3,969 research outputs found

    The SLH framework for modeling quantum input-output networks

    Full text link
    Many emerging quantum technologies demand precise engineering and control over networks consisting of quantum mechanical degrees of freedom connected by propagating electromagnetic fields, or quantum input-output networks. Here we review recent progress in theory and experiment related to such quantum input-output networks, with a focus on the SLH framework, a powerful modeling framework for networked quantum systems that is naturally endowed with properties such as modularity and hierarchy. We begin by explaining the physical approximations required to represent any individual node of a network, eg. atoms in cavity or a mechanical oscillator, and its coupling to quantum fields by an operator triple (S,L,H)(S,L,H). Then we explain how these nodes can be composed into a network with arbitrary connectivity, including coherent feedback channels, using algebraic rules, and how to derive the dynamics of network components and output fields. The second part of the review discusses several extensions to the basic SLH framework that expand its modeling capabilities, and the prospects for modeling integrated implementations of quantum input-output networks. In addition to summarizing major results and recent literature, we discuss the potential applications and limitations of the SLH framework and quantum input-output networks, with the intention of providing context to a reader unfamiliar with the field.Comment: 60 pages, 14 figures. We are still interested in receiving correction

    Time-Dependent Density Matrix Renormalization Group Algorithms for Nearly Exact Absorption and Fluorescence Spectra of Molecular Aggregates at Both Zero and Finite Temperature

    Get PDF
    We implement and apply time-dependent density matrix renormalization group (TD-DMRG) algorithms at zero and finite temperature to compute the linear absorption and fluorescence spectra of molecular aggregates. Our implementation is within a matrix product state/operator framework with an explicit treatment of the excitonic and vibrational degrees of freedom, and uses the locality of the Hamiltonian in the zero-exciton space to improve the efficiency and accuracy of the calculations. We demonstrate the power of the method by calculations on several molecular aggregate models, comparing our results against those from multi-layer multiconfiguration time- dependent Hartree and n-particle approximations. We find that TD-DMRG provides an accurate and efficient route to calculate the spectrum of molecular aggregates.Comment: 10 figure

    Singular Perturbations and Time-Scale Methods in Control Theory: Survey 1976-1982

    Get PDF
    Coordinated Science Laboratory was formerly known as Control Systems LaboratoryJoint Services Electronics Program / N00014-79-C-0424U.S. Air Force / AFOSR 78-363

    Applications of Singular Perturbation Techniques to Control Problems

    Get PDF
    Coordinated Science Laboratory was formerly known as Control Systems LaboratoryJoint Services Electronics Program / N00014-79-C-0424National Science Foundation / NSF ECS 82-1763

    Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches

    Get PDF
    Imaging spectrometers measure electromagnetic energy scattered in their instantaneous field view in hundreds or thousands of spectral channels with higher spectral resolution than multispectral cameras. Imaging spectrometers are therefore often referred to as hyperspectral cameras (HSCs). Higher spectral resolution enables material identification via spectroscopic analysis, which facilitates countless applications that require identifying materials in scenarios unsuitable for classical spectroscopic analysis. Due to low spatial resolution of HSCs, microscopic material mixing, and multiple scattering, spectra measured by HSCs are mixtures of spectra of materials in a scene. Thus, accurate estimation requires unmixing. Pixels are assumed to be mixtures of a few materials, called endmembers. Unmixing involves estimating all or some of: the number of endmembers, their spectral signatures, and their abundances at each pixel. Unmixing is a challenging, ill-posed inverse problem because of model inaccuracies, observation noise, environmental conditions, endmember variability, and data set size. Researchers have devised and investigated many models searching for robust, stable, tractable, and accurate unmixing algorithms. This paper presents an overview of unmixing methods from the time of Keshava and Mustard's unmixing tutorial [1] to the present. Mixing models are first discussed. Signal-subspace, geometrical, statistical, sparsity-based, and spatial-contextual unmixing algorithms are described. Mathematical problems and potential solutions are described. Algorithm characteristics are illustrated experimentally.Comment: This work has been accepted for publication in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensin
    corecore