syntax and semantics of DL concept and role constructors, TBox axioms, and
ABox assertions. The (dual) constructors bottom (⊥), disjunction (t), value
restriction (∀), and at-least restrictions (≥) are omitted from the table. As
usual, we use A,B to denote concept names and C, D to denote (complex)
concepts.

Name Syntax Semantics

concept name A AI ⊆ ∆I

role name r rI ⊆ ∆I ×∆I

individual name a aI ∈ ∆I Names

top > ∆I

negation ¬C ∆I \ CI

conjunction C uD CI ∩DI

existential restr. ∃r.C {d ∈ ∆I | ∃ e ∈ CI : (d, e) ∈ rI}
nominal {a} {aI}
at-most restr. ≤n r.C {d ∈ ∆I | ]{e ∈ CI | (d, e) ∈ rI} ≤ n} Concepts

inverse role r− {(e, d) | (d, e) ∈ rI} Roles

GCI C v D CI ⊆ DI

role inclusion r v s rI ⊆ sI

transitivity axiom trans(r) rI = (rI)+ TBox axioms

concept assertion C(a) aI ∈ CI

role assertion r(a, b) (aI , bI) ∈ rI ABox assertions

Vocabulary. In DLs, a domain of interest is described via a vocabulary consisting of
three countably infinite, pairwise disjoint sets of symbols: the set NC of concept names,
to capture classes of objects, and the set NR of role names, to capture binary relations
between objects, the set NI of individual names to refer to specific individual objects. A
DL vocabulary can therefore be seen as a restricted first-order logic vocabulary containing
only unary predicates (concept names), binary predicates (role names), and constants
(individual names).

Concept Language. The basic building blocks of the DL syntax are concepts that
represent sets of objects (e.g., Human), roles relating objects to objects via binary
relations (e.g., hasParent), and individuals representing concrete objects (e.g. alice).
DL concepts are built inductively from concept and role names, using the concept
constructors given in Table 6.1. The expressiveness of the resulting DL depends on the
concept constructors that are allowed in the language and on other syntactic restrictions
being posed.

Knowledge Base. These concepts are then used to form the axioms and assertions of
the respective language, which are in the form of general concept inclusions (GCIs), role
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inclusions, transitivity axioms, concept assertions, or role assertions as given in Table 6.1.
A TBox axiom is either a GCI, or a role inclusion, or a transitivity axiom. An ABox
axiom, or assertion is either a concept assertion, or a role assertion. For example, the
NC (6.1) and NC (6.2) can be encoded in DLs in terms of the GCIs

Writer v ¬Novel and ParentOf v ¬ParentOf-,

respectively. Similarly, the TGD (6.3) and TGD (6.4) can also be represented as GCIs:

∃AuthorOf u Novel vWriter and Novel v ∃AuthorOf-.Writer.

The following self-explaining facts

Writer(balzac) and AuthorOf(hamsun, hunger).

are examples of concept and role assertions, respectively. Note that traditionally roles
are written in lowercase letters in DLs; here, we do not follow this convention for the
sake of consistency with Datalog± notation.

Finally, a TBox, or an ontology, is a finite set of axioms, an ABox is a finite set of
assertions. Then, a knowledge base is a pair K = (T ,A), where T is a TBox, and A is
an ABox.

Semantics. The semantics of DLs is based on first-order interpretations I = (∆I , ·I),
where every concept name A is mapped to a set AI ⊆ ∆I , and every role name r to
a binary relation rI ⊆ ∆I ×∆I . This interpretation function is extended to arbitrary
concepts and axioms as given in the right-most column of Table 6.1. Dual concept
constructors such as bottom (⊥), disjunction (t), universal restriction (∀), and at-least
restriction (≥) can be simulated by the given ones and thus are omitted from the table.
Clearly, the semantics can equivalently be given by a translation to first-order logic
(with equality) as in (Borgida 1996). We prefer to define the semantics directly as
the translation to first-order logic becomes somehow more intricate due to the number
restrictions.

We define an interpretation I to be a model of a TBox T , denoted I |= T , if it satisfies
all the axioms in T . Similarly, I is a model of an ABox A, denoted I |= A, if it satisfies
all the assertions in A. Finally, I is a model of a KB K = (T ,A), denoted I |= K, if
I |= T and I |= A.

Standard Reasoning Problems. Classical reasoning tasks in DLs are ontology consis-
tency, i.e., checking whether the ontology is non-contradictory; concept satisfiability, i.e.,
checking whether a given concept is non-contradictory in the ontology; subsumption, i.e.,
checking whether a specific concept is included in a more general one; instance checking,
i.e., checking whether a new assertion follows from the ontology. We refer the reader
to the relevant literature for the details (Baader, Calvanese, et al. 2007). Our concern
is mostly on ontology-mediated query answering, which will be introduced in the next
section. Besides, it is well-known that most of these classical reasoning tasks can be
reduced to ontology-mediated query answering.
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Overview of the DL Family. We are concerned with a variety of different DLs that
are all well-known from the literature. For instance, the basic DL ALC allows for GCIs
as TBox axioms, and the concept language of ALC allows only for the constructors top,
bottom, negation, conjunction, disjunction, existential restrictions, and value restrictions.
The DL S extends ALC with transitivity axioms. Traditionally, DLs are named relative
to the concept constructors and the types of axioms allowed in the language. For instance,
the letters H, I, O, and Q denote role inclusions, inverse roles, nominals, and (qualified)
number restrictions, respectively. Depending on what is allowed in the language, we
obtain a variety of DLs, such as the very expressive DL SHOIQ, which allows all the
constructors given in Table 6.1 (while restricting the interaction of number restrictions
and transitive roles). For further details on expressive DLs, we refer to (Tobies 2001).

A special emphasis is put on the so-called light-weight DLs in the literature. In
particular, the inexpressive DLs based on EL (Baader, Brandt, and Lutz 2005) and
DL-Lite (Artale, Calvanese, et al. 2009) are very widely studied due to their nice
computational properties. EL is a sub-logic of ALC which only allows the constructors
top, conjunction, and existential restrictions. The DL-Lite family also does not allow for
value restrictions, while inverse roles are allowed and existential restrictions can only be
of the form ∃r.> and are thus abbreviated as ∃r. Moreover, the core dialect of DL-Lite
allows only for concept inclusions of the form B1 v B2 and B1 v ¬B2, where B1 and
B2 are either concept names or of the form ∃r. One famous dialect of this family is
DL-LiteR, which additionally allows for a restricted type of role inclusions. For further
details and other dialects of the DL-Lite family, we refer the reader to (Artale, Calvanese,
et al. 2009).

Systems and Applications. Applications of DLs range from standardization efforts
like the Web Ontology Language OWL 2 (Group 2012; Horrocks, Patel-Schneider, and
Harmelen 2003) to the formalization of many kinds of domain knowledge. DLs have been
successfully employed for creating large knowledge bases, representing real application
domains. For instance, they are the logical formalism underlying prominent bio-medical
ontologies such as the large biomedical ontology Snomed CT1, or the knowledge base
Galen2, or the Gene Ontology (Ashburner et al. 2000).

Efficient algorithms are implemented for expressive DLs, which resulted in a number
of reasoners such as HermiT (Glimm, Horrocks, Motik, Stoilos, and Wang 2014), Kon-
clude (Steigmiller, Liebig, and Glimm 2014), FaCT++ (Tsarkov and Horrocks 2006), and
Pellet (Sirin, Parsia, Grau, Kalyanpur, and Katz 2007). These reasoners support most
of the standard reasoning tasks, while Pellet also partially supports OMQA. The more
recent reasoner PAGOdA (Zhou, Nenov, Grau, and Horrocks 2014) is tailored for OMQA.
Special purpose systems for reasoning with lightweight DLs have also been developed.
ELK (Kazakov, Krötzsch, and Simančı́k 2012) is a reasoner specifically tailored for the
DL EL and its known extensions, which also focuses on classical reasoning tasks. On the
other hand, the DL-Lite reasoner Mastro fully supports OMQA (Calvanese, De Giacomo,
Lembo, Lenzerini, Poggi, Rodriguez-Muro, Rosati, Ruzzi, and Savo 2011).

1http://www.ihtsdo.org/snomed-ct/
2https://bioportal.bioontology.org/ontologies/GALEN
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Table 6.2: A database that consists of the unary relations Writer, Novel and the binary
relation AuthorOf.

Writer

balzac
dostoyevski
kafka

AuthorOf

hamsun hunger
dostoyevski gambler
kafka trial

Novel

goriot
hunger
trial

6.2 Ontology-Mediated Query Answering
Ontology-mediated query answering is a popular paradigm for querying incomplete
data sources in a more adequate manner (Bienvenu, Cate, et al. 2014). Formally, an
ontology-mediated query (OMQ) is a pair (Q, T ), where Q is a Boolean query and T is
an ontology.

Given a database D and an OMQ (Q, T ), we say that D entails the OMQ (Q, T ),
denoted D |= (Q, T ), if for all models I |= (T ,D) it holds that I |= Q. Then, ontology-
mediated query answering (OMQA) is the task of deciding whether D |= (Q, T ) for a
given database D and an OMQ (Q, T ). Note that we use the term query answering in a
rather loose sense to refer to the Boolean query evaluation problem.

In this work, we mostly restrict our attention to OMQs which contain unions of
conjunctive queries. Nevertheless, we sometimes also refer to instance queries, which is
mostly of interest in the context of DLs. Formally, an instance query is a unary atom
C(x) and instance query answering is to find all ABox individuals ai,1 ≤ i ≤ n, such
that C(ai) is entailed by the knowledge base. The corresponding decision problem is
typically defined on atomic queries, that is, unary, ground atoms. Given an atomic query,
instance checking, is to check whether the atom is entailed by the knowledge base.

Obviously, these definitions apply to DL ontologies as well as to Datalog± ontologies.
Note, however, that classical DLs consists of unary and binary predicates only. Therefore,
it is common to assume that the database is preprocessed and transformed into an ABox,
which intuitively represents an abstraction of the database over the vocabulary of the
ontology. We will therefore replace the database with an ABox in DLs.

We now briefly illustrate these notions on the simple database that consists of writers
(Writer) and novels (Novel) and the relation AuthorOf, as shown in Table 6.2.
Example 6.1 Let us consider the database Da given in Table 6.2. Observe that the
simple queries

Q1 := Writer(hamsun) and Q2 := ∃xWriter(x) ∧ AuthorOf(x, goriot),

are not satisfied by the database Da although they should evaluate to true from an
intuitive perspective. On the other side, under the Datalog± program Σa that consists
of the TGDs

∀x, y AuthorOf(x, y) ∧ Novel(y)→Writer(x), (6.3)
∀yNovel(y)→ ∃xAuthorOf(x, y) ∧Writer(x), (6.4)

both of these queries are satisfied: Da |= (Q1,Σa) holds due to the first rule and
Da |= (Q2,Σa) holds due to the second rule. The incomplete database is queried through
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Table 6.3: Complexity of ontology-mediated query answering in Datalog±.

Languages data fixed-program bounded-arity combined

L, LF, AF in AC0 NP NP PSpace
S, SF in AC0 NP NP Exp

A in AC0 NP NExp NExp
F, GF P NP NP Exp

G P NP Exp 2Exp
WS, WA P NP 2Exp 2Exp

WG Exp Exp Exp 2Exp

F1, FG P NP 2Exp 2Exp
WFG Exp Exp 2Exp 2Exp

JA P NP 2Exp 2Exp
JG Exp Exp Exp–2Exp 2Exp
JFG Exp Exp 2Exp 2Exp
GG Exp Exp 3Exp 3Exp
GFG Exp Exp 3Exp 3Exp

SJ in AC0 NP NP–Exp Exp
WSJ P NP 2Exp 2Exp

T P NP Exp 2Exp

the logical rules that encode commonsense knowledge, which in turn results in more
complete answers. ♦

A key paradigm in ontology-mediated query answering is the first-order rewritability
of queries, which we introduce next. Intuitively, FO-rewritability ensures that we can
rewrite an OMQ into a (possibly large) UCQ and this transformation is homomorphism
preserving over all finite structures (Rossman 2008).

Definition 6.2 (FO-rewritability) Let T be an ontology and Q a Boolean query.
Then, the OMQ (Q, T ) is FO-rewritable if there exists a Boolean UCQ QT such that, for
all databases D that are consistent w.r.t. T , we have D |= (Q, T ) if and only if D |= QT .
In this case, QT is called an FO-rewriting of (Q, T ). A language L is FO-rewritable if it
admits an FO-rewriting for any UCQ and theory in L. ♦

FO-rewritability is important since it implies a data-independent reduction from
OMQA to query evaluation in relational databases. In practical terms, this means that
the query can be rewritten into an SQL query to be evaluated in relational database
management systems. In theoretical terms, this puts OMQA in AC0 in data complexity
for all FO-rewritable languages. In what follows, we summarize the known complexity
results for OMQA in Datalog± and then in Description Logics.

6.2.1 Ontology-Mediated Query Answering in Datalog±

As before, we study the data, bounded-arity and combined complexity: Data complexity
is calculated based on the database; i.e., the program and the query are assumed to
be fixed (Vardi 1982), and the combined complexity is calculated by considering all
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Figure 6.1: Inclusion relationships and data complexity of ontology-mediated query
answering for Datalog± languages

components. In the bounded-arity complexity, we additionally assume that the arity of
the predicates is bound by some integer value. We additionally consider fixed-program
complexity in Datalog±, which is calculated in the size of the database and the query,
while the program remains fixed.

The complexity of ontology-mediated query answering in Datalog± is summarized
in Table 6.3, which is organized in five main blocks. Many of our results are of a generic
nature; thus, we prefer to focus on a representative set of languages (i.e., the first block
of languages) for ease of presentation. Note, however, that our results can be generalized
to other classes in a rather straight-forward manner.

Datalog± consists of Datalog variants; thus, the complexity of evaluating Datalog
queries is central to the results given in Table 6.3. It is known that evaluating plain
Datalog queries is in P in data complexity and Exp-complete in combined complex-
ity (Immerman 1986; Vardi 1982).

The complexity results given in the first block are from (Calì, Gottlob, and Kifer 2013;
Calì, Gottlob, and Lukasiewicz 2012; Calì, Gottlob, and Pieris 2012; Fagin, Kolaitis,
et al. 2005; Lukasiewicz, Martinez, Pieris, and Simari 2015). The inclusion relationships
between these classes, organized relative to their data complexity is depicted in Figure 6.1;
many of these classes such as L, A and S are FO-rewritable and thus OMQA is in AC0

for these classes. Notice that the class GF is already not FO-rewritable. GF is the least
expressive language in this block among the languages with P-complete data complexity.
The only class that is intractable in data complexity is WG, for which OMQA is already
Exp-complete.

OMQA is already NP-hard for all classes in fixed-program complexity, which immedi-
ately follows from NP-hardness of conjunctive query evaluation in databases (Chandra
and Merlin 1977). Bounded-arity complexity results of Datalog± languages are closely
linked to those in DLs (which allow only unary and binary predicates). The complexity
of OMQA is either the same or higher in bounded-arity complexity compared to fixed-
program complexity. From a theoretical perspective, the class A is of interest, because it
has a nondeterministic bounded-arity complexity, which leads to a different behavior, in
general. In the last column, the combined complexity results are given, which are higher
than the bounded-arity complexity in all cases, except for the classes A, WS and WA.
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Table 6.4: Complexity of ontology-mediated (instance) query answering in different DLs.
All results without ≤ and ≥ denote completeness results. We note that no
elementary upper bound is known for ontology-mediated query answering in
SHOIQ.

Description Logic
Instance Queries Unions of Conjunctive Queries

data combined data combined

DL-Lite, DL-LiteR ≤ AC0 NLogSpace ≤ AC0 NP
EL, ELH P P P NP
ELI, Horn-SHOIQ P Exp P Exp
ALC, ALCHQ coNP Exp coNP Exp
ALCI, SH, SHIQ coNP Exp coNP 2Exp
SHOIQ coNP coNExp ≥ coNP ≥ coN2exp

We conclude by noting the sources for the complexity results in the other blocks.
Results given in the second block of Table 6.3 are mostly from (Baget et al. 2011; Gottlob,
Rudolph, and Simkus 2014); the third block from (Gottlob, Rudolph, and Simkus 2014;
Krötzsch and Rudolph 2011); the fourth block from (Calì, Gottlob, and Pieris 2012;
Gottlob, Manna, and Pieris 2014) and tame class is investigated in (Gottlob, Manna,
and Pieris 2013, 2014)

6.2.2 Ontology-Mediated Query Answering in Description Logics

The relative expressivity of DL languages depends on various factors, as explained
before. This results in a rich map for the computational complexity for OMQA; see
especially (Bienvenu and Ortiz 2015) for a tutorial on OMQA based on DLs. Table 6.4
summarizes the results for ontology-mediated instance query answering and ontology-
mediated query answering. We will refer these problems simply as query answering and
instance query answering, respectively.

To start with, we note that instance query answering can be reduced to standard
reasoning tasks such as consistency for languages that include conjunction and negation
as concept constructor (Baader, Calvanese, et al. 2007). As a consequence, most of
the results related to instance query answering follow from the complexity of standard
reasoning tasks, which we use in the sequel.

The light-weight DLs DL-Lite and DL-LiteR are FO-rewritable, that is, query answer-
ing for these languages is in AC0 in data complexity. As for the combined complexity,
standard reasoning in these languages is shown to be NLogSpace-complete, which
coincides with the complexity of instance query answering. In contrast, query answering
is NP-complete in combined complexity. For detailed insights, see (Artale, Calvanese,
et al. 2009; Calvanese, De Giacomo, Lembo, Lenzerini, and Riccardo Rosati 2007) and
the references therein.

The data tractability results for EL, ELH and ELI follow from (Krisnadhi and Lutz
2007; Krötzsch and Rudolph 2007; Ricardo Rosati 2007). In combined complexity,
the DL ELI and the DLs EL and ELH behave rather differently for query answering.
Instance query answering for EL and ELH is in polynomial time, while this problem is
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Exp-complete for ELI (Baader, Brandt, and Lutz 2005). Furthermore, query answering
for EL and ELH is NP-complete, while it is Exp-complete for ELI. A closely related
logic is Horn-SHIQ, for which query answering is shown to be P-complete in data and
Exp-complete in combined complexity (Eiter, Gottlob, Ortiz, and Šimkus 2008); this
result is then extended to Horn-SHOIQ (Ortiz, Rudolph, and Šimkus 2011).

All the remaining logics from Table 6.4 are beyond the so-called Horn fragment;
among these, the least expressive one is the DL ALC, for which (instance) query
answering is coNP-complete in data complexity as shown in (Calvanese, De Giacomo,
Lembo, Lenzerini, and Riccardo Rosati 2013) and the upper bound holds for logics
up to SHIQ (Glimm, Horrocks, Lutz, and Sattler 2008). Standard reasoning tasks in
ALC are already Exp-complete in combined complexity (Schild 1991). This explains
the lower bounds for query answering in ALC and upper bounds hold even for SHQ in
combined complexity (Lutz 2008). For ALCI, which extends ALC with inverse roles,
query answering is already 2Exp-hard as shown in (Lutz 2008) and this is a matching
lower bound since query answering in SHIQ is in 2Exp (Glimm, Horrocks, Lutz, et al.
2008)

Standard reasoning in SHOIQ is coNP complete in the data and coNExp-complete
in combined complexity, which transfer to instance query answering. Unfortunately only
a coN2exp-hardness is known for query answering in SHOIQ in combined complex-
ity (Glimm, Kazakov, and Lutz 2011).
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Probabilistic Data Access with Datalog±

Our proposal is to incorporate commonsense knowledge in probabilistic databases to
achieve better means of querying of incomplete sources. This is inherently connected
to giving up the completeness assumptions of standard probabilistic databases, i.e., the
CWA and the probabilistic independence of facts. For example, encoding the knowledge
that two persons who are friends know each other in the form of ontological knowledge
essentially induces dependencies on probabilistic facts and also allows us to deduce facts
that are not in the database. In essence, we are talking about probabilistic knowledge
bases, which in addition to a probabilistic database contain a logical theory.

At this point, it is important to note that the independence assumption of probabilistic
databases is important for efficiency reasons. In other words, one can allow dependencies
directly on the data, but this could then easily result in the loss of efficiency for a large
class of queries. Our goal is, on the one hand, to relax these assumptions by introducing
dependencies on a first-order level, and on the other hand, possibly leaving a large
amount of data still probabilistically independent. Whenever possible, we will also quest
for lifting the data complexity dichotomy results of probabilistic databases to the case of
ontology-mediated queries.

From a broader perspective, extending tuple-independent probabilistic data mod-
els with logical rules is an old idea, aiming to induce correlations on a logical level, and
thus to relax the tuple independence, resulting in very powerful formalisms (Poole 1997).
As already pointed out in the general introduction, recent approaches are based on
MLNs (Gribkoff and Suciu 2016a) and are thus based on the closed-domain assumption.
Our results are based on well-known ontology languages, which allow fully fledged
first-order knowledge with a proper handling of anonymous individuals.

In this chapter, we extend the problems introduced in Part II to the case of ontology-
mediated queries based on Datalog± languages (Calì, Gottlob, and Kifer 2013; Calì,
Gottlob, and Lukasiewicz 2012; Calì, Gottlob, and Pieris 2012; Fagin, Kolaitis, et al.
2005; Lukasiewicz, Martinez, et al. 2015). Therefore, this chapter is organized in three
main sections in correspondence with chapters 3, 4 and 5, respectively.

First, we extend our results from Chapter 3 and study OMQ evaluation for PDBs.
We discuss how PDBs can benefit from an explicit encoding of ontological knowledge.
Afterwards, we study OMQ evaluation for OpenPDBs; thus extend our results from Chap-
ter 4. In the presence of ontological rules, both upper and lower probabilities of queries
become even more informative in OpenPDBs, enabling us to distinguish queries that
were indistinguishable before. Finally, we revisit the most probable database and most
probable hypothesis problems from Chapter 5 in the context of OMQs. We conclude
with an overview of the related work and the results.

119



Chapter 7 Probabilistic Data Access with Datalog±

7.1 Ontology-Mediated Queries for Probabilistic Databases

We study the problem of evaluating ontology-mediated queries for PDBs. In a nutshell,
we allow Datalog± programs on top of tuple-independent PDBs and are interested in
the probability of a given OMQ. The semantics extends the classical OMQA with the
possible worlds semantics.

Definition 7.1 (semantics) The probability of an OMQ (Q,Σ) relative to a probability
distribution P is

P(Q,Σ) =
∑

D|=(Q,Σ)
P(D),

where D ranges over all databases over σ. ♦

The major difference compared to PDBs is that this semantics defers the decision of
whether a world satisfies a query to an entailment test, which also includes a logical
theory.

Note that the Datalog± program can be inconsistent with some of the worlds D
induced by the PDB. The fact that a program contains an inconsistency makes standard
reasoning very problematic, as anything can be entailed from an inconsistent theory (“ex
falso quodlibet”) under the standard semantics. Consequently, one loses the ability of
distinguishing between queries. From a technical perspective, the inconsistency problem
immediately propagates to probabilistic extensions.

The common way of tackling this problem for probabilistic knowledge bases is to
restrict the probabilistic query evaluation to only consider consistent worlds by setting the
probabilities of inconsistent worlds to 0 and renormalizing the probability distribution
over the set of worlds accordingly. More formally, the query probabilities can be
normalized by defining

Pn(Q,Σ) := (P(Q,Σ)− γ)/(1− γ),

where γ is the probability of the inconsistent worlds given as

γ :=
∑

mods(Σ,D)=∅
P(D).

The normalization factor γ can therefore be computed once and then reused as a post-
processing step. Therefore, for simplicity, throughout this section, we assume that all
the worlds D induced by the PDB are consistent with the program, in which case we
also say that the PDB (or the probability distribution induced) is consistent with the
program.

Let us now illustrate the the effect of ontological rules in PDBs. Recall Example 6.1,
where we illustrated the effect of ontological rules in querying databases. Queries which
intuitively follow from the knowledge encoded in the database were not satisfied by the
given database (from Table 6.2). Still, it was possible to alleviate this problem using
ontological rules. We now adopt this example to PDBs and observe a similar effect.
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Table 7.1: A probabilistic database Pa which consists of the unary relations Writer, Novel
and the binary relation AuthorOf.

Writer P

balzac 0.8
dostoyevski 0.6
kafka 0.9

AuthorOf P

hamsun hunger 0.9
dostoyevski gambler 0.6
kafka trial 0.8

Novel P

goriot 0.7
hunger 0.4
trial 0.5

Example 7.2 Let us consider the PDB Pa given in Table 7.1. The queries

Q1 := Writer(hamsun) and Q2 := ∃xWriter(x) ∧ AuthorOf(x, goriot),

from Example 6.1 evaluate to the probability 0 on Pa. On the other side, under the
Datalog± program Σa that consists of the rules

∀x, y AuthorOf(x, y) ∧ Novel(y)→Writer(x),
∀yNovel(y)→ ∃xAuthorOf(x, y) ∧Writer(x),

there are worlds where both of these queries are satisfied. One such world is Da given in
Table 6.2, i.e., recall that Da |= (Q1,Σa) and Da |= (Q2,Σa). More precisely, we obtain
that P(Q1) = 0.63 since any world which contains both AuthorOf(hamsun, hunger) and
Novel(hunger), entails Writer(hamsun) and no other world does. Similarly, P(Q2) = 0.7
since Q2 is entailed from all and only those worlds where Novel(goriot) holds. ♦

Probabilistic query evaluation, as a decision problem, is defined as in Chapter 3 with
the only difference that it is now parametrized with ontology-mediated queries.

Definition 7.3 (probabilistic query evaluation) Given a PDB P , an OMQ (Q,Σ)
and a value p ∈ [0, 1), probabilistic query evaluation, denoted PQE, is to decide whether
PP(Q,Σ) > p holds. PQE is parametrized with the language of the ontology and the
query; we write PQE(Q,L) to define PQE on the class Q of queries and on the class of
ontologies restricted to the language L. ♦

We will deliberately use the terms probabilistic query evaluation and probabilistic
OMQ evaluation interchangeably if there is no danger of ambiguity. We now provide a
host of complexity results for probabilistic OMQ evaluation relative to different languages.

7.1.1 Complexity Results

We start our complexity analysis with a rather simple result that is of a generic nature.
Intuitively, given the complexity of OMQA in a Datalog± language, we obtain an
immediate upper and lower bound for the complexity of probabilistic OMQ evaluation
in that language.

Theorem 7.4 Let C denote the data (respectively, fixed-program, bounded-arity, com-
bined) complexity of ontology-mediated query answering for a Datalog± language L.
Then, PQE(UCQ,L) is C-hard and in PPC for PDBs in data (respectively, fixed-program,
bounded-arity, combined) complexity.
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Proof. Let (Q,Σ) be an OMQ, P be a PDB, and p ∈ [0, 1) be a threshold value. Consider
a nondeterministic Turing machine with a C oracle. Similar to the proof of Theorem 3.22,
each branch corresponds to a world D and is marked as either accepting or rejecting
depending on the outcome of the logical entailment check D |= (Q,Σ). This logical
entailment test is in C for the language L, by our assumption. Thus, it can be performed
using the oracle. Then, by this construction, the nondeterministic Turing machine
answers yes if and only if PP(Q,Σ) > p, which proves membership to PPC in the
respective complexity.

To show C-hardness, we reduce from ontology-mediated query answering, that is,
given a database D and an OMQ (Q,Σ), where Q is a UCQ and Σ is a program over L,
decide whether D |= (Q,Σ). We define a PDB P that contains all the atoms from the
database D with probability 1. Then, it is easy to see that D |= (Q,Σ) if and only if
PP(Q) ≥ 1.

We analyze the consequences of Theorem 7.4. Observe that, for all deterministic
complexity classes C from Table 6.3 that contain PP, it holds that PPC = C and thus
Theorem 7.4 directly implies tight complexity bounds. For instance, the data complexity
of probabilistic OMQ evaluation for WG is Exp-complete as a simple consequence of
Theorem 7.4.

Beyond this generic result, we are interested in lifting the data complexity dichotomy
for unions of conjunctive queries to OMQs. Our next result establishes the connection
between the respective problems.

Lemma 7.5 Let (Q,Σ) be an OMQ, where Q is a UCQ, and Σ is a program, and QΣ
be an FO-rewriting of (Q,Σ). Then, for any PDB P, it holds that PP(Q,Σ) = PP(QΣ).

Proof. For any PDB P, it holds that

PP(Q,Σ) (1)=
∑

D|=(Q,Σ)
PP(D) (2)=

∑
D|=QΣ

PP(D) (3)= PP(QΣ),

where (1) follows from Definition 7.1; (2) follows from QΣ being the FO-rewriting of Q
w.r.t. Σ (see Definition 6.2); and (3) is the definition of the semantics of QΣ in PDBs.

With the help of Lemma 7.5, it becomes possible to lift the data complexity dichotomy
in probabilistic databases to all Datalog± languages that are FO-rewritable.

Theorem 7.6 (dichotomy) For all FO-rewritable Datalog± languages L, the following
holds. PQE(UCQ,L) is either in P or it is PP-complete for PDBs in data complexity
under polynomial-time Turing reductions.

Proof. Let (Q,Σ) be an OMQ, where Q is a UCQ, and Datalog± Σ over an FO-rewritable
language, and QΣ be an FO-rewriting of (Q,Σ). By Lemma 7.5, any polynomial-time
algorithm that can evaluate QΣ over PDBs also yields the probability of the OMQ (Q,Σ)
relative to an PDB, and vice versa. This implies that the OMQ (Q,Σ) is safe if QΣ is
safe.

Dually, by the same result the probabilities of all rewritings of Q coincide, and hence
the same algorithm can be used for all of them. Thus, if (Q,Σ) is unsafe, then QΣ must
also be unsafe for PDBs. By the dichotomy of (Dalvi and Suciu 2012) and Lemma 7.5,
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this implies that evaluating the probability of both the UCQ QΣ and the OMQ (Q,Σ)
must be PP-hard under polynomial-time Turing reductions.

Obviously, ontological rules introduce dependencies. Therefore, a safe query can
become unsafe for OMQs. However, the opposite effect is also possible, i.e., an unsafe
query may become safe under ontological rules. We illustrate both of these effects on a
synthetic example.

Example 7.7 Consider the conjunctive query ∃x, y C(x) ∧ D(x, y), which is safe for
PDBs. It becomes unsafe under the TGD R(x, y),T(y)→ D(x, y), since then it rewrites
to the query

(∃x, y C(x) ∧ D(x, y)) ∨ (∃x, y C(x) ∧ R(x, y) ∧ T(y)),

which is unsafe. Conversely, the conjunctive query ∃x, y C(x) ∧ R(x, y) ∧ D(y) is not
safe for PDBs, but becomes safe under the TGD R(x, y) → D(y), as it rewrites to
∃x, y C(x) ∧ R(x, y). Note that these are very simple TGDs, which are full, acyclic,
guarded, and sticky. ♦

Recall that the PP-hardness of probabilistic UCQ evaluation in data complexity holds
under polynomial-time Turing reductions (see Chapter 3). This transfers to probabilistic
OMQ evaluation relative to FO-rewritable languages. It is open whether probabilistic
OMQ evaluation is PP-hard for FO-rewritable languages under polynomial time many-
one reductions. On the other hand, for guarded, full programs, we are able to show that
PP-hardness applies under such reductions.

Theorem 7.8 PQE(UCQ,GF) is PP-hard for PDBs in data complexity.

Proof. We reduce the following problem (Wagner 1986): decide the validity of the
formula Φ = Cc x1, . . . , xn ϕ, where ϕ = ϕ1 ∧ · · · ∧ ϕk is a propositional formula in CNF,
over the variables x1, . . . , xn. This amounts to checking whether there are at least c
assignments to x1, . . . , xn that satisfy ϕ. We assume without loss of generality that ϕ
contains all clauses of the form xj ∨ ¬xj , 1 ≤ j ≤ n; clearly, this does not affect the
existence or number of satisfying assignments for ϕ. For the reduction, we use a PDB PΦ
and a program ΣΦ. We first define the PDB PΦ as follows.

– For each variable xj , 1 ≤ j ≤ n, PΦ contains the probabilistic atoms 〈L(xj , 0) : 0.5〉
and 〈L(xj , 1) : 0.5〉, where we view xj as a constant. These atoms represent the
assignments that map xj to false and true, respectively.

– For each propositional literal (¬)x` occurring in a clause ϕj , 1 ≤ j ≤ k, PΦ contains
the atom D(x`, j, i) with probability 1, where i = 1, if the literal is positive, and
i = 0, if the literal is negative.

– PΦ contains all the atoms T(0), S(0, 1),S(1, 2), . . . , S(k − 1, k), K(k), each with
probability 1.

We now describe the program ΣΦ. To detect when a clause is satisfied, we use the
additional unary predicate E and the TGD

L(x, i),D(y, j, i)→ E(j),
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which is a universally quantified formula over the variables x, y, i and j. We still need to
ensure that in each world, exactly one of L(x, 0) and L(x, 1) holds. The clauses xj ∨ ¬xj

take care of the lower bound; for the variables x1, . . . , xn, we use the TGDs

L(x, 0), L(x, 1)→ B and B,D(y, j, i)→ E(j).

These TGDs ensure that any inconsistent assignment for x1, . . . , xn, i.e., one where some
xj is both true and false, is automatically marked as satisfying the formula, even if the
clause xj ∨¬xj is actually not satisfied. Since there are exactly 4n− 3n such assignments
(where both L(xj , 0) and L(xj , 1) hold for at least one xj), we can add this number to
the probability threshold that we will use in the end. Note that the probability of each
individual assignment is 0.25n since there are 2n relevant L-atoms (the other atoms are
fixed to 0 or 1 and do not contribute here).

It remains to detect whether all clauses of ϕ are satisfied by a consistent assignment,
which we do by the means of the TGDs

T(i), S(i, j),E(j)→ T(j) and T(i),K(i)→ Z(i).

Lastly, we define the simple UCQ Q := ∃i Z(i). Then, we prove the following claim.

Claim. PPΦ(Q,ΣΦ) ≥ 0.25n(4n − 3n + c) holds if and only if Φ is valid.

Suppose that Φ is valid, i.e., there are at least c different assignments to x1, . . . , xn

that satisfy ϕ. Then, for each such assignment τ we can define a world Dτ such that it
contains all atoms from PΦ that occur with probability 1. Moreover, Dτ contains an atom
L(xj , 1) if xj is mapped to true in µ, and an atom L(xj , 0) if xj is mapped to false in µ. It
is easy to see that each such database Dτ is induced by the PDB PΦ and that Dtau |= Q
by our constructions. In particular, this implies that Dτ |= QΦ for c worlds. Recall also
that (4n − 3n) worlds, capturing the inconsistent valuations, satisfy the query. As every
world has the probability (0.5)2n, we conclude that PPΦ(QΦ) ≥ 0.52n(4n − 3n + c).

Conversely, if the query probability exceeds the threshold value, then some worlds
in PΦ with non-zero probability entail (Q,ΣΦ), i.e., all clauses of ϕ are satisfied. Each
of the non-zero worlds in PDBs represents a unique combination of atoms of the form
L(x, 0) and L(x, 1). The worlds where for at least one variable xj , 1 ≤ j ≤ n, neither
L(xj , 0) nor L(xj , 1) holds do not satisfy ϕ, and hence do not entail (Q,ΣΦ) and are not
counted. Excluding (4n − 3n) worlds, capturing the inconsistent valuations all other
worlds represent the actual assignments for x1, . . . , xn, and hence we know that at least
c of those satisfy ϕ. Thus, we conclude that Φ is valid.

Observe that all TGDs used in the reduction are full and guarded. Moreover, only the
PDB and the probability threshold depend on the input formula (which is allowed in
data complexity). Hence, the reduction shows PP-hardness of PQE(GF,UCQ) for PDBs
in data complexity.

As pointed out before, GF is one of the least expressive Datalog± languages with
polynomial time data complexity for OMQA. Thus, this result already implies PP-
hardness for the classes G, F, WS and WA. This completes all results regarding the data
complexity.

All of the upper bounds for the fixed-program complexity are a consequence of
Theorem 7.4. For instance, probabilistic OMQ evaluation for WG is in PPNP since
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OMQA for WA is NP-complete. It only remains to show PPNP-hardness for these
languages, which already follows from Theorem 3.23. Recall that probabilistic query
evaluation for unions of conjunctive queries is already PPNP-hard in combined complexity
by this result. Since the query is not fixed in fixed-program complexity, this hardness also
applies to OMQs in fixed-program complexity (even if the program is empty) and clearly
also to the bounded-arity complexity. This completes the picture for fixed-program
complexity results.

Analogous arguments yield tight complexity bounds also for the bounded-arity and com-
bined complexity with the only exception being the class A. More generally, Theorem 7.4
does not yield tight complexity bounds for languages where OMQA is NExp-complete
as it is not known whether PPNExp ⊆ NExp. On the other hand, we observe that the
non-determinism in the oracle NExp calls are used in a restricted fashion, which allows
us to solve the problem in NExp, as we show next.

Theorem 7.9 PQE(UCQ,L) is NExp-complete for PDBs in data (respectively, bounded-
arity, fixed-program, combined) complexity if ontology-mediated query answering in L is
NExp-complete in data (respectively, bounded-arity, fixed-program, combined) complexity.

Proof. Let (Q,Σ) be an OMQ, P a PDB and p a threshold value. Consider an exponential
time nondeterministic Turing machine which enumerates all worlds D (of which there
are exponentially many) and adds up their probability PP(D) if the test D |= (Q,Σ)
is successful. Observe that this means exponentially many NExp tests. Then, the
nondeterministic Turing machine answers yes if and only if PP(Q,Σ) > p.

By this result, we conclude our complexity analysis. We give an overview of the results
in relation to the results obtained in Chapter 3.

7.1.2 Overview of the Results

The complexity results for probabilistic OMQ evaluation is summarized in Table 7.2.
We lifted the data complexity dichotomy in PDBs for unions of conjunctive queries to
OMQs relative to FO-rewritable languages: by this result an OMQ can be evaluated
either in P or it is PP-hard. We note that a similar result was obtained earlier for the
DL DL-Lite in (Jung and Lutz 2012).

All the results except the dichotomy result are obtained under standard many-one
reductions. Interestingly, for classes where OMQA is P-hard in data complexity, we are
able to show PP-hardness under polynomial time many-one reductions. However, it is
open whether the data complexity dichotomy can be extended to these languages. Note
that these languages are Datalog-rewritable, meaning that a data complexity dichotomy
in these languages is essentially related to a similar result in Datalog.

For the bounded-arity, fixed-program and combined complexity, we observe that
the complexity of OMQA is dominating the complexity of probabilistic OMQ evalua-
tion in all cases except for the PPNP-completeness results, for which hardness follows
from Theorem 3.23. This concludes our analysis for ontology-mediated queries for PDBs.
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Table 7.2: Complexity of probabilistic OMQ evaluation for PDBs. All first-order
rewritable languages admit a data complexity dichotomy between P and
PP under poynomial time Turing reductions.

Datalog±

Languages data fixed-program bounded-arity combined

L, LF, AF P vs PP
[Theorem 7.6]

PPNP

[Theorem 3.23, 7.4]
PPNP

[Theorem 3.23, 7.4]
PSpace
[Theorem 7.4]

S, SF P vs PP
[Theorem 7.6]

PPNP

[Theorem 3.23, 7.4]
PPNP

[Theorem 3.23, 7.4]
Exp
[Theorem 7.4]

A P vs PP
[Theorem 7.6]

PPNP

[Theorem 3.23, 7.4]
NExp
[Theorem 7.9]

NExp
[Theorem 7.9]

GF, F PP
[Theorem 7.4, 7.8,]

PPNP

[Theorem 3.23, 7.4]
PPNP

[Theorem 3.23]
Exp
[Theorem 7.4]

G PP
[Theorem 7.4, 7.8]

PPNP

[Theorem 3.23, 7.4]
Exp
[Theorem 7.4]

2Exp
[Theorem 7.4]

WS, WA PP
[Theorem 7.4, 7.8]

PPNP

[Theorem 3.23]
2Exp
[Theorem 7.4]

2Exp
[Theorem 7.4]

WG Exp
[Theorem 7.4]

Exp
[Theorem 7.4]

Exp
[Theorem 7.4]

2Exp
[Theorem 7.4]

7.2 Ontology-Mediated Queries for Open-World Probabilistic
Databases

We have introduced OpenPDBs, which generalize PDBs to be able to deal with incom-
pleteness. More precisely, in OpenPDBs the probabilities of facts that are not in the
database, called open atoms, are relaxed to a default probability interval, which is very
different from the CWA of PDBs, which requires the probabilities of such facts to be
zero. In the resulting framework of OpenPDBs, query probabilities are given in terms of
upper and lower probability values, which is more in line with an incomplete view of the
world.

While forming a natural and flexible basis for querying incomplete data sources,
OpenPDBs are limited in the following sense: All open atoms can take on probability
values from a single fixed interval [0, λ], which results in the same upper and lower
probabilities for many queries. We illustrate this by extending Example 7.2.

Example 7.10 Let us consider the OpenPDB Ga = (Pa, 0.5) where the PDB Pa is
given in Table 7.1. In OpenPDBs, Writer(hamsun) and Writer(goriot) evaluate to the
same lower and upper probabilities (0 and 0.5, respectively), since both atoms are open.
Intuition, however, tells us that hamsun is more likely to be a writer, as we already know
from the given PDB (with high confidence) that hamsun has authored a novel. On the
other hand, Writer(goriot) is unlikely to hold, since we know (with high confidence) that
goriot is a novel. Essentially, we lack the common-sense knowledge that

(i) anyone who has authored a novel is a writer, and

(ii) writers and novels are disjoint entities,
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which helps us to distinguish such queries. Observe that (i) is a positive axiom and
would lead to higher probabilities, whereas (ii) is a negative (constraining) axiom and
would entail lower probabilities for some queries. More precisely, we are talking about
the rules

∀x, y AuthorOf(x, y) ∧ Novel(y)→Writer(x),
∀xWriter(x) ∧ Novel(x)→ ⊥,

where the first axiom is the TGD (6.3) and the second axiom the NC (6.1). ♦

In essence, many atoms from the open-world evaluate to the same default probability
and this results in highly symmetric probabilities for queries. Thus, it is crucial to restrict
the open-world to provide tighter, and thus more informative, probability bounds. Our
proposal is based on ontological rules which, intuitively, break down such symmetries and
allow us to distinguish queries which were indistinguishable before, as in Example 7.10.

The semantics is again based on maximizing (respectively, minimizing) over a credal set
of probability distributions. The difference is that we restrict our attention to consistent
distributions and we assume that the input PDB is consistent.

Definition 7.11 (semantics) The probability interval of an OMQ (Q,Σ) for an Open-
PDB G = (P, λ) is given by KG(Q,Σ) := [PG(Q,Σ),PG(Q,Σ)], where

PG(Q,Σ) := min
P∈KG

{P(Q,Σ) | P is consistent w.r.t. Σ} ,

PG(Q,Σ) := max
P∈KG

{P(Q,Σ) | P is consistent w.r.t. Σ} .

The special case of λ = 0 corresponds to having a single (closed-world) PDB P. In this
case, we simply speak of the probability of (Q,Σ) for a PDB P. ♦

In the following, we evaluate this semantics with respect to the goals identified in the
motivation, and discuss our choice of restricting to the consistent λ-completions.

We argued that OpenPDBs can benefit from an axiomatic encoding of the knowledge
of the domain. Consider again our running example, which is now enriched with a
program. How do the queries evaluate under this semantics?

Example 7.12 Consider again the Example 7.10 with the given query semantics. Ob-
serve that Writer(hamsun) and Writer(goriot) do not evaluate to the same lower and
upper probabilities any more, although both atoms are open.

The lower probability of Writer(goriot) remains 0, while the upper probability now
decreases to 0.15 from 0.5 as a consequence of the NC (6.1). In contrast, the lower
probability of Writer(hamsun) increases to 0.63, while the upper probability increases
to 0.815 due to the TGD (6.3). These intervals are much more informative than the
default interval [0, 0.5]. ♦

The most subtle aspect of choosing the best distribution is the question of how to deal
with inconsistent worlds. Ignoring inconsistencies (and optimizing over all completions)
leads to a drowning effect: since inconsistent worlds entail everything, this semantics
would be biased towards choosing inconsistent λ-completions. This does not satisfy our
goals, as even an unsatisfiable query could evaluate to a positive probability.
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An alternative approach, which is standard for (closed-world) PDBs, and is quite
intuitive at first glance, would be to choose the distribution which maximizes the
probability

(P(Q,Σ)− γ)/(1− γ),

where γ is the normalization factor (as defined before). A careful inspection, however,
shows that this semantics also favors inconsistent distributions over consistent ones.

This is mainly due to the normalization process internal to the computation. As
part of this normalization, the probability mass of inconsistent worlds is distributed to
consistent worlds (as explained before). As a consequence, it is often possible to increase
the query probability by simply increasing the probability of inconsistent worlds. This is
not a desired effect, since we are interested in finding the most suitable λ-completion
from the open-world, and not the one that increases the query probability by increasing
the probability mass of inconsistent worlds.

To avoid such drowning effects, our proposal considers only consistent distributions.
That is, we do not want to introduce inconsistencies when completing our knowledge
over the domain by choosing a λ-completion. One drawback of our approach is the
fact that inconsistencies are not tolerated even if the inconsistency degree is very small.
However, it would be easy to introduce a threshold value, say 0.1, to tolerate the
inconsistent completions where the probability of the inconsistent worlds does not exceed
this threshold.

We discuss other semantic possibilities and future directions in the end of this chapter.
We now reformulate the problem of lower and upper probabilistic query evaluation for
OMQs.

Definition 7.13 (lower, upper probabilistic query evaluation) Given a PDB P ,
an OMQ (Q,Σ) and a value p ∈ [0, 1]; upper probabilistic query evaluation, denoted PQE,
is to decide whether PG(Q,Σ) > p holds and lower probabilistic query evaluation, denoted
PQE, is to decide whether PG(Q,Σ) > p holds. Both PQE and PQE are parametrized
with the language of the ontology-mediated query; we write PQE(Q,L) (respectively,
PQE(Q,L)) to refer to PQE (respectively, PQE) on the class Q of queries and on the
class of ontologies restricted to the language L. ♦

7.2.1 Complexity Results

We restrict our complexity analysis always to the bounded-arity complexity since allowing
arbitrary arity immediately results in high complexity classes that are beyond the scope
of this thesis. More precisely, we consider data complexity and bounded-arity complexity
as before and omit combined complexity. Moreover, in fixed-program complexity, we
additional assume a bounded-arity schema and to avoid ambiguity, we call it the fixed-
program&arity complexity.

In the following, we separate the complexity analysis into two parts; first, we investigate
the special case of positive programs and then extend our treatment to programs that
also contain negative constraints.

Positive Programs. We first show an analogous result to Lemma 7.5 for positive
programs.
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Lemma 7.14 Let (Q,Σ+) be an OMQ, where Q is a UCQ, and Σ+ is a positive Datalog±

program, and QΣ+ be an FO-rewriting of (Q,Σ+). Then, for any OpenPDB G, it holds
that PG(Q,Σ+) = PG(QΣ+) and PG(Q,Σ+) = PG(QΣ+).

Proof. For any OpenPDB G, it holds that

PG(Q,Σ+) (1)= max{P(Q,Σ+) | P ∈ KG}
(2)= max{P(QΣ+) | P ∈ KG}

(3)= PG(QΣ+),

PG(Q,Σ+) (1)= min{P(Q,Σ+) | P ∈ KG}
(2)= min{P(QΣ+) | P ∈ KG}

(3)= PG(QΣ+).

where (1) is the special case of the semantics given in Definition 7.11 that applies to
positive programs; (2) follows from QΣ being the FO-rewriting of Q w.r.t. Σ; and (3)
follows from the semantics of QΣ in OpenPDBs.

Notice that the following is then an immediate consequence of Lemma 7.14, Lemma 7.5
and Theorem 4.17:

KG(Q,Σ+) = [PP0(Q,Σ+),PPλ
(Q,Σ+)],

since the queryQ is a UCQ and Σ+ is a positive FO-rewritable program. More importantly,
with the help of Lemma 7.14, we can lift the data complexity dichotomy of OpenPDBs
to all FO-rewritable, positive programs in a straightforward manner.

Theorem 7.15 (dichotomy) For all positive FO-rewritable Datalog± languages L+,
PQE(L+,UCQ) and PQE(L+,UCQ) are either in P or PP-complete for OpenPDBs in
data complexity under polynomial-time Turing reductions.

Proof. Let (Q,Σ+) be an OMQ, where Q is a UCQ, Σ+ a positive program over an
FO-rewritable language, and QΣ+ be an FO-rewriting of (Q,Σ+). By Lemma 7.14,
any polynomial time algorithm that can evaluate QΣ+ over OpenPDBs also yields the
probability of the OMQ (Q,Σ+) relative to a OpenPDB, and vice versa. This implies
that the OMQ (Q,Σ+) is safe if QΣ+ is safe.

Dually, by the same result the probabilities of all rewritings of Q coincide, and hence
the same algorithm can be used for all of them. Thus, if (Q,Σ+) is unsafe, then QΣ+

must also be unsafe for OpenPDBs. By the data complexity dichotomy in OpenPDBs,
given in Theorem 4.24, this implies that evaluating the probability of both the UCQ QΣ+

and the OMQ (Q,Σ+) must be PP-hard.

Note that Lemma 7.14 is based on the fact that programs are positive, that is, choosing
a consistent completion that maximizes (respectively, minimizes) the query probability
can be done in an efficient manner, which helps us to obtain the data complexity
dichotomy. This picture changes if we go beyond positive programs.

Beyond Positive Programs. In the presence of negative constraints, it still suffices to
consider the extremal λ-completions. In fact, once the correct completion is known,
the probabilistic OMQ evaluation for OpenPDBs can still be reduced to probabilistic
OMQ evaluation for PDBs. The key difference in the presence of NCs is that we have to
make sure that this completion is consistent. That is, choosing the completion Pλ that
sets all open tuples to λ is not feasible, as this will very likely lead to inconsistencies.
However, observe that the lower probability can still be obtained from the completion P0
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(which we assumed to be consistent), and hence the previous results still hold for lower
probabilistic OMQ evaluation with NCs.

A naïve way of solving the upper probabilistic OMQ evaluation is to guess a λ-completion
and then check whether it is consistent and compare the resulting probability to the
threshold.

Theorem 7.16 Let C denote the data (respectively, fixed-program&arity, bounded-arity)
complexity of ontology-mediated query answering for a Datalog± language L. Then,
PQE(UCQ,L) is C-hard and in NPPPC for OpenPDBs in data (respectively, fixed-
program&arity, bounded-arity) complexity.

Proof. Let (Q,Σ) be an OMQ, G = (P, λ) be an OpenPDB, and p be a threshold value.
We consider a nondeterministic Turing machine with an oracle access to PPC. To decide
PG(Q,Σ), we can guess a λ-completion P̂ and decide whether PP̂(Q,Σ) > p using
the PPC oracle, which is possible due to Theorem 7.4. Analogously, to decide PG(Q,Σ),
we can verify whether for all λ-completions P̂ it holds that PP̂(Q,Σ) > p. C-hardness is
an immediate consequence of Theorem 7.4.

The main question is, of course, whether we really need to guess a completion, or can
it still be computed in an efficient manner? We provide a partial answer to this question:
for guarded, full programs, we are able to show NPPP-hardness in data complexity.
In more intuitive terms, this implies that probabilistic OMQ evaluation is harder for
OpenPDBs than it is for PDBs in these languages.

Theorem 7.17 PQE(UCQ,GF) is NPPP-hard for OpenPDBs in data complexity.

Proof. We reduce the following NPPP-complete problem (Wagner 1986): decide the
validity of the formula

Φ = ∃x1, . . . , x` Cc y1, . . . , ym ϕ,

where ϕ = ϕ1 ∧ · · · ∧ ϕk is a propositional formula in CNF, over the variables x1, . . . , x`,
y1, . . . , ym. This amounts to checking whether there is a partial assignment for x1, . . . , x`

that admits at least c extensions to y1, . . . , ym that satisfy ϕ.
As before, we assume without loss of generality that ϕ contains all clauses of the form

xj ∨ ¬xj , 1 ≤ j ≤ `, and similarly yj ∨ ¬yj , 1 ≤ j ≤ m; clearly, this does not affect the
existence or number of satisfying assignments for ϕ.

We define the PDB P.
– For each variable yj , 1 ≤ j ≤ m, it contains the tuples 〈L(yj , 0) : 0.5〉 and
〈L(yj , 1) : 0.5〉, where we view yj as a constant. These tuple represent the assign-
ments that map yj to false and true, respectively.

– For each literal (¬)x occurring in a clause ϕj , 1 ≤ j ≤ k, we add the tuple D(x, j, i)
with probability 1, where i = 1, if the literal is positive, and i = 0, if the literal is
negative.

– We add the tuples T(0), S(0, 1), S(1, 2), . . . , S(k−1, k), K(k), each with probability 1.
Moreover, for each variable xj , 1 ≤ j ≤ `, we need two open atoms P(xj , 0) and P(xj , 1)
with similar semantics as the L-atoms, and we set λ := 1. All other atoms over the
introduced signature are added to PΦ with probability 0.
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We now describe the program Σ. To detect when a clause is satisfied, we use the
additional unary predicate E and the TGDs

P(x, i),D(x, j, i)→ E(j) and L(y, i),D(y, j, i)→ E(j).

However, we still need to ensure that in each world, exactly one of P(x, 0) and P(x, 1)
holds, and similarly for L. The clauses xj ∨ ¬xj and yj ∨ ¬yj take care of the lower
bound; for the variables x1, . . . , x` we can represent the remaining part of this constraint
through the NC

P(x, 0),P(x, 1)→ ⊥.

This ensures that each consistent λ-completion (that satisfies ϕ in an as yet unspecified
way) represents exactly one truth assignment for the variables x1, . . . , x`; moreover,
every such assignment can be expressed as a consistent λ-completion. For the variables
y1, . . . , ym, a similar NC would yield only inconsistent completions. Instead, we use the
TGDs

L(y, 0), L(y, 1)→ B and B,D(x, j, i)→ E(j).

These ensure that any inconsistent assignment for y1, . . . , ym, i.e., one where some yj

is both true and false, is automatically marked as satisfying the formula, even if the
clauses xj ∨ ¬xj and yj ∨ ¬yj are not actually satisfied. Since there are exactly 4m − 3m

such assignments (where both L(yj , 0) and L(yj , 1) hold for at least one yj), we can add
this number to the probability threshold that we will use in the end. Note that the
probability of each individual assignment is 0.25m since there are 2m relevant L-tuples
(the other tuples are fixed to 0 or 1 and do not contribute here).

It remains to detect whether all clauses of ϕ are satisfied by a consistent assignment,
which we do by the means of the TGDs

T(i), S(i, j),E(j)→ T(j) and T(i),K(i)→ Z(i)

and, finally, we consider the simple conjunctive query Q := ∃i Z(i). We define the
OpenPDB G = (P, 1), where P is defined as above and for the OMQ (Q,Σ) prove the
following claim.

Claim. PG(Q,Σ) > 0.25m(4m − 3m + (c− 1)) holds if and only if Φ is satisfiable.

If PG(Q,Σ) > 0.25m(4m−3m +(c−1)), then there is a λ-completion in which the query
probability exceeds this value, which means that at least some worlds with non-zero
probability entail (Q,Σ), i.e., all clauses of ϕ are satisfied. Hence, this λ-completion
represents a valid assignment of the variables x1, . . . , x`. Each of the non-zero worlds
under this completion represents a unique combination of atoms of the form L(y, 0) and
L(y, 1). The worlds where for at least one variable yj , 1 ≤ j ≤ m, neither L(yj , 0) nor
L(yj , 1) holds do not satisfy ϕ, and hence do not entail (Q,Σ) and are not counted. Of
the remaining worlds, 4m − 3m automatically entail (Q,Σ). The other worlds represent
the actual assignments for y1, . . . , ym, and hence we know that more than c− 1 of those
satisfy ϕ.

Conversely, if we are given a partial assignment for x1, . . . , x` that satisfies this property,
then it is easy to construct a λ-completion as above and show that it exceeds the given
threshold, using the ideas described above.
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All TGDs used here are full and guarded. Moreover, only the PDB and the probability
threshold depend on the input formula. Hence, the reduction shows NPPP-hardness of
upper probabilistic query evaluation in GF.

What remains open is whether a similar hardness result can be obtained for FO-
rewritable languages. Notice that, even if such a result holds, it has to differ significantly
from the techniques employed in the proof of Theorem 7.17, which deliberately make
use of guarded TGDs in the reduction.

Nevertheless, if we compute the complexity while taking also the query into account,
we can show a similar NPPP-hardness result for FO-rewritable languages. Importantly,
this result is very different from the previous one as it uses the expressive power of the
query (instead of the TGDs) and the program contains only NCs.

Theorem 7.18 Given a Datalog± language L where the fixed-program&arity (respec-
tively, bounded-arity) complexity of ontology-mediated query answering is NP-complete,
it holds that PQE(UCQ,L) is NPPP-complete for OpenPDBs in fixed-program&arity (re-
spectively, bounded-arity) complexity.

Proof. The upper bound already follows from Theorem 7.16. Thus, we only show
NPPP-hardness, for which we reduce the following problem: decide validity of

Φ = ∃x1, . . . , x` Cc y1, . . . , ymϕ1 ∧ ϕ2 ∧ · · · ∧ ϕk ,

where every ϕi is a propositional clause over x1, . . . , x`, y1, . . . , ym, and k, `,m≥ 1. As in
the proof of Theorem 7.17, we can assume without loss of generality that ϕ contains all
clauses of the form xj ∨ ¬xj , 1 ≤ j ≤ `, and yj ∨ ¬yj , 1 ≤ j ≤ m. We will also assume
that each clause ϕj contains exactly three literals.

The PDB PΦ for the reduction is defined as follows.
– For each variable yj , 1 ≤ j ≤ m, it contains the atoms 〈L(yj , 0) : 0.5〉 and
〈L(yj , 1) : 0.5〉.

– Each clause ϕj is described with the help of a predicate M(·, ·, ·, j) of arity 4,
which encodes the satisfying assignments for ϕj . For example, consider the clause
ϕj = x2 ∨ ¬y4 ∨ y1. For the satisfying assignment x2 7→ true, y4 7→ true, y1 7→ false,
we add the tuple M(1, 1, 0, j) with probability 1, and similarly for all other satisfying
assignments. There are at most 7 satisfying assignments for each clause.

We use the open atoms P(xj , 0) and P(xj , 1) for the variables xj , 1 ≤ j ≤ `, set λ := 1,
and fix all other possible atoms to the probability 0. We define the program ΣΦ for the
reduction as follows. We use the NC P(x, 0),P(x, 1)→ ⊥ to enforce that the variables
xj , 1 ≤ j ≤ `, get a correct truth assignment. However, we do not employ any TGDs.
The UCQ for which we will check entailment is

QΦ := (ψ1 ∧ · · · ∧ ψk) ∨ (∃y L(y, 0) ∧ L(y, 1)),

where each ψj is a conjunction that is derived from ϕj depending on the types of the
involved variables. We describe the details again on the example clause ϕj = x2∨¬y4∨y1.
The satisfaction of this clause is encoded by the conjunction

ψj = M(i1, i2, i3, j) ∧ P(x2, i1) ∧ L(y4, i2) ∧ L(y1, i3),
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where i1, i2, i3 are existentially quantified variables that are local to ψj , and j is fixed.
Intuitively, ψj asserts that the truth assignment for x2, y4, and y1 (given by i1, i2, and i3,
respectively) satisfies ϕj . The assignment for the variables x1, . . . , x`, y1, . . . , ym is fixed
by the current λ-completion (using P) and world (using L), respectively.

An alternative way of satisfying QΦ is that L represents an inconsistent assignment
for at least one variable of the form yj , which again happens in exactly 4m − 3m worlds.
Thus, given the OpenPDB G = (PΦ, 1), it remains to prove the following claim.

Claim. PG(QΦ,ΣΦ) > 0.25m(4m − 3m + (c− 1)) holds if and only if Φ is valid.

If PG(QΦ,ΣΦ) > 0.25m(4m− 3m + (c− 1)), then there exists at least one λ-completion
that obtains this value. This λ-completion must represent a valid assignment for the
variables x1, . . . , x` since otherwise only 4m − 3m worlds satisfy (QΦ,ΣΦ). Of the 3m

worlds that do not satisfy ∃y L(y, 0) ∧ L(y, 1) there are at most 2m that also satisfy
the constraints on the variables y1, . . . , ym, and hence represent a valid extension to an
assignment for y1, . . . , ym. Thus, there must be at least c assignments for y1, . . . , ym that
extend the partial assignment, which means that Φ is valid.

Conversely, if Φ is valid, then there exists an assignment for x1, . . . , x` (which induces a
λ-completion), for which there are at least c extensions to y1, . . . , ym (and hence at least
4m− 3m + c worlds) that satisfy ϕ1, . . . , ϕk (and hence (QΦ,ΣΦ) is satisfied). This shows
that PG(QΦ,ΣΦ) exceeds the given threshold. Since the reduction is w.r.t. a bounded
arity, we did not use any TGDs and the only NC that was used does not depend on Φ,
this shows the claim.

Notice that Theorem 7.16 together with Theorem 7.17 and Theorem 7.18 yields tight
complexity bounds for all the cases in fixed-program&arity and bounded-arity complexity
except the class A. We obtain an analogous result for this case as in Theorem 7.9.

Theorem 7.19 PQE(UCQ,L) is NExp-complete for OpenPDBs in bounded-arity com-
plexity if ontology-mediated query answering in L is NExp-complete in the bounded-arity
complexity.

Proof. Let (Q,Σ) be an OMQ, where Σ is over L, G = (P, λ) be an OpenPDB, and p be
a threshold value. Hardness is a consequence of Theorem 7.16. We only need to prove
membership. By Theorem 7.9, the probabilistic OMQ evaluation problem PP ′(Q,Σ) > p
for PDBs is NExp-complete in bounded-arity complexity. Thus, to decide the upper
probabilistic query evaluation, we can go through all λ-completions (of which there are
exponentially many in bounded-arity complexity) and verify in NExp whether there is
a completion P̂ for which it holds that PP̂(Q,Σ) > p.

This concludes our complexity analysis. Notice that we have excluded the com-
bined complexity from our analysis and assumed a bounded-arity for the fixed-program
complexity.

7.2.2 Overview of the Results
The complexity results for upper probabilistic OMQ evaluation are summarized in
Table 7.3. As already pointed out, the complexity of lower probabilistic OMQ evaluation
for OpenPDBs coincides with probabilistic OMQ evaluation for PDBs.
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Table 7.3: Complexity of upper probabilistic OMQ evaluation for OpenPDBs. Combined
complexity is excluded from the analysis. Lower probabilistic OMQ evaluation
for OpenPDBs coincides with the case of PDBs; see Table 7.2.

Datalog±

Languages data fixed-program&arity bounded-arity

L, LF, AF, S SF ≤ NPPP

[Theorem 7.16]
NPPP

[Theorem 7.18]
NPPP

[Theorem 7.18]

A ≤ NPPP

[Theorem 7.16]
NPPP

[Theorem 7.16]
NExp
[Theorem 7.19]

GF F NPPP

[Theorem 7.17]
NPPP

[Theorem 7.17]
NPPP

[Theorem 7.18]

G NPPP

[Theorem 7.17]
NPPP

[Theorem 7.17]
Exp
[Theorem 7.16]

WS, WA NPPP

[Theorem 7.17]
2Exp
[Theorem 7.16]

2Exp
[Theorem 7.16]

WG Exp
[Theorem 7.16]

Exp
[Theorem 7.16]

Exp
[Theorem 7.16]

We lifted the data complexity dichotomy in OpenPDBs for unions of conjunctive
queries to probabilistic OMQ evaluation for FO-rewritable languages. Importantly, this
applies only to positive programs and it remains open whether a similar dichotomy can
be obtained in the presence of NCs (which is also closely connected to the quest of
obtaining a dichotomy for nonmonotone queries in PDBs).

As before, all the results except the dichotomy result are obtained under standard
many-one reductions. In a significant result for classes, where OMQA is P-hard in
data complexity, we are able to show NPPP-hardness for upper probabilistic OMQ
evaluation for OpenPDBs. This result highly contrasts with the PP-completeness result
in data complexity for PDBs. It is open whether a similar hardness result applies to
FO-rewritable languages in data complexity.

Unsurprisingly, probabilistic query evaluation in OpenPDBs is typically harder than
probabilistic query evaluation in PDBs. For the fixed-program&arity and bounded-arity
complexity, we also show NPPP-completeness for upper probabilistic OMQ evalua-
tion, which contrasts with the PPNP-completeness results from Table 7.2. Recall that
PPNP ⊆ NPPP. As before, we observe that the complexity of OMQA is dominating the
complexity of probabilistic OMQ evaluation in all other cases.

7.3 Most Probable Explanations for Ontology-Mediated
Queries

Motivated by maximal posterior computations in PGMs, we studied the most probable
database and most probable hypothesis problems in PDBs (see Chapter 5). We now
extend our results towards ontology-mediated queries. In a nutshell, we restrict ourselves
to unions of conjunctive queries (instead of first-order queries), but in exchange consider
additional knowledge encoded through an ontology.

134



7.3 Most Probable Explanations for Ontology-Mediated Queries

Table 7.4: The probabilistic database Pv (repeated from Table 5.2).

Vegetarian
alice 0.7
bob 0.9
chris 0.6

FriendOf
alice bob 0.7
alice chris 0.8
bob chris 0.1

Eats
bob spinach 0.7
chris mussels 0.8
alice broccoli 0.2

Meat
shrimp 0.7
mussels 0.9
seahorse 0.3

Importantly, in MPD (respectively, MPH), we are interested in finding the database (re-
spectively the hypothesis) that maximizes the query probability. In the presence of
ontological rules, we need to ensure that the chosen database is at the same time con-
sistent with the ontology. More precisely, for ontology-mediated queries, models must
be consistent with the ontology; thus, the definitions of MPD and MPH are adapted
accordingly.

In our analysis, we also include the case where only negative constraints are allowed,
as this is closest to the constraints over PDBs that we described in Chapter 5 and it
gives us a baseline for our study. We then provide a thorough complexity analysis based
on Datalog± languages for both problems.

7.3.1 The Most Probable Database Problem for Ontological Queries

In the most probable database problem for ontological queries, we consider only the
consistent worlds induced by the PDB, and thus maximize only over consistent worlds.

Definition 7.20 Let P be a probabilistic database and Q a query. The most probable
database for an OMQ (Q,Σ) over a PDB P is given by

arg max
D|=(Q,Σ),mods(D,Σ) 6=∅

P(D),

where D ranges over all worlds induced by P. ♦

To illustrate the semantics, we now revisit the Example 5.8 and the PDB Pv, which is
depicted in Table 7.4.

Example 7.21 Recall the following query from Chapter 5

Qveg := ∀x, y ¬Vegetarian(x) ∨ ¬Eats(x, y) ∨ ¬Meat(y).

The most probable database for Qveg contains all atoms from Pv that have a probability
above 0.5, except for Vegetarian(chris). We can impose the same constraint through the
negative constraint

∀x, y Vegetarian(x) ∧ Eats(x, y) ∧Meat(y)→ ⊥,

and then the most probable database for the query > will be the same as before.
Obviously, we can additionally impose constraints in the form of TGDs such as

∀x Vegetarian(x)→ ∃y FriendOf(x, y) ∧ Vegetarian(y),
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which states that vegetarians have friends who are themselves vegetarians. Note, however,
that OMQs operate over infinite domains, whereas first-order queries in databases are
defined over finite domains and thus these queries are not comparable in terms of
expressivity. ♦

The corresponding decision problem is defined as before with the only difference that
now we consider ontology-mediated queries.
Definition 7.22 (MPD) Let (Q,Σ) be an OMQ, P a probabilistic database and
p ∈ (0, 1] a threshold. MPD is the problem of deciding whether there exists a database D
that entails (Q,Σ) with P(D) > p. MPD is parametrized with the language of the
ontology and the query; we write MPD(Q,L) to define MPD on the class Q of queries
and on the class of ontologies restricted to the languages L ♦

We start our complexity analysis with some simple observations. Note first that
consistency of a database D with respect to a program Σ can be written as D 6|= (⊥,Σ),
or equivalently, D 6|= (Q⊥,Σ+), where Q⊥ is the UCQ obtained from the disjunction of
the bodies of all NCs in Σ, and Σ+ is the corresponding positive program (that contains
all TGDs of Σ). This transformation allows us to rewrite the NCs into the query.

A naïve approach to solve MPD is to first guess a database D, and then check that it
entails the given OMQ, does not entail the query (Q⊥,Σ+) (i.e., it is consistent with the
program), and exceeds the probability threshold. Since the probability can be computed
in polynomial time, the problem can be decided by a nondeterministic Turing machine
using an oracle to check OMQA. Obviously MPD is at least as hard as OMQA in the
underlying ontology languages. These observations result in the following Theorem.
Theorem 7.23 Let C denote the data (respectively, fixed-program, bounded-arity, com-
bined) complexity of ontology-mediated query answering for a Datalog± language L.
MPD(UCQ,L) is C-hard and in NPC under the same complexity assumptions.

By a reduction from 3-colorability, we show that MPD is NP-hard already in data
complexity for OMQs, even if we only use NCs, i.e., the query and the positive program Σ+

are empty. This strengthens our previous result about ∀FO queries (from Chapter 5),
since NCs can be expressed by universal queries, but are not allowed to use negated
atoms.
Theorem 7.24 MPD(UCQ,NC) is NP-hard in data complexity (which holds even for
instance queries).

Proof. We provide a reduction from the well-known 3-colorability problem: given an
undirected graph G = (V,E), decide whether the nodes of G are 3-colorable. We first
define the PDB PG as follows. For all edges (u, v) ∈ E, we add the atom E(u, v) with
probability 1, and for all nodes u ∈ V , we add the atoms V(u, 1), V(u, 2), V(u, 3), each
with probability 0.7. In this encoding, the atoms V(u, 1), V(u, 2), V(u, 3) correspond to
different colorings of the same node u.

We next define the conditions for 3-colorability through a set Σ containing only
negative constraints (that do not depend on G). We need to ensure that each node is
assigned at most one color, which is achieved by means of the negative constraints:

V(x, 1),V(x, 2)→ ⊥, V(x, 1),V(x, 3)→ ⊥, V(x, 2),V(x, 3)→ ⊥
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Similarly, we need to enforce that the neighboring nodes are not assigned the same color,
which we ensure with the negative constraint:

E(x, y),V(x, c),V(y, c)→ ⊥

Finally, we define the query Q := > and prove the following claim.

Claim. G is 3-colorable if and only if there exists a database D such that D 6|= (⊥,Σ)
and P(D) ≥ (0.7 · 0.3 · 0.3)|V |.

Suppose that there exists a database D with a probability of at least (0.7 · 0.3 · 0.3)|V |

that satisfies all NCs in Σ. Then, for every node u ∈ V , D must contain exactly one
tuple V(u, c) for some color c ∈ {1, 2, 3}. Recall that at most was ensured by the first
three NCs; hence, in order to achieve the given threshold, at least one of these tuples
must be present. This yields a unique coloring for the nodes. Furthermore, since D
must contain all tuples corresponding to the edges of G, and D satisfies the last NC, we
conclude that G is 3-colorable.

Suppose that G is 3-colorable. Then, for a valid coloring, we define a DB D that
contains all tuples that correspond to the edges, and add all tuples V(u, c) where c is the
color of u. It is easy to see that D is consistent with Σ and P(D) = (0.7 · 0.3 · 0.3)|V |,
which concludes the proof.

We show a matching upper bound (which holds even in fixed-program complexity), by
reconsidering the approach from Theorem 7.23.

Theorem 7.25 Let L be a Datalog± language, where ontology-mediated query answer-
ing is in NP in fixed-program complexity and in P in the data complexity. Then,
MPD(UCQ,L) is in NP in fixed-program complexity.

Proof. Note that the query (Q⊥,Σ+) is fixed; thus, for the non-entailment check to
verify consistency, we can refer to the data complexity of OMQ entailment. Since this is
possible in P, and further the fixed-program complexity does not exceed NP, the whole
test can be done by a single nondeterministic Turing machine in polynomial time.

This result yields an upper bound of NP for most of the classes we consider for MPD.
Under bounded-arity complexity assumptions, we observe an increase in complexity,
which intuitively comes from the fact that the query (Q⊥,Σ+) is not fixed anymore.

Theorem 7.26 MPD(UCQ,NC) is ΣP
2 -hard in bounded-arity complexity (which holds

even for atomic queries).

Proof. Consider the formula

Φ = ∃x1, . . . , xn ∀y1, . . . , ym ϕ,

where ϕ = ϕ1 ∨ · · · ∨ ϕk is a propositional formula in 3DNF. We encode the truth values
of the variables xi using the atoms 〈V(xi, 0) : 0.9〉, 〈V(xi, 1) : 0.9〉 in the PDB PΦ, which
are constrained by the NC V(x, 0) ∧ V(x, 1)→ ⊥. The idea is that the worlds D with
maximal probability must satisfy exactly one of V(xi, 0), V(xi, 1) for each xi, thereby
representing a truth value assignment for ~x.
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We explain the encoding of the conjunctions in Φ on the example of ϕj = x1∧¬y4∧¬x3.
We introduce a predicate Cj(t, y4) that describes the truth value t of ϕj as a function of
the truth value of y4, which of course depends on the truth values chosen for x1 and x3
via the V-atoms. For example, if y4 is true, then ϕj must be false, which is expressed by
the tuple Cj(0, 1). As above, we add all tuples 〈Cj(t, y4) : 0.9〉 with t, y4 ∈ {0, 1} to PΦ.
The idea is again that, for a certain value of y4, exactly one of the two atoms Cj(0, y4),
Cj(1, y4) will be true in the chosen world D (not both and not neither).

This behavior is enforced by a series of NCs. For example, if x1 is true and x3 is false,
then Cj(1, 0) must be true, i.e., Cj(0, 0) must be false:

V(x1, 1) ∧ V(x3, 0) ∧ Cj(0, 0)→ ⊥

Moreover, making y4 true will always make the conjunction false, regardless of the values
of x1 and x3:

Cj(1, 1)→ ⊥

Finally, if either x1 is false or x3 is true, then it is impossible to satisfy ϕj , regardless of
the value of y4:

V(x1, 0) ∧ Cj(1, y4)→ ⊥
V(x3, 1) ∧ Cj(1, y4)→ ⊥

These four NCs together ensure that, in every world D of maximal probability (which
determines a fixed truth value assignment for x1, . . . , xn), the satisfied tuples Cj(t, y4)
determine the truth value of ϕj as a function of the truth value of y4. For example, if
D satisfies V(x1, 0) and V(x3, 1) (and hence neither V(x1, 1) nor V(x3, 0)), then it must
satisfy also Cj(0, 0) and Cj(0, 1) (but neither Cj(1, 0) nor Cj(1, 1)).

In general, the predicate Cj is of arity 1+|yj |, where yj are the variables from y1, . . . , ym

that occur in ϕj . As ϕj contains 3 literals, this implies means that the arity can be at
most 4. This results in atoms of the form Cj(t,yj). For each clause, four NCs like the
ones above enforce that exactly one of Cj(0,yj) and Cj(1,yj) is true, for each valuation
of yj , and this describes exactly the behavior of ϕj . Finally, we add the NC

k∧
j=1

Cj(0,yj)→ ⊥

to express that every valuation of the variables y1, . . . , ym must satisfy at least one
conjunction ϕj . Hence, the existence of a consistent world D with P(D) ≥ (0.09)`, where
` = n+

∑k
j=1 2|yj |, is equivalent to the validity of Φ. Since ` is bounded by n+ 8k, the

threshold can be written using linearly many bits. Observe that we do not need a query
(we can choose Q = >) nor any TGDs, and the maximal arity of the used predicates
is 4.

We obtain a matching upper bound from Theorem 7.23 if C = NP. Most of the
remaining hardness results follow from the complexity of classical OMQA, since an OMQ
(Q,Σ) is entailed by a consistent database D if and only if the most probable database
with respect to {〈t : 1〉 | t ∈ D} has probability 1. In combination with Theorem 7.23,
this yields tight complexity results for large deterministic classes like PSpace or Exp.
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This leaves open only the case of the class A, for which OMQA is NExp-complete
in bounded-arity complexity, which yields an upper bound of NPNExp = PNExp = PNE

due to Theorem 7.23 and results from (Hemachandra 1989). We show that this bound
is tight, using a reduction from a PNExp-complete version of the tiling problem (Fürer
1983).

Theorem 7.27 MPD(UCQ,A) is PNE-hard in ba-combined complexity.

Proof. We give a reduction from an extended tiling problem. Recall that, the original
tiling problem (Fürer 1983) is defined as follows: Let T be a set of square tile types,
H,V ⊆ T × T be the horizontal and vertical compatibility relations, respectively, and n
be an integer in unary. A 2n × 2n tiling is a function

f : {1, . . . , 2n} × {1, . . . , 2n} → T

such that (f(i, j), f(i, j + 1)) ∈ H and (f(i, j), f(i+ 1, j)) ∈ V , for each i and j. An
instance of the tiling problem is a tuple (T,H, V, n), and the decision problem is to
determine whether a 2n × 2n tiling exists.

We give a reduction from the following extended tiling problem (Eiter, Lukasiewicz,
and Predoiu 2016), which is PNExp-complete: Given a triple (m,TP1,TP2) of an integer
m in unary and tiling problems TP1 and TP2 for the exponential square 2n×2n, does,
for every initial condition w = w1 . . . wm for the first row, TP1 have no solution with w,
or does TP2 have some solution with w?

The construction makes use of the result that any instance TP of tiling the 2n×2n-square,
given n, relations H and V , and an initial tiling condition w = w1 . . . wm, is re-
ducible to OMQ answering with acyclic TGDs in polynomial time such that the query
(Tiling,ΣTP,|w|) is entailed by DTP ∪ Dw, where ΣTP,|w| is constructed from TP and |w|,
DTP from TP, and Dw = {Initj(wj) | 1 ≤ j ≤ m}, if and only if TP has a solution with w.

We define the PDB P as the set of all atoms 〈t : 1〉 such that f ∈ DTP1 ∪ DTP2 , all
atoms 〈Initj(d) : 0.5〉 such that d ∈ T and 1 ≤ j ≤ m, and the atoms 〈Tiling2(0) : 0.5〉
and 〈Tiling2(1) : 0.5〉.

We define the program Σ as the union of ΣTP1,|w|
r and ΣTP2,|w|

r , obtained from ΣTP1,|w|

and ΣTP2,|w| by renaming all derived predicates P to P1 and P2, respectively, and by
replacing Tiling2 by Tiling2(1), together with the NCs Tiling2(0),Tiling2(1)→ ⊥ and all
Initj(d), Initj(d′)→ ⊥ such that d, d′ ∈ T and 1 ≤ j ≤ m.

Then, with the UCQ Q defined as

∃x1, . . . , xm

m∧
j=1

Initj(xj) ∧ Tiling1 ∧ Tiling2(0),

we obtain that there is a world induced by P that satisfies (Q,Σ) if and only if
(m,TP1,TP2) is a no-instance of the extended tiling problem.

We note that the modified tiling problem is novel and has been recently introduced
by (Eiter, Lukasiewicz, and Predoiu 2016) as a canonical PNExp-complete problem. This
concludes our complexity analysis of MPD for OMQs.
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Table 7.5: Complexity results for MPD for ontology-mediated queries: Note that the
result for ∀FO queries in PDBs has been strengthened towards the weaker
representation NC.

Datalog±

Languages
Most Probable Database

data fixed-program bounded-arity combined

NC NP NP ΣP
2 ΣP

2
L, LF, AF NP NP ΣP

2 PSpace
S, SF NP NP ΣP

2 Exp
A NP NP PNE PNE

GF, F NP NP ΣP
2 Exp

G NP NP Exp 2Exp
WS, WA NP NP 2Exp 2Exp

WG Exp Exp Exp 2Exp

Overview of the Results

The complexity results for MPD are summarized in Table 7.5. Importantly, we have
included the class NC in the analysis. In Theorem 7.24, we have shown NP-hardness in
data complexity already for MPD(UCQ,NC) by a reduction from 3-colorability. Note
that this result strengthens the data complexity result obtained for MPD for ∀FO
queries. Moreover, since any general Datalog± program contains negative constraints,
Theorem 7.24 already implies lower complexity bounds for all classes in data complexity.
In all of the cases this turns out to be also a matching lower bound except for the case
of class WG. The precise complexity of MPD(UCQ,WG) follows from Theorem 7.23.

Interestingly, all NP upper bounds from the data complexity apply to the fixed-program
complexity. This is mainly due to the following observation: the consistency check can
still be done in polynomial time in these classes in fixed-program complexity. Therefore,
for all languages where OMQA is NP-complete, we observe that the complexity remains
the same for MPD in fixed-program complexity.

This picture changes significantly for the bounded-arity complexity. For classes where
OMQA is NP-complete in the bounded-arity, we additionally need to make a coNP
check to decide consistency of the world that is chosen. We therefore observe a ΣP

2
upper bound for the most probable database problem with respect to these classes.
Hardness holds already for programs that contain only negative constraints as shown
in Theorem 7.26. All other results regarding the deterministic complexity classes are
a consequence of Theorem 7.23. The class A is again an interesting case. OMQA is
NExp-complete and consistency checking is coNExp-complete for A. Thus, the problem
can be solved in NPNExp, which is equivalent to PNE by (Hemachandra 1989). We prove
a matching lower bound by a reduction from an extended tiling problem.

7.3.2 The Most Probable Hypothesis Problem for Ontological Queries

In the most probable hypothesis problem for ontological queries, we have to update the
definition of most probable hypothesis to take into account only consistent worlds.
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Definition 7.28 The most probable hypothesis for an OMQ (Q,Σ) over a PDB P is

arg max
H|=(Q,Σ)

∑
D⊇H

mods(D,Σ) 6=∅

P(D),

where H is a set of (non-probabilistic) atoms t occurring in P. ♦

The corresponding decision problem is defined as before, but parametrized with
ontology-mediated queries.

Definition 7.29 (MPH) Let (Q,Σ) be an OMQ, P a PDB, and p ∈ (0, 1] a threshold.
MPH is the problem of deciding whether there exists a hypothesis H that satisfies (Q,Σ)
with P(H) > p. MPH is parametrized with the language of the ontology and the query;
we write MPH(Q,L) to define MPH on the class Q of queries and on the class of ontologies
restricted to the languages L. ♦

Importantly, computing the probability of a hypothesis for an OMQ is not as easy
as for classical database queries since now there are also inconsistent worlds that shall
be ruled out. As a consequence, computing the probability of a hypothesis becomes
PP-hard, which makes a significant difference in the complexity analysis.

To solve MPH for OMQs, one can guess a hypothesis, and then check whether it
entails the query, and whether the probability mass of its consistent extensions exceeds
the given threshold. The latter part can be done by a PP Turing machine with an
oracle for OMQA. The oracle can be used also for the initial entailment check. Clearly,
MPH(UCQ,L) is at least as hard as OMQA in L. The next theorem follows from these
observations.

Theorem 7.30 Let C denote the data (respectively, fixed-program, bounded-arity, com-
bined) complexity of ontology-mediated query answering for a Datalog± language L.
MPD(UCQ,L) is C-hard and in NPPPC under the same complexity assumptions.

For any C ⊆ PH, this result yields NPPPPH = NPPPP = NPPP as an upper bound,
due to a result from Toda 1989. Except for PP, all other upper bounds in Table 7.6 also
follow from this observation. Note that for C = NExp, the whole PPNExp computation
can be done by an NExp oracle, and hence we again obtain NPNExp = PNE in this case.
On the other hand, we can transfer most of the lower bounds from MPD by a simple
reduction.

Theorem 7.31 MPH(UCQ,L) is at least as hard as MPD(UCQ,L) in fixed-program,
bounded-arity and combined complexity.

Proof. Consider an OMQ (Q,Σ) over a PDB P, for which we want to find a consistent
world of probability greater than q. We enforce that the most probable hypothesis needs
to make a choice for all atoms in P , by replacing each atom 〈L(~u) : p〉 by two new atoms
〈F(~u, 1) : p〉 and 〈F(~u, 0) : 1− p〉, where F is a fresh predicate that increases the arity
of L by one, and 0 and 1 are fresh constants. We denote the resulting PDB by P ′. As
the query, we use

Q′ := Q1 ∧
∧

〈L(~u):p〉∈P
∃z F(~u, z),
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where Q1 is obtained from Q by replacing all atoms L(~x) by F(~x, 1). The query Q′ is
equivalent to a UCQ that is of size polynomial in the size of Q and P.

Finally, in the program Σ we similarly replace each tuple L(~x) by F(~x, 1), and add the
NCs F(~x, 1) ∧ F(~x, 0)→ ⊥ for each of the new predicates F. The resulting program Σ′

still satisfies the constraints of fixed-program/bounded-arity combined complexity, and
is in the same class as Σ. We prove the following claim.

Claim. Most probable hypothesis for (Q′,Σ′) over P ′ exceeds the threshold q2 if and
only if the most probable database for (Q,Σ) over P exceeds q.

Assume that the latter is the case, and the database D has a probability of d > q
w.r.t. P. Then the hypothesis that contains all atoms F(~u, 1) for which L(~u) ∈ D,
and F(~u, 0) whenever L(~u) /∈ D has the probability d2 > q2 over P ′ and satisfies the
OMQ (Q′,Σ′).

Conversely, assume that the hypothesis H for (Q′,Σ′) over P ′ has a probability d > q2.
Since H satisfies Q′ and the new NCs in Σ′, for each tuple 〈L(~u) : p〉 ∈ P , it must contain
exactly one of the atoms F(~u, 0) or F(~u, 1), which together contribute a probability of
(1− p)2 or p2, respectively, over P ′. Hence, the sum in Definition 7.28 collapses to one
element, which corresponds exactly to the database D obtained by collecting all atoms
L(~u) for which F(~u, 1) is in H. This database has a probability of

√
d > q over P, and

must satisfy the original query and NCs.

In data complexity, our results for MPH turn out to be relatively surprising. For
FO-rewritable Datalog± languages, we immediately obtain an NPPP upper bound for
MPH as a consequence of Theorem 7.30. The obvious question is whether this is also a
matching lower bound for FO-rewritable languages?

In general, the (oracle) test of checking whether the probability of an hypothesis exceeds
the threshold value is PP-hard. Thus, PP-hardness for MPH for FO-rewritable languages
can not be avoided in general. The remaining question is whether the hypothesis can be
identified efficiently, or do we really need to guess the hypothesis? Fortunately, this can
be avoided since we can walk through polynomially many hypothesis (in data complexity)
and combine the threshold tests for each of the hypothesis into single PP computation
using the results of (Beigel, Reingold, and Spielman 1995).

Theorem 7.32 Let L be a Datalog± languages, for which ontology-mediated query
answering is in AC0 in data complexity. Then, MPH(UCQ,L) is PP-complete in data
complexity under polynomial time Turing reductions.

Proof. PP-hardness follows from the complexity of probabilistic query evaluation over
PDBs (Suciu et al. 2011, Corollary 3.18) since we can choose Q = > and reformulate
any UCQ into a set of NCs such that the consistency of a database is equivalent to the
non-satisfaction of the UCQ.

We consider an OMQ (Q,Σ), a PDB P, and a threshold p. Since the query is FO-
rewritable, it is equivalent to an ordinary UCQ QΣ over P . Similarly, we can rewrite the
UCQ Q⊥ expressing the non-satisfaction of the NCs into a UCQ Q⊥,Σ. By the observation
in Theorem 5.22 we can enumerate all hypotheses H, which are the polynomially many
matches for QΣ in P, and then have to check for each H whether the probability of all
consistent extensions exceeds p. The latter part is equivalent to evaluating ¬Q⊥,Σ∧

∧
t∈H t
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over P, which can be done by a PP oracle. We accept if and only if one of these PP
checks yields a positive answer. In the terminology of (Beigel, Reingold, and Spielman
1995), this is a polynomial-time disjunctive reduction of our problem to a PP problem.
Since that paper shows that PP is closed under such reductions, we obtain the desired
PP upper bound.

Given Theorem 7.32, one may wonder whether the PP upper bound for MPH also
applies to languages where OMQA is P-complete in data complexity. In a surprising
result, we show that MPH(UCQ,GF) is already NPPP-hard.
Theorem 7.33 MPH(UCQ,GF) is NPPP-hard in data complexity.

Proof. We reduce the following problem from (Wagner 1986): decide the validity of

Φ = ∃x1, . . . , xn Cc y1, . . . , ym ϕ,

where ϕ = ϕ1 ∧ · · · ∧ ϕk is a propositional formula in CNF, defined over the variables
x1, . . . , xn, y1, . . . , ym. This amounts to checking whether there is a partial assignment
for x1, . . . , xn that admits at least c extensions to y1, . . . , ym that satisfy ϕ.

We can assume without loss of generality that each of the clauses ϕi contains exactly
three literals: shorter clauses can be padded by copying existing literals, and longer
clauses can be abbreviated using auxiliary variables that are included under the counting
quantifier Cc. Since the values of these variables are uniquely determined by the original
variables, this does not change the number of satisfying assignments.

We define the PDB PΦ that describes the structure of Φ:
– For each variable v occurring in Φ, PΦ contains the tuples 〈V(v, 0) : 0.5〉 and
〈V(v, 1) : 0.5〉, where v is viewed as a constant. These tuples represent the assign-
ments that map v to false and true, respectively.

– For each clause ϕj , we introduce the tuple 〈C(v1, t1, v2, t2, v3, t3) : 1〉, where ti is 1
if vi occurs negatively in ϕj , and 0 otherwise (again, all terms are constants). For
example, for x3 ∨¬y2 ∨ x7, we use the tuple 〈C(x3, 0, y2, 1, x7, 0) : 1〉. This encodes
the knowledge about the partial assignments that do not satisfy ϕ.

– We use auxiliary atoms 〈A(x1) : 1〉, 〈S(x1, x2) : 1〉, …, 〈S(xn−1, xn) : 1〉, 〈L(xn) : 1〉
to encode the order on the variables xi, and similarly for yj we use the atoms
〈B(y1) : 1〉, 〈S(y1, y2) : 1〉, …, 〈S(ym−1, ym) : 1〉, and 〈L(ym) : 1〉.

We now describe the program Σ used for the reduction. First, we detect whether all
variables xi (1 ≤ i ≤ n) have a truth assignment (i.e., at least one of the facts V(xi, 0)
or V(xi, 1) is present) by the special nullary predicate A, using the auxiliary unary
predicates V and A:

V(x, t)→ V(x)
A(x) ∧ V(x) ∧ S(x, x′)→ A(x′),

A(x) ∧ V(x) ∧ L(x)→ A,

where x, x′, t are variables. We do the same for the variables y1, . . . , ym:

B(y) ∧ V(y) ∧ S(y, y′)→ B(y′),
B(y) ∧ V(y) ∧ L(y)→ B.
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Now, the query Q = A ensures that only such hypotheses are valid that at least contain
a truth assignment for the variables x1, . . . , xn.

Next, we restrict the assignments to satisfy ϕ by using additional NCs in Σ. First, we
ensure that there is no “inconsistent” assignment for any variable v, i.e., only one of the
facts V(v, 0) or V(v, 1) holds:

V(v, 0) ∧ V(v, 1)→ ⊥

Furthermore, if all variables y1, . . . , ym have an assignment, then none of the clauses
in ϕ can be falsified:

C(v1, t1, v2, t2, v3, t3) ∧ V(v1, t1) ∧ V(v2, t2) ∧ V(v3, t3) ∧ B→ ⊥,

where v1, t1, v2, t2, v3, t3 are variables. We now prove the following claim.

Claim. Φ is valid if and only if there exists a hypothesis H that satisfies (Q,Σ) such
that all consistent databases that extend H sum up to a probability (under PΦ) of at
least p = 0.25n · 0.25m(3m − 2m + c).

Assume that such a hypothesis H exists. Since H |= (Q,Σ), we know that for each
xi (1 ≤ i ≤ n) one of the atoms V(xi, 0), V(xi, 1) is included in H. In each consistent
extension of H, it must be the case that the complementary facts (representing an
inconsistent assignment for xi) are false. In particular, these complementary facts cannot
be part of H since then its probability would be 0. Hence, we can ignore the factor 0.25n

in the following. There are exactly 3m − 2m databases satisfying H that represent
consistent, but incomplete assignments for the variables yj . Since these databases do
not entail B, they are all consistent, and hence counted towards the total sum. The
inconsistent assignments for y1, . . . , ym yield inconsistent databases, which leaves us only
with the 2m databases representing proper truth assignments. Those that violate at
least one clause of ϕ become inconsistent, and hence there are at least c such consistent
databases if and only if there are at least c extensions of the assignment represented
by H that satisfy ϕ. We conclude these arguments by noting that the probability of
each individual choice of atoms V(yj , tj) (1 ≤ j ≤ m) is 0.25m.

On the other hand, if Φ is valid, then we can use the same arguments to construct
a hypothesis H (representing the assignment for x1, . . . , xn) that exceeds the given
threshold.

We observe a sharp contrast in data complexity results for MPH: PP vs NPPP, as
summarized in Theorems 7.32 and 7.33, respectively. This difference disappears once we
consider fixed-program complexity.

Theorem 7.34 MPH(UCQ,NC) is NPPP-hard in fixed-program complexity and in
bounded-arity complexity.

Proof. We again consider the formula

Φ = ∃x1, . . . , xn Cc y1, . . . , ym ϕ,

where ϕ = ϕ1 ∧ · · · ∧ ϕk is in 3CNF and the PDB PΦ is defined as follows:
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– For each variable xi, 1 ≤ i ≤ n, we use the atoms 〈V(xi, 0) : 0.5〉 and 〈V(xi, 1) : 0.5〉,
and for yj , 1 ≤ j ≤ m, we use 〈V(yj , 0) : p〉 and 〈V(yj , 1) : p〉, where p is a fixed,
large probability that we specify later.

– For each clause ϕj , we introduce the atom 〈C(v1, t1, v2, t2, v3, t3) : 1〉 as before.
We then define the query

QΦ = ∃t1, . . . , tn V(x1, t1) ∧ · · · ∧ V(xn, tn),

in order to enforce that any hypothesis contains a truth assignment for the existentially
quantified variables. For the variables y1, . . . , ym, this is handled by a special choice
of p, which ensures that the probabilities of the incomplete assignments sum up to a
value that is smaller than the probability of a single complete assignment; hence, we
can ignore the incomplete assignments when counting the complete assignments. The
program Σ hence only needs to contain the two NCs

V(v, 0) ∧ V(v, 1)→ ⊥
C(v1, t1, v2, t2, v3, t3) ∧ V(v1, t1) ∧ V(v2, t2) ∧ V(v3, t3)→ ⊥.

To find an appropriate value for p, consider a fixed hypothesis (which specifies an
assignment for the existentially quantified variables), and a single database that contains
exactly one of each of the pairs of tuples V(yj , 0),V(yj , 1), for each yj , 1 ≤ j ≤ m. This
complete assignment has a probability of pm(1− p)m (if we ignore all other atoms).

We now compute the probability mass of all incomplete assignments for y1, . . . , ym.
For a fixed number k of “incomplete variables”, there are

(m
k

)
2m−k such assignments,

since we can first choose k out of m variables yj for which neither atom V(yj , 0),V(yj , 1)
is true, and we have binary choice for each of the remaining m − k variables. Each
such assignment has a probability of pm−k(1− p)m+k, and hence in total the incomplete
assignments have a probability of

m∑
k=1

(m
k

)
2m−kpm−k(1− p)m+k = 2mpm(1− p)m

m∑
k=1

(m
k

) (
1−p
2p

)k

= 2mpm(1− p)m
((

1 + 1−p
2p

)m
− 1

)
by the binomial theorem. Recall that our goal is to make this number smaller than
pm(1− p)m, and hence we need to solve the inequation

1 >
(

p+1
p

)m
− 2m,

which is equivalent to
p >

1
(1 + 2m)

1
m − 1

.

Since the latter term is always smaller than 1, it is possible to choose p as required, e.g.,
p = 1− 2−2m, which has only linearly many digits.

Now we have that Φ is valid if and only if there exists a hypothesis H |= (QΦ,Σ) whose
consistent extensions sum up to probability (under PΦ) of at least 0.25n · c · pm(1− p)m.
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Indeed, if there exists such an H, then it represents a truth assignment for x1, . . . , xm,
which accounts for the term 0.25n (see the proof of Theorem 7.33). But then to obtain
the probability threshold, there must exist at least c complete assignments for y1, . . . , ym,
since the incomplete assignments on their own do not add up to pm(1− p)m. Conversely,
if Φ is valid, we can use that information to choose a hypothesis that admits at least c
extensions that represent complete truth assignments for y1, . . . , ym. Observe that the
program used in the reduction does not depend on the input formula and all the arities of
the predicated are bounded, which lets us to conclude that MPH(UCQ,NC) is NPPP-hard
in both fixed-program and bounded-arity complexity.

Our results entail an interesting connection to the data complexity dichotomy for
probabilistic query evaluation in PDBs (Dalvi and Suciu 2012). We build on Theorem 7.32
and show a direct reduction from MPH for FO-rewritable languages to probabilistic
query evaluation in PDBs, which implies a data complexity dichotomy between P and
PP (Dalvi and Suciu 2012).

Theorem 7.35 (dichotomy) For FO-rewritable languages L, MPH(UCQ,L) is either
in P or PP-hard in data complexity under polynomial time Turing reductions.

Proof. Recall the proof of Theorem 7.32. According to (Dalvi and Suciu 2012), the
evaluation problem for the UCQ Q⊥,Σ over a PDB P is either in P or PP-hard (under
polynomial time Turing reductions). In the former case, MPH can also be decided in
deterministic polynomial time. In the latter case, we reduce the evaluation problem for
Q⊥,Σ over a PDB P to the MPH for QΣ and Q⊥,Σ over some PDB P̂ ⊇ P .

For the reduction, we introduce an “artificial match” for QΣ into P̂, by adding new
constants and atoms (with probability 1) that satisfy one disjunct of QΣ, while taking
care that these new atoms do not satisfy Q⊥,Σ. Such atoms must exist if QΣ is not
subsumed by Q⊥,Σ; otherwise, all hypotheses would trivially have the probability 0
(and hence the MPH would be decidable in polynomial time). In P̂, the probability of
the most probable hypothesis for QΣ and Q⊥,Σ is the same as the probability of Q⊥,Σ
over P, and hence deciding the threshold is PP-hard by (Dalvi and Suciu 2012) and
Corollary 3.18.

With this dichotomy result, we conclude our complexity analysis regarding MPH for
OMQs. We now provide an overview of the results.

Overview of the Results

The complexity results for MPH are summarized in Table 7.6. As for MPD, all the
deterministic complexity classes from Table 7.6 are a consequence of Theorem 7.30 which
is of a generic nature. We discuss the remaining results in more detail.

Observe that the data complexity results for MPH are not as uniform as MPD. In
Theorem 7.32, we have shown a nontrivial PP upper bound for MPH in data complexity.
This result is further strengthened by a classification result given in Theorem 7.35, which
asserts that MPH is either in polynomial time or PP-hard for OMQs relative to FO-
rewritable Datalog± languages. In contrast, by Theorem 7.33, MPH is NPPP-complete
for Datalog± classes, for which OMQA is P-complete in data complexity.
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Table 7.6: Complexity results for MPH for ontology-mediated queries. Results marked
with ∗ hold under poynomial time Turing reductions; all the remaining results
are shown under standard many-one reductions.

Datalog±

Languages
Most Probable Hypothesis

data fixed-program bounded-arity combined

NC in P vs PP∗ NPPP NPPP NPPP

L LF, AF in P vs PP∗ NPPP NPPP PSpace
S, SF in P vs PP∗ NPPP NPPP Exp

A in P vs PP∗ NPPP PNE PNE

GF, F NPPP NPPP NPPP Exp
G NPPP NPPP Exp 2Exp

WS, WA NPPP NPPP 2Exp 2Exp
WG Exp Exp Exp 2Exp

This contrast in data complexity disappears for the fixed-program complexity as
already MPH(UCQ,NC) is NPPP-complete in fixed-program complexity and also in
bounded-arity complexity (see Theorem 7.34). Observe also that all remaining lower
bounds in bounded-arity and combined complexity follow from Theorem 7.31, which
shows a direct reduction from MPD to MPH in all cases except for the data complexity.

7.4 Related Work and Outlook

Our work builds on the research on probabilistic databases (Imieliński and Lipski 1984;
Suciu et al. 2011), which we already reviewed as part of the state of the art in Chapter 3.
Our focus is on tuple-independent probabilistic databases, with an emphasis on the
dichotomy result of (Dalvi and Suciu 2012). We first review related work for probabilistic
OMQ evaluation and afterwards for the problems of most probable world and most
probable hypothesis for OMQs.

Ontology-Mediated Queries and (Open-World) Probabilistic Databases. Motivated
by the need of incorporating commonsense knowledge, we extend PDBs (and OpenPDBs)
with ontological knowledge based on the possible world semantics. In the resulting
formalism, ontological rules induce dependencies and the tuple-independence assumption
of PDBs is relaxed as a consequence of such rules. We note that incorporating rules
to reason over probabilistic facts is an old idea (Poole 1997; Sato 1995). The main
difference of our approach is in the semantics of the underlying language.

Our framework enriches PDBs and OpenPDBs further by mediating the query with
an ontology, where the query evaluation problem over a database is replaced with a
logical entailment problem, allowing us to deduce implicitly encoded facts. Interpreting
databases under commonsense knowledge in the form of ontologies is a well-known
paradigm (Poggi et al. 2008), which has been very widely studied in the context of
classical databases.
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Ontology-based access to probabilistic data has been studied before for lightweight
Description Logics, and the data complexity dichotomy result of PDBs is lifted to the
light-weight description logics EL and DL-Lite over PDBs (Jung and Lutz 2012), whereby
authors also describe the case of an ontology language that is not FO-rewritable and
causes all CQs of a certain form to become #P-hard. Note that this approach allows
only a unique probability distribution, and it assigns the probability zero to facts that are
not entailed by the knowledge base; therefore, it is very different than probabilistic OMQ
evaluation in OpenPDBs. We consider this as a very closely related work to probabilistic
OMQ evaluation in PDBs, but note that we consider the more expressive languages of
the Datalog± family and we also provide combined complexity results (all of which are
of a decision-theoretic nature).

Recall that both PDBs and OpenPDBs assume a fixed and finite domain. This is also
relaxed in the semantics of Datalog±. More precisely, note that Datalog± vocabulary
additionally allows infinitely many nulls. Therefore, although the probability distribution
is still defined over finitely many objects, we can now reason over domains, which include
an infinite number of unknown objects. This is also a main difference with (function-
free) probabilistic logic programming (De Raedt, Kimmig, and Toivonen 2007) and
Markov Logic Networks (Richardson and Domingos 2006) as already pointed out in the
introduction.

Another probabilistic extensions of Datalog± is given in (Gottlob, Lukasiewicz, Mar-
tinez, and Simari 2013), which result from a combination of ontologies and Markov logic
networks (Richardson and Domingos 2006). Both the semantics and the assumptions used
in this works is very different than ours. Rather less closely related work is probabilistic
XML (Abiteboul, Chan, Kharlamov, Nutt, and Senellart 2011; Kimelfeld and Senellart
2013). We will review other probabilistic ontology languages based on Description Logics
in Chapter 8.

There are several interesting directions of future work. We clearly need to develop
systems that can do probabilistic reasoning on a large-scale, which is a very challenging
problem and a long-term goal. Nevertheless, the technical results presented in this work
equips us with some concrete directions to achieve this goal. As a first step, we can use
a query rewriting tool for ontology-mediated query answering and reduce probabilistic
OMQ evaluation to query evaluation in probabilistic relational databases. Besides, for all
problems, studied in this chapter, we have presented a mostly complete picture in terms
of the computational complexity of these problems. There are, however, many interesting
problems left open. For instance, it is open whether a data complexity dichotomy result
between P and PP holds for PQE(UCQ,G) in PDBs.

Finally, we note that the tuple-independence assumption is not a semantic baseline
and rather a requirement in the computational sense. As pointed out before, ontological
rules break down the independence of facts and improves some query answers. However,
all the remaining facts are still assumed to be independent. Besides, for probabilistic
OMQ evaluation in OpenPDBs, we focused on only consistent completions. It is more
reasonable to define an entropy principle so that the inconsistent completions ruled
out in the semantics. A promising direction is the random worlds semantics (Grove,
J. Y. Halpern, and Koller 1994), which we also leave as future work.
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7.4 Related Work and Outlook

Ontology-Mediated Queries and Maximal Posterior Computations. Our work is in-
spired by the maximal posterior probability computations in PGMs (Koller and Friedman
2009; Pearl 1988). It is well-known that they are a form of abduction, which clearly also
applies to the problems studied here. Maximal posterior probability computations are
central in PGMs and in statistical relational learning. However, analogous problems
have not been studied in depth in the context of PDBs. To our knowledge, the only
work in this direction is on most probable databases (Gribkoff, Van den Broeck, and
Suciu 2014a), which we use as a starting point.

Most of our data complexity results are covered by the classes NP, ΣP
2 , PP, and

NPPP. Though intractable, they are at the core of many important problems, which
motivated a body of work tailored towards scalable algorithms for these classes. There
is an immediate connection between MPE and weighted MAX-SAT (Sang, Beame,
and Kautz 2007). Similarly, advances in knowledge compilation (Park and Darwiche
2004a; Pipatsrisawat and Darwiche 2009) and model counting (Chakraborty, Meel, and
Vardi 2016; Fremont, Rabe, and Seshia 2017) are tailored to achieve optimal, scalable
algorithms for problems related to classes such as PP and NPPP.

Finally, both MPD and MPH can be cast into their propositional variants using
the lineage representation of queries, which gives immediate access to such algorithms.
However, there is need for future work in this direction, as grounding is not an optimal
way of handling these problems; performing inference directly on FO-structures is known
to be more efficient.
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Chapter 8

Probabilistic Data Access with Description Logics

One of the central limitations of Description Logics, in their classical form, is their
inability to handle uncertain knowledge and data. Since uncertainty is inherent to
many application domains and data collection systems (such as large-scale probabilistic
knowledge bases), it is fundamental for DLs to provide effective methods to handle it.

One recent proposal for dealing with uncertain knowledge is in the form of Bayesian
ontology languages (Ceylan and Peñaloza 2014b, 2017). The basic idea behind these
languages is to extend classical DL-based formalisms with a compact representation of
the joint probability of the axioms in the ontology with the help of a Bayesian network.
Compared to other approaches for dealing with uncertainty, Bayesian ontology languages
have the advantage of making no implicit independence assumptions, while still remaining
succinct.

On the one hand, Bayesian Ontology Languages extend classical ontology languages
with the capability of representing and reasoning over uncertain domains. On the other
hand, one can think of Bayesian ontology languages as a generalization of BNs. Under
this view, every valuation of the variables in the BN corresponds to a classical first-order
KB, rather than just a propositional world.

We first study ontology-mediated query answering in Bayesian ontology languages,
called Bayesian query evaluation and provide a thorough investigation. In the second
part of this chapter, we propose a novel monitoring approach that combines the power of
Bayesian ontology languages with dynamic BNs. The resulting formalism is then called
dynamic Bayesian ontology languages (DBOLs). Briefly, we use dynamic BNs to define
a state-transition system over a distinguished and fixed set of variables to be monitored,
and ontologies to encode the rich background knowledge.

8.1 Bayesian Ontology Languages

Bayesian ontology languages (BOLs) are introduced as a means of modeling structured
knowledge in uncertain domains (Ceylan and Peñaloza 2014b, 2017). The main assump-
tion in BOLs is that every piece of ontological knowledge is required to hold in a given
context, which is formalized as a propositional formula over the variables of a BN. By
specifying a probability distribution over the contexts (through the BN), BOLs allow
for ontological reasoning under uncertainty. We shortly revisit the basics of BOLs and
study ontology-mediated query answering for BOLs.

The vocabulary of Bayesian ontology languages extends classical DL vocabulary with
the variables V of the given BN. Bayesian ontology languages extend the syntax of the
underlying ontology language using propositional annotations, called contexts.
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Definition 8.1 Let B be a BN defined over the variables V . A context over a BN B is
a propositional formula ϕ over the variables V of B. A probabilistic axiom (over a BN
B) is of the form 〈α : ϕ〉, where α is a TBox axiom, and ϕ is a context over B. Similarly,
a probabilistic assertion (over a BN B) is of the form 〈α : ϕ〉, where α is an assertion,
and ϕ is a context over B. ♦

In the following, we write α to abbreviate 〈α : true〉, where true denotes the context
that is satisfied by all the worlds, also called the global context. Given the definitions of
probabilistic axioms/assertions, probabilistic knowledge bases are defined as follows.

Definition 8.2 A probabilistic TBox T (over a BN B) is a finite set of probabilistic
axioms over to a BN B. A probabilistic ABox A (over a BN B) is a finite set of probabilistic
assertions over a BN B. A probabilistic knowledge base is a triple K = (T ,A,B), where
B is a BN, T is a probabilistic TBox over B, and A is a probabilistic ABox over B. ♦

Whenever the BN is clear from the context, we will simply write (probabilistic)
TBox/ABox, and (probabilistic) axiom/assertion, for ease of presentation.

Semantically, BOLs are composed of two layers as we discuss next. The following
definition introduces interpretations, which extend classical DL interpretations to be
able to decide when a probabilistic axiom or assertion is satisfied.

Definition 8.3 An interpretation is a tuple I = (∆I , ·I ,VI) where (∆I , ·I) is a clas-
sical first-order interpretation, and VI is a valuation of the variables of the BN. The
interpretation I satisfies a probabilistic axiom (or a probabilistic assertion) of the form
〈α : ϕ〉, denoted I |= 〈α : ϕ〉, if and only if either (i) VI 6|= ϕ, or (ii) (∆I , ·I) |= α. The
interpretation I is a model of a probabilistic TBox T (resp., ABox A) if it satisfies all
probabilistic axioms (resp., probabilistic assertions) in T (resp., A). ♦

The second layer of the semantics introduces probabilistic interpretations, which define
a probability distribution over a set of interpretations. To be a model, a probabilistic
interpretation is required to define a probability distribution that is consistent with the
BN.

Definition 8.4 A probabilistic interpretation is a pair I = (I,PI), where I is a set of
interpretations I, and PI is a probability distribution over I such that PI(I) > 0 only
for finitely many interpretations I ∈ I. I is a model of the probabilistic TBox T (resp.,
ABox A) if every I ∈ I is a model of T (resp., A). I is consistent with the BN B if for
every valuation W of V it holds that∑

I∈I,VI=W

PI(I) = PB(W).

The probabilistic interpretation I is a model of the KB K = (T ,A,B) if and only if it is
a model of (T ,A), and it is consistent with B. ♦

Consider again the health-care scenario encoded into a BN as given in Figure 8.1.
Suppose that we would like to encode the global knowledge about patients, such as high
systolic pressure implies hypertension, or any male patient with a finding of hypertension
is under the risk of having myocardial infarction. These are typical statements of a
first-order nature, which is in widespread use in health-care scenarios (Pisanelli 2004),
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F

S

C

c ¬c

f s 0.7 0.3
f ¬s 0.6 0.4
¬f s 0.5 0.5
¬f ¬s 0.1 0.9

f ¬f

0.3 0.7

s ¬s

f 0.9 0.1
¬f 0.3 0.7

Figure 8.1: The BN Bh over the variables Vh = {F, S,C} (repeated from Figure 5.1).

and can be conveniently modeled by choosing an appropriate ontology language. The
following example shows that BOLs are appropriate for modeling such scenarios.

Example 8.5 Consider the TBox Th that consists of the axioms

∃pressure.High ≡ ∃finding.Hypertension,
∃cholesterol.High ≡ ∃finding.Hypercholesteremia,

∃finding.Hypertension u ∃finding.Hypercholesteremia uMale v ∃risk.MyocardialInfarction,
MyocardialInfarction v CriticalSituation.

Note that the TBox is a classical one, i.e., it uses only axioms with global context. For
instance, the first axiom in the TBox states that anyone with a high systolic pressure has
a finding of hypertension. Consider further the ABox Ah, which contains the assertions

Patient(bob),Male(bob),High(h),
〈pressure(bob, h) : s〉, 〈¬pressure(bob, h) : ¬s〉,

〈Fatigue(bob) : f〉, 〈cholesterol(bob, h) : c〉, 〈¬cholesterol(bob, h) : ¬c〉.

The ABox Ah contains probabilistic assertions, such as 〈cholesterol(bob, h) : c〉, and
therefore, it is a probabilistic ABox. The probabilistic information is associated with the
BN Bh, depicted in Figure 8.1. Then, Kh = (Th,Ah,Bh) defines a probabilistic KB. ♦

It is easy to see that Bayesian ontology languages are a generalization of BNs. Fur-
thermore, they are also a generalization of ontology languages, i.e., if we associate all
axioms and assertions with the global context, we obtain a classical knowledge base.
Importantly, with the help of ontologies, we gain additional expressivity, and we can
encode structured information in a more concise and adequate manner. To date, the
focus on BOLs was on light-weight ontology languages and on classical reasoning tasks
such as subsumption (Ceylan and Peñaloza 2014b). We study ontology-mediated query
answering for BOLs and consider different, prominent DLs as the underlying ontology
languages.
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8.1.1 Query Evaluation in Bayesian Ontology Languages
Querying ontologies is an important task, and conjunctive queries form the central
querying tool for classical ontologies. On the other hand, inference in BNs is based on
primitive queries in the form of propositional events, and answers to such queries are
probabilistic. Being a combination of these formalisms, Bayesian ontology languages
provide both a rich query language and probabilistic answers to queries.

Definition 8.6 (semantics) Let K = (T ,A,B) be a probabilistic KB, and Q be a
Boolean query. The probability of Q w.r.t. a probabilistic interpretation I = (I,PI),
denoted PI(Q), is given as follows:

PI(Q) :=
∑

I∈I,I|=Q

PI(I).

The lower (resp., upper) probability of a Boolean query Q, denoted PK(Q) (resp., PK(Q))
w.r.t. K is given as follows:

PK(Q) := inf
I|=K

PI(Q) (resp., PK(Q) := sup
I|=K

PK(Q)).
♦

In a nutshell, every Boolean query is now associated with a lower and upper probability
value, which draw boundaries to the likelihood of the query. Intuitively, the lower
probability is determined based on the given knowledge that is currently known, and the
upper probability is determined based on consistent completions of the given knowledge.
This distinction is important both in theoretical and in practical sense.

From a theoretical perspective, ontologies do not make any completeness assumptions.
Therefore, limiting the probabilistic model to only consider lower probabilities, would
also limit the query semantics to the knowledge that is known. This would not be in line
with the nature of these formalisms. From a practical perspective, while querying highly
incomplete sources, lower probabilities will not be very informative for many queries,
i.e., they will evaluate to very low probabilities, making them hardly distinguishable.
In such cases, upper probabilities can provide meaningful answers on how possible, or
impossible such queries are.

Our choice for lower and upper probabilities can be seen analogous to credal net-
works (Cozman 2000), which generalize Bayesian networks with sets of probability
distributions. Nevertheless, in our framework, we still require a unique probability distri-
bution to be specified, which, in turn, restricts the set of all probability distributions
through probabilistic interpretations.

Definition 8.7 (Bayesian query evaluation) Given a probabilistic knowledge base
K = (T ,A,B), a UCQ Q, and a probability p ∈ (0, 1], lower (resp., upper) Bayesian
query evaluation, denoted BQE (resp., BQE), is to decide whether PK(Q) > p (resp.,
PK(Q) > p). BQE (resp., BQE) is parametrized with the language of the ontology and
the query; we write BQE(Q,L) (resp., BQE(Q,L)) to define BQE on the class Q of queries
and on the class of ontologies restricted to the language L. ♦

Note that we ignore inconsistencies, as before. This is a reasonable assumption
for this problem, since it is always possible to normalize the probability distribution
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to only consider the consistent worlds. On the other hand, there are more elaborate
methods, known as inconsistency-tolerant reasoning, in database theory (Arenas, Bertossi,
and Chomicki 1999), as well as in DLs (Lembo, Lenzerini, Rosati, Ruzzi, and Savo
2010), which recently has also been investigated in the context of probabilistic ontology
languages (Ceylan, Lukasiewicz, and Peñaloza 2016). These are outside the focus of the
current work.

We first show a naïve approach for computing the lower probability of a query. Formally,
for a valuation W of the variables V of the BN, we define KW = (TW ,AW), where

TW := {α | 〈α : ϕ〉 ∈ T ,W |= ϕ} and AW := {α | 〈α : ϕ〉 ∈ A,W |= ϕ}.

Intuitively, KW represents an abstraction of the probabilistic knowledge base K with
respect to a valuationW . Thus, for every worldW , KW defines a classical knowledge base
containing all and only those axioms that are required to hold in this world. Based on
this, we are able to compute the probability of a query by naively adding the probability
PB(W) for every world W that satisfies AW |= (TW , Q), as summarized next.

Theorem 8.8 Given a probabilistic KB K = (T ,A,B) and a Boolean query Q, it holds
that

PK(Q) =
∑

AW |=(TW ,Q)
PB(W),

where W denotes a valuation over the variables of the BN B, AW is a classical ABox,
TW is a classical TBox and AW |= (TW , Q) is classical OMQA.

Proof. For the given probabilistic KB K = (T ,A,B) and the query Q, we define a
probabilistic interpretation I = (I,PI) where I contains, for every valuation W of the
variables V , exactly one interpretation I = (∆I , ·I ,VI) such that

VI =W,

(∆I , ·I) |= (TW ,AW),
(∆I , ·I) |= Q if and only if AW |= (TW , Q).

(8.1)

Notice that the existence of a model for (TW ,AW) is ensured by our consistency assump-
tion. Similarly, the last condition can always be fulfilled, i.e., if AW |= (TW , Q), then we
can choose any model, otherwise, we choose one model such that (∆I , ·I) 6|= Q, which
must exist by definition. Furthermore, PI defines a probability distribution over the
interpretations I ∈ I such that

PI(I) = PB(W) if and only if VI =W. (8.2)

We show that I is a model of K. We start by showing that I is a model of T and of
A for all I ∈ I. Observe that, for all axioms 〈α : ϕ〉 ∈ T , if the valuation W satisfies
ϕ, it follows that I |= 〈α : ϕ〉 since (∆I , ·I) is a model of TW by (8.1). If, on the other
hand, the valuation W does not satisfy ϕ for some axiom 〈α : ϕ〉 ∈ T then I |= 〈α : ϕ〉
is a trivial consequence of the semantics. Thus, we have shown that I is a model of
T . By analogous arguments, it is easy to see that I is also a model of A. Moreover,
the probability distribution PI is clearly consistent with the BN B by 8.2. Thus, we
conclude that I |= K.
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Finally, since I |= Q if and only if AW |= (TW , Q) for all I ∈ I, where VI = W, we
obtain that

PK(Q) = inf
I|=K

PI(Q) ≤ PI(Q) =
∑

I∈I,I|=Q

PI(I)

=
∑

VI=W
AW |=(TW ,Q)

PI(I)

=
∑

AW |=(TW ,Q)
PB(W).

Suppose now that the inequality is strict. Then, there must exist a model H = (J,PJ)
such that

PH(Q) <
∑

AW |=(TW ,Q)
PB(W).

Without loss of generality, we can assume that the probabilistic model H contains
exactly one interpretation I ∈ J for every world W. Such models, called pithy models,
always exist (Ceylan and Peñaloza 2017). This yields

PH(Q) =
∑

I∈J,I|=Q

PJ(I) <
∑

AW |=(TW ,Q)
PB(W),

which holds if and only if PJ(I) < PB(W) for some I ∈ J where VI =W . Since, H is a
pithy model, I is the only interpretation with VI =W . This implies that the probability
distribution PJ is not consistent with the BN B, which contradicts the assumption that
H is a model.

To compute the upper probability of a query, we need to identify models that entail
the query in as many worlds as possible. Since ontologies employ the OWA, it is always
possible to define a model that entails a query, except for the case when explicit negative
information is given about the query. Thus, it is sufficient to compute the probabilities
of the worlds that contradict the query and then subtract the probability of such worlds
from 1.

To be able to detect the worlds where the query can not be entailed (without implying
an inconsistency), we transform the query into its dual form. Formally, given a Boolean
query Q, the lower and upper probabilities for the negated query ¬Q are defined as
before. Then, we show that computing the upper probability of a query Q can be reduced
to computing the lower probability of ¬Q.

Theorem 8.9 Given a probabilistic KB K = (T ,A,B) and a UCQ Q, it holds that

PK(Q) = 1− PK(¬Q).

Proof. Given a probabilistic KB K = (T ,A,B) and a query Q = Q1 ∨ . . . ∨Qn, let
gr(Qi) be the set of atoms from a grounding of Qi with fresh constants. Observe that
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AW |= (TW ,¬Q) if and only if AW ∪ gr(Qi) |= (TW ,⊥) for all 1 ≤ i ≤ n, which implies
that

PK(¬Q) =
∑

AW |=(TW ,¬Q)
PB(W) =

∑
∀i:AW ∪gr(Qi)|=(TW ,⊥)

PB(W).

Thus, to prove PK(Q) = 1− PK(¬Q), it is sufficient to show that

PK(Q) = 1−
∑

∀i:AW ∪gr(Qi)|=(TW ,⊥)
PB(W). (8.3)

To prove the inequality ≥ for the Equation 8.3, we define a probabilistic interpretation
I = (I,PI) where I contains, for every valuation W of the variables V , exactly one
interpretation I = (∆I , ·I ,VI) such that

VI =W,

(∆I , ·I) |= (TW ,AW),
(∆I , ·I) |= Q iff AW ∪ gr(Qi) 6|= (TW ,⊥) for some 1 ≤ i ≤ n.

(8.4)

As before, the existence of a model for (TW ,AW) is ensured by our consistency assump-
tion. Analogously, the last condition can always be fulfilled, i.e., if AW∪gr(Qi) 6|= (TW ,⊥)
then, we can find a model that satisfies Qi, and thus Q. If, on the other hand,
AW ∪ gr(Qi) |= (TW ,⊥) then any model can be chosen since none of the queries
Q1 . . . Qn is satisfiable by any of the models. Furthermore, PI defines a probability
distribution over the interpretations I ∈ I such that

PI(I) = PB(W) if and only if VI =W. (8.5)

Based on Equivalence 8.4 and 8.5, we can apply analogous arguments as in Theorem 8.8
to show that I is indeed a model of K. Then, we obtain that

PK(Q) = sup
I|=K

PI(Q) ≥ PI(Q) =
∑

I∈I,I|=Q

PI(I) =
∑

VI=W,
∃i:AW ∪gr(Qi)6|=(TW ,⊥)

PI(I)

= 1−
∑

VI=W,
∀i:AW ∪gr(Qi)|=(TW ,⊥)

PI(I)

= 1−
∑

∀i:AW ∪gr(Qi)|=(TW ,⊥)
PB(W).

Suppose now that the inequality is strict. Then, there must exist a model H = (J,PJ)
such that

PH(Q) > 1−
∑

∀i:AW ∪gr(Qi)|=(TW ,⊥)
PB(W).

As before, we can assume that the probabilistic model H contains exactly one inter-
pretation I ∈ J for every world W and get that

PH(Q) =
∑

I∈J,I|=Q

PJ(I) > 1−
∑

∀i:AW ∪gr(Qi)|=(TW ,⊥)
PB(W),
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which holds if and only if it holds that∑
I∈J,I|=Q

PJ(I) >
∑

∃i:AW ∪gr(Qi)6|=(TW ,⊥)
PB(W).

Since, H is a pithy model, we have that PJ(I) = PB(W) for all I ∈ I where
VI = W. Then, there must exists an interpretation I ∈ I where I |= Q holds, while
AW ∪ gr(Qi) |= (TW ,⊥) for all i. The latter holds if and only if AW |= (TW ,¬Qi) for
all i. Since H is a model, I must satisfy (TW ,AW), by definition. But then, we obtain
I |= ¬Qi for all i, which implies that I |= ¬Q, which is a contradiction. Thus, we have
proven the Equivalence 8.3 and thus the result.

With the help of Theorem 8.8 and Theorem 8.9, we can compute the lower and upper
probabilities for ontological queries. We now illustrate Bayesian query answering on our
running example and give more insights on these probability computations.

Example 8.10 Consider again the KB K = (Th,Ah,Bh). Instead of querying the BN
directly thorough elementary probabilistic events, we can pose ontology-mediated queries.
For instance, instead of querying whether a patient has high systolic pressure, we can
now pose high-level queries, such as whether a patient is in a critical situation, specified
by the query

Qbob = ∃x Patient(bob) ∧ risk(bob, x) ∧ CriticalSituation(x).

It is easy to see that bob is a patient that is at risk of a critical situation, and we obtain

PKh
(Qbob) =

∑
AW |=(TW ,Q)

PBh
(W) = PBh

(s ∧ c) = .294.

Furthermore, we also have PKh
(Qbob) = 1, as we can assert that bob is in a critical

situation by adding the assertion CriticalSituation(bob), and this is not in conflict with
existing knowledge. In fact, there may be other types of critical situations beyond the
ones described by the ontology. Consider, on the other hand, the query

Q′
bob = ∃x finding(bob, x) ∧ Hypertension(x).

For Q′
bob, we observe that

PKh
(Q′

bob) = PBh
(s) = PKh

(Q′
bob) = .48,

since bob can have hypertension if and only if he has high systolic pressure. Thus, we
exclude all worlds where bob does not have a high systolic pressure. ♦

As pointed before, the lower probability is determined based on the given knowledge,
and the upper probability is determined based on consistent completions of the given
knowledge. For instance, the knowledge base Kh asserts that high fever can cause fatigue,
but does not exclude the possibility of other causes of fatigue, even though nothing
specific is known about this.
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Complexity Results for Bayesian Query Evaluation

In our technical analysis, we study data complexity and combined complexity for proba-
bilistic Bayesian query evaluation, as is customary in DLs. We first discuss BQE and
then extend our analysis BQE.

Complexity Results for BQE

We first show how Theorem 8.8 can be exploited in order to obtain rather general
membership results for lower Bayesian query answering.

Theorem 8.11 Let C denote the data (respectively, combined) complexity of ontology-
mediated query answering for a DL L. BQE(UCQ,L) is C-hard and in PPC under the
same complexity assumptions.

Proof. Hardness follows from the fact that BOLs are generalizations of ontology languages:
more precisely, if we assume that all axioms are annotated with the global context, we
obtain a classical ontology. As for membership, BQE(UCQ,L) is in PPC due to the
following reason. Given a probabilistic KB K = (T ,A,B) a UCQ Q, and a threshold
value p ∈ [0, 1), we construct a nondeterministic Turing machine by creating multiple
copies of the worlds KW (where W is a valuation over the variables of the BN) such that
they correspond to the nondeterministic branches of a Turing machine and to the uniform
distribution over all thus generated worlds. As before, we introduce artificial success
(resp., failure) branches into the nondeterministic Turing machine such that satisfying
the original threshold corresponds to having a majority of successful computations. Since
every branch of the TM corresponds to a KB KW = (TW ,AW), and OMQA in L is
in C, every such computation path can decide whether AW |= (T , Q) using a C oracle.
Then, P(T , Q) > p is true if and only if more than half of the computations paths of the
nondeterministic TM are accepting.

We deepen our analysis with the data complexity results. On a rather unsurprising
result, we show that Bayesian query answering is as hard as probabilistic inference in
BNs, for logics where OMQA is polynomial time in data complexity.

Theorem 8.12 BQE(IQ,L) is PP-hard in data complexity.

Proof. PP-hardness is an immediate consequence of a reduction from probabilistic
inference in BNs. Given a BN B, an arbitrary event x, and a threshold value p ∈ [0, 1),
we can reduce the problem of deciding PB(x) > p to lower Bayesian query evaluation,
as follows. We define the ABox A which consists of a single probabilistic assertion
〈A(a) : x〉 and the probabilistic KB K = (∅,A,B). Then, we obtain P(A(a)) > p if and
only if PB(x) > p. Note that A(a) is an instance query, which implies that BQE(IQ,L)
is PP-hard.

For our data complexity analysis, logics for which OMQA is coNP-complete form the
most interesting case in the technical sense. The next result shows that the complexity
of probabilistic query evaluation goes one level higher in the counting polynomial-time
hierarchy for such logics in data complexity.

Theorem 8.13 BQE(IQ,ALC) is PPNP-hard in data complexity.
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Proof. To show hardness, we again reduce from the validity of formulas of the form

Φ := Cc x1, . . . , xm∃y1, . . . , yn ϕ1 ∧ ϕ2 ∧ · · · ∧ ϕk ,

where every ϕi is a propositional clause over x1, . . . , xm, y1, . . . , yn, and k,m, n≥ 1. As
before, we also assume, without loss of generality, that ϕ contains all clauses of the form
xj ∨ ¬xj , 1 ≤ j ≤ m, and similarly yj ∨ ¬yj , 1 ≤ j ≤ n and that each clause ϕj contains
exactly three literals. We first define the BN BΦ over the variables x1 . . . xm such that
PB(W) = 0.5m. Then, we define the ABox AΦ as follows.

– For each variable xj , 1 ≤ j ≤ m, it contains the assertions 〈T(xj) : xj〉 and
〈F(xj) : ¬xj〉, representing the truth assignments of x-variables.

– For each variable yj , 1 ≤ j ≤ n, it contains the assertions L(yj).
– Each clause ϕj is described with the help of the binary predicates pos1 . . . pos3

and neg1 . . . neg3. For example, consider the clause ϕj = x2 ∨ ¬y4 ∨ y1. For the
satisfying assignment x2 7→ true, y4 7→ true, y1 7→ false, we add the assertion
pos1(j, x2), pos2(j, y4), neg3(j, y1), and similarly for all other satisfying assignments.
There are at most 7 satisfying assignments for each clause.

We now define the TBox TΦ containing the axiom

L v (T t F) u ¬(T u F),

which intuitively assigns each variable yj , 1 ≤ j ≤ n exactly one truth assignment. To
encode the satisfaction condition of the clauses in Φ, we additionally need the axioms

∃neg1.T u ∃neg2.T u ∃neg3.T v ⊥,
∃neg1.T u ∃neg2.T u ∃pos3.F v ⊥,

. . .

∃pos1.F u ∃pos2.F u ∃pos3.F v ⊥.

Then, for the query >, we obtain that Φ is valid if and only if PKΦ(>) > c · (0.5)m, which
concludes to the proof.

An analogous result to Theorem 8.12 can be obtained for the combined complexity:
For logics where OMQA is polynomial time in combined complexity, Bayesian query
evaluation becomes PPNP-hard.

Theorem 8.14 BQE(UCQ,DL-Lite) and BQE(UCQ, EL) are PPNP-hard in combined
complexity.

Proof. We again reduce from the validity of formulas of the form

Φ := Cc x1, . . . , xm∃y1, . . . , yn ϕ1 ∧ ϕ2 ∧ · · · ∧ ϕk ,

where every ϕi is a propositional clause over x1, . . . , xm, y1, . . . , yn, and k,m, n≥ 1. We
define the ABox AΦ as follows. For every clause ϕi, and for every satisfying assignment
ν to the clause ϕi, we define three probabilistic role assertions, ri, si, and ti, which
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together represent a satisfying assignment. There are 7 satisfying assignments for each
clause. For instance, for a clause ϕi = x ∨ ¬y ∨ z, we define the assertions〈

ri(ν(x), j) : ν|{x1,...,xm}∩{x}
〉
,〈

si(ν(y), j) : ν|{x1,...,xm}∩{y}
〉
,〈

ti(ν(z), j) : ν|{x1,...,xm}∩{z}
〉
,

where ν is the j-th truth assignment to the variables x, y, z that satisfies ϕi. and ν|x1...xm

denotes the partial assignment which is the restriction of ν to the variables {x1, . . . , xm}.
We construct the probabilistic KB KΦ = (∅,AΦ,BΦ), where the BN BΦ is defined over

the variables {x1, . . . , xm} with PB(W) = 0.5m for every valuation W of V and where

AΦ =
{ 〈

ri(ν(x), j) : ν|{x1,...,xm}∩{x}
〉
,〈

si(ν(y), j) : ν|{x1,...,xm}∩{y}
〉
,〈

ti(ν(z), j) : ν|{x1,...,xm}∩{z}
〉
| ν is the j-th satisfying assignment of ϕi

}
.

Consider now the following UCQ

QΦ = ∃j1 . . . jk, x1, . . . xm, y1, . . . yn,
k∧

i=1
ri(x, ji) ∧ si(y, ji) ∧ ti(z, ji),

which lifts the satisfaction condition of Φ: For every satisfying assignment ν to Φ there
is a corresponding world that satisfies the query QΦ and vice versa. Then, it is easy to
verify that

PK′(QΦ) > c · 0.5m if and only if Φ is valid.

Observe that the above reduction can clearly be done in polynomial time in the size of Φ,
and that the resulting TBox is empty. Moreover, the assertions used in the construction
are all positive and simple; thus, the hardness applies to both DL-Lite and EL.

Observe that all membership results follow from Theorem 8.11 except for SHOIQ.
Importantly, instance query answering is coNExp-complete for SHOIQ and we obtain
PPcoNExp upper bound as a result of Theorem 8.11. We note that the non-determinism
in the oracle coNExp calls are used in a restricted fashion (as in Theorem 7.9) and
obtain that BQE(IQ,SHOIQ) is in coNExp in combined complexity.

All of our results for lower Bayesian query evaluation are summarized in Table 8.1.
All of our results are in their most general form. i.e., all of the technical reductions
yield tight complexity bounds for lower Bayesian query answering for all logics under
consideration, with the only exception being SHOIQ. Therefore, the only cases that we
leave open are for SHOIQ is for unions of conjunctive queries.The precise complexity of
OMQA in SHOIQ for unions of conjunctive queries is a long standing open problem.

The data complexity results show an interesting pattern. Interestingly, all hardness
results hold already for instance queries. Arguably, the most notable result is the
PPNP-hardness of BQE(IQ,ALC), which clearly transfers to BQE(UCQ,ALC). Putting
aside the case of SHOIQ, all membership results are the same for instance queries and
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Table 8.1: Complexity results for lower BQE relative to different DLs.

Description
Logic

Query Evaluation in BOLs

Instance Queries Unions of Conjunctive Queries

data combined data combined

DL-Lite, DL-LiteR PP PP PP PPNP

EL, ELH PP PP PP PPNP

ELI, Horn-SHOIQ PP Exp PP Exp
ALC, ALCHQ PPNP Exp PPNP Exp
ALCI, SH, SHIQ PPNP Exp PPNP 2Exp
SHOIQ PPNP coNExp ≥ PPNP ≥ coN2exp

unions of conjunctive queries. The combined complexity results, on the other side, differ
significantly depending on whether we consider instance queries or conjunctive queries.
For example, while BQE(IQ, EL) is PP-complete (by Theorem 8.12), BQE(UCQ, EL) is
PPNP-complete and a similar phenomenon is observed also for DL-Lite, DL-LiteR and
ELH.

There are more insights regarding the complexity of Bayesian query evaluation. Note
that a major advantage of BOLs is the re-usability of the context variables for different
axioms. Intuitively, this means that a large portion of the ontology may be dependent
on similar factors (specified by the same context variables) and as a consequence the
size of the BN does not necessarily grow proportionally with the size of the data. This
makes a significant difference also in the theoretical sense since PPC-hardness is in
the size of the network. Therefore, if an application can ensure that the size of the
BN does not grow with the data, or is fixed, then the complexity of Bayesian query
evaluation will be the same as OMQA. In particular, for DLs such as EL, this implies
fixed-parameter tractability in data complexity. These observations have led to a proof-
of-concept reasoner (BORN) for Bayesian ontology languages (Ceylan, Mendez, and
Peñaloza 2015), which needs to be optimized further.

Complexity Results for BQE

We now discuss how our complexity results can be extended to upper Bayesian query
evaluation. Our first result illustrates a connection between the decision problems
P(Q) > p and P(Q) > p. More precisely, we show that checking P(Q) > p is at most as
hard as checking P(⊥) ≤ p.

Theorem 8.15 Let p ∈ (0, 1] be a threshold value, K = (T ,A,B) be a probabilistic
knowledge base, and Q be a Boolean query. Deciding whether PK(Q) > p can always
be reduced in polynomial time to deciding whether PK′(⊥) ≤ p′ for some probabilistic
knowledge base K′ and threshold p′.

Proof. Let K = (T ,A,B) be a probabilistic KB, Q = Q1 ∨ . . . ∨Qn a query and gr(Qi)
be the set of atoms from a grounding of Qi with fresh constants. By Theorem 8.9, we
know that PK(Q) = 1− PK(¬Q). We now describe a procedure for deciding whether
PK(¬Q) ≤ p, which in turn can be used to for deciding PK(Q) > p.
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Table 8.2: Complexity results for upper BQE relative to different DLs. Notice that the
upper probability is always 1 for the BOLs based on languages EL, ELH and
ELI since they can not express negative information. EL⊥, ELH⊥ and ELI⊥
denote the DLs that extend these languages with ⊥.

Description
Logic

Query Evaluation in BOLs

IQs and UCQs

data combined

DL-Lite, DL-LiteR PP PP
EL⊥, ELH⊥ PP PP
ELI⊥, Horn-SHOIQ PP Exp
ALC, ALCHQ PPNP Exp
ALCI, SH, SHIQ PPNP Exp
SHOIQ PPNP NExp

Let K′ = (T ′,A′,B′) be a probabilistic KB where A′ contains assertions of the form
〈a : qi〉 for all atoms a ∈ gr(Qi) and for 1 ≤ i ≤ n. Moreover, A′ contains, for all
probabilistic assertions 〈a : ϕ〉 ∈ A, an assertion of the form 〈a : ϕ ∧ (q1 ∨ . . . ∨ qn)〉.
Accordingly, the BN B′ extends the variables V of B to V ′ which contains the additional
variables q1, . . . , qn. Intuitively, the BN B′ differs from the BN B only in the sense that
B′ ensures that PB′(qi | qj) = 0 where i 6= j and PB′(qi) = 1/n for all newly introduced
variables. Notice that the construction of B′ can be exponential in the size of the query
if preformed naïvely. However, using auxiliary nodes, this construction can be done in
size polynomial of the given BN B, as in (Roth 1996).

Observe that, for all valuations W of the variables V , the entailment relation
AW |= (TW ,¬Q) in K holds if and only there exists a valuation W ′ |=W of the variables
V ′ such that A′

W ′ |= (TW ′ ,⊥) in K′. Using this and the fact that, PB′(W ′) = PB(W)·1/n,
we obtain

PK(¬Q) =
∑

AW |=(TW ,¬Q)
PB(W) = n ·

∑
A′

W′ |=(TW′ ,⊥)
PB(W ′),

which implies that we can decide PK(¬Q) ≤ p by deciding PK′(⊥) ≤ n · p.

Theorem 8.15 helps us to directly transfer some results from BQE to BQE. First of all,
it is sufficient to analyze the complexity of PK(⊥) ≤ p. Intuitively, this means that, we
need to sum over the probabilities of the inconsistent worlds. Notice that this is a trivial
problem for logics which can not express negative information. For example, for the DL
EL, the upper probability of a query will always be 1, which is an expected behavior

What about the other languages and the extensions of EL, ELH and ELI with ⊥? For
all these languages, the complexity of checking inconsistency, in our notation A |= (T ,⊥),
and the complexity of instance query answering is the same. As a result, we obtain
a general upper bound of PPC for BQE(UCQ,L), where C denotes the complexity of
inconsistency checking (same as instance query answering) in C. This is an immediate
consequence of Theorem 8.11 and Theorem 8.15. Note that this implies the same
complexity results as for BQE for all cases (since the hardness results apply modulo
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minor modifications). Notably, the difference between instance queries and unions of
conjunctive queries disappears for BQE as summarized in Table 8.2

Remark. Given the fact that upper Bayesian query evaluation can be seen as a special
case of lower Bayesian query evaluation, in the remainder of this chapter, we will only
focus on the lower Bayesian query evaluation for ease of presentation. Without further
notice, we simply write PK(Q), or BQE instead of PK(Q), or BQE and all the remaining
results are based on this assumption.

8.1.2 Incorporating Evidence to Ontological Queries
We have introduced Bayesian query evaluation and studied its computational complexity.
So far, we have not provided any means for incorporating evidence. We now show that
evidence can be incorporated into these problems in terms of conditional probabilities.

Formally, we define an evidence as a conjunction of elementary events over the BN
and denote it by e. Note that evidence can also be viewed as a partial valuation and
therefore the probability of the evidence itself can be computed as in BNs. Based on
these, we now define how to compute the conditional probability of a query given an
evidence.
Definition 8.16 (query evaluation with evidence) Let K = (T ,A,B) be a proba-
bilistic KB, Q a Boolean Query and e an evidence. The probability of a Q given e w.r.t.
a probabilistic interpretation I = (I,PI), denoted as PI(Q | e), is given by

PI(Q | e)× PI(e) = PI(Q ∧ e)

where

PI(Q ∧ e) =
∑

I∈I,I|=Q,VI |=e
PI(I) and PI(e) = PB(e).

The probability of a Boolean query Q given e, denoted PK(Q | e) is given by

PK(Q | e) := inf
I|=K

PI(Q | e).

The corresponding decision problem is defined as before. ♦

Being able to incorporate evidence is a fundamental task in probabilistic models as such
evidence may significantly change the query probability we are interested in. Consider,
for instance, our running example and suppose that we observed by some sensor readings
that bob has Hypertension. This observation clearly increases the probability of bob
being in a CriticalSituation. In fact, it holds that

PKh
(Qbob | s) = .361 > PKh

(Qbob) = .294

Clearly, Bayesian query evaluation under evidence is at least as hard as the case without
evidence since the latter is a special case of the former. Moreover, from Theorem 8.8, it
is easy to see that

PK(Q | e)× PB(e) =
∑

AW |=(TW ,Q)
W|=e

PB(W)
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for a probabilistic KB K = (T ,A,B). Intuitively, we can employ all techniques developed
for query evalution in BOLs to compute PK(Q | e) with the difference that we have to
consider the intersection of the worlds to incorporate evidence.

Given these and the fact that PP (and also PPNP, Exp, 2Exp, and coNExp) is closed
under intersection and union (Beigel, Reingold, and Spielman 1995), we can generalize
all our results for Bayesian query evaluation under evidence.

Corollary 8.17 The complexity of Bayesian query evaluation under evidence is the same
as the complexity of Bayesian query evaluation for all languages L given in Table 8.1.

8.1.3 Most Likely Contexts for Ontological Queries
As pointed earlier, Bayesian ontology languages can be viewed as a generalization of BNs.
As a consequence, standard inference problems in BNs transfer to BOLs in a natural
way. So far, we only focused on the query evaluation problem, which intuitively extends
probabilistic inference in Bayesian networks by incorporating first-order knowledge.

In this section, we study the problem of identifying the most likely context in Bayesian
ontology languages. Informally, finding the most likely context for a query can be seen
as the dual of computing the probability of a query. Intuitively, we are interested in
finding the context with the highest probability in which the query is entailed. As a
special case, we are interested in identifying the most likely world for a query.

Obviously, these problem are lifted from MAP and MPE in BNs (Koller and Friedman
2009; Park and Darwiche 2004b; Pearl 1988). We note that these problems are also
related to MPD and MPH (see Chapter 5) in a conceptual sense, but are different
in the technical sense. In Bayesian ontology languages, explanations are in terms of
propositional formulas (instead of database atoms), which are encoded in a BN (which,
unlike a tuple-independent PDB, encodes conditional dependencies).

Moreover, although a context can be in any form; for the problem of most likely context,
we restrict our attention to conjunctive formulas, which are simply a conjunction of
(positive or negative) propositional literals. For a probabilistic KB K = (T ,A,B), a
query Q and a context ϕ, we define

Aϕ |= (Tϕ, Q) if and only if AW |= (TW , Q) for all W |= ϕ,

which formalized the condition whether a query is entailed from a context ϕ. Given
these preliminaries, most likely context is defined as follows.

Definition 8.18 (most likely context) Let K = (T ,A,B) be a probabilistic KB and
Q a UCQ. The most likely context for a UCQ Q over a KB K is given by

arg max
ϕ

{ ∑
W|=ϕ

AW 6|=(TW ,⊥)

PB(W) | Aϕ |= (Tϕ, Q)
}
, (8.6)

where ϕ is a conjunctive formula over the variables of the BN. If the context ϕ is a world,
i.e., it contains a literal for all variables in the BN, then this problem is called the most
likely world for a UCQ Q over a KB K and simplifies to

arg max
W

{
PB(W) | AW |= (TW , Q) and KW is consistent.

}
. (8.7)

♦
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Note that the definition for most likely context is slightly different from previous
work (Ceylan and Peñaloza 2014b) in the sense that we now require only the consistent
worlds to entail the query. Note also that, for logics, which cannot express inconsistency
(such as EL), this definition naturally simplifies. The associated decision problems are
then defined as follows.

Definition 8.19 (MLC and MLW) Given a probabilistic KB K = (T ,A,B), a UCQ
Q, and a threshold value p, MLC (resp., MLW) is to determine whether there exists a
context ϕ (resp., world W) that satisfies Condition (8.6) (resp. Condition (8.7)) with
a threshold at least p. MLC (resp., MLW) is parametrized with the language of the
ontology and the query; we write MLC(Q,L) (resp., MLW(Q,L)) to refer to the problem
on the class Q of queries and on the class of ontologies restricted to the language L. ♦

Both of these reasoning tasks can be potentially useful for diagnosing the observations
given in terms of queries. We briefly illustrate the introduced notions on our running
example.

Example 8.20 Consider again the KB Kh = (Th,Ah,Bh). Suppose that we have
observed that bob is in critical situation, or equivalently the query

Qbob = ∃y Patient(bob), risk(bob, y),CriticalSituation(y).

and we are interested in diagnosing this observation, finding the most likely context,
which satisfies this query. It is easy to see that the context s∧ c is the most likely context
for Q in K. More precisely, As∧c |= (Ts∧c, Q), all (consistent) worlds that extend ϕ entail
Q, and their probabilities add up to .294. Note that neither the context s nor c provide
enough information to entail Qbob. ♦

Observe also that the most likely context is a partial explanation, i.e., the conjunctive
formula can be a partial valuation over the variables of the BN. The problem of finding
the most likely world is a special case where explanations must be complete valuations.
Although partial explanations are more informative; in general, they are more intractable
compared to complete explanations. We analyze the computational complexity of these
problems in detail.

Complexity Results for Most Likely World

We start our technical analysis with the problem of most likely world. In a broad sense,
to be able to produce the correct answer to the problem of most likely world, we need to
identify a valuation W such that the conditions

i. PB(W) > p, ii. AW 6|= (TW ,⊥), iii. AW |= (TW , Q)

are satisfied. The first test can be done in polynomial time, which clearly separates this
problem from most likely context in terms of computational complexity. The second
test is a consistency check and the third one is OMQA and the complexity of these tests
depend on the underlying ontology language.

Although seemingly similar, it is worth to note that consistency checking and OMQA
do not necessarily have the same computational complexity. In fact, these tasks typically
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belong to the dual complexity classes. For instance, OMQA in ALC is coNP-complete
(even for instance queries) in data complexity whereas consistency checking in ALC is
NP-complete in data complexity. These observations will play a critical role in our
results.

Observe, first, that we can design a naïve algorithm, which guesses a world W and
performs the tests i–iii using an appropriate oracle.

Theorem 8.21 Let C be the data (resp., combined) complexity of OMQA in the DL
L. Then, MLW(IQ,L) is C-hard and MLW(UCQ,L) in NPC in data (resp., combined)
complexity.

Proof. Hardness is immediate since BOLs are proper generalizations of the underlying
ontology language. As for membership, given a probabilistic KB K = (T ,A,B) a UCQ
Q, and a threshold value p ∈ [0, 1), we consider a nondeterministic Turing machine
with a C oracle. We guess a world W and verify with the oracle C that i) PB(W) > p,
ii) AW 6|= (TW ,⊥), and iii) AW |= (TW , Q). Note that the first test can be done in
polynomial time and the third test is in C by assumption. The second test, i.e., checking
the consistency of the knowledge base, is at most as hard as the complement of C in all
languages given in Table 6.4, which implies that this tests can also be performed in the
oracle, which proves membership.

Observe that for logics which admit a polynomial time algorithm for OMQA (and thus
for consistency checking) in the data (resp., combined) complexity, this result implies an
NP upper bound for MLW in data (resp., combined) complexity. We now show a lower
bound.

Theorem 8.22 MLW(IQ,L) is NP-hard in data complexity.

Proof. We show NP-hardness by a reduction from MPE in BNs (see Definition 5.4).
Let B= (G,Θ) be the given BN, and µ a partial valuation of the variables V , and p a
threshold value. For the reduction, we define the probabilistic KB K = (∅,A,B) where
B is identical to the given BN and

A = {〈A(v) : v ∧ µ〉 , 〈A(v) : ¬v ∧ µ〉 | for all v ∈ V that do not appear in µ}.

Furthermore, for the query Q := >, there exists a most likely world for W in K with
threshold more than p if and only if there exists a valuation W of the variables in V
that extends µ such that PB(W) > p. Observe that the construction is polynomial and
it only uses assertions; thus, yields NP-hardness for all languages, we consider.

This result is rather unsurprising given the NP-completeness of MPE in BNs (Shimony
1994). In fact, the reduction applies to atomic queries and does not use any TBox axioms.
For languages where OMQA is coNP-complete in data complexity, we obtain a ΣP

2
upper bound as a consequence of Theorem 8.21. We show that this is indeed a matching
lower bound.

Theorem 8.23 MLW(IQ,ALC) is ΣP
2 -hard in data complexity.

Proof. We reduce from the validity of formulas of the form

Φ = ∃x1, . . . , xn ∀y1, . . . , ym ϕ,
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where ϕ = ϕ1 ∨ · · · ∨ ϕk is a propositional formula in 3DNF. As before, we assume,
without loss of generality, that ϕ contains all clauses of the form xj ∧ ¬xj , 1 ≤ j ≤ n,
and similarly yj ∧¬yj , 1 ≤ j ≤ m and that each clause ϕj contains exactly three literals.
We first define the BN BΦ over the variables x1 . . . xn such that PB(W) = 0.5n. Then,
we define the ABox AΦ as follows.

– It contains the the assertions J(1), . . . , J(k). We later use these assertions to ensure
that all clauses ϕj , 1 ≤ j ≤ k are visited.

– For each variable xj , 1 ≤ j ≤ n, it contains the assertions 〈T(xj) : xj〉 and
〈F(xj) : ¬xj〉, representing the truth assignments of x-variables.

– For each variable yj , 1 ≤ j ≤ m, it contains the assertions L(yj).
– Each clause ϕj is described with the help of the binary predicates pos1, . . . , pos3

and neg1, . . . , neg3. For example, consider the clause ϕj = x2 ∧ ¬y4 ∧ y1. For the
satisfying assignment x2 7→ true, y4 7→ false, y1 7→ true, we add the assertions
pos1(j, x2), neg2(j, y4), pos3(j, y1).

We now define the TBox TΦ containing the axiom

L v (T t F) u ¬(T u F),

which intuitively assigns each variable yj , 1 ≤ j ≤ n exactly one truth assignment. To
encode the satisfaction condition of the clauses in Φ, we additionally need the axioms

∃neg1.F u ∃neg2.F u ∃neg3.F v A,
∃neg1.F u ∃neg2.F u ∃pos3.T v A,

. . .

∃pos1.T u ∃pos2.T u ∃pos3.T v A.

Finally, we make sure that every clause is satisfied by the axiom

¬A u J v ⊥.

Then, for the query >, we obtain that Φ is valid if and only if there exists a world W
such that AΦ |= (TΦ,>) and P(W) > (0.5)n.

It only remains to observe that Theorem 8.21 yields tight complexity bounds for all
remaining logics except for SHOIQ. Observe also that MLW(IQ,SHOIQ), is in NPNExp

by Theorem 8.21, which equals to PNE. Altogether, these results are summarized in
Table 8.3.

Complexity Results for Most Likely Context

Most likely context generalizes most likely world by allowing partial explanations. As
before, we can employ a guess-check algorithm: we can guess a context ϕ and perform
the entailment and consistency tests using an appropriate oracle. However, as contexts
are partial, we now have to consider all extensions W of ϕ, where KW is consistent, and
add up the probability of this world if it entails the query. This suggests the need for a
stronger oracle.
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Table 8.3: Complexity results for most likely world.

Description
Logics

Most Likely World

Instance Queries Unions of Conjunctive Queries

data combined data combined

DL-Lite, DL-LiteR NP NP NP NP
EL, ELH NP NP NP NP
ELI, Horn-SHOIQ NP Exp NP Exp
ALC, ALCHQ ΣP

2 Exp ΣP
2 Exp

ALCI, SH, SHIQ ΣP
2 Exp ΣP

2 2Exp
SHOIQ ΣP

2 ≤ PNE ≥ ΣP
2 ≥ coN2exp

Theorem 8.24 Let C denote the data (respectively, combined) complexity of OMQA
for a DL language L. MLC(UCQ,L) is C-hard and in NPPPC in the data (respectively,
combined) complexity.

Proof. Hardness is immediate as in the proof of Theorem 8.21. For membership, given a
probabilistic KB K = (T ,A,B) a UCQ Q, and a threshold value p ∈ [0, 1), we consider a
nondeterministic Turing machine with a PPC oracle. We guess a context ϕ and verify
with the oracle PPC that

i.
∑

W|=ϕ,AW |=(TW ,Q) PB(W) > p,
ii. AW 6|= (TW ,⊥) for any world W |= ϕ,
iii. AW |= (TW , Q) for all worlds W |= ϕ.

Note that the first test can be done in PP. The second and the third test is in (co)NPC

and thus in PPC, which implies that these tests can also be performed in the oracle,
which concludes the result.

Let us briefly discuss the implications of Theorem 8.24. First of all, we note that for
all cases where C = Exp, or C = 2Exp, we immediately obtain tight complexity bounds
for MLC. In all remaining cases (excluding SHOIQ), we obtain an NPPP upper bound.
In the following, we show a matching lower bound for all these languages.

Theorem 8.25 MLC(IQ,L) is NPPP-hard in data complexity.

Proof. We show NPPP-hardness by a reduction from MAP in BNs, that is, given a BN
B= (G,Θ), a partial valuation µ of the variables V , a set X ⊆ V , and a threshold
value p ∈ [0, 1), is there a valuation W of the variables in X that extends µ such that
P(W ∧ µ) > p? Let the set {x1 . . . xn} denote the variables in X which do not appear in
µ. For the reduction, we define the probabilistic KB K = (T ,A,B) where B is identical
to the given BN. Moreover, the TBox T consists of only the axiom ∃r.> v A, and the
ABox A contains the role assertions

r(1, 2), r(2, 3), . . . r(n− 1, n),

and finally for every xi, 1 ≤ i ≤ n, the concept assertions 〈A(i) : xi ∧ µ〉 , 〈A(i) : ¬xi ∧ µ〉.
Then, the atomic query Q := A(n) is entailed only from those worlds where the assertions
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Table 8.4: Complexity results for most likely context.

Description
Logics

Most Likely Context

Instance Queries Unions of Conjunctive Queries

data combined data combined

DL-Lite, DL-LiteR NPPP NPPP NPPP NPPP

EL, ELH NPPP NPPP NPPP NPPP

ELI, Horn-SHOIQ NPPP Exp NPPP Exp
ALC, ALCHQ NPPP Exp NPPP Exp
ALCI, SH, SHIQ NPPP Exp NPPP 2Exp
SHOIQ NPPP ≤ PNE ≥ NPPP ≥ coN2exp

A(1), A(1), . . ., A(n− 1) hold since the TBox axiom forces this through a sequence of
role assertions encoded with r. Furthermore, by construction, each such assertion can
only be satisfied in a context, which extends µ, and sets, each xi either to true or false.
Thus, we conclude that there exits a most likely context for Q in K with threshold
exceeding p if and only if there a valuation W of the variables in X that extends µ such
that PB(W ∧ µ) > p.

MLC(IQ,SHOIQ) is in NPNExp by Theorem 8.24, which equals to PNE. All of our
results are completeness results with the only exception being SHOIQ. These results
are summarized in Table 8.4.

8.2 Dynamic Bayesian Ontology Languages
Verifying dynamic systems has been a long endeavor in DLs, which has led to the study
of temporal DLs (Artale and Franconi 2005; Baader, Ghilardi, and Lutz 2012; Lutz,
Wolter, and Zakharyaschev 2008). For a review on ontology-based monitoring, we refer
the reader to (Baader 2014). Lately, these research efforts have been shifted towards
more data-oriented systems, which are more in line with the spirit of ontology-mediated
query answering (Artale, Kontchakov, Kovtunova, Ryzhikov, Wolter, and Zakharyaschev
2015; Artale, Kontchakov, Ryzhikov, and Zakharyaschev 2015; Artale, Kontchakov,
Wolter, and Zakharyaschev 2013; Baader, Borgwardt, and Lippmann 2013; Borgwardt,
Lippmann, and Thost 2013).

Verification with temporal DLs distinguishes itself from classical model checking by
allowing open-world reasoning and advanced querying tools. One major drawback of
ontology based monitoring is, however, its limitations for making projections about the
future states of a system. Existing proposals verify a dynamic system relative to certain
conditions (such as rigidity), and check whether these conditions can be satisfied in one
(or all) successful runs. When it comes to making concrete projections about the future
states of a system, they are rather unsatisfactory.

Dynamic Bayesian networks (DBNs) (Dean and Kanazawa 1989; Murphy 2002), on
the other hand, are structures specifically tailored towards modeling stochastic processes.
DBNs generalize hidden Markov models and Kalman filters and as such have been suc-
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cessfully employed in many different areas including robotics, speech recognition, weather
forecasting (Dagum, Galper, and Horvitz 1992), bio-medical applications (Husmeier 2003;
Nachimuthu and Haug 2012), healthcare management, and diagnosis (Choi, Darwiche,
Zheng, and Mengshoel 2011; Lerner, Parr, Koller, and Biswas 2000; Rose, Smaili, and
Charpillet 2005).

Just as BNs provide a compact representation of a joint probability distribution, DBNs
can additionally encode the evolution of a dynamic joint probability distribution, thus
allowing predictions about future states of a system.

We propose a novel monitoring approach that combines the power of ontologies with
DBNs. In a nutshell, we use DBNs to define a state-transition system over a distinguished
and fixed set of variables to be monitored, and ontologies to encode the rich background
knowledge. Considering a finite, fixed time horizon, as opposed to temporal DLs, we
provide a succinct querying mechanism based on linear temporal logic (Pnueli 1977)
and define reasoning problems, which generalize classical inference problems of DBNs
towards an ontological setting, all of which are to the best of our knowledge, first of its
kind, in a ontological setting.

8.2.1 Dynamic Bayesian Networks
BNs are static models, i.e., it is not possible to capture the dynamic features of the
application domain. For instance, the probability of a patient having a high fever is
very likely given the fact that the patient had high fever in the previous time step.
Such scenarios can be modeled using dynamic Bayesian networks (DBNs) (Dean and
Kanazawa 1989; Murphy 2002), which extend BNs to provide a compact representation
of evolving JPDs for a fixed set of random variables.

BNs are known for compactly representing a state space, while DBNs can also represent
the state-transition probabilities, and thus, can be facilitated to make projections about
the future states of a system. The update of the joint probability distribution is typically
expressed through an two-slice BN, which expresses the probabilities at the next point
in time, given the current context.

Formally, a two-slice BN (TBN) over a finite set of variables V is a pair B→ = (G,Θ),
where G= (V ∪V +, E) with V + = {X+ |X ∈V } is a DAG such that all edges are directed
from elements of V ∪ V + to elements of V +, and Θ contains, for every X+ ∈V +, a
conditional probability distribution P (X+ |π(X+)) for X+ given the parents of X+. As
standard in BNs, every node is independent of all its non-descendants given its parents
in TBNs. Thus, for a TBN B→, the conditional probability distribution at time t+ 1
given time t is

PB→(Vt+1 | Vt) =
∏

X+∈V +

PB→(X+ | π(X+)).

Example 8.26 Figure 8.2 depicts a TBN B→ and thereby defines the transition prob-
abilities between the two time slices. For instance, the probability for bob to have
high fever at time t + 1 provided he did not have high fever at time t is given by
PB→(f+ | ¬f) = 0.1. ♦

A dynamic Bayesian network (DBN) is a pair D= (B1,B→), where B1 is a BN , and
B→ is a TBN, defined over V . Intuitively, a DBN’s set of nodes of the graph can be

171



Chapter 8 Probabilistic Data Access with Description Logics

F

S

C

t

F+

S+

C+

f+

f .7
¬f .1

s+

f s f+ .9
f s ¬f+ .5
f ¬s f+ .8
f ¬s ¬f+ .4
¬f s f+ .8
¬f s ¬f+ .4
¬f ¬s f+ .7
¬f ¬s ¬f+ .1

c+

c f+ s+ .7
c f+ ¬s+ .2
c ¬f+ s+ .4
c ¬f+ ¬s+ 1
¬c f+ s+ .6
¬c f+ ¬s+ .1
¬c ¬f+ s+ .3
¬c ¬f+ ¬s+ 1t+ 1

Figure 8.2: The DBN Dh = (B1,B→), consisting of (a) a BN B1 (= Bh ) over
V = {F,S,C}, which compactly represents a joint probability distribution,
and (b) a two-slice BN B→ over V , which defines the transition probabilities
between two time slices Vt and Vt+1.

thought of as containing two disjoint copies of the random variables in V , where the
probability distribution at time t+ 1 depends on the distribution at time t.

To be able to distinguish the variables in different time slices, we use Vt and Xt to
denote the set of variables V and the variable X ∈V at time t, respectively. As in
BNs, x is an abbreviation for X = 1 and ¬x for X = 0 . Moreover, we assume the
(first-order) Markov property: the probability of the future state is independent from the
past, given the present state. We note, however, that all of our results can be generalized
to k-slice BNs, which relaxes this assumption to k slices and adds memory. Given the
(first-order) Markov property, a DBN D = (B1,B→) defines, for every t ≥ 1, the unique
joint probability distribution

PD(Vt) = PB1(V1) ·
t∏

i=2

∏
Xi∈Vi

PB→(Xi | π(Xi)).

We briefly illustrate these notions on our running example.

Example 8.27 Consider the TBN B→ depicted in Figure 8.2. The pair D = (B1,B→)
is a DBN, where B1 is the BN depicted in Figure 8.1. We can pose non-statics queries
to the DBN D. For instance, the probability of bob having high fever at time point 2 ,
PDh

(f2), can be computed as

PB1(f1) · PB→(f2 | f1) + PB1(¬f1) · PB→(f2 | ¬f1),

which is a dynamic version of standard probabilistic inference of BNs . ♦

Intuitively, the distribution at time t is defined by unraveling the DBN starting from
B1, using the two-slice structure of B→ until t copies of V have been created. This
produces a new BN B1:t encoding the distribution over time of the different variables.
Figure 8.3 shows the unraveling to t = 3 of the DBN (B1,B→), where B1 and B→ are
the networks shown in Figures 8.1 and 8.2, respectively.

The conditional probability tables of each node given its parents (not shown) are
those of B1 for the nodes in V1, and of B→ for nodes in V2 ∪ V3. Notice that B1:t has
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Figure 8.3: Three step unraveling B1:3 of (B1,B→)

t copies of each random variable in V . For a given t ≥ 1, we call Bt the BN obtained
from the unraveling B1:t of the DBN to time t, and eliminating all variables not in Vt.
In particular, we have that PBt(V ) = PB1:t(Vt).

For notational convenience, we write V1:t := V1 ∪ . . . ∪ Vt, and W1:t for a valuation of
V1:t. Moreover, we write Xt ⊆ Vt to denote a set of variables at time t and xt to denote
an instantiation of these variables; if, furthermore, Xt = Vt then xt corresponds to a
state at time t. Analogously, we write X1:t to denote a sequence of variables x1 . . . xt

and x1:t to denote an instantiation of these variables, which is usually called a trajectory.
Traditional inference problems in DBNs are given in Figure 8.4 with the help of a

simple timeline. Formally, given a DBN, filtering (also called monitoring) is the task of
computing PD(xt | y1:t). Smoothing and prediction are the past (PD(xt−l | y1:t)) and
future (PD(xt+h | y1:t)) analogs of filtering, respectively; and classification is a special
case of filtering, which amounts to computing PD(y1:t). Finally, finding a hypothesis,
which maximizes the probability of the query is called decoding, and is computed as
arg maxx1:t PD(x1:t | y1:t). Decoding is analogous to Maximum a Posteriori Hypothesis
(MAP) and most probable explanation (MPE) in BNs (Park and Darwiche 2004b). For
further details, we refer to (Murphy 2002).

8.2.2 Syntax and Semantics of Dynamic Bayesian Ontology Languages

The syntax of dynamic Bayesian Ontology Languages is identical to BOLs except the
fact that DBOLs allow a DBN instead of a BN.

Definition 8.28 (dynamic KB) A dynamic KB is a tuple K = (T ,A,D) where D is
a DBN, T is a probabilistic TBox (over the DBN D), and A a probabilistic ABox (over
the DBN D). ♦

Within the scope of this paper, we limit ourselves to a fixed, finite horizon. In other
words, all traces are assumed to be over a fixed, finite bound. We will denote the
bound with θ ∈ N. By this assumption, dynamic KBs can be viewed as time-stamped
probabilistic KBs. More formally, given a vocabulary of probabilistic KBs, which consists
of concept (NC), role (NR), individual (NI) and variable (V ) names, we define the extended
vocabulary of time-stamped concept (NCi), role (NRi), individual (NIi) and variable (Vi)
names, respectively, for 1 ≤ i ≤ θ. Intuitively, we consider copies of the KB, that makes
the temporal information explicit. Thus, for a given a dynamic KB K = (T ,A,D), we
write Ti (resp., Ai) to denote the copy of T (resp., A) over the extended vocabulary.
The semantics of dynamic KBs are given in terms of temporal interpretations.
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1 . . . t− l . . . t− 1 t t+ 1 . . . t+ h . . . θ

Figure 8.4: A timeline with a reference time point t. Filtering is the task of computing
PD(xt | y1:t); smoothing and prediction are the past (PD(xt−l | y1:t)) and
future (PD(xt+h | y1:t)) analogs of filtering, respectively; and classification is
a special case of filtering, which amounts to computing PD(y1:t). Decoding
corresponds to computing arg maxx1:t PD(x1:t | y1:t).

Definition 8.29 (temporal interpretations) Let K = (T ,A,D) be a dynamic KB.
A temporal interpretation I is a finite sequence (I)t>0 of interpretations; I satisfies (T ,A)
if and only if It |= (Tt,At) for all t > 0. A probabilistic temporal interpretation is a
pair I = (I,PI), where I is a set of temporal interpretations I, and PI is a probability
distribution over I such that PI(I) > 0 only for finitely many interpretations I ∈ I. I is a
model of the TBox T (resp., ABox A) if every I ∈ I satisfies T (resp., A). I is consistent
with the DBN D if for every valuation W1:t of (finitely many) variables in V1:t it holds
that ∑

I∈I,VI
1:t=W1:t

PI(I) = PB1:t(W1:t).

The probabilistic temporal interpretation I is a model of the KB K = (T ,A,D) if and
only if it is a model of (T ,A), and it is consistent with the DBN D. ♦

The intuition behind dynamic Bayesian ontology languages is very simple. Recall
that in BOLs, the ontological knowledge is assumed to hold within a certain world and
each such world has a probability defined by the BN. By replacing the BN with a DBN,
DBOLs can now also encode transitions between worlds/states which triggers changes in
the ontological knowledge. In other words, DBNs define a state-transition system over a
set of distinguished variables and each state of the system is equipped with ontological
knowledge that is required to hold in the given state. This framework gives rise to
advanced querying mechanisms, as we elaborate next.

8.2.3 Ontological Monitoring

DBNs encode a the dynamic evolution of a system but while querying they are rather
limited as pointed before in (Langmead 2009). Briefly, inference in DBNs require to
explicitly specify the time points of the events. On the other hand, the dynamic evolution
shows a logical structure and an adequate query language should exploit these structures.
This limitation is addressed in (Langmead 2009) by introducing a time-bounded query
language based on LTL (Pnueli 1977); thus compactly encoding temporal logical relations.
Clearly, the temporal queries are superior to standard queries and they allow specifying
complex temporal relations which would not be possible otherwise.

Similarly, in dynamic Bayesian ontologies, we are interested in posing complex temporal
queries. For example, a simple query in a health-care context that asks the probability
of some patient eventually entering into a critical situation is hard to formulate without
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temporal constructs. In a similar spirit to (Langmead 2009), we adopt a temporal query
language to capture such complex logical relations. Differently, however, our query
language is defined over CQs since we now have a first-order representation.

Several temporal extensions of conjunctive queries exist. We concentrate on an
extension, based the well-known temporal logic LTL (Pnueli 1977). Inspired by temporal
conjunctive queries (TCQs), first defined in (Baader, Borgwardt, and Lippmann 2015),
we define a query language by allowing the use of CQs in place of propositional variables.

Definition 8.30 (query language) A (positive) TCQ is inductively defined by the
grammar rule1

Q ::= Q ∧Q | Q ∨Q | #Q | #−Q | 3Q | 2Q | QUQ | QSQ,

where Q is a CQ. The constructors denote conjunction, disjunction, next, previous,
eventually, always, until and since, respectively. A TCQ is bounded if the temporal
operators can only range over a fixed, finite bound θ. ♦

As stated earlier, in this paper, we always assume a fixed bound on the temporal
operators. Notice that this makes our query language simpler than LTL, which can range
over infinite traces, in general. However, LTL over finite (but unbounded) traces has
also been studied in the literature (De Giacomo and Vardi 2013). As we will see later,
TCQs can be unraveled to unions of conjunctive queries, and this unraveling may be of
size exponential; thus, TCQs serve as a succinct way of specifying (bounded) dynamic
queries. We first define the temporal query semantics in the classical way.

Definition 8.31 (query semantics) LetK = (T ,A,D) be a dynamic KB. The (θ-bounded)
query semantics w.r.t. a temporal interpretation I is inductively defined as follows.

(I, t) |= Q1 iff It |= Q1

(I, t) |= Q1 ∧Q2 iff (I, t) |= Q1 and (I, t) |= Q2

(I, t) |= Q1 ∨Q2 iff (I, t) |= Q1 or (I, t) |= Q2

(I, t) |= #Q1 iff θ > t and (I, t+ 1) |= Q1

(I, t) |= #−Q1 iff t > 1 and (I, t− 1) |= Q1

(I, t) |= 3Q1 iff ∃i ∈ [t, θ] : Ii |= Q1

(I, t) |= 2Q1 iff ∀i ∈ [t, θ] : Ii |= Q1

(I, t) |= Q1UQ2 iff ∃k ∈ [t, θ] such that ∀ Ii ∈ I, t ≤ i < k, Ii |= Q1 and Ik |= Q2

(I, t) |= Q1SQ2 iff ∃j ∈ [1, t] such that ∀ Ii ∈ I, j ≤ i < t, Ii |= Q1 and Ij |= Q2

Finally, (A, t) |= (T , Q) if and only if for all temporal interpretations (I, t) |= (T ,A) it
holds that (I, t) |= Q. ♦

The query semantics can be seen as an adaptation of the semantics of TCQs (Baader,
Borgwardt, and Lippmann 2015) restricted to a fixed bound. We are interested in
probabilistic reasoning in dynamic Bayesian ontology languages, which we formalize
next.

1 Notice that true is in the query language (empty CQ) and thereby 3nQ is only an abbreviation of
the formula true U ϕ.
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Definition 8.32 (ontological monitoring) Let K = (T ,A,D) be a probabilistic
KB. The probability of a Boolean TCQ Q w.r.t. a probabilistic temporal interpretation
I = (I,PI) at time 1 ≤ t < θ is given by

PI(Q, t) :=
∑

I∈I,(I,t)|=Q

PI(I)

The probability of a TCQ Q at time 1 ≤ t < θ w.r.t. K, denoted PK(Q, t), is given by

PK(Q, t) := inf
I|=K

PI(Q, t).

Given a probabilistic KB K, a Boolean TCQ Q, and a threshold value p ∈ [0, 1),
ontological monitoring is to decide whether PK(Q, t) > p. ♦

We briefly illustrate ontological monitoring on our running example.

Example 8.33 Consider the dynamic KB K = (Th,Ah,Dh), where Dh = (Bh,B→).
Then, by posing the query

Q1 := 3(Qbob = ∃x Patient(bob) ∧ risk(bob, x) ∧ CriticalSituation(x)),

we can compute the probability of bob eventually going into critical situation. The query

Q2 := #−(Q′
bob = ∃x finding(bob, x) ∧ Hypertension(x)),

asks whether bob has hypertension in the previous time point. We can, of course, form
much more elaborate queries such as (Q1UQ2). ♦

As we are only concerned with a bounded-horizon, we can always unravel the dynamic
knowledge base into a static one in a similar way that the DBN can be unraveled into a
BN. More precisely, given a dynamic KB K = (T ,A,D) where D = (B1,B→), we define

T1:θ =
⋃

0<i≤θ

Ti and A1:θ =
⋃

0<i≤θ

Ai

as the unravellings of T and A, respectively. Then, the unraveling of the dynamic KB
K is the probabilistic KB K1:θ = (T1:θ,A1:θ,B1:θ) where B1:θ is defined as before. The
abstractions to worlds are defined analogously: the KB KW1:θ = (TW1:θ ,AW1:θ ) represents
the restriction of K to a valuation W1:θ of the variables V1:θ.

Furthermore, TCQs with bounded horizons can also be unraveled to static queries
with respect a relevant time point t. In particular, since we do not allow negation, it
is easy to see that such unraveling necessarily produces unions of conjunctive queries.
Similarly, the atoms of the resulting UCQ have to be renamed to time-stamped atoms to
preserve the query semantics. Let us denote the unraveling of a query Q with respect to
t by Q[1:θ]. These observations entail the following result.

Theorem 8.34 Given a dynamic KB K = (T ,A,B) and a Boolean TCQ Q, it holds
that

(A, t) |= (T , Q) if and only if AW1:θ |= (TW1:θ , Q1:θ)

where AW1:θ is a classical ABox, TW1:θ is a classical TBox and Q1:θ is a UCQ.
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Proof. Given the dynamic KB (T ,A,D), we consider the unraveling (TW1:θ ,AW1:θ ,B1:θ)
over time-stamped copies of the original vocabulary. Suppose that I |= (T ,A) holds for
some timed interpretation I = (I)t>0. Let us denote the copy of the interpretation It over
the vocabulary marked with t by Ict = (∆I

t , ·It ,VI
t ) . We then define the interpretation

J = (∆J , ·J ,VJ ) where

∆J =
⋃

0<i≤θ

∆I
t , ·J =

⋃
0<i≤θ

·It , VJ =
⋃

0<i≤θ

VI
t .

It is easy to see that I |= (T ,A) if and only if J |= (TW1:θ ,AW1:θ ) and that (I, t) |= Q if
and only if J |= Q1:θ, by the given construction.

Conversely, consider the unraveling (TW1:θ ,AW1:θ ,B1:θ) and assume now that there
exists a model I of (TW1:θ ,AW1:θ ). We define the interpretation I = (J )t>0 where every
interpretation Jt corresponds to the restriction of the interpretation J to time t modulo
renaming. As before, it is easy to check I |= (T ,A) and J |= Q1:θ if and only if (I, t) |= Q
where Q1:θ is unraveled with respect to t.

Intuitively, TCQs can be seen as a compact encoding of time-stamped unions of
conjunctive queries. In fact, the unraveling can produce a UCQ that is of size exponential
in the nesting size of temporal quantifiers. With the help of Theorem 8.34, we easily
obtain a reduction from ontological monitoring to Bayesian query evaluation.

Corollary 8.35 Given a dynamic KB K = (T ,A,D) and a TCQ Q, it holds that

PK(Q, t) =
∑

AW1:θ |=(TW1:θ ,Q1:θ)
PB1:θ (W1:θ) = PK1:θ (Q1:θ)

where W1:θ denotes a valuation over the variables V1:θ of the BN B1:θ (unraveling of D),
AW1:θ is a classical ABox, TW1:θ is a classical TBox and Q1:θ is a UCQ.

Given the fixed-bound assumption, it is easy to see that the unraveling of the dynamic
knowledge base is linear in the size of θ. Since the query is assumed to be fixed in data
complexity, Theorem 8.34 and Corollary 8.35 immediately entail the following results.

Corollary 8.36 For all DLs L, ontological monitoring can be polynomially reduced to
Bayesian query evaluation in data complexity.

As a consequence, all data complexity results for Bayesian query evaluation apply to
ontological monitoring. Note that for the combined complexity, there is no immediate
reduction. Intuitively, while expanding the temporal operators, such as until and since,
we have choices for the durations of these operators. Therefore, the naïve approach
given in Theorem 8.34 would result in an exponential blow-up. Pinpointing the precise
complexity of ontological monitoring is left as a future work.

As before, it is desirable to incorporate evidence into queries as in Bayesian query
evaluation. Instead of the decision problem PK(Q, t) > p, we define PK(Q, t | e1:θ) > p,
as before, with the only difference that e1:θ is now over the variables V1:θ. Observe that
queries of this form generalize classical inference tasks in DBNs. Filtering, smoothing
and prediction are all special cases of such queries. The only inference task which cannot
be captured with temporal queries is decoding, which is closely related to the problem of
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most likely context. Given the Corollary 8.36, it is easy to see that most likely context
can be generalized towards ontological decoding. Investigating such connections in more
detail is also part of future work.

8.3 Related Work and Outlook

Bayesian ontology languages extends the underlying ontology language with a proposi-
tional abstraction given in terms of contexts. BOLs represent certain knowledge that is
dependent on an uncertain context. The uncertainty of the different contexts is expressed
by a probability distribution represented via a Bayesian network. We investigated query
answering in Bayesian ontology languages along with other reasoning tasks.

Combining probabilistic graphical models with terminological knowledge is an old idea
that dates back to P-Classic (Koller, Levy, and Pfeffer 1997) which extended Classic
through probability distributions over the interpretation domain. A more recent work
PR-OWL (Costa, K. B. Laskey, and K. J. Laskey 2008) uses multi-entity BNs to describe
the probability distributions of some domain elements. In both cases, the probabilistic
component is interpreted providing individuals with a probability distribution; this
differs greatly from the possible world semantics, in which we consider a probability
distribution over a set of classical DL interpretations.

Perhaps the closest to our approach are the Bayesian extension of DL-Lite (d’Amato,
Fanizzi, and Lukasiewicz 2008) and DISPONTE (Riguzzi, Bellodi, Lamma, and Zese
2015). The latter allows for so-called epistemic probabilities that express the uncertainty
associated to a given axiom. Their semantics are based, as ours, on a probabilistic
distribution over a set of interpretations. The main difference with our approach is
that in (Riguzzi et al. 2015), the authors assume that all probabilities are independent,
while we provide a joint probability distribution through the BN. Note also that a major
advantage of BOLs is the re-usability of the context variables for different axioms as
already pointed out.

The Bayesian Description Logic given in (d’Amato, Fanizzi, and Lukasiewicz 2008) is
based on DL-Lite and looks almost identical to ours. There is, however, a subtle but
important difference. In our approach, an interpretation I satisfies an axiom 〈C v D : ϕ〉
if VI |= ϕ implies CI ⊆ DI . In (d’Amato, Fanizzi, and Lukasiewicz 2008), the authors
employ a closed-world assumption over the contexts, where this implication is substituted
for an equivalence; i.e., VI |= ϕ also implies CI 6⊆ DI . The use of such semantics can
easily produce inconsistent KBs, which is highly undesirable.

The DL EL and DL-Lite are also investigated in the context of ontology based access
to probabilistic data (Jung and Lutz 2012), which we already reviewed in Chapter 7.
Recently, approaches using discrete probability distributions over (database) facts are
extended to the case of continuous probability distributions over numerical values (Baader,
Koopmann, and Turhan 2017). There exists a plethora of different probabilistic DLs
tailored for different applications. For a slightly outdated survey on probabilistic DLs,
we refer the reader to (Lukasiewicz and Straccia 2008).

From a broader perspective, our work relates to (lifted) probabilistic graphical models
such as MLNs (Richardson and Domingos 2006), or relational Bayesian networks (Jaeger
1997). This line of research is also motivated by the limitations of propositional models.
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Their semantics is, however, given over the groundings, i.e., over a fixed set of constants,
which differs greatly with the semantics of ontology languages.

To the best of our knowledge dynamic Bayesian ontology languages is the first proposal
in the DL community that combined dynamic and probabilistic reasoning in order to
do probabilistic monitoring based on ontologies. It is well-known that DBNs generalize
hidden Markov models and Kalman filters as they are factored representation of these
models. Factored representations of Markov Decision Processes has been widely stud-
ied (Degris and Sigaud 2010). Importantly, the complexity of solving Markov Decision
Problems turns out to be very different in factored representations (Littman, Dean, and
Kaelbling 1995; Mundhenk, Goldsmith, Lusena, and Allender 2000). We also note that
it is common to make the fixed-horizon assumption, see for instance the complexity
analysis on partially observable Markov decision processes (Mundhenk et al. 2000).
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Chapter 9

Conclusions

As a conclusion to this thesis, we first summarize the obtained results about query
answering in probabilistic data and knowledge bases and then discuss future research
directions.

9.1 Summary and Outlook

The motivation behind marrying logic and probability is to combine the capacity of
probability theory to handle pervasive uncertainty with the capacity of mathematical
logic to exploit the structure of formal argument. Recent milestones in combining logic
and probability was on the one hand through the notion of weighted model counting
and on the other hand through the shift from propositional probabilistic models to
first-order probabilistic models in AI. Our research goal in this thesis is to combine
first-order models and probabilistic models in the context of large scale probabilistic
knowledge bases and to enhance large-scale knowledge bases with more realistic data
models, thereby allowing for better means for querying them.

Our main contributions can be summarized as follows. We developed different rigorous
semantics for probabilistic data and knowledge bases, analyzed their computational prop-
erties relative to a wide range of query languages and identified sources of in/tractability
and designed practical scalable query answering algorithms whenever possible. We now
provide a more detailed overview of the results.

Overview of Part II: Probabilistic Databases. This part only covers the results on
Probabilistic Databases and is organized in three chapters. In essence, this part serves
as the basis for the results presented in Part III.

Chapter 3. In this chapter, we deepened the research on probabilistic query evaluation
in classical PDBs, which also serve as a baseline of the remaining of the thesis. We
followed a decision-theoretic approach and defined probabilistic query evaluation as a
decision problem and studied its computational complexity. We have shown that the
data complexity dichotomy of the computation problem transfers to the decision problem
under polynomial time Turing reductions. Beyond the known results, we also obtained
combined complexity results.

Chapter 4. In this chapter, we provided a deep discussion regarding the deficiencies
of PDB semantics, which led to the proposal of open-world probabilistic databases. We
argued in detail, and on several concrete examples how OpenPDB semantics improves
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on the PDB semantics with respect to the goals identified in this work. We have shown
that the data complexity dichotomy for unions of conjunctive queries in PDBs (Dalvi and
Suciu 2012) can be lifted to OpenPDBs. Moreover, the class of safe queries is supported
by a special lifted inference algorithm, which performs first-order manipulations and
avoids explicit grounding. As a side contribution, we noted that the safe queries in PDBs
can actually be computed in linear time under reasonable assumptions. For queries that
involve negation, we have shown that inference becomes harder for OpenPDBs than for
PDBs already in data complexity. In a technically involved result, we show that this can
is the case even for a safe query.

Chapter 5. In this chapter, we studied two alternative inference tasks for probabilistic
databases; namely finding the most probable database and the most probable hypothesis
for a given query, both of which are inspired by the maximal posterior probability com-
putations of Probabilistic Graphical Models. The main contributions are the complexity
results obtained for these problems. Notably, all the results are completeness results
except for TC0 upper bounds, which is closely related to deciding the most significant
bit of multiplication.

Overview of Part III: Logic and Probabilistic Knowledge Bases. This part extended
the results from Part II to also incorporate commonsense knowledge in the form of
ontologies. The most prominent ontology languages are based on Description Logics
and Datalog±; these are reviewed in Chapter 6 together with ontology-mediated query
answering. The contributions are given in the next chapters.

Chapter 7. In this chapter, we extended the problems introduced in Part II to the
case of ontology-mediated queries based on Datalog±. First, we studied probabilistic
ontology-mediated query evaluation for PDBs. We have lifted the data complexity
dichotomy from Part I also to probabilistic ontology-mediated query evaluation for
FO-rewritable Datalog± languages (the case for languages with P-complete data com-
plexity for OMQA remains open). We have made a thorough complexity analysis with
different complexity-theoretic assumptions and provided a complete picture in terms of
computational complexity. Analogously, we investigated probabilistic ontology-mediated
query evaluation for OpenPDBs and lifted the data complexity dichotomy result in
OpenPDBs to positive FO-rewritable Datalog± languages (while the general case remains
open). Finally, the most probable database and most probable hypothesis problems
are revisited in the context of ontology-mediated queries. In each of these sections, we
provided a host of complexity results and obtained a mostly complete picture.

Chapter 8. The focus of this chapter is on Bayesian ontology languages that extend
classical Description Logics with the capability of representing and reasoning over
uncertain domains. In the first section, we study ontology-mediated query evaluation in
Bayesian ontology languages together with two other reasoning problems, called most
likely context and most likely world. These problems are supported with a thorough
complexity analysis. In the second part of this chapter, we propose a novel monitoring
approach that combines the power of ontology languages with dynamic BNs. The
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resulting formalism is then called dynamic Bayesian ontology languages and allows to
make projections about the future states of a system. To the best of our knowledge
dynamic Bayesian ontology languages is the first of its kind in Description Logics. Under
the fixed-horizon assumption, we show that monitoring tasks in dynamic Bayesian
ontology languages can be reduced to probabilistic query evaluation in (static) Bayesian
ontology languages.

9.2 Future Research

Querying probabilistic databases is extremely demanding from a computational point of
view. Developing scalable query answering algorithms is therefore a big challenge and
even more so for more powerful data models. The obvious question is, of course, how to
achieve substantial scalability gains for query answering over realistic data models. A
possible road-map is to make further progress on recent techniques; namely, to develop
scalable (1) lifted, (2) special-case, and (3) approximate query answering algorithms,
as well as novel scalable compilation techniques, (4) generalizing existing compilation
techniques, (5) based on recent progress in tensor factorization, and (6) inspired by deep
learning.

Another major challenge is to classify the landscape of tractable query answering. This
includes finding out which kinds of queries can be evaluated in polynomial time over
which kinds of commonsense knowledge, and looking for a dichotomy between easy and
hard queries. Although the complexity study we pursued in this work resulted in a
mostly complete picture, this is not the case for classification results. For instance, it is
open whether a data complexity dichotomy can be obtained in PDBs for queries that
contain negation in front of the query atoms (although partial results exists as identified
in the related work).

Furthermore, as it is implausible that all queries in practice fall into a tractable class,
for practical scalable algorithms, different approaches from direct query evaluation needs
to be developed; for instance, based on (approximate) knowledge compilation that range
from classical approaches to tensor factorizations and neural-symbolic approaches.

Existing systems for probabilistic query evaluation in PDBs need to be extended
towards ontology-mediated queries. For FO-rewritable languages, the probabilistic
relational database management systems can be used directly. It is not very clear what
method would be suitable for other languages. Moreover, as pointed before, in some
cases, although the query itself is unsafe, the database can be in a certain syntactical
shape, ensuring tractability. Therefore, ideally, a system needs to incorporate tools to
detect such cases.

Notice also that there is still a lot of work to be done on the semantic level to develop
probabilistic data models that meet the requirements of individual application domains
while remaining scalable to large instances. For instance, a data model based on the
random worlds semantics (Grove, J. Y. Halpern, and Koller 1994), or alike can be a
baseline for reasoning with rules and probabilistic facts. However, these approaches
seem to be rather under-explored despite the fact that other models based on maximum
entropy such as MLNs are very popular.
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We have identified several connections between the research on probabilistic databases
and that of question answering, knowledge base completion, rule mining, et cetera. These
links need to be explored further in order to exploit the full potential in large-scale
knowledge bases.
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