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This paper discusses typical applications of singular perturbation 

techniques to control problems in the last fifteen years. The first three 

sections are devoted to the standard model and its time-scale, stability and 
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Introduction

This guided tour of the applications of singular perturbation 

techniques to control theory begins with a glance at the origins of the two 

disciplines. In a recent book review, O ’Malley (1982) gives an erudite 

outline of the history of singular perturbations, starting from Prandtl's 

1904 paper on fluid dynamical boundary layers. The benchmark works of Tichonov 

(1948) and Levinson (1950) which appeared almost half a century later, \\rere to 

have a major impact on control applications in the 1960’s and 1970's.

Vasileva’s (1963) continuation of Tichonov’s work and Wasow's (1965) book 

finally placed singular perturbations within the framework of the analytic 

theory of differential equations. These texts, along with more recent books 

by Vasileva and Butuzov (1973), O ’Malley (1974), and a paper by Hoppensteadt 

(1971), remain the most readable sources on asymptotic methods for ordinary 

differential equations.

Although control concepts appear in some 19th century papers, the 

origins of present day control theory are more recent. They are, first, the 

foundations of feedback theory, laid in the 1930’s by Nyquist and Bode, and, 

second, the stability theory of nonlinear regulators developed by Lurie and 

Krasovski in the 1940’s. The two approaches to the same feedback control 

problem differed in their use of frequency domain (complex variable) versus 

time domain (o.d.e. state variable) techniques. The control theory of the 

1980's is a harmonious merger of these two methodologies with Pontryagin’s 

maximum principle and Bellman’s dynamic programming. The elegant synthesis 

was accomplished by Kalman in the early 1960's and further expanded by 

Wonham’s geometric method.
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In this paper a control engineer looks at singular perturbation methods 

as tools to solve problems in his field. The first and foremost problem is 

modeling, that is, how to mathematically describe the system to be controlled. 

Modeling for control is parsimonious and implicit. It is parsimonious, 

because the model should not be more detailed than required by the specific 

control task. It is implicit, because the extent of necessary detail is not 

known before the control task is accomplished. Typical control tasks are 

optimal regulation, tracking and guidance. Since these tasks are to be 

accomplished in the presence of unknown disturbances, parameter variations and 

other uncertainties, the control system must possess a sufficient degree of 

insensitivity and robustness.

How do the singular perturbation techniques respond to this 

challenge? Their key contribution, from which all other benefits follow, is at 

the level of modeling. Control engineers, like Molière's character Mr.

Jourdain, had been simplifying their models long before they were told that 

what they were doing was a singular perturbation. As our bibliography shows, 

they became aware of the new tool about fifteen years ago and have been 

increasingly interested in it ever since.

For the control engineer, singular perturbations legitimize his 

ad hoc simplifications of dynamic models. One of them is to neglect some 

"small" time constants, masses, capacitances, and similar "parasitic" para

meters which increase the dynamic order of the model. However, the design 

based on a simplified model may result in a system far from its desired 

performance or even an unstable system. If this happens, the control engineer 

needs a tool which will help him to improve his oversimplified design. He 

wants to treat the simplified design as a first step, which captures the
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dominant phenomena. The disregarded phenomena» if important, are to be treated 

in the second step.

It turns out that asymptotic expansions into reduced ("outer") and 

boundary layer ("inner") series, which are the main characteristic of 

singular perturbation techniques, coincide with the outlined design stages. 

Because most control systems are dynamic, the decomposition into stages is 

dictated by a separation of time scales. Typically, the reduced model repre

sents the slowest (average) phenomena which in most applications are dominant, 
iBoundary layer (and sublayer) models evolve in faster time scales and repre

sent deviations from the predicted slow behavior. The goal of the second, third, 

and later, design stages is to make the boundary layers and sublayers 

asymptotically stable, so that the deviations rapidly decay. The separation of 

time scales also eliminates stiffness difficulties and prepares for a more 

efficient hardx^are and software implementation of the controller.

This paper is a tutorial presentation of typical, but not all, 

applications of singular perturbation techniques to control problems. The 

focus is on systems modeled by ordinary differential equations and most topics 

discussed are deterministic. Only one out of ten sections is dedicated to 

stochastic problems because of the existence of two excellent surveys of 

singular perturbation methods in stochastic differential equations, Blankenship 

(1979) and Schuss (1980). A further bias in the choice of topics is personal.

The author has greatly benefitted from the doctoral research of his former 

students P. Sannuti (1968), C. Hadlock (1970), R. Yackel (1971), R. Wilde (1972),

J,

Although we are now talking about fast transients of control systems 
we continue to use the traditional boundary layer terminology.
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J. Chow ( 1977), H. Javid (1977), K.-K. D. Young (1977 ), H. Khalil (1978),

R. Phillips (1980), B. Avramovic (1980), P. Ioannou (1982 ), and G. Peponides 

(1982) , and from many colleagues among whom particularly influential were 

A. Haddad, R. O'Malley, F. Hoppensteadt, G. Blankenship, A. Bensoussan,

J. P. Quadrat, F. Delebecque, H. Kelley, A. Calise, M. Ardema, and P. Habets.

As a consequence, their results are discussed in greater detail. However, this 

does not imply that the contributions of other authors are less significant.

An attempt was made to compile an extensive bibliography, including additional 

titles not explicitly referenced in the text. Generous help by V. Saksena and 

J. O'Reilly made this task much easier. Special thanks are due to our Soviet 

colleagues A. B. Vasileva, M. G. Dmitriev, A. Pervozvanski, and V. Utkin, who 

sent us their lists of references.

The remaining text is organized into ten sections and concluding 

remarks. Sections 1 and 2 introduce a standard model and discuss its 

properties. Sections 3, 4, 5, and 6 deal with linear control problems in 

open-loop and feedback form. Sections 7 and 8 are devoted to nonlinear, and 

Section 9 to stochastic problems. In Section 10 we return to the issue of 

modeling by examining nonstandard models common in networks and other large 

scale systems. Although some results are quoted as theorems, they are spelled 

out in a less technical form than that in the referenced works, which should be 

consulted for more rigorous formulations. Whenever convenient, simple examples 

are inserted to illustrate basic concepts.
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1. The Standard Singular Perturbation Model

The singular perturbation model of finite dimensional dynamic systems 

extensively studied in mathematical literature by Tichonov (1948,1952), Levinson 

(1950), Vasileva (1963), Wasow (1965), Hoppensteadt (1967,1971), O ’Malley (1971, 

1973), Lagerstrom and Casten (1972), etc., was also the first model to be used 

in control and systems theory. This model is in the explicit state variable 

form in which the derivatives of some of the states are multiplied by a small 

positive scalar e, that is,

x = f(x,z,u,e,t), _ n xE R (1.1)

ez = g(x,z,u,e,t), mz £ R (1.2)

where u = u(t) is the control vector and a dot denotes a derivative with respect 

to time t. It is assumed that f and g are sufficiently many times con

tinuously differentiable functions of their arguments x,z,u,e,t. The scalar e 

represents all the small parameters to be neglected. In most applications 

having a single parameter is not a restriction. For example, if T^ and T^ are 

small time constants of the same order of magnitude, 0(Tp =0(1^), then one of 

them can be taken as e and the other expressed as its multiple, say T^ = e,

T2 = ae, where a = is a known constant.

In control and systems theory, the model (1.1), (1.2) is a convenient 

tool for "reduced order modeling," a common engineering task. The order reduction 

is converted into a parameter perturbation, called "singular." When we set e = 0  

the dimension of the state space of (1.1)-(1.2) reduces from n+m to n because the 

differential equation (1.2) degenerates into an algebraic or a transcendental 

equation

0 = g(x,z,u,0,t), (1.3)
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where the bar is used to indicate that the variables belong to a system with e=0. 

We will say that the model (1.1)-(1.3) is in standard form if and only if the 

following crucial assumption concerning (1.3) is satisfied.

Assumption 1.1

In a domain of interest equation (1.3) has k > l  distinct ("isolated") 

real roots

z = ̂ (x,u, t) , i=l,2,...,k. (1.4)

This assumption assures that a well-defined n-dimensional reduced 

model will correspond to each root (1.4). To obtain the i-th reduced model we 

substitute (1.4) into (1.1), so

x = f (x,(f (X,ü,t) ,G,0,t) . (1.5)

In the sequel we will drop the subscript i and rewrite (1.5) more compactly as

x = f(x,u,t). (1.6)

This model is sometimes called a quasi-steady-state model, because z, whose velo

city z=-|- can be large when e is small, may rapidly converge to a root of (1.3), 

which is the quasi-steady-state form of (1.2). We will discuss this two-time

scale property of (1.1), (1.2) in the next section.

The convenience of using a parameter to achieve order reduction has 

also a drawback: it is not always clear how to pick the parameters to be

considered as small. Fortunately, in many applications our knowledge of physical 

processes and components of the system set us on the right track. Let us 

illustrate this by a couple of examples.
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Example 1.1

A well-known model of an armature controlled DC-motor is

x = az (1.7)

Lz = bx - Rz + u (1.8)

where x, z, and u are, respectively, speed, current, and voltage, R and L are 

armature resistance and inductance, and a and b are some motor constants. In 

most DC-motors L is a "small parameter" which is often neglected, so we set e=L. 

In this case equation (1.3) is

0 = bx - Rz + u (1.9)

and has only one root

z = (u+bx)/R. (1.10)

Thus the reduced model (1.6) is

x = ^  (u +bx) . (1.11)K

It is frequently used in the design of servosystems.

Example 1.2

In a feedback system, Fig.1.1a, with a high-gain amplifier K, where the 

nonlinear block N is tanz, the choice of e is not as obvious. However, any 

student of feedback systems would pick e = — , where K is the amplifier gain, andlx
obtain

x = z (1.12)

ez = -x - ez - tanz + u. (1.13)



8

In this case (1.3) and (1.4) yield

0 = -x - 0 - tanz + u (1•14)

z = tan ^(u - x) (1.15)

and hence the reduced model (1.6) is

x = tan ^(u - x). (1«16)

This model is represented by the block diagram in Fig.1.1b in which the loop with 

infinite gain e = 0 is replaced by the inverse of the operator in the feedback 

path.

Fig. 1.1. System with a high gain amplifier: (a) full model, (b) reduced model.
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It is easily seen that both (1.9) and (1.14) satisfy Assumption 1.1, 

that is, both models (1.7), (1.8) and (1.12), (1.13) appear in the standard 

form and their reduced models can be obtained by setting e = 0. To avoid a 

misleading conclusion that this is always the case, let us consider another 

simple example in which the original model is not in the standard form.

Example 1.3

In the RC-network in Fig. 1.2a the capacitances and are 0(1), 

while one of the resistances, r, is much smaller than the other one, R. Letting 

r = e and using the capacitor voltages as the state variables and the input 

voltage u as the control, the model of this network is

e*2 = '4 [vr (1+t )v2 + f u]- (1,18)

If this model were in the form (1.1)— (1.2), both v^ and v2 would be considered 

as z-variables and (1.3) would be

0 = -Vi + v2 (1.19)

However, Assumption 1.1 would then be violated because the roots of (1.3), in 

this case v^ = v2» are not distinct. The question remains whether the model of 

this RC-network can be simplified by setting e = 0, that is, by neglecting the 

small parasitic resistance r? For a simple answer we multiply (1.17) by C^, 

(1.18) by C2, add them together and obtain an equation without s, that is,

V l  + C2*2 =
1 , 1 
R V2 + R U

This suggests that instead of v^ we can use

(1.20)
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as a

Now

Vl € = r  V2
AAA#— f -

R
AAAr -o

A

u

X R
------------------v w --------- ----------0

a

= = C i  +  C 2 U

----------6

FP—7958

Fig. 1.2. (a) full model, (b) reduced model.

x = C1V1 + C 2V2
Cl + C2 ( 1. 21)

new voltage variable, which, along with z, transforms (1.17)-(1.18) into

x = RCCj+cp [-z + u]

• _ , 1 . 1 v , 1 , 1  , e
C1 + C2)X (ci + C2 rc2 Z + RC2 U

(1.22)

(1.23)

(1.3) becomes

° " ((r+ (T)5" (̂ “ + ̂ “)z 
1 2 C1 2

(1.24)
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and it satisfies Assumption 1.1. The substitution of z = x into (1.22) 

results in the reduced model

x = R(c 1+c 2) [-x + u] (1.25)

describing the circuit in Fig. 1.2b. Every electrical engineer would propose 

this circuit as a "low-frequency equivalent" of the circuit in Fig. 1.2a when 

r = e  is small.

Most of the quoted singular perturbation literature assumes that model 

(1.1)-(1.2) is in the standard form, that is, it satisfies Assumption 1.1.

The importance of Example 1.3 is that it points out the dependence of Assumption 

1.1 on the choice of state variables. In most applications a goal of modeling 

is to remain close to the original "physical" variables. This was possible in 

our Examples 1.1 and 1.2, but not in Example 1.3, where a new voltage variable 

(1.21) had to be introduced. However, few engineers, accustomed to the simplified 

"equivalent" circuit in Fig. 1.2b, would question the "physicalness" of this new 

variable. On the contrary, physical properties of the circuit in Fig. 1.2a 

are more clearly displayed by the standard form (1.22)-(l.23). Nevertheless 

the problem of presenting and analyzing singular perturbation properties in a 

coordinate-free form is of fundamental importance. A geometric approach to 

this problem has recently been developed by Fenichel (1979) and Kopell (1979).

More common are indirect approaches which deal with singular singularly perturbed 

problems, such as in O ’Malley (1979),, or transform the original "nonstandard" 

model into the standard form (1.1)-(1.2), such as in Peponides, Kokotovic, and 

Chow (1982), or Campbell (1980,1982). We will return to this modeling issue in

Section 10.
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2. Time-Scale Properties of the Standard Model

Singular perturbations cause a multi-time-scale behavior of dynamic 

systems characterized by the presence of both slow and fast transients in the 

system response to external stimuli. Loosely speaking, the slow response, or 

the "quasi-steady-state," is approximated by the reduced model (1.6), while the 

discrepancy between the response of the reduced model (1.6) and that of the full 

model (1.1)-(1.2) is the fast transient. To see this let us return to (1.1)-

(1.6) and examine variable z which has been excluded from the reduced model

(1.6) and substituted by its "quasi-steady-state" z. In contrast to the original 

variable z, starting at tQ from a prescribed z°, the quasi-steady-state z is

not free to start from z° and there may be a large discrepancy between its 

initial value

z(tQ) = </>(x(tQ) ,u(tQ) ,tQ) (2.1)

and the prescribed initial condition z°. Thus z cannot be a uniform approxima

tion of z. The best we can expect is that the approximation

z = z(t) + 0(e) (2.2)

will hold on an interval excluding tQ, that is, for t£[t^,T] where t^> tQ. 

However, we can constrain the quasi-steady-state x to start from the prescribed 

initial condition x° and, hence the approximation of x by x may be uniform. In 

other words,

x = x(t) + 0(e) (2.3)

may hold on an interval including tQ, that is, for all t in the interval [tQ,T]

on which x(t) exists.
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The approximation (2.2) establishes that during an initial ("boundary 

layer") interval [tQ,t^] the original variable z approaches z and then, during 

[t^,T], remains close to z. Let us remember that the speed of z can be large, 

z = g/e. In fact, having set e equal to zero in (1.2) we have made the transient 

of z instantaneous wherever g^O. Will z escape to infinity during this transient 

or converge to its quasi-steady-state z?

To answer this question let us analyze ez, which may remain finite, 

even when e tends to zero and z tends to infinity. We set

dz _ d_z 
dt dx * hence dx

dt (2.4)

and use x = 0 as the initial value at t = t . The new time variableo
t-t

x = ---— ; x = 0 at t = t ,e o (2.5)

is "stretched," that is, if e tends to zero, x tends to infinity even for fixed 

t only slightly larger than tQ. On the other hand, while z and x almost instan

taneously change, x remains very near its initial value x°. To describe the 

behavior of z as a function of x we use the so-called "boundary layer system"

= g(x°,z(x),u,0,tQ), (2.6)

with z° as the initial condition for z(x), and x°, t as fixed parameters.

The solution z(x) of this initial value problem is used as a "boundary layer" 

correction of (2.2) to form a possibly uniform approximation of z,

z = z(t) + z(x) -z(tQ) + 0(e). (2.7)

Clearly z(t) is the slow, and z(x) - z(tQ) is the fast transient of z.

To control these two transients the control u can also be composed 

of a slow control u(t), already assumed in the reduced model (1.6), and a
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fast control u (t) for the boundary layer system (2.6). The design of such a 

two-time-scale composite control is the main topic of several subsequent 

sections. In this section we concentrate on the assumptions under which the 

approximations (2.3) and (2.7) are valid.

Assumption 2.1

The equilibrium z(tQ) of (2.6) is asymptotically stable uniformly in 

x° and tQ, and z° belongs to its domain of attraction, so z (t) exists for 
x > 0.

If this assumption is satisfied,

lim z (t) = z(t ), (2.8)T+oo O

uniformly in x°, tQ, then z will come close to its quasi-steady-state z at some 

time t^ > tQ. Interval [tQ,t^] can be made arbitrarily short by making e suf

ficiently small. To assure that z stays close to z, we think as if any instant 

t€ [t^,T] can be the initial instant. At such an instant z is already close to 

z, which motivates the following assumption about the linearization of (2.6). 

Assumption 2.2

The eigenvalues of 8g/9z evaluated along x(t), z(t), u(t) for all

tC [t ,T] have real parts smaller than a fixed negative number, i.e., o

ReX{|^} <-c < 0. (2.9)dZ

Both assumptions describe a strong stability property of the boundary 

layer system (2.6). If z° is assumed to be sufficiently close to z(tQ), then 

Assumption 2.2 encompasses Assumption 2.1. We also note from (2.9) that the non

singularity of 9g/9z along x(t), z(t) implies that the root z(t) is distinct 

as required by Assumption 1.1. These assumptions are common in much of the 

singular perturbation literature, Tichonov (1948,1952), Levinson (1950),
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Vasileva (1963), Hoppensteadt (1971), et al. These references contain the 

proof and refinements of the following result, frequently referred to as 

Tichonov’s theorem.

Theorem 2.1:

If Assumptions 2.1 and 2.2 are satisfied, then (2.3) and (2.7) hold

for all t€[t ,T], while (2.2) holds for all t6 [t. ,T], where the "thickness of o 1
the boundary layer" t^-tQ can be made arbitrarily small by choosing small 

enough e.

As we shall see, many control applications of singular perturbations 

make use of this theorem. In the remainder of this section we first illustrate 

Theorem 2.1 by a simple nonlinear example and then specialize it to linear 

systems.

Example 2.1

Let the system

2
x = , x ( t ) = x ° = l ,  t =0 (2.10)z o o

ez = -(z+ xu)(z-2)(z-4), z(t ) = z° (2.11)o

be controlled by u(t) =u(t) = t. In this case (1.3) is

0 = -(z + xt)(z-2)(z-4) (2.12)

and has three distinct roots

z = -xt, z = 2, z = 4; (2.13)

that is, there can be three reduced models. Analyzing the boundary layer 

system

—— = -(z + xu)(z-2)(z-4) (2.14)
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we see that Assumptions 2.1 and 2.2 hold for z = -x u if z <2, and for

z = 4 if z >2. Both assumptions are violated by z = 2 which is an unstable 

equilibrium of (2.14). Hence there are only two reduced models

x =

-X, if CMVON (2.16)

-2x t 
4 » if z° > 2. (2.17)

t2 ”1It is interesting to note that the solution x= (1-— ) of (2.17) escapes to 

infinity at t=2/2. However, Theorem 2.1 still holds for t€-[tQ,T] with T < 2/2. 

This is illustrated by simulation results in Fig. 2.1 for four different values 

of z°, two for each reduced model. The approximate (dotted) and the exact 

(solid) trajectories for z are virtually indistinguishable, although e=0.3. 

Let us now specialize (1.1)-(1.2) to linear systems

x = Ax + Bz, x £ R

ez = Cx + Dz, zG R

n

m

(2.18)

(2.19)

assuming first that A, B, C, and D are constant matrices. Clearly, Theorem 2.1 

holds if Rel{D}< 0. The root of (1.3),

z = -D '*'Cx

substituted in (2.18) yields the reduced model

x = (A-BD XC)x.

( 2 . 20)

(2.21)

Introducing the fast variable n as the difference between z and its quasi-steady- 

state z,

q = z + D ‘'‘Cx (2.22)



Fig. 2.1. Approximate and exact solutions for variable z of 
the system (2.10)-(2.11) , with e = 0.3.
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the boundary layer system of (2.19) is simply

4̂ - = Dr), n(0) = z° + D ^Cx° (2.23)ax

and its initial condition n(0) is sometimes called the "boundary layer jump."

In terms of n the approximation (2.7) becomes

z = z(t) + ti(t) + 0(e) (2.24)

and its explicit expression is

-1 Dt
z = -D XCe^A BD C)tx° + e £ (z° + d “1Cx °) + 0(e). (2.25)

This expression illustrates the following eigenvalue property of (2.18)
(2.19).
Corollary 2.1

For e sufficiently small the eigenvalues of (2.18)-(2.19) are

clustered into two groups, the n "slow" (small) eigenvalues Xg, and the m fast 

(large) eigenvalues X^ such that

Xg = X{A-BD 1C + 0(e) }; Xf = ~  X{D + 0(e)}. (2.26)

As expected, the two-time-scale property of linear time invariant 

systems caused by the singular perturbation e -> 0 is equivalent to the separation 

of the spectrum into its fast and slow parts. It is of interest to obtain this 

result algebraically. This is done by using a definition of the fast variable 

ri more general than (2.22), namely

n = z - Lx (2.27)

and requiring that L be a root of the matrix quadratic ("Riccati") equation

DL - eLA + eLBL - C = 0. (2.28)
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Then (2.27) transforms the original singular perturbation system (2.18)-(2.19) 

into a block-triangular form

x = (A-BL)x + Bn (2.29)

en = (D + eLB)n (2.30)

where eigenvalues are the eigenvalues of the blocks. An application of the 

implicit function theorem to (2.28) shows that

L = D“1C + 0(e) (2.31)

and, hence, the result (2.26). More details on this algebraic approach to 

time scale modeling can be found in Kokotovic (1975), Anderson (1978), O ’Malley 

and Anderson (1978), and Avramovic (1979).

In linear-time-varying systems the time-scale properties also depend 

on the speed of parameter variations. A well-known example is the stability of

e - D(t)z. (2.32)

For e = 1, even if

ReX{D(t)} < -c1 < 0, Yt- t0 (2.33)

system (2.32) can be unstable. However, when e is small, the following result 

holds.

Theorem 2.2

If, in addition to (2.33), the derivative D(t) of D(t) is bounded, say

llD(t) II < c_ for all t > t , then there exists e. > 0 such that for all 0 < e < e 2 ” o 1 i-
the system (2.32) is uniformly asymptotically stable.

To prove this theorem we define M(t) for all t > tQ by

D ’ (t)M(t) + M(t)D(t) = -I. (2.34)
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In view of (2.33), M(t) is positive definite and its derivative M(t) is bounded, 

that is,

z’M(t)z < c^z’z. (2.35)

Theorem 2.2 follows from the fact that the derivative v of the Lyapunov function

v = z'M(t)z (2.36)

for (2.32) is

v < - ( | - c 3). (2.37)

This analysis reveals the meaning of the boundary layer stability 

assumption of Theorem 2.1. For e sufficiently small, the "frozen" spectrum of 

~  in this case D(t), is sufficiently faster than the variations of the 

entries of and the "frozen" stability condition (2.33) applies.

We are now in a position to generalize the transformation (2.27) 

to the time-varying system (2.18)-(2.19), that is when

A = A(t), B = B(t), C = C(t), D = D (t). (2.38)

If the transformation matrix L = L(t) in (2.27) satisfies the matrix ("Riccati") 

differential equation

eL = D(t) -eLA(t) + eLB(t)L-C(t) (2.39)

then the time-varying system is in the form (2.29), (2.30). Equation (2.39) 

has been analyzed by Chang (1969,1972) who proved the following result.

Theorem 2.3

If the matrices (2.38) are bounded and (2.33) holds for all t£[t ,T], 

then there exists > 0 such that for all t€L[tQ,T], e€.(0,z^]9a bounded,
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continuously differentiable solution L = L(t) of (2.39) exists and can be 

uniformly approximated by

L(t) = D_1(t)C(t) + 0(e) (2.40)

This theorem furnishes a simple proof of Theorem 2.1 for

linear problems. The validity of the approximation (2.3) of x by x

follows from replacing L(t) by D ^(t)C(t) in (2.29) and neglecting B(t)n,
t-t

because llqll < c^exp(-c,_— g— ■) » where c^,c^>0. The approximation of z by (2.24) 

follows by the same argument.

While the approximations (2.3) and (2.7) are within an 0(e) error, 

expressions in two-time-scale asymptotic series can improve the accuracy up to 

any desired order. The details of construction and validation of asymptotic 

series are presented in Vasileva (1963), Hoppensteadt (1971) , Vasileva and 

Butuzov (1973), and O'Malley (1974). In addition to these direct expansions, 

formal series can also be formed indirectly by expanding the transformation 

matrix L in (2.27), through its defining equation (2.28) or (2.39). This leads 

to a convenient numerical procedure, because L can be computed iteratively, as 

in Kokotovic (1975), Anderson (1978), and Avramovic (1979). An alternative 

procedure for the expansion of the state equation was presented in Kokotovic, 

Allemong, Winkelman, and Chow (1980). The validation of indirect and iterative 

procedures was given by Phillips (1983) who proved that they produce the terms 

of the asymptotic series in Vasileva and Butuzov (1973).

In conclusion, the solution x(t,e), z(t,e) of a singularly perturbed 

system satisfying Theorem 2.1 can be approximated by the solutions of two 

lower order systems like (2.29) and (2.30) in two separate time scales. In the 

remaining sections we will show how this result can be used to simplify the 

analysis and design of control systems.
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3. Controllability and Stability

It is of conceptual and practical importance that many properties 

of singular perturbation systems can be deduced from the same properties of 

simpler slow and fast subsystems defined in separate time scales. In this 

section we concentrate on controllability and stability properties. We begin 

with the linear time varying control system

X = A. ̂ (t)x + Al2(t)z + B 1(t)u, x£ Rn , (3.1)

ez = A12(t)x + A22(t)z + B2(t)u, mz6 R , (3.2)

with a change of notation suitable for control applications. This system is
1 1  2 2 n+msaid to be controllable if for any two points (x ,z ) and (x , z ) in R there

1 1  2exists a bounded control u(t) such that if x(tp = x , z(tp =z f then x(t2) =x ,
/ \ 2z(t2) = z for some finite t2 >t^. Precise definitions of this and other control 

concepts can be found in most recent texts, such as Kailath (1980). Since the 

controllability and stability properties of (3.1)-(3.2) are invariant with 

respect to a nonsingular linear transformation, we will exhibit their dependence 

on time scales using a transformation proposed by Chang (1972) . We let L(t) 

satisfy (2.28) in the new notation and we also define H(t) as a solution of

eH = H(A22 + eLA12) - e(Au -A12L)H-A12 (3.3)

which can be approximated by

H(t) = A 12(t)A22(t) + 0(e). (3.4)

Denoting by I the kxk identity matrix, we introduce the transformationK.
— —

X I -eHL n -eH £

z -L ImJ n
(3.5)
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Henceforth the argument t is omitted whenever convenient. The inverse of (3.5) is

eH

I -eLH m

In the new coordinates r\9 the system (3.1)-(3.2) separates into two

subsystems

k = (Au -A12L)C + (B1 + HB2)u (3.7)

ep = (A22 + eLA12)ri + (B^eLB^eLHBpu. (3.8)

Taking into account (2.39) and (3.4) and noting from (3.5) that x = f, we arrive 

at the following conclusion.

Theorem 3.1

There exists e* > 0 such that the controllability of the slow (reduced)

subsystem

x = (A11“A 12A22A21^  + (Bi + Ai2A22B2^U (3*9)

and the boundary layer controllability condition

rank[B2(t),A22(t)B2(t),...,A^1(t)B2(t)] = m, Vt > tQ (3.10)

imply the controllability of the full system (3.1)-(3.2) for all e£ (0,e*].

We note that (3.10) has the form of a well-known controllability 

condition for linear time invariant systems, Kailath (1980). Here it is 

applied to the fast (boundary layer) subsystem

= A22(t)n + B2(t)u (3.11)

where t is treated as a fixed parameter and u = u (t). This condition appeared 

in Kokotovic and Yackel (1972) and has been extended by Sannuti (1977) and
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used for time-optimal control in Kokotovic and Haddad (1975), Javid and 

Kokotovic (1977), and Javid (1978).

The sufficient condition of Theorem 3.1 is not necessary. As shown 

by Chow (1977), this condition excludes the controllable case when the fast 

subsystem is controlled through the slow subsystem.

Example 3.1

The two systems in Fig.3.1 have the same modes: one slow mode s = -1

and one fast mode s = - . However, they are structurally different. While in

system (a) the slow mode is controlled through the fast mode, in system (b) 

the fast mode is controlled through the slow mode, which is a cause for its 

weak controllability. To illustrate this we give two minimal realizations of 

these systems

( a ’) x = -X +  Z (a") 5 = -K +  -

£Z = -Z +  U £n = -ri +  u

(b*) X = -X +  U (b") k = - C + u

£Z = -Z +  X £11 = n + i.

(3.12)

where (a',b*) are as in Fig.3.1 and (a",b") are the modal realizations, in this 

case identical to (3.7)-(3.8).

u 1 I 1 X
eS +  1 S+l

(a)

U . 1 1 1__S + l eS + 1
(b) FP-7959

Fig.3.1. Controllable (a) and weakly controllable (b) singularly perturbed 
systems, where s is the Laplace transform variable.
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Although for e > 0 both systems are controllable, system (b) does not satisfy 

Theorem 3.1. We see from (b") that the fast mode in (b) is controlled through 

an e-term. Thus it ceases to be controllable as e 0 which is a type of weak 

controllability. Analogous observability results can be obtained by duality.

For example, if for system (a) the output is y = x, then (a) is weakly observable.

The fact that the term "weakly" applies to the fast mode is of prac

tical importance. When the fast modes are neglected as "parasitics," their weak 

controllability and observability contribute to the robustness of the simpli

fied design. Although the problems of observability and robust observer design 

for singularly perturbed systems have attracted the attention of several 

authors, Porter (1974,1977), Balas (1978), O ’Reilly (1979,1980), Javid (1980, 

1982), Khalil (1981), Saksena and Cruz (1981), more work remains to be done on 

this important problem.

We proceed to the stability properties. Being invariant with respect 

to the transformation (3.5), these properties can be inferred from the pro

perties of the two separate systems (3.7) and (3.8). Since the reduced system 

(3.9) and the boundary layer system (3.11) are regular perturbations of 

(3.7) and (3.8), respectively, the following result is immediate.

Theorem 3.2

If Theorem 2.2 holds for k^{t) =D(t) and the reduced system (3.9) 

is uniformly asymptotically stable, then there exists e >0 such that the 

original system (3.1)-(3.2) is uniformly asymptotically stable for all eS (0,e ]

This theorem also follows as a corollary from more general results 

by Klimushev and Krasovski (1962), Wilde and Kokotovic (1972), Hoppensteadt (1974) 

and Habets (1974). The time-invariant version of the Theorem 3.2 was applied 

to networks with parasitics by Desoer and Shensa (1970) and to control systems 

by B. Porter (1974). A more detailed stability analysis leads to an estimate
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of e* in terms of bounds on system matrices and their derivatives. For the linear 

time-invariant case a bound was derived by Zien (1973) and for the time-varying 

case by Javid (1978). A robustness bound for linear time-invariant systems 

uses the Laplace transform of (3.1)-(3.2) expressed in a feedback form with

u=0 as

x(s) = (sI-Au )_1A12z (s) (3.13)

z(s) = [I-es(esI-A22) J] (-A22A21)x(s) . (3.14)

Defining the transfer function matrices G and AG

G(s) = A22A21(sI-An )-1A12 (3.15)

AG(s,e) = -es(esI-A 2) * (3.16)

and denoting by a(M) and g(M) the largest and the smallest singular values of M, 

respectively, the robustness condition due to Sandell (1979) is stated as follows. 

Theorem 3.3

If the reduced system (3.9) is stable, the full system (3.1), (3.2) 

remains stable for all e > 0 satisfying

a(AG(jw,e)) < a(I + G ^jw)) (3.17)

for all a) > 0.

For nonlinear singularly perturbed systems the stability is frequently 

analyzed using separate Lyapunov functions for the reduced system and the 

boundary layer system and composing them into a single Lyapunov function for 

the full system. Let us first illustrate this on a nonlinear system which is 

linear in z,

x = f(x) + F(x)z (3.18)

ez = g(x) + G(x)z (3.19)
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assuming that G (x) exists for all x. The Lyapunov function introduced by 

Chow (1978) consists of two functions. The first function

v = a ’(x)Q(x)a(x) (3.19)

establishes the asymptotic stability of the reduced system x=a(x), where

a(x) = f(x) - F(x)G X(x)g(x) (3.20)

and Q(x) > 0 satisfies, for some differentiable C(x) > 0,

Q (x) ax (x) + = -c(x)> ax = lx (3.21)

where prime denotes a transpose. The second function

w =  (z + rg-p"1r,F,vi) 'piz + r g - p ' V i V ) , (3.22)X X

where T = G  ̂(x) and P(x) satisfies

P(x)G(x) + G'(x)P(x) = -I, (3.23)

establishes the asymptotic stability (uniform in x) of the fast (boundary layer) 

subsystem

= G(x)n + g(x). (3.24)

The Lyapunov function V(x,z,e) for the full system (3.18)-(3.19) is composed 

from v and w as follows

V(x,z,e) = v(x) + y  w(x,z). (3.25)

It can be used to estimate the dependence of the domain of attraction of x=0, 

z = 0 on e as illustrated by the following example.

Example 3.2

For the system

3 j .X = x - X + z, £ Z = -X - Z, (3.26)
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the Lyapunov function (3.25) is

4
V(x,z,e) = ^  (z + x + 2x^)2 (3.27)

When e < 0.01 it is found that the region of attraction of x = 0, z = 0 includes 

|x| < 1, |z| < 10, while for e < 0.005 the z bound is extended to [z] < 20.

Among the stability results obtained by Klimushev and Krasovski (1962), 

Hoppensteadt (1967,1974), Habets (1974), Grujic (1979,1981), and Saberi and 

Khalil (1981,1982) for the more general nonlinear system

x = f(x,z,t)

ez = g(x,z,t)

(3.28)

(3.29)

we briefly outline the result by Habets. The reduced system (1.5) of (3.28)-(3.29) 

is x = f(x,y(x,t),t), 

where is omitted and Lf(x,t) satisfies

g(x,if(x,t) ,t) = 0 ,

(3.30)

(3.31)

while the boundary layer system is

dz
dx = g(x,z,t). (3.32)

For simplicity let f(0,0,t)=0, g(0,0,t)=0 and hence t|>(0,t)=0.

Theorem 3.4

Suppose that there exist Lyapunov functions v(x,t) for (3.30) and 

w(x,z,t) for (3.32) such that

a ( Il x II ) < v(t,x) < b(llxll) (3.33)

a (IIz—t̂ (x,t) ||) < w(x,z,t) < b(||z-lj?(x,t) ||) (3.34)
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where a and b are positive nondecreasing scalar functions 

that positive constants k^ and exist such that

v(x,t) < —k̂ llxll ,

3v
3x < k2 1| x II,

w(x,z,t) < k^IIz—tp(x,t) il , 

3w
31

3w

< k^llz-i^C xjt) II ( IIz—tp(x, t )  II + llxll) ,

3x < k^H z-î (x, t) II,

If (x,Z,t)-f (x,Lf(x,t) ,t) II < k^llz-lKXjt)

l l f ( x , z , t ) l l  < k ^ ( IIxII + llz-tj>(x,t) II) , 

ll(/>(x,t) II < b ( IIxII) ,

Furthermore, suppose

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)

where v in (3.35) denotes the t-derivative for the reduced system (3.30), while 

w in (3.37) denotes the T-derivative for the boundary layer system (3.32). If 

(3.36) to (3.42) are satisfied, then there exists e* such that for all 

e£(0,£*] the equilibrium x=0, z = 0 of (3.28), (3.29) is uniformly asympto

tically stable.

Obtaining more easily verifiable stability conditions remains an 

active research topic. Further progress has been reported by Grujic (1979,1981) 

and Saberi and Khalil (1981,1983). The relevance of this topic has recently 

increased due to the interest in robustness of adaptive systems, as discussed 

in Ioannou and Kokotovic (1982,1983). A possible approach to these problems is 

to investigate the perturbations of the absolute stability property as in
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Siljak (1972), Ioannou (1981), and Saksena and Kokotovic (1981). Further 

stability, stabilizability, and robustness issues will be discussed in the 

sections dealing with regulator design.



4. Optimal Linear State Regulators

One of the basic results of control theory is the solution of the 

optimal linear state regulator problem by Kalman (1960), which reduces the 

problem to the solution of a matrix Riccati equation. For the linear singularly 

perturbed system (3.1)-(3.2) this equation is also singularly perturbed. It 

was investigated by Sannuti and Kokotovic (1969) , Yackel (1971), Haddad and 

Kokotovic (1971), Kokotovic and Yackel (1972), O'Malley (1972), and O'Malley 

and Kung (1974). Another form of the regulator solution is obtained via a 

Hamiltonian boundary value problem which in this case is singularly perturbed. 

This approach was taken by O'Malley (1972b), Wilde (1972), Wilde and Kokotovic 

(1973), Asatani (1974), and others. A comparison of the two approaches was 

given by O'Malley and Kung (1974) and O'Malley (1975). In this section we give 

an outline of the Riccati equation approach.

The problem considered is to find a control u which, for the system 

(3.1)— (3.2), minimizes the quadratic cost

1 tf
J = -y / (y'y + u'R(t)u)dt (4.1)

to

where y = (t)x+ C£(t)z is the system output and x(t^), z(t^) are free. For 

e > 0 the optimal state feedback control for this problem is

u(t) = -R(t)-1 [B|(t) | B ’(t)]K
x(t)

z(t)
(4.2)

where K is the positive definite solution of a Riccati equation, Kailath (1980)
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with the end condition K(t^) =0. The matrices A and B are as in (4.4) below 

and C is the output matrix C= [C^ 0,̂  . A few terminological remarks will be 

helpful. The term "state feedback control" refers to the fact that the control 

law in (4.2) is an explicit function (in this case linear) of the state x(t), 

z(t). The term "state regulator" expresses the tendency of (4.1) to diminish 

the output y, and, under the complete observability condition, also the state 

x(t), z(t). This tendency can be enhanced by adding a terminal cost term to 

(4.1). As t^ increases, x(t^), z(t^) decrease and as t -̂>°°, the state is 

"regulated" to zero, x(t^) , z(t_^)->0. However, this is an asymptotic stability 

requirement which should not be confused with the fixed end-problem in which 

x(t^),z(t^) =0 is a hard constraint. This latter problem is treated in the next 

section.

The singularity of (4.3) is due to the fact that the system matrices

All(t) A 12(t) B^t)

A2i(t) A2 2^
, B =

B2 (t)
£ £ £

are unbounded as e-*0. It is not obvious that (4.3) is a singularly perturbed 

system in the form (1.1), (1.2). However, the search for a solution in the form

K = Kn eK12

eK22

(4.5)

makes the singular perturbation form explicit, Sannuti (1968). Denoting 

S11 = BiR *B|, S22 = ^2* S12 = B1R ^ 2  and substituting (4.5) into (4.3) we

obtain
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dK
dt “K11A11 A11K11 K12A21 A21K12 + K11S11K11+ K 11S12K12

+ K 12Si2Ku  + Ki2S22K 12 “ C1C 1 (4.6)

dK 12
E dt = "K11A12 “ K12A22 “ eAllK12 “ A21K22 + eKllSllK12 + K11S12K21

+ £K12Si2K 12 + K 12S22K2 2 - CiC2 (4.7)

£ dt “eK12A12 eA12Kl2 K22A22 A22K22+e K12S11K12+ e K 12S12K22

+ eK22S12K 12 + K22S22K22 - C2C2 (4.8)

with the end condition

Kll(tf) = 0 ’ K12(tf)-°* K22(tf)=0. (4.9)

This is clearly a singularly perturbed system of the type (1.1)-(1.2) and we 

can apply Theorem 1.1. When we set e = 0, we get

dK
11

dt Kll(Ai r S12K12) (A11 S12^12) K11 + ̂ 11S11K11 ^12A21 A21K12

+ ̂ 12S22^ 2 - C ; C 1 (4.10)

0 Ki2^A22 S22K22̂  K11A12 A21^22+ K 11S12K22 C1C2

0 “^22A 22 “ A22K2 2 + K22S22K 22 C2C2 *

(4.11)

(4.12)

The only end condition to be imposed on this algebraic-differential system is 

KiiCtf) = 0, while (4.11) and (4.12) now play the role of (1.3). A crucial 

property of this system is that (4.12) is independent of (4.10) and (4.11). To 

satisfy Assumption 1.1 we need a unique positive definite solution K22 of (4.12)

to exist.
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Assumption 4.1

For each fixed t€. [t ,t_] the pair A 0 0(t), Bn(t) is stabilizable ando t ¿1 L

pair A2 2(t) , C2 (t) is detectable.

For this assumption to hold it is sufficient that the controllability 

condition (3.11) and

rank[C2 (t) ,A2 2(t)C2 (t) ,... ,A2 2(t)m ^ ( t ) ]  = m  (4.13)

hold for all tC[t ,t^]. Under Assumption 4.1 eigenvalues of A22-S22K22 all

have negative real parts and (4.11) can be solved for K 2̂ in terms of K22,

known from (4.12), and K^. Thus, the root (1.4) of interest in this case is

distinct (isolated). The boundary layer system at t corresponding to (4.11)
t_tfand (4.12), in the reverse fast time t = — -— , is

dK ,(t) „ „ _
Jj: = -K12(T) tA2 2(t)-S2 2(t)K2 2(x) ] - [A2 1(t)-S12(t)K11(t) ] K2 2(t)

-Ku (t)A12(t) -C|(t)C2 (t) (4.14)

dK (t)
—  ̂ ------K22(r)A2 2(t) -A^2 (t)K2 2(r)+K2 2(t)S2 2(t)K2 2(t) -C^(t)C2 (t) (4.15)

with K 2̂ = 0 and = 0 at t = 0. For fixed t and e-> 0 the limit (2.8) of 

Assumption 2.1 is to be taken as It follows from the regulator theory
A

that Assumption 4.1 guarantees that, as the solution K2 2(t ) of (4.15)

converges uniformly to the positive definite root K2 2(t) of (4.12), that is, to 

the solution of a "boundary layer" regulator problem for each fixed tE[tQ,t^]. 

The uniform asymptotic stability of equation (4.14), which is linear in K^2 (t ), 

follows from standard stability theorems. Thus (4.14) and (4.15) satisfy 

Assumption 2.1. Furthermore, matrix 9g/9z of Assumption 2.2 for (4.14)-(4.15) 

is block upper triangular with the eigenvalues identical to the eigenvalues of
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[A2 2(t) S 2 2(t)K2 2(t)]. Thus the uniform asymptotic stability of the boundary 

layer regulator also guarantees that Assumption 2.2 is satisfied. Hence the 

following result.

Theorem 4.1

If Assumption 4.1 is satisfied then for all t€. [tQ,t^] the solution 

of the full Riccati equation (4.3) is approximated by

Kn(t) = Ku (t) + 0 (e) (4.16)

K i2 (t) = k 12 (t) + K 12(t) - K 12(tf) +0(e) (4.17)

K22(t) = k 22 (t) + K 2 2(t) - K 2 2(tf) + 0 (e) (4.18)

that is, by separately solving the slow ("reduced") and the fast 

("boundary layer") Riccati systems. Excluding the boundary layer correction 

terms the approximation

Kn (t) = K u (t) + 0 (e) (4.19)

K 12(t) = K 12(t) + 0 (e) (4.20)

K2 2 <-t') = K2 2(t) + 0 (e) (4.21)

is valid for all t£[to»t^], where t^ < t^ can be made arbitrarily close to t^ 

by choosing e small enough.

Higher order approximations are given in Yackel and Kokotovic (1973) 

and O'Malley and Rung (1974). Theorem 4.1 has important practical implications. 

First, we note that (4.15) represents the time-invariant Riccati equation 

depending on the fixed parameter t, which is, in fact, an independent optimality 

condition for the boundary layer regulator problem (3.10) in fast time scale x.
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Then the resulting feedback matrix ^22~^22K22 satisfies Theorem 2.2, that is, 

it guarantees the uniform asymptotic stability of the boundary layer. This 

demonstrates the stabilizing role of the fast regulator feedback K ^ • We reiterate 

that the weakly controllable (stabilizable) case is excluded, that is, Theorem 4.1 

requires that the fast modes be controlled directly, rather than through the 

slow subsystem. Although not necessary for stability, this requirement is needed 

for a robust design. The slow regulator is defined by the reduced system (4.10), 

(4.11), (4.12). At the first glance it appears that it depends on the quasi

steady-state solution K^2 °f the fast regulator. This would allow it to differ 

from the regulator solution for the problem in which e is neglected already in 

the system (3.1)-(3.2) and in the cost (4.1), rather than later in the Riccati 

equation. The difference between the two reduced solutions would indicate 

nonrobustness, because the result would depend on when e is neglected.

Let us investigate the reduced solution when, instead of neglecting e 

in the Riccati equation,we neglect it in the model (3.1), (3.2) by substituting

zr = - ^ 2 (A21Xr + B2V (4.27)

into (3.1)-(3.2) to obtain

x = A (t)x +B (t)u r r r r r

y = C (t)x +D (t)u ;r r r r r

(4.23)

(4.24)

where

J =4- / (x'c’C x  +2x'c D u + u 'r  u )dt r 2 J r r r r r r r r  r r r
o

Ar A 11 A 12A22A2 1* Br B 1 A 12A22B2

Cr C1C2A22A2 1* D = -C.A0Ìb o, R = R + d ’d .r 2 22 2 r r r

(4.25)

(4.26)

(4.27)
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The problem with the model reduced will be indicated by a subscript "r," to 

distinguish it from the reduced Riccati problem indicated by a bar. The 

Riccati equation corresponding to (4.23)-(4.25) is

dK _r
dt = -K (A -B R~1D*C )-(A -B R S'C ) 'K + K  B R_1B K -C’(I+D R d ') lCr r r r r r r r r r r r r r r r r r r r

(4.28)

with the end condition K^(t^) =0. We observe that this equation, in contrast

to (4.10), (4.11), (4.12), does not contain or ^22* relat^ons^iP

between this Riccati system for the reduced model, and (4.10), (4.11), (4.12),

which is the reduced Riccati system for the full model, is established by 
Haddad and Kokotovic (1971) as follows.

Theorem 4.2

If Theorem 4.1 holds and A0i!(t) exists for all t£ [t ,t_], then the¿1 o t
solution K^(t) of (4.28) is identical to the solution K^(t) of (4.10).

For C2 ~ 0 and hence 2 = "^11^12^22* t*ie identity of (4.10)

and (4.27) is clear by inspection. The proof for any C  ̂ satisfying Assumption 

4.1 involves more calculation and leads to the important conclusion that K^(t) is 

independent of 1^2 (t).

This result demonstrates the robustness of the optimal state regulator 

problem with respect to singular perturbations. The same robustness property 

is not automatic in other feedback designs. Khalil (1981) gives examples of 

non-robust feedback designs using reduced order observers or static output 

feedback. Gardner and Cruz (1978) show that, even with the state feedback,

Nash games are non-robust with respect to singular perturbations.

Once the robustness of the optimal state regulator is established, we 

can proceed with the design which consists of implementing the control law (4.2) 

with approximate feedback gains (4.16), (4.17), (4.18). This is a two-time-scale
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design because the feedback gains depending on t and x are obtained separately.

However, an equivalent, but more direct approach is possible which uses only

K (t) from (4.28) and K0 0(x) from (4.15). This is the so-called composite r Zz
control approach developed by Suzuki and Miura (1976) and Chow and Kokotovic 

(1976). We do not discuss the composite control of linear systems here because 

it follows as a special case of the nonlinear composite control presented in 

Section 7.

Further extensions of the results presented in this section are due 

to Glizer and Dmitriev (1975a,b,1977), Gaitsgori and Pervozvanski (1979) and 

Pervozvanski and Gaitsgori (1981). The singularly perturbed optimal regulator 

problem for linear difference (rather than differential) equations was solved 

by Blankenship (1981), and Litkouhi and Khalil (1983).
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5. Linear Optimal Control

Although convenient for the feedback solution of linear optimal control 

problems with free endpoints, the Riccati equation approach must be modified 

in order to apply to problems with fixed endpoints. Two such modifications 

were developed by Wilde and Kokotovic (1973) and Asatani (1976). In general 

endpoint constraints require the solution of Hamiltonian boundary value problems, 

which are in our case singularly perturbed. Various forms of singularly perturbed 

boundary value problems, not directly related to control applications, were 

studied earlier by Levin (1957), Vishik and Liusternik (1958), Harris (1960), 

Vasileva (1963), Wasow (1965), Chang (1972), O ’Malley (1974), and others.

Most of these works develop "inner” (in t and a) and "outer" (in t) asymptotic 

expansions. This approach to the boundary value problem arising in linear 

optimal control was taken by O ’Malley (1972b,1975), O ’Malley and Kung (1974), 

and Sannuti (1974). The results are based on hypotheses assuring the matching 

at both ends of the optimal trajectory.

Another approach, more in the spirit of the regulator theory, is 

that of Wilde (1972) and Wilde and Kokotovic (1973). It exploits the stabi

lizing properties of both the positive definite and the negative definite 

solutions of the same Riccati equation appearing in the regulator problem.

These solutions correspond to the exponential dichotomy of the Hamiltonian 

systems, Wilde and Kokotovic (1972). They split the original boundary value 

problem into two initial value problems, one of which is in reverse time. We 

present this approach by considering the same linear optimal control problem 

(3 .1), (3 .2), and (4 .1), but this time with fixed endpoints

x(t)=x°, z(t) = z°; x ( t ) = x f, z ( t ) = z f. o o I I (5.1)
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Using p and eq as the adjoint variables corresponding to x and z, respectively, 

the optimal control is obtained as

u = -R 1 (B*p + B^q). (5.2)

The standard necessary optimality conditions, Kailath (1980), yield the singularly 

perturbed boundary value problem (5.1) for the Hamiltonian system

X ’ An A 12 -Sll -Sl2’ X

£Z
A 21 A 22 -Sh - S 22

z

P -CiCl -C1C2 -A il -Ah p

eq _-C2Cl -C2C 1 S i ~A 22 q

The reduced problem is
r— _ t
X ’ An -sn
P [-cici

12

■CiC2

-s

-A
12
»

21

22

- C2C2

with the end conditions

x(tQ) = x°, x(tf) = xf. (5 .5)

Conditions will be imposed to guarantee existence of the inverse indicated.

The end conditions on z had to be dropped because the slow parts z and q of z 

and q are obtained from the linear algebraic equations when ez= 0 and eq = 0 is 

set in (5.3). Hence, z and q in general do not satisfy the end conditions (5.1) 

and "boundary layers" appear at both ends of the optimal trajectory. The layer 

at the left end point must be uniformly asymptotically stable in the forward, 

and the layer at the right end point in the reverse time.

The two-time-scale design of a near optimal trajectory is summarized

in the following theorem.
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Theorem 5.1

Suppose that Assumption 4.1 is satisfied and x(t) and p(t) uniquely 

solve (5.4) and (5.5). Denote by P22 the positive definite root of the 

Riccati equation (4.12) at t = tQ and by N 22 its negative definite root at t = t^. 

Let L(t) and R(a) be the solutions of two mutually independent time-invariant 

initial value problems

and

where

dx Â2 2^ o  ̂ S2 2^to^P22^ T^ (5.6)

L( 0) = z°-i(tQ) (5.7)

do [A2 2(tf) S2 2^tf^N22-'R Q̂^ (5.8)

R(0) = zf - z(tf) (5.9)

and 0 =  (t-t^)/e are the "stretched" time scales.

l that for all t€.[t ,t_], e £ ( 0 ,e*]
0 t

Then there

x(t,e) = x(t) + 0 (e) (5.10)

z(t,e) = z(t) + L(x) +R(a) + 0(e) (5.11)

p(t,e) = p(t) + 0 (e) (5.12)

q(t,e) = q(t)+ P 2 2 L ( t ) + N 22R(a)+0(e) (5.13)

u(t,e) = u(t)+ U l ( t ) + U R (a)+0(e) (5.14)

u(t) = -R_1(Bjp + B2q) (5.15)

uL (x) = -R (to)B2 (to)P22L(x) (5.16)

UR (a) = -R"1 (tf)B2 (tf)N22R(a). (5.17)
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The time scales for these two operations can be selected to be independent.

For the reduced problem, a standard two point boundary value technique is used. 

The advantage over the original problem is that the order is lower, and the 

fast phenomena due to e are eliminated.

Example 5.1

We illustrate the procedure using the system and the cost

x = z
(5.18)

(5.19)

i 2with end conditions as in (5.1). Since k ^  = t9 B^^l, and C^C^ = 9-t 9 

Assumption 4.1 holds for 0 < t < 3 .  The exact optimal solution must satisfy

x = z

ez = tz - q
(5.20)

p = -x

2eq = -(9-t )z - p - tq

subject to (5.1). When e is set equal to zero, the reduced problem is

1 _x = - g- P

p = -x,
(5.21)

Its solution x(t), p(t) is easily found using the eigenvalues —  and 

system matrix in (5.21), while z and q are evaluated from

—  of the

1 _
z = " 9 P>

t _
q = - 9 P' (5.22)
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Then the roots of the Riccati equation

(5.23)

are

P 22 " to + 3 = 4’ N 2 2(t) = "f ’ 3 = - 1 (5.24)

and are used in (5.6), (5.8)

dR = 
da (5.25)

to obtain the layer correction terms

L = [z q  - z(l)]e-3(t-1)/e

(5.26)

Thus the corrections L(x) and R(o) are the solutions of the left and the right

"boundary layer regulators," respectively. It is the right regulator (5.26) that

allows us to automatically satisfy the end point matching condition for jump 
f _
z -z(2). It is totally unstable in real time t, that is, asymptotically stable 

in the reverse time tf-t. Typical exact and reduced trajectories, z and z, and 

the correction terms are sketched in Fig. 5.1.

O ’Malley (1972b). Starting with (5.20) an asymptotic series in t, t , and a 

would be substituted for each of the variables and the terms with like powers 

of e are identified. The first terms x(t), z(t), p(t), q(t) in the t-series 

are obtained from (5.21) and (5.22), as in this approach. However, instead of 

using the Riccati and the boundary layer systems, (5.23) and (5.25), the first 

terms z(x), q(x), z(a), q(a) in the x- and the a-series would be obtained from 

the x- and the a-form of (5.20), subject to appropriate matching of their

We can use the same example to illustrate the more common approach by



tf
z(tf)

FP-7961

Fig. 5.1. Typical trajectories: optimal z, reduced z, and boundary layer
corrections L and R.

initial and end conditions. This approach can handle other types of consistent 

initial and end—conditions. Both approaches lead to the same asymptotic 

solution, but under different hypotheses. The relationship of the hypotheses 

was investigated by O'Malley (1975).

The structure of the solution of a singularly perturbed boundary value 

problem is always as in Fig. 5.1. The left boundary layer must be asymptotically 

stable in the time t and the right boundary layer in the reverse time t^-t, and 

hence the complete solution can no longer be stable. It possesses both stable 

and unstable manifolds. The initial point is on the stable manifold, while the 

end-point is on the unstable manifold (stable in reverse time). Hence, the 

fixed end-point problem is not robust with respect to singular perturbations, 

because the right boundary layer does not have a stable implementation in real 

time. It is important to point out that this is not a property of the asymp

totic procedure, but of the problem itself.

43
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Let us return to the optimal control problem with a free end-point 

and assume that, instead of an integral cost like (4.1), the control is now 

to minimize a terminal cost, that is, a function of x(t^) and z(t^), such as

J = X 2 (tf) + z2 (tf) + <z2 (tf) + 0.25)2. (5.27)

The absence of an integral cost for u may lead to its impulsive behavior near 

t^ even if the system is not singularly perturbed. A more realistic behavior 

will result if u is constrained, u£U, for example

u £  [-1, 1]. (5.28)

Singular perturbation problems with terminal cost and control constraints have 

recently been studied by Dontchev and Veliov (1983) and Dontchev (1983). They 

show that the usual reduced problem is not valid and construct a new reduced 

problem which yields the desired approximation. As an illustration, we consider 

the minimization of (5.27), subject to (5.28), for the system

x = z^ - z^, x(0) = 0.5

ez^ = -z^+u, z^(0) = z2 ^) = 0 (5.29)

ez = -2z + u, t = 0 , t = 1.2 2 o f

For the usual reduced problem z^=u, Z2 = 0.5u and

x = -0.55, j = 52 (tf) + s 2 (tf) + [0.5u(tf) +0.25]2 (5.30)

the optimal control is

u(t) = 1 for 0 < t < 1, and u(t) = -0.1 for t = 1. (5.31)

However, this control yields J = 0.05, which is not the limit of the exact 

optimal cost J* as e + 0, because J*->0. The reason for this discrepancy is 

the presence of the term u(tf) in J. This term contributes to the cost,
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but does not affect the slow trajectory. For this example the new limit 

problem proposed in Dontchev and Veliov (1983) consists of the fast problem 

over a reachable set R, that is,

inf {zj + (z2 + 0.25) 2; z^^z^^H], (5.32)

-2and the slow problem in which the cost is x (t^), rather than J in (5.30). 

Although a difficulty in this approach is the determination of the set R, it 

is an important step in the study of singularly perturbed problems with control 

constraints.
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6 . Singular, Cheap, and High Gain Control

In our discussions thus far the singular perturbation properties of

the system to be controlled were not altered by the control law. However,

even if the original system is not singularly perturbed, a strong control

action can force it to have fast and slow transients, that is, to behave like

a singularly perturbed system. In feedback systems, the strong control action

is achieved by high feedback gain. For a high gain system to emerge as a

result of an optimal control problem, the control should be "cheap," that is,
2instead of u ’Ru, its cost in (4.1) should be only e u ’Ru, where e > 0 is very 

small. On the other hand, an optimal control problem (3.1)— (3.2), and (4.1) 

with det R=0 is singular in the sense that the standard optimality conditions 

do not provide adequate information for its solution. Singular optimal controls 

and resulting singular arcs have been a control theory topic of considerable 

research interest, see for example Bell and Jacobson (1975). By formulating 

and analyzing the cheap control problem as a singular perturbation problem 

O ’Malley and Jameson (1975,1977), Jameson and O ’Malley (1975), and O ’Malley

(1976) have developed a new tool for a study of singular controls as the limits 

of cheap controls. The application of these results to the design of high gain 

and variable structure systems was discussed in Young, Kokotovic, and Utkin

(1977) . Here we closely follow a presentation in O ’Malley (1978).

The cheap (near-singular) control problem for a linear system

x = A(t)x + B(t)u, x £ R n , u £ R r (6.1)

is characterized by the presence of e in the cost functional

1 tf 2 J = j I [x’o(t)x + e u'R(t)u]dt
Z to

(6 . 2)
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where Q and R are positive semidefinite and positive definite, respectively. 

For e > 0 the standard optimality conditions hold,

u = -- y  R b̂ ’p (6.3)
e

■ • 2 —1 ix = e Ax - BR Bp, x(to) = x 0 (6.4)

P = -Qx - A'p, p(tf) = 0 (6.5)

but they are not defined for e = 0. The singular perturbation method of the

preceding sections does not apply because (6.4) is not in the standard form.

On the other hand, singular control theory establishes that the optimal

singular arcs satisfy B'p = 0 which is consistent with the formal reduced system

BR ^B'p = 0 obtained from (6.4). The results of O'Malley and Jameson treat a

hierarchy of cases, where Case Z is defined by requiring that for j = 0,1,...,£-2

and all t€ [t ,t£] o f

BjQBj = °* > 0 (6-6)
where

B = B, B . = AB. , - B . i. (6.7)o ’ 3 3-1 3-1

(There are also problems beyond all cases and those where the case changes with 

t.) For Case Z the fast time variables are defined as

t-to ( 6 .8)

and the control and the corresponding trajectory are of the form

u = u (t ,y )  + - y  v (t ,y) + w(a,y) (6.9)
y
l
z-1y

x = x ( t ,y )  + ri(x,y) + yp(a,y) ( 6 . 10)
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where the slow limiting control is u(t) = u(t,0) and the slow trajectory 

x(t) = x(t,0) lies on a manifold of dimension n-£r. A crucial property of

the control (6.9) is its term v(x,y), which allows a rapid transfer from
y

the given initial state to the singular arc. In the limit as e -* 0 the control

behavior is impulsive and can be analyzed by distributions, Francis and Glover

(1978) and Francis (1979, 1982). The trajectory will feature impulsive

behavior at t = t whenever £ > 1. o
Applying the Riccati approach to (6.3), (6.4), (6.5), that is, 

setting p = Kx we get

u ---- ^  R 'Kx
£

where K satisfies

2£ (K + KA + A ’K + Q) = KBR' B ’K, K(tf) = 0.

( 6 . 11)

( 6 . 12)

This equation is in the standard form only if r=n and det B ̂  0 which is a very 

special and unlikely situation. For r < n  the r.h.s. term of (6.12) is 

singular. Hence this equation is not in the standard form and the procedure 

in Section 4 does not apply. We see, however, that a reduced solution KQ 

satisfies

B ’K = 0 (6.13)o

but this K0is not fully defined. Since B ’KB can be nonsingular, we pre- and 

post-multiply (6.12) by B ’ and B, respectively,

£2 [B’(KB)+B’K A B + B ’A ’KB + B ’QB] = B'KBR_1B ’KB. (6.14)

Substituting K for cK^ and equating lowest order terms we obtain the reduced 
equation _ i

B ’QB = (B’K 1B)R (B'^B) (6.15)

which in Case 1, when B ’QB>0, has a unique solution 

B ’KjB = / R^(B’QB)R^ > 0. (6.16)
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Such an analysis suggests that K be sought in the form 

K = Ko(t) + eK^t) + eKjCa) + 0(e) (6.17)

where a= (t^-t)/e and (a) is the boundary layer correction at t=t^. 

Substituting (6.17) into (6.12) and equating the terms of like powers in e, 

we obtain at e = 0

K + K A. + AlK o o 1 1 o - K  SK + Q o o 0 , Ko (tf)=° (6.18)

where

= A- (B'QB)-1B’Q 

Qx = Q - QB(B?QB)_1B,Q 

Sx = Bx (B'QB)_1Bj > 0
and

dK1 _
—  = - KlSfKl(tf)-Kl(tf)SfKi-KiSfKi

(6.19)

(6 . 20) 

(6 . 21)

( 6 . 22)

where Sf =B(tf)R ^(tf)B’(tf). It can be shown that KQ(t) is defined by (6.13) 

and (6.18) and that (6 .22) and B '(tf)K^(0) + B ’(tf)K^(tf) = 0 uniquely

define (a) in terms of K^(t^). These facts and (6.16) allow us to form 

the control law (6.11) with the approximation (6.17) which, in view of B tKq = 0, 

becomes

u -  R 1B* (K, + L )x. £ 1 1
(6.23)

With this high-gain feedback control the system (6.1) is

ex = [eA-BR_1B *(K^ + K^)]x. (6.24)

Although it is not in the standard form we can expect that the reduced 

solution x satisfies B ’K^x=0, that is, the corresponding singular arc is in
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the null space of B ’K^. Since the prescribed initial condition x(0) =x° in 

general does not satisfy B fK^x° = 0, there will be a boundary layer at t = tQ, 

the rapid transition of x from x° to x. Another boundary layer will exist
A

at t = t^ because of the presence of K^(a) in (6.23).

We see that the analysis of singular perturbation problems which 

are not in the standard form is more complex than those which are. It is often 

useful to transform the problem into the standard form. The time-invariant 

problem (6 .1) can, after a change of variables, always be written as

—

y A 11 A 12
X

+
0

z
A 21 A 22

z A
where x £ R n , y £ R r, u £ R r , and B2 is a nonsingular rxr matrix. With a high-

gain feedback control

u = —  (F1y + F0z) (6.26)e l 2

where F^ and F^ are unspecified constant matrices, the system (6.25) becomes

y = A u y + A12z (6.27)

ez = (eA2 1 +B F 1)y + (eA22 + B2F2) z. (6.28)

If F2 is chosen such that

ReX{B2F2> < 0, (6.29)

Theorem 2.1 holds and a two-time-scale design is possible by designing the 

reduced (slow) subsystem

x = [a 11-A12(B2F2) B ^ ^ x (6.30)
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and the boundary layer (fast) subsystem

(6.31)

Taking (6.30) becomes

x = (Au - A 12Fs)x . (6.32)

By Corollary 2.1 the feedback matrices can be separately chosen, F^ to place 

the eigenvalues of B^F^jand Fg to place the eigenvalues of A^-A^Fg* Such a 

design procedure was proposed by Young, Kokotovic, and Utkin (1977).

High gain systems have good disturbance rejection properties. They 

have been extensively studied in the control literature. Typical references 

include Shaked (1976,1978), Kouvaritakis (1978), Kouvaritakis and J. M. Edmunds

(1979) , and more recently Sastry and Desoer (1983). A geometric approach was 

developed by Willems (1981,1982). Insensitivity and disturbance decoupling 

properties are analyzed by Young (1976,1982a,b). High-gain systems may suffer 

because of neglected high frequency parasitics. This aspect was addressed by 

Young and Kokotovic (1982). Variable structure systems, Utkin (1977a,b), in 

most situations behave similarly to high-gain systems. Since they are 

described by differential equations with discontinuous right-hand-sides, their 

solutions are typically defined in the sense of Filipov. Grishin and Utkin

(1980) show that this definition is well-posed with respect to singular 

perturbations. This and other current topics in variable structure systems 

are discussed in the most recent survey by Utkin (1983).
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7. Composite Feedback Control of Nonlinear Systems

In the preceding three sections approximations of both the optimal 

feedback control and the optimal trajectory consisted of slow and fast parts. 

They were obtained from singularly perturbed Riccati equations or two-point 

boundary value problems. These optimality conditions also consisted of slow 

and fast parts. A further step toward a final decomposition of the two-time- 

scale design has been made which decomposes the optimal control problem itself 

into a slow subproblem and a fast subproblem. Separate solutions of these 

subproblems are then composed into a composite feedback control which is applied 

to the original system. As an engineering tool the composite control approach 

has both conceptual and practical advantages. The fast and the slow controllers 

appear as recognizable entities which can be implemented in separate hardware 

or software.

The composite control was first developed for time-invariant optimal 

linear state regulators by Suzuki and Miura (1976), Chow (1977), and Chow and 

Kokotovic (1976), and then for nonlinear systems by Chow and Kokotovic (1978a,b, 

1981) and Suzuki (1981). A frequency domain composite design was developed by 

Fossard and Magni (1980). Extensions to stochastic control problems are due 

to Bensoussan (1981) and Khalil and Gajic (1982). The composite control has 

also been applied to large scale systems, as will be discussed in a subsequent 

section. The composite control approach is now presented following Chow and 

Kokotovic (1981).

The optimal control problems in the preceding sections were 

linear and over a finite time interval. We consider now a nonlinear infinite 

interval problem in which the system is

x  = a 1 (x) +  A x ( x ) z + B 1 (x)u, x(0) = x° (7.1)

ez = a^(x) +  A ^ ( x ) z + B 2 (x )u , z (0) = z ° (7.2)
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where xG Rn , z G R m , u€ Rr and the cost to be optimized is

J = / [p(x)+ s ’(x)z+ z ’Q(x)z+ u'R(x)u]dt. (7,3)
0

Assumption 7.1

There exists a domain D C R n , containing the origin as an 

interior point, such that for all x€ D functions a^, a^, A^, A^, , B^,

p, s, r, and Q are differentiable with respect to x; a^, a^, p, and s are 

zero only at x=0; Q and R are positive-definite matrices for all xGD; the 

scalar p+s’z + a ’Qz is a positive-definite function of its arguments x and z, 

that is, it is positive except for x = 0 , z = 0 where it is zero.

The usual approach would be to assume that a differentiable optimal 

value function V(x,z,e) exists satisfying

0 = min[p + s Tz + z ’Qz + u ?Ru +V^Ca^+A^z+B^u)+-^ Vz(a2+A2Z+B2u) ] (7.4)

where V ,V denote the partial derivatives of V. Since the control minimizing x z
(7.4) is

« ■ - I R'1(BK  + s B2V2>. (7.5)

the problem would consist of solving the Hamilton-Jacobi equation

0 = p + s ’z + z’Qz + V (a..+A z) + —  V (a0+A„z)X  1 1 Z A c .

" I  (VxBl + f  V 2)R“1 (BiVi + e B2V2>* 0 -6)

To solve (7.6) is difficult even for well-behaved nonlinear systems. The 

presence of ^ terms increases the difficulties. To avoid the difficulties 

we do not deal with the full problem directly. In contrast, we take advantage 

of the fact that as e ->0 the slow and the fast phenomena separate, and define



54

two separate lower dimensional subproblems. The ^solutions of the two sub

problems are combined into a composite control whose stabilizing and near 

optimal properties can be guaranteed.

For the slow subproblem, denoted by subscript "s,M the fast 

transient is neglected, that is

x = a-(x ) + A-(x )z + B_(x )u , s I s l s s  l s s

0 = a2 (xg) + A2 (x s )zs + B2 (x s )us

x (0)= x° s (7.7)

(7.8)

and, since is assumed to exist, 

z (x ) = -A0^(a_ + B0u )S S L l L S (7.9)

is eliminated from (7.7) and (7.3),. Then the slow subproblem is to optimally 

control the "slow subsystem"

x = a ( x ) + B ( x ) u ,  s o s  o s s x (0) = x s (7.10)

with respect to "slow cost"

J = / [p (x ) + 2s’(x )u + u ’R (x )u ]dt“ J n ° O S S  s o s ss o - o  s (7.11)

where

a =

B =

*

s =

R =

al - AlA2 l a 2

B1 - ViS
p = s'A^a 2 + a ’A--1QA^1a2

B2A2"1 (QA2 l a 2 _ 2 S)

R + B^A^'1QA^1B2 .

(7.12)
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We note that, in view of Assumption 7.1, the equilibrium of the slow subsystem 

(7 .10) is xg = 0 and

p ( x ) + 2s ’(x)u + u ’R (x )u > 0 ,o s  o s s  s o s s Vx #>, x e  D; Vu #). (7.13)s s  s

Our crucial Assumption 7.2 concerns the existence of the optimal value

function L(x ) satisfying the optimality principle s

0 = min[p (x ) + 2s ’ (x )u + u ’R (x )u + L  (a (x ) + B (x )u )] u o s  o s s  s o s s  x o s  o s  s (7.14)

where L denotes the derivative of L with respect to its argument x . The X s
elimination of the minimizing control

u = -R 1(s +Ì7 B ’L 1) s o o 2 o x (7.15)

from (7.14) results in the Hamilton-Jacobi equation

0 = (p -s’R 1s ) + L (a -B R 1S ) - ̂  L B R ^ B ' L ’, o o o o  x o o o o  2 x o o o x L(0) = 0, (7.16)

where p -s?R ^s is positive definite in D. o o o o

Assumption 7.2

For all x^e D, (7.16) has a unique differentiable positive-definite

solution L(x ) with the property that positive constants k , k„, k„, k. exist s 1 2  3 4
such that

k_L L' < -L a < k_L L ’ l x x  x o  2 x x

k0a ’a < -L a < k.a'a . 3 o o  x o ~  4 o o

(7.17)

(7.18)

Then L(xg) is a Lyapunov function guaranteeing the asymptotic

stability of x = 0 for the slow subsystem (7.10) controlled by (7.15), that is, s
for the feedback system
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xs a - B R ^ ( s  +-^-BTL ’) = a  (x). o o o o 2 o x o s (7.19)

It also guarantees that D belongs to the region of attraction of xs = 0.

For the fast subproblem, denoted by subscript "f," we recall that

only an 0(e) error is made by replacing x with x , or z with z . Thus we sub-s s
tract (7.8) from (7.2), introduce z^= z-zg , u ^ = u-ug , neglect 0(e) terms, and 

define the fast subproblem as

ezf = A2 (x)zf + B2 (x)uf, zf(0) = zO-zg (0), (7.20)

Jf = / (z’Q(x)z +u'R(x)u )dt. (7.21)
0

This problem is to be solved for every fixed xED. It has the familiar linear 

quadratic form and a controllability assumption is natural.

Assumption 7.3

For every fixed x£D,

rank[B2 ,A2B2 ,...,A2 = m. (7.22)

Alternatively, a less demanding stabilizability assumption can be made. 

For each x€ D the optimal solution of the fast subproblem is

uf(zf,x) = -R_1 (x)B^(x)Kf(x)zf (7.23)

where K^(x) is the positive-definite solution of the x-dependent Riccati 

equation

0 = KfA 2 + A£Kf - KfB2R_1B^Kf + Q. (7.24)

The control (7.23) is stabilizing in the sense that the fast feedback system
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ez£ = (A2-B2R_1B^K)Zf £ A2 (x)zf (7.25)

has the property that ReXfA^Cx)] <0, VxG D.

We now form a "composite" control uc = us + uf> -*-n which is replaced

by x and zc by z + A 0^(a0+B«u (x)), that is i i z z s

u (x,z) = u (x) - R V k  (z + A \ a  -B u (x))) c s 2 f Z Z Z s
- 1 I -1 _-l_

= -R Is + ~  B'L') - R Xb :k .(z +A, a.) (7.26)o o Z o x  2 f  2 2

where

52 (x) = a2 ” 2 B2R_1 (blLx + B2V1} ’ *2 (0) = 0

V- = -(s' + 2a^Kf + LxA1)5^1

A2 = A ^ B  R_1B^Kf . (7.27)

The properties of the system controlled by the composite control are summarized 

in the following theorem .

Theorem 7.1

When Assumptions 7.1, 7.2, and 7.3 are satisfied then there exists e*

such that Ve€(0,£*], the composite control u defined by (7.26) stabilizes thec
full system (7.1),(7.2) in a sphere centered at x=0, z=0. The corresponding

cost J is bounded. Moreover, J is near optimal in the sense that J ->■ J as c c c s
e -*■ 0 .

This theorem shows that the considered nonlinear regulator problem 

is well-posed with respect to £ . It is the basis for a two-time scale design 

procedure whose steps are illustrated by the following example.

Example 7.1

The system and the cost are

x = - 7- x^ + z (7.28)4
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ez = -z + u (7.29)

T 6 , 3  2 . 1  2, ,J = J (x + t z  + T u ) d t . (7.30)
o 4 4

Step 1. The slow subproblem

3 3 .X = - —  X + us 4 s s (7.31)

00
J = / (x^H-u^)dt (7.32)
s 0 s s

consists in solving the Hamilton-Jacobi equation

Lx - dxL - V  L(0) “ 0s
•(7.33)

which yields

T 1 4  1 3  L = 7  x , u = - 7  x , 4 s s 2 s x = s
5 3 - 7  x . 4 s (7.34)

Step 2. Assumption 7.2

. 6 5 6 , 6 k_x < 7  x < k_x , I s  4 s 2 s (7.35)

25 , 6 5 6 25 . 6 —  k_x < 7  x < 7 7  k.x , 16 3 s • 4 s 16 4 s (7.36)

is satisfied by

(7.37)

Step 3 . The fast subproblem

= —Zj. +

, _ r ,3 2 1 2* ,
Jf ' l (4 zf + 4 Uf)dt

is, in this case, independent of x and its solution is

Kf ' 4> uf z , cz, = -2z^.

(7.38)

(7.39)

(7.40)
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Step 4 . The design is completed by forming the composite control

3u = - x  -  zc

and applying it to the full system (7.28), (7.29), that is,

3 3 ,X = -  T  X +  z4

3 0ez = - x  -  2 z .

(7.41)

(7.42)

(7.43)

It should be noted that this system could not have been designed by 

methods based on linearization since its linearized model at x = 0 , z = 0 has a

zero eigenvalue. However, Theorem 7.1 guarantees that the equilibrium x = 0, 

z = 0 is asymptotically stable for e sufficiently small.
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8 . Nonlinear Trajectory Optimization

We now consider a more general class of nonlinear optimal control 

problems on a finite interval [t ,t ], frequently encountered in flight 

dynamics and start-up or shut-down operations for industrial plants. In 

Section 5 we have discussed such problems for linear systems and quadratic 

functionals. In this section we deal with nonlinear systems in the form

X = f(x,z,u), __ n x £ R (8.1)

z = g(x,;2,u) , _ m z£ R (8.2)

and the functional to be minimized

fcf
J = / v(x,z,u)dt (8.3)

to

where for simplicity of notation we do not show the dependence of f, g, and v 

on e and t. The Hamiltonian function for this problem is defined as

H = v + p ' f + q ' g  (8.4)

that is, the second adjoint variable eq is scaled for g/e. This was the 

problem that attracted control engineers to singular perturbations, Kokotovic 

and Sannuti (1968), Sannuti and Kokotovic (1969), Kelley and Edelbaum (1970), 

and Kelley (1970a,b,c,1971a,b), and singular perturbationists to control, 

Bagirova, Vasileva, Imanaliev (1967), O'Malley (1972,1974). In Bagirova, 

et al. (1967) the system was only the fast part (8.2), while in Kokotovic and 

Sannuti (1968) and Sannuti and Kokotovic (1969) only the reduced problem was 

considered. Papers by Kelley (1970a,b,c,1971a,b,1973) demonstrated the 

relevance of singular perturbations and boundary layer approximation for
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aircraft maneuver optimization and similar flight dynamics problems. These

applications were further advanced by Ardema (1976,1979,1980), Calise (1976,

1978,1979,1980,1981), Mehra, et al. (1979), Sridhar and Gupta (1980), and

Shinar (1981,1983). An application to nuclear reactors was reported in Reddy

and Sannuti (1975). Asymptotic expansions and their validity were investigated

by Hadlock (1970,1973), O'Malley (1974), Sannuti (1974a,b,1975), Freedman and

Granoff (1976), Freedman and Kaplan (1976), Kurina (1977), Vasileva and

Dmitriev (1980), Vasileva and Faminskaya (1981) . A methodology similar to

that of Sections 5 and 7 was developed by Chow (1979) .

A different methodology was developed for linear time-optimal controls

by Collins (1973), Kokotovic and Haddad (1975a,b), Javid and Kokotovic (1977),

Javid (1978), and Halanay and Mirica (1979), in which case the bang-bang

control exhibits outer low-frequency and inner high-frequency switches.
BHUsing Pontryagin's principle, or —  = 0 if the control is uncon-oU

strained, u is eliminated in terms of the state and adjoint variables. The 

result is a nonlinear singularly perturbed (2n+2m)-dimensional boundary value 

problem

x 3H
3p (8.5)

( 8 . 6)

In general, the initial and final states are required to be on some lower

dimensional manifolds M at t = t and M_ at t=t_, that is, the boundaryo o f f
conditions for (8.5), (8 .6) are

),z(t ) € M  , p(t ),q(t ) i M (8.7)O O 0 o o o

f) ,z(tf)e Mf> p(tf),q(tf) i Mf. (8 .8)
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From general properties of singularly perturbed boundary value problems, Wasow 

(1965), Chang (1972), Vasileva and Butuzov (1973), we know that an optimal 

trajectory consists of a slow "outer" part with "boundary layers" at the ends. 

In the limit as e -* 0 the problem decomposes into one slow and two fast 

subproblems. The slow ("outer") subproblem

(8.9)

is 2n-dimensional. To satisfy the remaining 2m boundary conditions, the layer

("inner") corrections z_(x_ ), z (x_) for z, and q (x ) , q (x ) for q areL L K R  L L K K
determined from the initial (L) and final (R) boundary layer systems with

L Rappropriately defined Hamiltonians H and H , that is,

dz __1
dx.

8H
(8 . 10)

dz
dx
R
R

3HR
9qR

dq.R
dxR

8HR
9z.R

(8 . 11)

t-t tf~t
where x, = --—, while x„ = ----- is the reversed fast time scale. The resultsL e R e
of these subproblems are used to form approximations

u = ug(t)+uL (xL) + uR (xR) + 0 (e) (8 .12)

x = x (t)+0(e) (8.13)s

z = zg(t)+zL (xL) + zr (tr) + °(e) (8.14)

As was already discussed in Section 5, the L-layer must asymptotically decay, 

that is, the initial condition at xR = 0 for (8 .10) must be on a stable
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manifold. In Kelley’s terminology, this initial condition is chosen to

"suppress the unstable fast modes" at t = t , that is, at x_ =0. At t = t^,o L f
that is, at t = 0 , the situation is opposite, (or the same, in the reverse K.
time). The endlayer z (x ) must asymptotically decay as x -* °°, that is, asK R R
t-*--oo and hence z (0) must lie on a totally unstable manifold of (8 .11).K

In realistic nonlinear problems the matching of layers and reduced 

solutions is not an easy task. It is more complex if the control is 

constrained and if singular arcs occur. For this reason practical approaches 

are problem-dependent and based on prior experience. This is particularly 

true in flight dynamics,where reduced order approximations based on "energy 

state" or "point mass" and "rigid body" models are common. In flight dynamics 

singular perturbations are used to legitimize such 'fcuthless order-reductions 

which facilitate numerical computations in two ways: first, they reduce the

number of costate initial values that must be determined simultaneously, and, 

second, they improve the conditioning of the boundary value problem. For 

example, the wild, undamped phugoid-like oscillations characteristic of the 

system (8.5), (8 .6) for lifting atmospheric flight is avoided for the most 

part, being relegated to boundary layer corrections, where it may be no more 

docile, but, at least, can be dealt with separately over shorter lengths of 

arc." This quote is from Kelley (1973) which is still the clearest presenta

tion of the subject.

The already quoted works of Kelley, Calise and Ardema contain details 

of several applications containing the layers not only at the ends, but also 

at some inner points where the reduced trajectory is permitted to be 

discontinuous. Another difficulty in these applications is a proper choice of 

fast and slow variables, and the selection of one or several small parameters.
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Time scales differ in low thrust (aircraft) and high thrust (missile) 

applications. We will only give a simple example of a long range flight 

from the papers of Calise.

Example 8 .1

The point mass equations of motion for two-dimensional flight using 

the sum of kinetic and potential energy

2
E = h + —— (8.15)

2g

as a state variable, can be written as

x

eE

v cos y,

(T-D)v
W

v = /(E-h)/2g

3-e Y =

v sin y

L-W cos y 
^ Wv

(8.16)

(8.17)

(8.18) 

(8.19)

where T is thrust, D is drag, L is lift, W is weight, y is the flight path

angle, x is down range position, h is altitude, g is the gravitation

constant and v is velocity, in this case not a state variable. Cost functional

J is formulated to penalize fuel consumption and the time of flight. The
2 3"total" scaling with e, e , and e leads not only to a boundary layer, but 

also to a sublayer and a subsublayer. This scaling is introduced to reduce 

each subproblem to a scalar problem which can be solved in an explicit feed

back form, thus simplifying the on-board implementation of the control law. 

However, this "total" scaling is limited to systems without oscillatory modes. 

Indeed, in the long range flight example, the "total" scaling gave the results, 

closely approximating the actual optimal trajectory, which is made up
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of climb, cruise, and descent arcs, Fig. 8.1. During the cruise L = W and y = 0 

and E and h are chosen to minimize J. The change of weight W is periodically 

updated, such that the reduced (outer) solution is the cruise-climb path 

A-B.

Fig. 8.1. Trajectory of long-range flight.

The first boundary layer with T1 = “  deals with the energy variable during
t t

the climb, while the sub- and subsublayers T2~ ~  anc* T3=~3 wit^ h anc*
e e

Y dynamics. If they are coupled as in some fighter aircraft, it is more 

appropriate to treat them in the same time scale t ,̂ that is, to multiply y 

by e rather than e . For a transport aircraft both h and y dynamics can be 

neglected. Their quasi-steady state obtained in the t flayer is a good appro

ximation in this case.



66

9. Stochastic Filtering and Control

Research in singular perturbation of filtering and stochastic control 

problems with white noise inputs has revealed difficulties not present in 

deterministic problems. This is due to the fact that the input white noise 

process "fluctuates" faster than the fast dynamic variables, which as £-*0 , 

themselves tend to white noise processes. In their surveys of stochastic 

differential equations and diffusion models Blankenship (1979) and Shuss (1980) 

and Kushner (1982), (in a note), stress the importance of attaching clear proba

bilistic meaning to time scales.

To illustrate the problems arising in the singularly perturbed formu

lation of systems with white noise problems, we note that setting e = 0 in the 

linear system

x = A-^x + A^z + BjU + GjW (9.1)

ez = A ^ x  + A ^ z  + B^u + G2w (9 .2)

where w(t) is white Gaussian noise,is inadequate, since

z = -A22 (A21x + B2u + GjW) (9.3)

has a white noise component and, therefore, has infinite variance. As shown 

by Haddad (1976), variable z from (9.3) may be substituted for z in defining 

a reduced (slow) subsystem, but z cannot serve as an approximation for z in the 

mean square sense.

For the linear filtering of (9.1), (9.2) with respect to the obser

vations

y = CjX + C2z + v (9.4)
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where v(t) is a white Gaussian noise independent of w(t), Haddad (1976) demon

strated that the Kalman filter can be approximately decomposed into two filters 

in different time scales. Similar results are obtained for near-optimal 

smoothing by Altshuler and Haddad (1978), and state estimation with uncertain 

singular perturbation parameter by Sebald and Haddad (1978).

For the control problem of the system (9.1), (9.2) and (9.4) with 

respect to the cost functional

J = E{x'(T)rxx(T) + 2ex'(T)T12z(T) + ezf(T)T2z(T)

T
+ / (x’L..x+ 2x’L 1 ?z + z'L-z + u ’Ru)dt} (9.5)

0 i iZ 1

it was demonstrated by Teneketzis and Sandell (1977) and Haddad and Kokotovic 

(1977) that the optimal solution may be approximated by the solutions of two

reduced order stochastic control problems in the slow and fast time scale.
1 % However, to avoid divergence J ^ — } it is required that L2 — e, and T2 — e .

A more general scaling is discussed by Khalil, Haddad, and Blankenship (1978).

More recently Khalil and Gajic (1982) approached this problem via singularly

perturbed Lyapunov equations. Razevig (1978) and Singh and Ram-Nandan (1982)

have established the weak convergence, as e->0 , of the fast stochastic

variable z which satisfies

e z  = Az + /c G w > ReX(A) <0 (9.6)

where w(t) is Gaussian white noise with covariance W, that is,

lim z(t;e) = z weakly (9.7)
e->0

where z is a constant Gaussian random vector with covariance P satisfying the

Lyapunov equation
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AP + PA’ + GWG’ = 0. (9.8)

Alternative formulations of the linear stochastic regulator problem have been 

reported by Tsai (1978) and Khalil (1978). Khalil assumes a colored noise 

disturbance in the fast subsystem to account for situations when the correla

tion time of the input stochastic process is longer than the time constants of 

fast variables. Thus the optimal solution to the stochastic regulator problem 

can be approximated by the optimal solution of the slow subproblem and optimal 

cost J does not diverge.

A composite control approach to a class of nonlinear systems driven 

by white noise disturbances, as a stochastic version of the results reviewed 

in Section 8 , was developed by Bensoussan (1981). He considered

x

ez

c(x) z + d(x) + 2 3(x)u + /2 w^ (9.9)

a(x) z + b(x) + 2a(x)u + e/2 w^ (9.10)

oo
/ e Vt[(f(x) +h(x)z) + u ]dt 
0

(9.11)

where w^(t), w^(t) are white noise processes independent of each other.

The optimal feedback law is obtained as

a(x)Ve(x,z)
u£(x,z) = -8 (x)V£(x,z)------t------ (9.12)X o

where V (x,z) is the Bellman function. As e + 0, the optimal solution converges 

to the solutions of the two subproblems. The slow subproblem is

x = - —  (b + 2au ) + d + 2$u + /2 w (9.13)a s s

J°(u (•)) = E / e [(f- 7  (b + 2au ) Z + y H  dt.X S q 3 o o
2 . 2 . (9.14)
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The fast subproblem is an x-dependent deterministic optimal control problem 

given by

ez^ = az^ + 2au^ (9.15)

00

J° (U.(.)) = / (hz^ + u b d t . (9.16)
zf 1 0 1

The composite control is formed as in Section 8 , namely,

uc(x,z) = ug(x) + u^(x,z) (9.17)

where u (x) is the optimal control for (9.13), (9.14) and u,-(x,z) is the optimal s r
control for (9.15), (9.16).

Singular perturbations of quasi-variational inequalities arising in 

optimal stochastic scheduling problems are investigated by Hopkins and 

Blankenship (1981). Results for wide-band noise disturbances are obtained by 

Blankenship and Meyer (1977), Blankenship and Papanicolaou (1978), and El-Ansary 

and Khalil (1982). Time scales in stochastic differential equations are 

studied by Blankenship and Sachs (1977) and Blankenship (1978). Singular 

perturbations of stochastic filtering and control are an active research 

topic which has some common features with problems of mathematical physics, 

surveyed by Blankenship (1979) and Schuss (1980).
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10. Time Scale Modeling of Networks

In the last several years time scale modeling and singular perturbation 

techniques have been extensively used in the study of large scale systems. We 

first give an overview of the main topics and then concentrate on modeling issues. 

A time scale modeling methodology was developed for Markov chains with weak 

interactions by Gaitsgori and Pervozvanski (1975,1979,1980), Delebecque and 

Quadrat (1981), Phillips and Kokotovic (1981), Delebecque (1983), and Coderich 

et al. (1983) and for networks with weak connections by Avramovic, et al. (1980), 

Kokotovic (1981), Kokotovic, et al. (1982), Peponides, et al. (1982), and 

Peponides and Kokotovic (1983), summarized in a monograph by Chow, et al. (1982). 

This methodology has been applied to energy and power systems for management of 

dams, as in Delebecque and Quadrat (1978), and for network equivalencing as in 

Chow, et al. (1982). The models of large scale systems obtained by this 

methodology consist of a slow "core" which represents the only coupling of 

otherwise decoupled fast models of local subsystems. This model structure 

motivated a "multimodeling" approach to the decentralized control by Khalil 

and Kokotovic (1978,1979a,b) further developed by Khalil (1979,1980,1981),

Saksena and Cruz (1981,1982), and Saksena and Basar (1983). The characteristic 

of the multimodeling approach is that each local controller has a different model

of the same large scale system which agrees with the models of other controllers 

only in the model of the slow core. A multi-parameter singular perturbation 

model with one slow core and N local fast subsystems captures this situation

N N
X II t» o o X + l An .z. i=l 0i l + E B u. 

i=i 0i 1

N
= A.„x + A. . z . + E £..A..z.'i lO li l 3 = 1 13 13 3

( 10 . 1)

li l ( 10 . 2)
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This model allows us to assume that each controller neglects all other fast sub

systems and concentrates on its own subsystem, plus the interaction with others 

through the slow core. For the i-th controller, this is simply effected by 

setting all £-parameters to zero, except for e^. The i-th controller’s simpli

fied model is then
. ix A.x'

1
+ A~ . z. Oi 1 + B0iUi

N
+ E B..u.

j-1 ^  J

£  . Z  . 
1 1

= A.oX- + A..z . + B ..u.l i  l  l i  i

(10.3)

(10.4)

which is often all the i-th controller knows about the whole system. The k-th 

controller, on the other hand, has a different model of the same large scale 

system. Control u^ can be divided into a slow part, which contributes to the 

control of the core, and a fast part controlling only its own fast subsystem.

The multiparameter perturbation problem has been solved under rather restrictive 

D-stability assumptions, Khalil and Kokotovic (1979), Ozguner (1979), and Khalil 

(1981). Stochastic multimodeling problems are even more complex, because of the 

so-called nonclassical information patterns, Saksena and Basar (1982).

Singular perturbation problems for multiple controllers with different 

cost functionals (e.g., differential games) are complex even with a single 

perturbation parameter. We have already mentioned the ill-posedness of linear 

Nash games with respect to singular perturbations, Gardner and Cruz (1978). 

Singularly perturbed differential games were further investigated by Salman and 

Cruz (1979), Khalil and Kokotovic (1979), and Khalil and Medanic (1980). A 

singularly perturbed pursuit-evasion problem was studied by Farber and Shinar 

(1980) and Shinar (1981).

Let us conclude this section and the whole survey with a closer look 

at a fundamental property of large scale systems— the fact that the time
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scales are caused by weak connections, Kokotovic (1981). Although this is 

a property of a wide class of nonlinear systems, such as power systems, 

Peponides, Kokotovic, and Chow (1982), and multimarket economies, Peponides 

and Kokotovic (1983), we restrict our discussion to linear time-invariant 

systems in the form

where A represents strong internal connections within a subsystem while eB are 

weak external connections among subsystems. If A is singular, this is not a 

standard form (1.1), (1.2) because the crucial Assumption (1.1) is violated.

Of the rich literature dealing with (10.5) and its generalizations we mention 

only a few representative references. Vasileva in (1975,1976) and in her 

monograph with Butuzov (1978) treats (10.5) as a "critical case" of singular 

perturbations. For O'Malley (1978,1979) and O'Malley and Flaherty (1977,

1980) these are "singular singularly perturbed" problems. In the monographs 

by Campbell (1980,1982) they are special cases of "singular systems" of 

differential equations. These terminological differences refer to different 

levels of complexity implied by different assumptions about A and B in (10.5). 

Denoting by R(A) and N(A) the range space and the null space of A, respectively, 

the simplest case treated in Peponides, et al. (1982) is when

ev = [A + eB(e)]v, v £ R n (10.5)

R(A) ©  N(A) = Rn (10 . 6)

dim R(A) = p, dim SI (A) = v (10.7)

and hence
p + v = n. ( 10 . 8 )

Then SJ(A) is the equilibrium manifold of

(10.9)
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and there exists a p x n matrix Q such that

Qv = 0 <=> v^W(A). (10.10)

Moreover, let the rows of an v x n matrix P span the left null space of A, then

P 4^ = PAv = 0 (10.11)dx

represents a conservation manifold of (10.9) because

Pv(0) = Pv(x), Vx > 0. (10.12)

The time scales of (10.5) are clear from (10.9) and (10.12) which represent the 

"near-equilibrium" and "near-conservation" properties of (10.5).

Theorem 10.1

The slow and fast variables of (10.5) are x and z, respectively,

x = Pv, z = Qv, v = Sx + Tz, (10.13)

and this change of variables transforms (10.5) into

x = PB(e)Sx + PB(e)Tz (10.14)

ez = eQB(e)Sx + [QAT + eQB(e)T]z (10.15)

which is a standard form because QAT is nonsingular due to (10.7).

This defines the fastest time scale x = —  ande

x = PB(0)Sx (10.16)

is the slow (reduced) subsystem of (10.14)-(10.15). If a decomposition similar 

to (10.7) applies to PB(0)S, there will be time-scales slower than t which can 

be determined by a nested procedure, Peponides (1982). More general approaches 

to the determination of time-scales are due to Coderch, et al. (1983) and 

Delebecque (1983).
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Example 10.1

Let us re-examine the RC-network in Fig. 1.2 and its model (1.17)"" 

(1.18). In this case

A =

1 1---tH |
i

o

1—
 

o
C1
1

C2

c i
- i
C2J

, B =

i
o 1

r c 2 J

(10.17)

and hence
Q = [1 - 1 ] ,  P =

l W  C1 « 2 J
(10.18)

We see therefore that the near-conservation property (10.12) of the network 

in Fig. 1.2 reflects the fact that in the limit R->°°, the total charge on 

the capacitors is constant and the "aggregate" voltage x is the voltage on the 

sum of the capacitors with that charge. During the fast transient this voltage 

remains essentially constant, while the actual voltages v^ and converge to 

their quasi-steady state V  ̂= V2 * Their difference

z = Qv = v ^ — v2 (10.19)

is the fast variable. Its substitution into (1.22)-(l.23) would put the 

network model in the form (10.15).

In networks and Markov chains, A is often block-diagonal and each 

of its N blocks A^ represents a local network or Markov chain with the property 

that

det A^ = 0, i=l,...,N. (10.20)

The most interesting case is when dim W(A^) =1 for all i=l,...,N and hence 

v=N. Then P is an Nxn dimensional aggregation matrix and x = Pv defines one 

aggregate variable for each subsystem. In mass-spring networks and
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electromechanical models of power systems, see Chow, et al. (1982), this 

variable is the familiar "center of mass,"

Z m . v .
x. = ---, i=l,...,N (10.21)

1 Em.
3

where the summation is restricted to the i-th subsystem. In Markov chains the 

aggregate variable x^ is the probability for the Markov process to be in the 

class i of the strongly interacting states, which corresponds to (10.21) with 

m_. = 1 for all j . For the multimodeling approach to decentralized control it is 

of crucial importance that for such networks and Markov chains QAT is block 

diagonal, that is, the fast subsystems are indeed "local." An interesting 

interpretation of the fast variables, which in the case of networks appear as 

differences between local variables, as in (1.19), is that they express a 

coherency property. This property has been experimentally observed and 

extensively used in power systems. The variables in the same subsystem are 

coherent because their response to the excitation of system-wide slow modes is 

identical. This is why for slow phenomena all the variables of the same sub

system can be aggregated into one variable. Aggregation and coherency are 

generalized to nonlinear networks in Peponides (1982), and Peponides, et al. 

(1982) and extended to modeling of multimarket economies in Peponides and 

Kokotovic (1983). The relationship of aggregability and weak coupling was 

investigated in early aggregation works by Simon and Ando (1961) and Simon 

(1962). These concepts can now be further analyzed by singular perturbation 

techniques.

In applications, an inverse problem is of even greater importance.

We have seen that weak connections imply the time-scales. The inverse question
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is how to use the knowledge of time-scales to find the weak connections and 

decompose a large network into weakly connected subnetworks ("areas"). For 

linear systems an efficient computer algorithm was developed by Avramovic (1980), 

Avramovic, et al. (1980), and Chow, et al. (1982), which from the slow eigen- 

space of A determines the areas, that is, decides which connections to consider 

to be of e-order. An example is the decomposition of the 42-machine power 

network of the Western portion of the United States into ten areas, shown in 

Fig. 10.1.

For an application to queueing networks see Phillips and Kokotovic 

(1981). These first experiences show that singular perturbations and time-scales 

will plan an important role in computer-assisted modeling of large scale systems.

Fig. 10.1. Partition of the Western U.S. power network into ten areas, see 
Chow (1982).
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Concluding Remarks: Future Topics

Instead of conclusions, let us predict some future topics. Several 

results discussed in this paper have already been extended to distributed 

parameter systems. Typical references are Lions (1973), Asatani (1976),

Desoer (1977), and Balas (1982) . It is clear that more work will be done 

in this area. Averaging and homogenization (Bensoussan, Lions, and Papanicolaou

(1978) , Blankenship (1979)) are a related class of time-scale methods which have 

not been discussed. We expect to see more control applications of these 

methods. Our discussion of stochastic control, with the help of Blankenship

(1979) , and Schuss (1980), indicates that most of the major problems are still 

open for an efficient time-scale asymptotic treatment.

This is not to say that all is quiet on the deterministic front. The 

composite control approach is still restricted to special classes of systems. 

Trajectory optimization problems with singular arcs and state and control 

constraints have so far been treated in a semi-heuristic way and are in need 

of theoretical support. Time scaling of nonlinear models is a crucial unsolved 

problem. Will geometric methods help?

The developments in modeling and control of large scale systems,

(Chow, et al. (1982)) are extremely encouraging and are expected to continue at a 

rapid rate. When the relationship between weak or sparse connections and time 

scales is fully understood, the time-scale asymptotic methods will be one of the 

most powerful tools for analysis and design of large scale systems. Let us not 

forget that one of the advantages of time-scale methods is that they do not 

depend on linearity and should apply to most nonlinear models.
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